2016年湖南对口高考数学试题

合集下载

湖南省对口高考数学试题分值分布(2014年-2019年)

湖南省对口高考数学试题分值分布(2014年-2019年)
12
3
12
3
16
3
1
2
函数(指数函数与对数函数)
14
1
1
22
2
1
1
22
3
1
3
三角函数及公式
8
1
1
4
1
14
1
1
4
数列
10
1
14
1
1
14
1
1
5
平面向量
14
1
1
8
1
1
8
1
1
6
直线和圆
8
1
1
8
2
4
1
7
立体几何
8
1
1
10
1
14
1
1
8
概率与统计
22
2
1
1
22
1
2
1
8
2
9
椭圆双曲线抛物线
14
1
1
10
1
10
1
10
职业模块
1
1
8
1
1
6
直线和圆
8
1
1
8
2
4
1
7
立体几何
8
2
14
1
1
14
1
1
8
概率与统计
18
1
1
1
18
2
1
18
2
1
9
椭圆双曲线抛物线
14
1
1
10
1
10
1
10
职业模块

湖南省高考对口招生考试数学真题及参考答案

湖南省高考对口招生考试数学真题及参考答案

湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .6)1(+x 13.的展开式中5x 的系数为 (用数字作答) 14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n .17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A(0,1)在椭圆C 上. (I)求椭圆C 的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,=CD∠BCD120°,BC,4=6=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15. 321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21= ∴21sin 11==∠B A BD D BA ∴301=∠D BA即直线1BA 与平面C C AA 11所成的角是30.20. 解:(Ⅰ)∵椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c又点A (0,1)在椭圆C 上 ∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直 ∴直线l 的斜率是1-=k 直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x 344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN即MN 的长是23421. 解:如图,连结BD在BCD ∆中,6==CD BC ,=∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S=ABDBD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21=45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯=6639+22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最学习必备 欢迎下载大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC 作直线x y 54-=及其平行线l :554z x y +-=,直线l 表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。

2016年湖南高考数学理科试卷真题

2016年湖南高考数学理科试卷真题

绝密★启封并使用完毕前试题类型:A 2016年湖南高考数学理科试卷真题2016年普通高等学校招生全国统一考试理科数学适用地区:安徽、湖北、福建、湖南、山西、河北、江西、广东、河南注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x=-+<,{|230}B x x=->,则A B =(A)3(3,)2--(B)3(3,)2-(C)3(1,)2(D)3(,3)2(2)设(1i)1ix y+=+,其中x,y是实数,则i=x y+(A)1(BC(D)2(3)已知等差数列{}na前9项的和为27,10=8a,则100=a(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17π(B)18π(C)20π(D)28π(7)函数y=2x2–e|x|在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=,|DE|=则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(A)2(B )2 (C)3 (D)1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =. (14)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)(15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。

湖南省2016年高考理科数学试题(附答案)

湖南省2016年高考理科数学试题(附答案)

湖南省2016年高考理科数学试题(附答案) 湖南省2016年高考理科数学试题(附答案)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1) 设集合 $A=\{x|x^2-4x+30\}$,则 $A\cap B=$text{(A)}\ (-\infty,1)\qquad \text{(B)}\ (-\infty,1]\qquad\text{(C)}\ [1,+\infty)\qquad \text{(D)}\ (1,+\infty)$2) 设 $(1+i)x=1+yi$,其中 $x,y$ 是实数,则 $x+yi=$text{(A)}\ (-3,-1)\qquad \text{(B)}\ (-3,1)\qquad \text{(C)}\ (1,3)\qquad \text{(D)}\ (3,1)$3) 已知等差数列 $\{a_n\}$ 前 $9$ 项的和为 $27$,$a_{10}=8$,则 $a_{100}=$text{(A)}\ 98\qquad \text{(B)}\ 99\qquad \text{(C)}\100\qquad \text{(D)}\ 97$4) 某公司的班车在 $7:00$,$8:00$,$8:30$ 发车,小明在$7:50$ 至 $8:30$ 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 $10$ 分钟的概率是text{(A)}\ \frac{1}{12}\qquad \text{(B)}\ \frac{1}{8}\qquad \text{(C)}\ \frac{1}{6}\qquad \text{(D)}\ \frac{1}{4}$5) 已知方程 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的图形是一条横轴长为 $4$ 的双曲线,且该双曲线两焦点间的距离为$4$,则 $a$ 的取值范围是text{(A)}\ (0,3)\qquad \text{(B)}\ (-1,3)\qquad \text{(C)}\ (-3,3)\qquad \text{(D)}\ (0,+\infty)$6) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。

对口高考数学统考试卷(2016)

对口高考数学统考试卷(2016)

2016上期永州市中职一年级期末统一检测试卷数 学注意:(1)本试卷满分100分。

考试时量90分钟。

(2)在密封线内填写好相应项目。

1、下列各项中能构成集合的是A .红星职业中专个子高的全体男生 B. 红星职业中专优秀的女学生 C. 红星职业中专模具专业全体学生 D. 红星职业中专篮球打得好的学生 2、“内错角相等”是“两直线平行”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3、下列命题为假命题的是A .37是质数B .66≤C .293<D .434≥ 4、不等式1<x 的解集是A . RB .Q C.()),1(1,+∞⋃-∞- D .)1,1(-5、下列函数是奇函数的是A .3)(+=x x fB .x x f cos )(=C .x x f sin )(=D .x x f 2)(= 6、下列等式成立的是 A .()26lg 36lg = B .3lg 8lg 38lg-= C .()4log 2log 42log 666+=+ D .()e e ln 22ln = 7、函数x y 5=的图象过点A .()0,1MB .()1,0MC .()0,0MD .()1,1M 8、3π弧度用角度制表示为 A.30 B.45 C.60 D.120 9.()=-o 30cosA.21 B. 21- C. 23 D. 23- 10、已知角α的终边经过点()4,3P ,则αsin 的值为 A .43 B .34 C .53D .54二、填空题(本大题共20分,每小题4分,共5小题,请将正确答案填在空格内)11、集合}50,{≤<∈x z x x 用列举法表示为_______________ 12、不等式()()021≤--x x 的解集是_______________13、已知函数0)2(,2)(=-+-=f b x x f 且,则=b14、式子=3log 2215、已知54cos =α,则()=+απcos三、解答题:要求写出必要的解答过程,5道小题,每小题8分,共40 分.(请注意:第20、21题为选做题,若两道题都做了,只给第20题的得分)16、已知集合A={0,2,4,6},B={1,2,4,5}求BA⋃、BA⋂.17、解不等式:0652<-+-xx18、计算:3227―3log22―81log219、已知()πα,0∈,且54cos-=α.求αsin及αtan的值.请注意:第20、21题为选做题,若两道题都做了,只给第20题的得分20、已知0cos3sin=+αα.(1)求αtan的值. (2)求ααααcossincos3sin2+-的值.21、已知函数()()53lg-=xxf.(1)求函数()x f的定义域; (2)求()()25ff-的值.2016上期永州市中职一年级期末统一检测试卷参考答案一、 C CCDCBBCCD二、 {}5,4,3,2,1,[]2,1,4-,3,54-三、16题解:{}6,5,4,2,1,0=⋃B A 4分 {}2=⋂B A 8分 17题、解:0652<-+-x x 0652>+-x x ()()032>--x x 2<x 或3>x原不等式的解集是()()+∞⋃∞-,32,18题: 解:原式()323232log 33--= 2分333323--=⨯ 4分632-= 6分 69-=3= 8分19题:解:∵()πα,0∈,54cos -=α ∴53541c o s 1s i n22=⎪⎭⎫⎝⎛--=-=αα 4分 435453c o s s i n t a n -=-==ααα 8分。

湖南省近七年(2011-2017)对口高考数学试题分类

湖南省近七年(2011-2017)对口高考数学试题分类

湖南省近七年(2011-2017)对口高考数学试题分类近七年湖南省普通高等学校对口招生考试的数学试题中,填空和选择题占据了很大比例。

以下是一些题目和解答:1.(2011.1)不等式(x-2)(x+1)≤0的解集是()A.(-1,2)B.(-∞,2) ∪ (2,+∞)C.[-1,2]D.(-∞,-1) ∪ [2,+∞]2.(2012.3)不等式2x-3>1的解集为()A.(1,2)B.(-∞,1) ∪ (2,+∞)C.(-∞,1)D.(2,+∞)3.(2013.7)不等式x^2-2x-3>0的解集为()A.(-3,1)B.(-∞,-3) ∪ (1,+∞)C.(-1,3)D.(-∞,-1) ∪ (3,+∞)4.(2014.7)若a<0,则关于x的不等式(x-3a)(x+2a)<0的解集为()A.{x|3a-2a} C.{x|-2a3a}5.(2015.8)不等式1-2x<3的解集为()A.{x|x-1} C.{x|-2<x<4} D.{x|-1<x<2}6.(2016.4)不等式2x+1>5的解集为()A.{x|x>2}B.{x|x2}7.(2016.13)若不等式x^2+x-c≤0的解集为{x-2≤x≤1},则c=5.8.(2017.7)不等式x-5x+6<0的解集为()A.{x|x3} C.{x|x3} D.{x|2<x<3}9.(2017.14)若关于x的不等式2x+b<3的解集为{x-3<x<5},则b=-1.1.(2011.2)方程x^2-px+q=0有解的充分必要条件是p^2-4q≥0.2.(2012.2)"x>3"是"x^2>9"的充分必要条件。

3.(2013.3)"x=2"是"(x-1)(x-2)=0"的充要条件。

2016年湖南省高考理科数学试卷及答案(精校WORD版)【精选】

2016年湖南省高考理科数学试卷及答案(精校WORD版)【精选】

第 1 页 共 11页2015年普通高等学校招生全国统一考试(湖南卷)理科数学本试题包括选择题,填空题和解答题三部分,共6页,时间120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分,贼每小题给出的四个选项中,只有一项是复合题目要求的.1.已知(为虚数单位),则复数( )2(1)1i i z-=+i z =A .B .C .D .1i +1i-1i-+1i--【解析】由题意得,得.故选D .2(1)2111i iz i i i--===--++考点:复数的运算.2.设,是两个集合,则“”是“”的( )A B A B A = A B ⊆A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】由题意得,A B A A B =⇒⊆ ,反之,A B A B A =⇒⊆ ,故为充要条件.故选C .考点:集合的关系.3.执行如图1所示的程序框图,如果输入3n =,则输出的S =( )A .B .C .D .76739894【解析】由题意得,输出的为数列的前三S 1(21)(21)n n ⎧⎫⎨⎬-+⎩⎭项和,而,所以1111()(21)(21)22121n n n n =--+-+,从而.故选B .11(122121n n S n n =-=++337S =考点:程序框图,裂项相消求数列的和.1第 2 页 共 11 页4.若变量,满足约束条件,则的最小值为( )x y ⎪⎩⎪⎨⎧≤≤--≥+1121y y x y x y x z -=3A . B .C .1D .27-1-【解析】如图所示,画出线性约束条件所表示的区域,即可行域,从而可知当,时,y x z -=3的最小值是7-.故选2x =-1y =A .考点:线性规划.5. 设函数,则是( ))1ln()1ln()(x x x f --+=)(x f A . 奇函数,且在是增函数B . 奇函数,且在是减函数)1,0()1,0(C . 偶函数,且在是增函数D . 偶函数,且在是减函数)1,0()1,0(【解析】试题分析:显然,定义域为,关于原点对称,()f x (1,1)-又∵,∴为奇函数,显然在上单调()ln(1)ln(1)()f x x x f x -=--+=-()f x ()f x (0,1)递增.故选A .考点:函数的性质.6.已知的展开式中含的项的系数为30,则( )5(xax -23x =a A .B .C .6D .33-6-【解析】,令,可得,从而.故选D .5215(1)r r r rr T C a x-+=-1r =530a -=6a =-考点:二项式定理.7. 在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线为正态分布C 的密度曲线)的点的个数的估计值为( ))1,0(N A .2386B .2718C .3413D .4772附:若,则),(~2σμN X ,6826.0)(=+≤<-σμσμX P .9544.0)22(=+≤<-σμσμX P 【解析】根据正态分布的性质,.故选.1(01)(11)0.34132P x P x <<=-<<=C 考点:正态分布.8. 已知点,,在圆上运动,且 . 若点的坐标为,A B C 122=+y x BC AB ⊥P )0,2(第 3 页 共 11 页则的最大值为( )||PC PB PA ++A .6 B .7C .8D .9【解析】由题意得为圆的直径,故可设,,,AC (,)A m n (,)B m n --(,)C x y ∴,而,∴的(6,)PA PB PC x y ++=- 22(6)371249x y x -+=-≤||PC PB PA ++最大值为7.故选.B 考点:圆的性质,平面向量数量积.9. 将函数的图象向右平移个单位后得到函数的图象,x x f 2sin )(=ϕ)20(πϕ<<)(x g 若对满足的,,有,则( )2|)()(|21=-x g x f 1x 2x 3||min 21π=-x x =ϕA .B .C .D .125π3π4π6π【解析】向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨设ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min 3x x π-=,∴632πϕπϕπ=⇒=-.故选D .考点:三角函数的图象和性质.10. 某工件的三视图如图所示,现将该工件通过切削,加工成体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料的利用率)( )原工件的体积新工件的体积=A .B .C .D .π98π916π2124)-(π21212)-(【解析】问题等价于圆锥的内接长方体的体积,如下图所示,则有,∴,212x h -=22h x =-∴长方体的体积为22(2)(22)x h x x =-,当且仅当4(22)x x x =-A A 3224()3x x x ++-≤3227=时,等号成立,2223x x x =-=即∴利用率为.故选A .232162719123ππ=A A考点:圆锥内接长方体,基本不等式求最值.侧侧侧侧侧侧1育(列讲话,员中开我第 4 页 共 11 页二、填空题:本大题共5小题,每小题5分,共25分.11.__________.⎰=-2)1(dx x 【解析】.⎰=-2)1(dx x 2201|02x x -=考点:定积分的计算.12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)茎叶图如图所示.若将运动员按成绩由好到差编为1-35号,再用系统抽样的方法从中抽取7人,则其中成绩在区间上的运动员的人数是_________.]151,139[【解析】由茎叶图可知,在区间]151,139[的人数为20,再由系统抽样的性质可知人数为435720=⨯人.考点:系统抽样,茎叶图.13.设是双曲线的一个焦点,若上存在点,使线段的中点恰F C 1:2222=-by a x C P PF 为其虚轴的一个端点,则的离心率为________.C 【解析】根据对称性,不妨设,短轴端点为,从而可知点在双曲线(,0)F c (0,)b (,2)c b -上,∴,从而.222241c b a b -=ce a==考点:双曲线的标准方程及其性质.14.设为等比数列的前项和,若,且成等差数列,则n S }{n a n 11=a 321,2,3S S S ___________.=n a 【解析】等比数列中,,∴}{n a 2111S a a q q =+=+231S q q =++,24(1)31q q q +=+++解得,∴.3q =13n n a -=考点:等比、等比数列的通项公式及其前n 项和.的意业。

2016年全国各省市高考数学(理)试题及答案

2016年全国各省市高考数学(理)试题及答案

2016年全国各省市高考数学(理)试题及答案2016年全国各省市高考数学(理)试题及答案试题类型:2016年普通高等学校招生全国统一考试卷3 理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S xx x =--≥=I > ,则S T =(A)[2,3](B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA = ,31(,),2BC = 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825(C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC△中,π4B,BC边上的高等于13BC,则cos A (A)310(B)10(C)10(D)310(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)185+(B)545+(C)90(D)81(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是π(A)4π (B)92π(C)6π (D)323(11)已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

中职对口高考湖南数学复习单元卷(全册)含答案

中职对口高考湖南数学复习单元卷(全册)含答案

(这是边文,请据需要手工删加)第一章 集合与不等式测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.下列各组集合中,表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={1,2},N ={(1,2)}2.已知全集U ={1,2,3,4,5}.集合M ={1,2},N ={1,4,5},则集合{1,3,4,5}是( )A .(∁U M )∩NB .M ∩(∁U N )C .(∁U M )∪ND .M ∪(∁U N )3.若全集U =Z ,M ={x |x =2k ,k ∈Z },N ={x |x =2k +1,k ∈Z },则下列关系式成立的是( )A .M =NB .M ∪N =UC .M ND .M N4.不等式x 2+3x +2>0的解集是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-2,-1)D .(-∞,-2)∪(-1,+∞)5.不等式-|x -5|>-15的解集是( )A .{x |x <20}B .{x |-10<x <20}C .{x |x >-10}D .{x |x <-10或x >20}6.不等式|x -3|<-1的解集是( )A .B .{x |x <3}C .{x |x >3}D .R7.“x >1”是“x 2(x -1)>0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.若x 2-ax -b <0的解集是{x |2<x <3},则bx 2-ax -1>0的解集为( )A .{x |-12≤x ≤13}B .{x |-12<x <13} C .{x |-12<x <-13} D .{x |-12≤x ≤-13} 9.不等式3≤|5-2x |<9的解集是( )A .(-∞,-2)∪(7,+∞)B .[1,4]C .[-2,1]∪[4,7]D .(-2,1]∪[4,7)10.不等式x -12-x>0的解集是( ) A .(-∞,1)∪(2,+∞) B .[1,2]C .(2,+∞)D .(1,2)二、填空题(每小题4分,共20分)11.已知集合A ={(x ,y )|2x +y =1},集合B ={(x ,y )|x +2y =5},则A ∩B =________________.12.已知全集U =R ,集合A ={x |x 2<5},集合B ={x |x 2-5x -6≥0}.则A ∩B =________________,A ∪B =________________,∁U A ∪B =________________.13.设全集U =R ,集合A ={x |x ≥3},集合B ={x |x <0},则集合(∁U A )∪(∁U B )=________________________________________________________________________.14.设mn <0,若m <0,则n ________________.15.比较大小(x -1)(x +3)________________(x +1)2.三、解答题(共60分)16.(10分)已知集合M={x2,x+1,-3},N={x-3,x2+1,2x-1},若M∩N={-3},求实数x的值.17.(10分)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A∪B=A,求实数m的取值范围.18.(10分)已知集合A={a,b,2},B={2a,b2,2},且满足A=B,求a,b的值.19.(10分)已知集合A={x|x2-5x+p=0},集合B={x|2x2-qx+1=0},且A∩B={1},求A∪B.20.(10分)解不等式:x 2-x -6x -1>0.21.(10分)已知不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数的m 取值范围.(这是边文,请据需要手工删加)第二章 函数测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.函数y =(x +1)0|x |-x的定义域为( ) A .{x |x >0} B .{x |x <0}C .{x |x ≠0且x ≠-1}D .{x |x <0且x ≠-1}2.设函数f (x )=m x+m (x ≠0),且f (1)=2,则f (2)=( ) A .0 B .1 C.32D .2 3.函数y =x 2-2x +5的值域是( )A .[4,+∞)B .(4,+∞)C .(-∞,4]D .(-∞,4)4.若x ∈(-∞,+∞),下列函数中为奇函数的是( )A .f (x )=log 2xB .f (x )=3xC .f (x )=x 3+x +1D .f (x )=-x |x |5.下列各式不成立的是( )A .3x ·2x =6xB .2a +b =2a +2b C.22=234 D .(15)a -b =5b 5a 6.设函数f (x 2+34)=log 3(8x 2+7),则f (1)=( ) A .2 B .log 339 C .1 D .log 3157.函数y =lg (x 2-2x -2)的定义域是( )A .{x |x <3}B .{x |x >-1}C .{x |-1<x <3}D .{x |x ≤-1或x ≥3}8.若102x =25,则10-x =( )A.15 B .-15 C.1625 D.1509.函数f (x )=3x +1+5的值域是( )A .(0,+∞)B .(5,+∞)C .(6,+∞)D .(-∞,+∞)10.已知函数f (x )的定义域是(0,1),则f (2-x )的定义域为( )A .(0,1)B .(1,2)C .(12,1) D .(0,+∞) 二、填空题(每小题4分,共20分)11.设x 38=334,则x =________________.12.设log 155=m ,则log 153=________________.13.已知23x -5>4x ,则x 的取值范围是________________.14.5a =2,25b =9,则52a -b =________________.15.函数y =log 13(0.5x -1)的定义域是________________.三、解答题(共60分)16.(10分)计算3-2+(-35)0-(338)-23.1 2x(x-2)≥log123.17.(10分)解不等式:log18.(10分)求函数y=2x+12-3x的定义域.19.(10分)已知函数y=f(x),且lg(lg y)=lg(2x)+lg(2-x).(1)求函数f(x)的解析式及其定域;(2)求函数f(x)的单调区间.20.(10分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂价恰好降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P =f (x )的表达式.21.(10分)设y =(34a +1)x 与y =log (a +2)x 在区间(0,+∞)上都是减函数,求a 的取值范围.(这是边文,请据需要手工删加)第三章 三角函数测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.若cos α(sin α+4)=0则α等于( )A .0B .±π2C .k πD .k π+π2(k ∈Z ) 2.下列各式中与sin A 相等的是( )A .sin(90°-A )B .cos(90°+A )C .cos(270°+A )D .sin(180°+A )3.若α=17π3,则下列判断正确的是( ) A .sin α>0,cos α<0 B .sin α<0,cos α>0C .sin α>0,cos α>0D .sin α<0,cos α<04.下列不等式成立的是( )A .sin π8<sin 5π8B .tan π8<tan 5π8C .cos π8<cos 13π8D .tan π8<tan 13π85.函数y =sin 2x 2的最小正周期是( ) A.π2B .πC .2πD .4π 6.下列函数是奇函数的是( )A .y =sin(π2-x ) B .y =cos(π-x ) C .y =tan(π+x ) D .y =cos(2π-x ) 7.已知cos(π+α)=-12,3π2<α<2π,则sin(2π-α)的值是( ) A.12 B .±32 C.32 D .-328.函数y =3sin 12x -cos 12x 的值域为( ) A .[-2,2] B .(-2,2) C .[-3,3] D .(-1,1)9.x ∈R ,y =5-sin x 2的最大值是( ) A .3 B .4 C .5 D .610.要得到函数y =cos(2x -π4)的图象,只须将函数y =sin 2x 的图象( ) A .向左平移π8个单位 B .向右平移π8个单位 C .向左平移π4个单位 D .向右平移π4个单位 二、填空题(每小题4分,共20分)11.已知sin α=5-12,则sin 2(α-π4)=________________. 12.在△ABC 中,a 、b 分别是角A 和角B 所对的边,若a =3,b =1,B 为30°,则角A 的值是________.13.函数y =sin 2x +2cos x (π3≤x ≤2π3)的最小值是________________. 14.若扇形的周长为8,面积为23,则其中心角的弧度数是________________.15.函数y =sin x -3cos x 2的定义域是________________. 三、解答题(共60分)16.(10分)化简:sin (α-2π)tan (π+α)cos (π-α)cos (2π-α)tan (2π+α).17.(10分)已知tan α=2,求sin α+cos αsin α-cos α的值.18.(10分)已知:cos α=-35,α∈(π,3π2),求sin(α-π3),sin 4α,cos α2的值.19.(10分)已知sin α=35,α∈(π2,π),tan(π-β)=12,求tan(α-2β).20.(10分)已知函数y =12cos 2x +32sin x cos x +1. (1)当x 为何值时,y 取最大值; (2)上述函数图象怎样由函数y =sin x 图象变换所得. 21.(10分)已知0<α<π2,0<β<π2,且cos α=17,cos(α+β)=-1114,求β的值.(这是边文,请据需要手工删加)第四章 数列测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.已知数列{a n }中,a 1=1且a n =a n -1+1(n ≥2),则a 15等于( )A .31B .29C .17D .152.数列{a n }的通项公式为a n =2n 2-n ,那么下列各数为数列中某一项的是( )A .66B .50C .54D .683.已知x ,2x +2,3x +3是一个等比数列的前3项,则该数列的第4项等于( )A .-27B .-272C .27 D.2724.等差数列{a n }的公差为-2,若a 1+a 3+a 5+…+a 99=50,则a 2+a 4+a 6+…+a 100等于( )A .-30B .-50C .50D .605.等比数列{a n }中,若a 3a 4a 6a 7=81,则a 1a 9等于( )A .3B .±3C .9D .±96.等差数列{a n }中,S 3+S 4=S 5且S 7=49,则公差d 等于( )A .1B .2C .-1D .-27.数列{a n }中,如果a n +1=12a n ,且a 1=2,则数列的前5项之和等于( ) A.318 B .-318 C.3132 D .-31328.在1与16之间插入三个正数a 、b 、c ,使1、a 、b 、c 、16成等比数列,那么b 等于( )A .2B .4C .8 D.1729.等比数列{a n }的前n 项和为S n ,已知S 3=3,S 6=12,则S 9=( )A .27B .30C .36D .3910.{a n }为等比数列,且a n <0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=( )A .-5B .-10C .5D .10二、填空题(每小题4分,共20分)11.在等比数列{a n }中,已知a 1+a 2+a 3=30,a 4+a 5+a 6=60,那么a 10+a 11+a 12=____________.12.已知公差不为零的等差数列{a n }中,a 5=10,且a 5,a 7,a 11成等比数列,那么a 14=____________.13.已知数列{a n },a n =-2n +25,当S n 达到最大值时,n 为________________.14.log 64与log 69的等差中项为________________.15.在等比数列{a n }中,已知S n =3n +b ,则b 的值为________________.三、解答题(共60分)16.(10分)在等比数列{a n }中,从第1项到第3项的和为1,从第1项到第6项的和为9,求首项a 1,公比q ,以及前5项的和S 5.17.(10分)在等差数列{a n}中,已知a n=16,S n=49,d=3,求a1和n的值.18.(10分)已知三个数组成公比大于1的等比数列,其和为21,若将此三个数分别加上1,5,6后,则所得三个数成等差数列,求原来的三个数?19.(10分)已知等比数列{a n}的各项均为正数,a1=2,前3项的和为14.(1)求数列{a n}的通项公式;(2)设b n=3n-log2a n,求数列{b n}的前n项和S n.20.(10分)已知等比数列{a n}的前n项和S n,且S1,S3,S2成等差数列.(1)求数列{a n}的公比q;(2)若a1-a3=3,求S n.21.(10分)在等差数列{a n}中,a7=4,a19=2a9.(1)求数列{a n}的通项公式;(2)设b n=1na n,求数列{b n}的前n项和S n.(这是边文,请据需要手工删加)第五章 平面向量测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.若a =λb ,则下列说法不正确的是( )A .a 、b 方向相同B .|a |-|λb |=0C .a ∥bD .a -λb =02.下列各式中仍是向量的为( )A .a ·bB .a 2C .|b |cos θD .(a·b )c3.若a 与b 的夹角为θ,且a·b ≥0,下列各式中成立是( )A .θ=0°B .0°≤θ<90°C .90°≤θ<180°D .0°≤θ≤90°4.下列各式中正确的是( )A .λa 的模是a 的模的λ倍B .λa 的模是a 的模的|λ|倍C .λa >aD .-3a <a5.下列各式中不正确的个数是( )①a ·b =b·a ②(λa )(μb )=λμ(a·b ) ③(a·b )2=a 2·b 2 ④(a·b )·c =a ·(b·c )A .1B .2C .3D .46.已知a =(-1,3),b =(x ,-1),若a ∥b ,则x 等于( )A .3B .-13 C.13D .-3 7.已知向量a 与b 的夹角θ=60°,且|a |=8,|b |=5,则a·b =( )A .20B .30C .20 3D .408.一质点受到平面上的三个力F 1,F 2,F 3(单位:N)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .279.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A.P A →+PB →=0B.PC →+P A →=0C.PB →+PC →=0D.P A →+PB →+PC →=010.设A (2,3),B (3,4),向量a =(-5,-5),则下列命题不正确的是( )A .向量AB →是单位向量 B.AB →∥aC.AB →与a 的夹角是π D .|a |=5|AB →|二、填空题(每小题4分,共20分)11.已知|a |=1,|b |=2,如果a ∥b ,则a·b =________________.12.点A (2,1)与点B (5,1)之间的距离|AB |=________________.13.已知向量a =(4,3),e 是与a 垂直的单位向量,则e =________________.14.线段MN 的中点坐标为P (-3,-1),点M (3,2),则N 的坐标是________________.15.已知a =(3,1)、b =(3,0),则a 与b 的夹角θ=________________.三、解答题(共60分)16.(10分)已知向量a =(1,2),b =(3,-4),求:(1)a +b ;(2)a -b ;(3)2a +b .17.(10分)已知向量a=i-j,b=-2i+2j,试判断向量a与b是否共线.18.(10分)已知a =(-2,5),|b |=2|a |,若b 与a 反向,求b 的坐标.19.(10分)已知ABCD 是梯形,AB ∥CD ,且AB =2CD ,M 、N 分别是DC 和AB 的中点,已知AB →=a ,AD →=b ,试用a 、b 表示MN →.20.(10分)已知|a |=3,|b |=4,a 与b 的夹角为3π4,求:(a +2b )·(3a -2b ). 21.(10分)已知|a |=2,|b |=4,且向量a +k b 与向量a -k b 垂直,求k 的值.(这是边文,请据需要手工删加)第六章 直线与圆的方程测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.直线l 的斜率为-3,则直线l 的倾斜角为( )A .30°B .60°C .150°D .120°2.直线经过两点P (-2,m 2),Q (m ,4),且斜率是1,则m 的值等于( )A .1或-2B .-1或2C .1D .-23.如果直线ax +2y +2=0与3x -y -2=0互相平行,则a 的值是( )A .-3B .-6C .-32 D.234.直线ax +(1-a )y =3与直线(a -1)x +(2a +3)y =2垂直,则a 的值为( ) A .-32或0 B .-3或1 C .-3 D .1 5.过点(0,1)且与直线y =2x +3平行的直线方程为( )A .x +2y -2=0B .x -2y +2=0C .2x -y +1=0D .2x -y -1=06.已知点A (-3,4),M (1,-3),则点A 关于点M 的中心对称点的坐标是( ) A .(-12,12) B .(-3,52) C .(-5,10) D .(5,10) 7.已知直线方程是2x -3y +6=0,则直线在x 轴上、y 轴上的截距分别是( )A .3、2B .-3、2C .-3、-2D .3、-28.坐标原点到直线x sin x +y cos x =1的距离为( )A .0B .1C .2 D.129.过点A (3,-2)且在两坐标轴上截距相等的直线方程是( )A .x +y +1=0B .x +y -1=0或2x +3y =0C.x 2+y 2=1D.x 2+y 2=-1 10.点P (1-22,22)与圆x 2+y 2=1的位置关系是( ) A .P 在圆内 B .P 在圆外 C .P 在圆上 D .P 在圆心二、填空题(每小题4分,共20分)11.经过点(2,5),且和x 轴平行的直线方程为________________;经过点(3,-2)且与y 轴平行的直线方程为________________.12.已知点A (a ,6)到直线3x -4y -2=0的距离等于4,则a 为________________.13.已知直线经过点(1,2),倾斜角是135°,则直线方程为________________.14.过点A (-5,1),且垂直于直线y =3x +2的直线方程为________________.15.两平行线2x +3y -8=0与4x +6y -1=0的距离是________________.三、解答题(共60分)16.(10分)已知直线ax +4y -2=0与2x -5y +c =0垂直且相交于点(1,m ),求a 、c 、m 的值.17.(10分)已知直线l在y轴上的截距式-3,且它与两坐标轴围成的三角形的面积为6,求直线l的方程.18.(10分)已知△ABC的三个顶点A(0,0),B(1,1),C(4,2),求△ABC的外接圆的方程.19.(10分)已知圆C:x2+y2-2x-2y+1=0,求过点P(3,2)且与圆C相切的直线方程.20.(10分)求经过点P(2,-1),圆心在y=-2x上,并且与直线x-y-1=0相切的圆的方程.21.(10分)直线l经过点A(1,3),B(2,2)解答下列问题:(1)求直线l的方程;(2)求直线l与坐标轴围成的三角形的面积;(3)画出直线l的图形.(这是边文,请据需要手工删加)第七章 二次曲线测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.已知双曲线方程x 220-y 25=1,那么它的焦距是( ) A .10 B .5 C.15 D .2152.顶点在原点,准线方程为y =4的抛物线的标准方程为( )A .y 2=16xB .y 2=-16xC .x 2=16yD .x 2=-16y3.过椭圆x 29+y 281=1的一个焦点F 1的直线与椭圆交于A 、B 两点,且A 、B 与椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .36B .18C .6D .94.以椭圆9x 2+25y 2=225的焦点为焦点,且离心率为e =2的双曲线方程为( ) A.x 212-y 24=1 B.x 24-y 212=1 C.x 220-y 24=1 D.x 220-y 220=1 5.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)6.已知直线y =kx -2与抛物线y 2=8x 交于A 、B 两点,且AB 中点的横坐标为2,则k 的值为( )A .-1或2B .-1C .2D .1±37.抛物线x 2-5y =0的准线方程是( )A .x =-54B .x =52C .y =54D .y =-548.双曲线x 216-y 29=1的焦点坐标是( ) A .(0,-5)和(0,5) B .(-5,0)和(5,0)C .(0,-7)和(0,7)D .(-7,0)和(7,0)9.已知双曲线的实轴长为8,焦点坐标为F 1(0,-25)和F 2(0,25),则双曲线方程是( )A.x 216-y 24=1B.x 24-y 216=1 C .4x 2-y 2+16=0 D .4y 2-x 2-16=010.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( )A .x 2=±4yB .y 2=±4xC .x 2=±8yD .y 2=±8x二、填空题(每小题4分,共20分)11.抛物线y 2+8x =0的焦点坐标是__________________,离心率是________________,准线方程是________________,开口方向________________.12.已知两点F 1(-5,0),F 2(5,0),求与它们的距离的差的绝对值是6的点P 的轨迹方程为________________.13.双曲线的标准方程是x 25-y 24=1,其中a =__________,b =__________,c =__________,焦点坐标是________________.14.经过抛物线y 2=2px 的焦点F 作一条直线垂直于它的对称轴,与抛物线交于P 1,P 2两点,线段P 1P 2称为抛物线的通径,通径P 1P 2的长是________________.15.已知点P (3,2),抛物线y 2=2x 的焦点为F ,P 为该抛物线上的一个动点,若|P A |+|PF |取最小值,则P 的坐标是________________.三、解答题(共60分)16.(10分)求离心率e =12,焦距=42,焦点在y 轴上的椭圆的标准方程.17.(10分)已知抛物线方程x 2=2py 上有一点M ,它的纵坐标为3,它到焦点距离为5,求抛物线方程、焦点坐标、准线方程及M 点坐标.18.(10分)椭圆与双曲线的中心在原点,对称轴为坐标轴,它们有相同的焦点(±5,0),并且它们的离心率e都可以使方程2x2+4(2e-1)x+4e2-1=0有相等的实根,求椭圆和双曲线的方程.19.(10分)求双曲线5x2-4y2=20的实半轴、虚半轴、焦点坐标、离心率和渐近线方程.20.(10分)已知直线y=x-2与抛物线y2=x交于A、B两点,求弦AB的长.21.(10分)已知F1,F2是椭圆的两个焦点,现有椭圆上一点M到两焦点距离之和为20,且|MF1|、|F1F2|、|MF2|成等差数列,试求该椭圆的标准方程.(这是边文,请据需要手工删加)第八章 立体几何测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.直线a ∥b 成立的条件可以是( )A .a ⊥α b ⊥αB .a ⊥c b ⊥cC .a ⊥α b ⊥βD .a 、b 与α成等角2.过平面外一点( )A .只有一条直线和这个平面平行B .存在无数个平面和这个平面平行C .存在无数条直线和这个平面垂直D .存在无数个平面和这个平面垂直3.下列命题中正确的是( )A .和两条异面直线都垂直的直线叫这两条异面直线的公垂线B .直线l ∥平面α,则l 平行于α内任一直线C .如果平面内无数条直线都平行于另一个平面,那么这两个平面平行D .如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面4.下列命题中真命题是( )A .等长的斜线段在同一平面上的射影长相等B .平面外的直线上有两个点到该平面距离相等,则这直线与该平面平行C .直线l 在平面α上射影为l ′,A ∈l ,A 在α上的射影为A ′,则A ′∈l ′D .垂直于同一条直线的两条直线平行5.若两条直线m ,n 分别在平面α,β内,且α∥β,则m ,n 的关系一定是( )A .平行B .相交C .异面D .平行或异面6.已知P A ⊥平面ABC ,∠ABC =90°,则下列垂直关系不成立的是( )A .平面P AC ⊥平面ABCB .平面P AB ⊥平面ABCC .平面PBC ⊥平面P ACD .平面P AC ⊥平面P AD7.在正三棱柱ABC -A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°8.如果等边圆柱(底面直径与母线相等)的体积是16π cm 3,那么它的底半径等于( ) A .432 cm B .4 cm C .232 cm D .2 cm9.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为( )A .30°B .45°C .60°D .75°10.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为( )A .6 3B .2 3 C. 3 D .2二、填空题(每小题4分,共20分)11.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1和BB 1的中点,则直线AM 与CN 所成角的余弦值为________________.12.侧棱长为3 cm ,底面边长为4 cm 的正四棱锥的体积为________________cm 3.13.在三棱锥的四个面中,直角三角形最多可以有________________个.14.过平面α外一点P 的斜线段是过这点垂线段的233倍,则斜线与平面α所成的角为________________________________________________________________________.15.若P A 是过平面α外一点P 向平面引出的所有线段中最短的一条,则P A 与平面α内的直线BC 的关系是________________.三、解答题(共60分)16.(10分)如图所示,长方体ABCD-A1B1C1D1中,AB=1,BC=2,C1C=3,求(1)A1B与C1D1所成的角的度数.(2)BC1与平面CC1D1D所成的角的正切值.17.(10分)已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,求以BC为棱,以面BCD与面BCA为面的二面角的大小.矩形ABCD在平面α上,AK⊥α,已知KB=6,KC=9,KD=7(1)求证:∠KBC=∠KDC=90°;(2)求AK之长.19.(10分)已知E,F分别为正方体ABCD-A1B1C1D1的棱BC,C1D1的中点,求证:EF∥平面BB1D1D.四面体A-BCD被一平面所截,截面EFGH是一个矩形,若∠ADC=90°.(1)求证:CD∥平面EFGH;(2)求证:CD⊥平面ABD.21.(10分)一个山坡面与水平面成60°的二面角,坡脚的水平线(即二面角的棱)为AB,甲沿山坡自P朝垂直于AB的方向走30 m,同时乙沿水平面自Q朝垂直于AB的方向走30 m,P、Q都是AB上的点,若PQ=10 m,这时甲、乙2个人之间的距离为多少?(这是边文,请据需要手工删加)第九章 排列组合与二项式定理测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为( )A .6B .5C .3D .22.设x ,y ∈N 且x +y ≤3,则直角坐标系中满足条件的点M (x ,y )有( )A .3个B .4个C .5个D .10个3.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有( )A .238个B .232个C .174个D .168个4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .85.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .2796.把3封信投到4个信箱,所有可能的投法共有( )A .A 34种B .C 34种 C .43种D .34种7.有四个舞蹈节目和四个独唱节目,要排一个节目单,要求舞蹈节目和独唱节目间隔出场,则不同的排法种数为( )A .2P 44P 44B .P 44P 44C .P 44+P 44D .2(P 44+P 44)8.二项式(x +3x )50的展开式中的有理项共有( )A .6项B .7项C .8项D .9项9.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .610.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10二、填空题(每小题4分,共20分)11.若k ∈{1,2,3,4},b ∈{3,4,5},则函数表示不同的直线共有________________条.12.将标号为1,2,3,…,10的10个球放入标号为1,2,3,…,10的10个盒子内,每个盒子内放一球,则恰好有3个球的标号与所在盒子的标号不一致的放法有________________种.13.若将两名医生和四名护士分成两个体验小组,每个小组一名医生和两名护士,则不同的分组方法有________________种.14.若将6个人排成一排,则其中甲不站在两端并且甲、乙两人必须相邻的排法共有____________种.15.(2x -1x 2)9的展开式中含1x的项是________________. 三、解答题(共60分)16.(10分)六名女同学和两名男同学站成两排进行合唱表演,每排四人.(1)两名男同学必须站在一起,有多少种站法?(2)两名男同学间恰有一名女同学,有多少种站法?17.(10分)某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?18.(10分)给图中五个区域涂色,要求同一区域相同色、相邻区域不同色,现有4种可选颜色,则不同的着色方法有多少种?19.(10分)4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?20.(10分)(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有几种?(2)有5个人并排站成一排,若甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少1个名额,问名额分配的方法共有多少种?21.(10分)用数字0,1,2,3,4,5组成没有重复数字的数.(1)能组成多少个自然数?(2)能组成多少个能被3整除的四位数?(这是边文,请据需要手工删加)第十章 概率与统计初步测试卷(时间:120分钟 总分:120分)一、选择题(每小题4分,共40分)1.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A .至少有一个红球与都是红球B .至少有一个红球与都是白球C .至少有一个红球与至少有一个白球D .恰有一个红球与恰有二个红球2.某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则此射手在一次射击中不够8环的概率为( )A .0.40B .0.30C .0.60D .0.903.甲、乙两人下棋,甲获胜的概率是0.3,甲不输的概率为0.8,则甲、乙两人下成和棋的概率为( )A .0.6B .0.3C .0.1D .0.5A .0.35B .0.45C .0.55D .0.655.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( ) A .甲获胜的概率是16 B .甲不输的概率是12C .乙输了的概率是23D .乙不输的概率是126.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( )A.23B.12C.13D.167.某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号职工在样本中,则样本中另外一个职工的编号是( )A .19B .20C .18D .218.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .129.某工厂生产A ,B ,C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现用分层抽样的方法抽出容量为n 的样本,样本中A 型产品有15件,那么样本容量n 为( )A .50B .60C .70D .8010.某工厂对一批产品进行了抽样检测,图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75C.60 D.4二、填空题(每小题4分,共20分)11.6位同学参加百米赛跑初赛,赛场共有6条跑道,其中甲同学恰好被排在第一道,乙同学恰好被排在第二道的概率为________________.12.在一次数学考试时出了10个选择题,每道选择题均有4个可供选择的答案,其中只有1个答案是正确的,其余3个答案是错误的,某学生只知道5个题的正确答案,对其它5个题全靠猜回答,那么这个学生卷面上正确答案不少于7个题的概率是________________.13.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则a<b的概率为________________.14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________________.15.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________________.三、解答题(共60分)16.(10分)某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?17.(10分)在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某城市一个投保人能活到75岁的概率为0.60,试求:(1)3个投保人都能活到75岁的概率;(2)3个投保人中只有1人能活到75岁的概率;(3)3个投保人中至少有1人能活到75岁的概率(结果精确到0.01).18.(10分)甲、乙两人分别对同一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)两人都射中的概率?(2)两人中有1人射中的概率?(3)两人中至少有1人射中的概率?(4)两人中至多有1人射中的概率?19.(10分)甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.(1)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率;(2)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率.20.(10分)袋中有12个除颜色外其余均相同的小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为14,得到黑球或黄球的概率是512,得到黄球或绿球的概率是12,试求得到黑球、黄球、绿球的概率各是多少?21.(10分)学校文娱队的每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P (ξ>0)=710. (1)求文娱队的人数;(2)写出ξ的概率分布.。

—湖南省普通高等学校对口招生考试数学试题

—湖南省普通高等学校对口招生考试数学试题

2008——2017年湖南省普通高等学校对口招生考试数学试题湖南省2008年普通高等学校对口招生考试数 学 试 题一、选择题(在本题的每一小题的备选答案中,只有一个答案是正确的,请把你认为正确的选项填入题后的括号内。

多选不给分。

本大题共10小题,每小题5分,共50分)1、已知全集{,,,,,,}U a b c d e f g =,集合{,,}U a e f =,集合{,,,}U b d e f =,则()U M N =( )。

(A ){,}e f (B ){,}c g (C ){,,}a b d (D ){,,,,}a b c d g2、不等式250x ->的解集是( )。

(A )( (B )(,(5,)-∞+∞(B )(5,5)- (D )(,5)(5,)-∞-+∞ 3、已知cos 0.618α=,(0180)α<<,则α的近似值是( )。

(A )28.86 (B )38.17 (C )51.83 (D )63.144、下列命题错误的是( )。

(A )在复平面上,表示两个共轭复数的点关于实轴对称。

(B )复数1+的三角形式是2(sin cos )33i ππ+。

(C )方程2160x +=在复数集内有两个根。

(D )复数1的模是2。

5、已知33212n n C C =,则n =( )。

(A )5 (B )6 (C )7 (D )86、已知向量(2,3),(1,5)a b =-=,则下列命题错误的是( )。

(A )2(0,3)a b += (B )3(7,4)a b -=-(C )||13a b += (D )13a b ⋅=7、过点(3,2),(4,5)P Q -的直线方程是( )。

(A )73230x y -+= (B )37230x y -+=(C )7370x y --= (D )3770x y --=8、已知椭圆2216251600x y +=上一点P 到椭圆一个焦点的距离为8,则P 到另一个焦点的距离为( )。

湖南省对口高考数学试题知识分布(2014年-2019年)

湖南省对口高考数学试题知识分布(2014年-2019年)

表一 2017-2019年对口高考数学试题知识分布题号2017 2018 2019章节知识点难易章节知识点难易章节内容知识点难易1 集合并集运算易集合交集运算易集合并集运算易2 函数指数函数模型易集合充要条件易集合充要条件易3 三角函数同角三角函数关系易函数二次函数的单调性中直线与圆两直线平行易4 直线与圆两直线垂直易三角函数同角三角函数关系易函数对数函数的值域中5 函数单调性中不等式绝对值不等式中不等式二次不等式易6 集合充要条件中直线与圆点到直线的距离中三角函数同角三角函数关系易7 不等式二次不等式中向量向量的夹角中向量内积运算难8 立体几何线面的位置关系易立体几何面面平行易三角函数正弦型三角函数图像中9 概率与统计组合问题中三角函数正弦函数的单调性中立体几何线线、线面位置关系易10 立体几何求三棱锥体积中直线与圆点到直线的距离中三角函数正弦型三角函数中11 概率与统计平均数易概率与统计分层抽样易概率与统计平均数中12 直线与圆直线与圆的位置关系易三角函数余弦函数的图像中向量坐标运算易13 三角函数三角函数的最值中概率与统计二项式定理中概率与统计二项式定理中14 不等式绝对值不等式中向量坐标运算中数列等差数列易15 二次曲线离心率的取值范围难数列等比数列难函数函数的奇偶性应用难16 函数(1)解析式定义域(2)指定范围的值域易中数列(1)等差数列通项(2)等差数列和易易数列(1)等差数列通项(2)等差数列求和易中17 概率与统计(1)求概率中概率与统计(1)求分布列中概率与统计(1)求分布列中表二 2014-2016年对口高考数学试题知识分布(2)求分布列中(2)求概率中(2)求概率易 18 数列(1)等差数列通项(2)等差数列与等比数列分组求和易 中函数 (1)解析式定义域 (2)解对数不等式 易中函数 (1)分段函数的图像 (2)解不等式 中中 19 向量 (1)向量平行 (2)向量垂直易 中立体几何 (1)线面垂直 (2)线面角 易 中立体几何 (1)线面垂直(2)三棱锥的体积 中易 20 二次曲线(1)求抛物线方程(2)直线与抛物线(中点弦问题)中 难二次曲线 (1)求椭圆方程 (2)直线与椭圆(弦长)易 难二次曲线 (1)求椭圆离心率 (2)直线与椭圆易 难21 职业模块(1)三角形面积和余弦定理(2)正弦定理 难 难职业模块 斜三角形的面积难 难职业模块 (1)解斜三角形求长度 (2)正余弦定理求正弦值中 中 22 职业模块线性规划难 职业模块线性规划难 职业模块线性规划 中题号 201420152016 章节 知识点 难易 章节 知识点 难易 章节内容 知识点难易 1 集合 并集运算 易 集合 交集运算 易 集合 并、补集运算 易 2 函数 值域 中 集合 充要条件 易 函数 单调性 中 3 集合 充要条件 易 函数 定义域中 集合 充要条件 易 4 直线与圆 中点坐标 易 直线与圆 点到直线距离 易 不等式 绝对值不等式 易 5 概率与统计 二项式定理 中 三角函数 同角三角函数关系 中 向量 坐标运算易 6三角函数 正弦型函数难 概率与统计 二项式定理难 三角函数 同角三角函数关系易7 不等式二次不等式难函数单调性、奇偶性中函数奇偶性中8 概率与统计两个原理易不等式绝对值不等式中函数单调性中9 立体几何求异面直线角中向量坐标运算中直线与圆两点间距离难10 直线与抛求弦长中直线与圆直线与圆位系难立体几何线线位置关系中11 概率与统计平均数易概率与统计相互独立事件易概率与统计古典概型易12 向量坐标运算易概率与统计分层抽样易数列前n项和易13 直线与圆最短距离难函数单调性难不等式二次不等式难14 三角函数已知值求角中向量坐标运算易概率与统计排列中15 立体几何求四棱锥体积难数列等比数列求和中直线与圆圆、向量内积难16 函数(1)解析式定义域(2)对数不等式中难函数(1)求解析式(2)求值域易中函数(1)求定义域(2)对数运算易中17 概率与统计(1)求分布列(2)求P《n概率中中概率与统计(1)求分布列(2)求P》n概率中中三角函数(1)正弦定理(2)和角公式易中18 向量(1)求内积(2)向量垂直易中立体几何(1)证线面平行(2)三棱锥体积难难数列(1)等比数列通项(2)等比数列求和易中19 数列(1)等差数列通项(2)求正项和易中数列(1)等差数列通项(2)求和最大值易中立体几何(1)线线垂直(2)线面角难难20 椭圆、双曲线、抛物线(1)求椭圆方程(2)直线与椭圆中难椭圆、双曲线、抛物线(1)求抛物线方程(2)直线与抛物线易难椭圆、双曲线、抛物线(1)求椭圆方程(2)直线与椭圆易难21 职业模块(1)和角公式(2)正弦定理面积难难职业模块(1)余弦定理求角(2)求面积难难职业模块(1)复数模定义(2)复数乘方中难22 职业模块线性规划难职业模块线性规划难职业模块线性规划中。

2016湖南高考文科数学真题及答案

2016湖南高考文科数学真题及答案

2016湖南高考文科数学真题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )。

(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【参考答案】B【答案解析】集合A 与集合B 公共元素有3,5,故{}35A B ⋂=,选B 。

【试题点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=( )。

(A )-3(B )-2(C )2(D )3 【参考答案】A【答案解析】设i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得3-=a ,选A. 【试题点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A )13(B )12(C )13(D )56【参考答案】A【答案解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为31,选A. 【试题点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=( )。

湖南省2016年普通高等学校对口招生数学考试模拟试卷

湖南省2016年普通高等学校对口招生数学考试模拟试卷

1 9、函数 y x 3 2 x 2 3 x 5 的单调递减区间为 3
A、 (,1)
B、 (1,3)
C、 (3, )
D
(,1) (3, )

10、某班级要从 4 名男生和 2 名女生中选派 4 人参加某次社区服务,如果要求至少 有 1 名女生,则选派方案种数有 A、14 B、24 C、28 D、48
科目:数学(对口)
(试 题 卷)
注意事项: 1.答题前,考生先将自己的姓名、准考证号、座位号等填写清楚, 并认真核对。 2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上 作答无效,考生在答题卡上按如下要求答题: (1)选择题部分请按题号用 2B 铅笔填涂方框,修改时用橡皮擦干 净,不留痕迹; (2)非选择题部分请按照题号用 0.5 毫米黑色墨水签字笔书写,否 则作答无效; (3)请勿折叠答题卡.保持字体工整,笔迹清楚、卡面清洁。 3.本试卷共 4 页。如有缺页,考生须及时报告监考老师,否则后果 自负。 4.考试结束后,将本答题卷和答题卡一并交回。
2、函数 f x 3 x x 0,2 的值域为 A、 0,9 3、 a 2 是 | a | 2 的 A、充分不必要条件 C、充分必要条件 B、必要不充分条件 D、既不充分也不必要条件 B、 0,6 C、 1,6 D、 1,9
1 4、曲线 y sin 2 x , x 0, 与直线 y 1 的交点个数为 2
x2 y 2 1 的左右两个焦点, 设 F1 , F2 分别是椭圆 P 为椭圆上的一点, 已知 PF1 PF2 且 16 6 | PF1 || PF2 | .
(I)求 P 的坐标; (II )求中心在原点,一个焦点为 (2 5, 0) ,一条渐近线的斜率为 标准方程。

湖南省2016年普通高等学校对口招生考试

湖南省2016年普通高等学校对口招生考试

湖南省2016年普通高等学校对口招生考试英语(对口)试题第三节完型填空.阅读下面短文,从题中所给的A、B、C、D四个选项中选出一项符合题意的最佳选项,并将答案填写在答题卡上。

(本小节10小题,每小题1分,共10分)The plane took off. A passenger needed a cup of water to take his medicine. An air hostess (空姐)told him that she would bring him the _51_soon. But the air hostess was __52_busy that she forgot to bring him the water. __53_, the passenger couldn’t take his medicine on time. About half an hour later, she hurried over to him with a cup of water, but he __54_ it.In the following hours, each time she __55_ the passenger, she would ask him with a smile whether he needed help or not. But the passenger __56_ paid notice to her.When it was time to get off the __57_ , the passenger asked her to hand him the passengers’booklet(留言簿), she was very __58_. She thought that he would __59_ bad words in it, but with a smile she handed it to him.Off the plane, she opened the booklet and then __60_. The passenger put it, “In the past few hours, you have asked me whether I needed help or not for twelve times in all. How can I refuse your twelve faithful(真诚的)smiles?”51. A. medicine B. water C. cup D. coffee52. A. very B. too C. quite D. so53. A. With her help B. As a result C. On the one hand D. To tell the truth54. A. drank B. accepted C. refused D. received55. A. looked at B. listened to C. talked about D. passed by56. A. usually B. never C. sometimes D. often57. A. plane B. train C. ship D. bus58. A. interested B. happy C. excited D. sad59. A. break down B. get down C. write down D. go down60. A. smiled B. cried C. wondered D. worried第三部分阅读理解(满分30分)第一节:从每小题给出的A、B、C、D四个选项中选出一项符合题意的最佳选项,并将答案填在答题卡上。

2016年职高高考数学试卷

2016年职高高考数学试卷

职高高考数学试题姓名一、选择题、设全集 集合 ︱ ≤ ≤ ,则 等于( )、 , 、 , 、 , 、 ,、下列选项中错误的是( )、 ⇒ 、 ⇐、 ⇒ 、 ⇔ 、若 则 的取值范围是( )、( , ) 、( ∞, ) ( ∞) 、( ∞, ) 、 ,、函数 的定义域是( ) 、( , ) 、( ∞) 、 , ∞ 、( ∞, )、函数 的最小正周期是( ) 、52π、2π 、 、、不等式| |≥ 的解集是( ) 、 ︱ ≥ 、 ︱ ≤ ≤311、 ︱ ≤ 或 ≥311 、 ︱ ≤、在等差数列 中, , ,则 的值是( ) 、21 、 、 、、已知函数 则 的值是( )、413 、 、 、、下列各角中与 角终边相同的角为( ) 、 、 、 、、直线 25 与 直线的位置关系是( )、重合 、平行 、垂直 、相交但不垂直、下列函数中属于偶函数的是( )、 、 、 、、若角 终边上有一点 ( , ),则 的值是( ) 、13132 、 13133 、 13132 、13133、圆( ) 的圆心坐标和半径分别是( )、( , ), 、( , ), 、( , ), 、( , ),、若 ∏ 23且 是锐角,则 的值是、 、 、 、33、若 43 且 是第三象限的角,则 的值是( )、 47 、47 、53 、32、下列函数中,在区间( , ∞)上为减函数的是( )、 、 、52、、已知 则21( )的坐标是( )、( , ) 、( , ) 、( , ) 、( , )、第一年产量为 每年比上一年减少 求产量与年数的关系式、 ℅ 、 ℅ 、 ℅ 、 ℅ 、一次投两个色子,点数和为 的概率为 、、、、、直线 ∥平面 ,直线 ⊥平面 ,则下列说法正确的是、 ∥ 、 ⊥ 、 与 垂直且异面 、 与 垂直且相交二、填空、设集合 ︱ 集合 ︱︱︱≥ 则 ∩、过点( , )且与直线 垂直的直线方程是(用直线的斜截式方程表示)、函数 的定义域是(用区间表示)、函数 的最大值是、已知等差数列 的前 项和 则 的值是、若则、已知 则 等于、已知 且 ⊥ 则、已知 ∏ 21且 ∈( ,21∏),则等于、从 , , , , 中,不放回的任取两个数,则这两个数都是奇数的概率是三、解答题、某类床垫按质量分为 个档次,生产最低档次床垫(将最低档次记为第一档)的每件利润是 元,如果床垫每提高一个档次则利润增加 元,用同样的工时,每天可生产 张最低档次的床垫,提高一个档次减少 张,求生产何种档次的床垫所获利润最大、求以 为圆心 且与直线 相切的圆的方程,已知三个数成等差数列,它们的和为 ,平方和为 ,公差为 ,( 为负数)( )求这三个数;( )求以公差 的值为首项,公比为 的等比数列的通项公式,某射手射中 环的概率为 ,射中 环的概率为 ,射中 环的概率为求,( )这个射手射中 环或 环的概率 ( )这个射手射一次射中不低于 环的概率,如图,已知直角三角形 的直角边 的长分别是 和 , ⊥平面 ,求二面角 — — 的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2016年普通高等学校对口招生考试数学试题
一、选择题(本大题共10小题,每小题4分,共40分) ( )1.设全集U={1,2,3,4,5},A={1,2},B={5},则)(A C U ∪B=
A .{5}
B .{3,4,5}
C .{3,4}
D .{1,2,5}
( )2.函数]2,1[,2)2
1()(-∈+=x x f x
的最大值为
A .4
B .3
C .25
D .4
9 ( )3.“1-<x 或2>x ”是“1-<x ”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件 ( )4.不等式512>+x 的解集为
A .{}2>x x
B .{}3-<x x
C .{}23<<-x x
D .{}23>-<x x x 或 ( )5.已知向量)3,2(=→
a ,),1(m
b =→
,且→
→b a //,则m=
A .
23 B .2
3
- C .3 D .3- ( )6.已知5
4cos =α,
)0,2(πα-∈,则=αtan A .53
B .34-
C .43-
D .3
4
( )7.已知定义在R 上的奇函数),(x f 当0>x 时,,2)(2x x x f +=则=-)1(f
A .3
B .1
C .-1
D .-3 ( )8.设2
.07.1=a ,2.0log 3=b ,52.0=c ,则
A .c b a <<
B .c a b <<
C .a b c <<
D .a c b << ( )9.已知点)5,4(P ,点Q 在圆4)1()1(:22=-+-y x C 上移动,则PQ 的
取值范围为
A .[1,7]
B .[1,9]
C .[3,7]
D .[3,9] ( )10.已知c b a ,,为三条不重合的直线,给出下面三个命题: ①若c b c a b a //,,则⊥⊥;②若c b c a b a ⊥⊥⊥则,,;
③若c a c b b a ⊥⊥则,,//,其中正确的命题为 A .③ B .①② C .①③ D .②③ 二、填空题(本大题共5小题,每小题4分,共20分)
11.袋中有6个红色球,3个黄色球,4个黑色球,从袋中任取一个球,则取到的球不是黑球的概率为 .
12.已知数列{}n a 的前n 项和n n S n 22+=,则=2a . 13.若不等式02≤-+c x x 的解集为{},12≤≤-x x 则c= . 14.6位同学站成一排照相,其中甲、乙两人必须相邻,共有 种不同的排法(用数字作答).
15.已知A,B 为圆12
2=+y x 上的两点,O AB ,3=为坐标原点,则
=•→
→OA AB .
三、解答题(本大题共7小题,其中第21、22小题为选做题.满分60分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分10分)
已知函数)2(log )(2-=x x f .(Ⅰ)求)(x f 的定义域;(Ⅱ)若
1)1()(=-+m f m f ,求m 的值.
在ABC ∆中,内角C B A ,,的对边分别为c b a ,,.已知3
,32
3πA b a ===,.
(Ⅰ)求B sin 的值; (Ⅱ)求)6
sin(B π+的值.
18.(本小题满分10分)
已知各项都为正数的等比数列{}n a 中,3,131==a a .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设{}n a 的前n 项和为n S ,且)13(13+=n S ,求n 的值.
19.(本小题满分10分)
如图1,在三棱柱111C B A ABC -中,A A 1⊥底面ABC ,,31=AA
AC AB AC AB ⊥==,1.(Ⅰ)证明:⊥BA 平面11A ACC ;(Ⅱ)求直线C B 1与
平面11A ACC 所成角的正弦值.
已知椭圆)2(14:222>=+a y a
x C 的离心率35
=e .(Ⅰ)求椭圆C 的方程;(Ⅱ)
设直线3
5
:-=kx y l 与椭圆C 相交于B A ,两点,且AB 中点的横坐标为1,求k 的
值.
选做题:请考生在第21、22题中选择一题作答.如果两题都做,则按所做的第21题计分.作答时请写清题号.
21.(本小题满分10分)
已知复数)(1R a ai z ∈+=,且2=z .(Ⅰ)求a 的值;(Ⅱ)若0>a 且
)12*(≤∈∈n N n R z n 且,求n 的所有值.
22.(本小题满分10分)
某厂生产甲、乙两种产品,每件甲产品的销售收入为1500元,每件乙产品的
销售收入为1000元.这两种产品都需要经过B A ,两种设备加工,在B A ,设备上加工1件甲产品所需工作时数为2h,4h, 加工1件乙产品所需工作时数为4h,2h .若B A ,两种设备每月工作时数分别不超过200h,250h ,则每月生产甲、乙两种产品各多少件,才能使销售收入最大?。

相关文档
最新文档