八年级数学轴对称图形课件

合集下载

沪科版数学八年级上册 15.1 轴对称 课件(共14张PPT)

沪科版数学八年级上册 15.1 轴对称  课件(共14张PPT)

(1)
(2)
(3)
将白纸对折,利用圆规的针尖扎出一个点,打
开白纸,将折痕两侧的点分别标为A、A ′,这两个
点关于折痕所在的直线成轴对称吗?
画出对称轴l,连接对应点A 、A ′ , A A ′与 l 相
交于点O,图中的线段、直线间存在何种关系?
l
P
AO = OA′
AA′⊥ l
A O
A′
经过线段的中点并垂直于这条
BO1 = O1B′ BB′⊥ l
CO2 = O2C′ CC′⊥ l
C 02 C ′ 用文字语言描述:两个图形成轴对称时,
01
对应点所连线段与对称轴有何关系?
B
B′
l
轴对称的性质
如果两个图形关于某直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。
反过来,
如果两个图形各对对应点所连线段被同一条直线 垂直平分,那么这两个图形关于这条直线对称。
轴对称
什么是轴对称图形? 一个图形沿着一条直线折叠,直线两旁部分能
够完全重合。这条直线叫对称轴。
对称轴可能1条,也可能多条。
把一个图形沿着某一条直线折叠后,如果 它能够与另一个图形重合,那么称这两个图 形成轴对称。 这条直线叫做对称轴。
折叠后重合的两点叫做对应点(对称点)。
下列各组中的两个图形是否关于给定 的直线对称?
轴对称
图形
联系
如果把一个轴对称
如果把两个成轴对称
图形沿对称轴看成两部 的图形拼在一起看成一个
分,那么这两个图形就 整体,那么它就是一个轴
关于这条直线成轴对称. 对称图形.
都能沿着一条直线折叠,形成重合
1、今天,我学会 2了、…回…顾今天的学习过程……

人教八年级数学上册《画轴对称图形》课件(17张)

人教八年级数学上册《画轴对称图形》课件(17张)
13.2 画轴对称图形
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.

八年级数学上册13.1.1轴对称(共21张PPT)

八年级数学上册13.1.1轴对称(共21张PPT)

课前准备:
正方形纸片、剪刀.
一、引出新知
二、探究新知
【问题1】如图,把一张纸对折,剪出一个图案(折 痕处不要完全剪断),再打开这张对折的纸,就得到 了美丽的窗花.观察得到的窗花,你能发现它们有什 么共同的特点吗?
(一)轴对称图形
如果一个平面图形沿一条直线折叠,直线两旁的部分能 够互相重合,这个图形就叫做轴对称图形,这条直线就 是它的对称轴. 这时,我们也说这个图形关于这条直线 (成轴)对称.
B
B'
C
C'
N
(四)两个图形成轴对称的性质
思考:如果将其中的“三角形”改为“四边形”“五边形”…
其他条件不变,前面的结论还成立吗?
M
l
l
A
A'
P
B C
B' C'
N
性质:如果两个图形关于某条直线对称,那么对称轴是任何一 对对应点所连线段的垂直平分线.(即对称点所连线段被对称 轴垂直平分;对称轴垂直平分对称点所连线段.)
四边形ABCD是轴对称图形
B
3
30°
C
30°
A
3
D
∆ABC ∆ADC
AC垂直平分BD
轴对称图形
课堂小结
轴对称
重要内容 线段的垂直 平分线
概念 性质
两个图形 成轴对称
概念 性质
本节课知识点对应数学课本P58-60
课后作业
完成课本P64-65习题13.1第1、2、3、4、5题.
谢谢!
B
点C'是点C的对称点. 能成轴对称,
B′
那么它们是全
C
C′
等图形吗?
做一做
2.下列每副图形中两个图案是轴对称的吗?如果是,

人教版八年级数学上册《轴对称》PPT优秀课件

人教版八年级数学上册《轴对称》PPT优秀课件
阴影部分的面积和为6
3.如图,已知△ABC中,AH⊥BC于H,∠C=35°, 且AB+BH=HC,求∠B的度数。
解:在CH上截取DH=BH,连接 AD,如图 ∵BH=DH,AH⊥BC,AH=AH ∴△ABH≌△ADH(SAS)∴AD=AB
D
∵AB+BH=HC,而BH=DH 又∵CD+DH=HC ∴AD=CD ∴∠C=∠DAC, 又∵∠C=35° ∴∠B=∠ADB=70°.
M
如果两个图形关于某条直线对称,那么 对称轴是任何一对对应点所连线段的垂 直平分线。
轴对称图形的对称轴,是任何一对对应 点所连直线的垂直平分线。
N
做一做 : 1.(1)图中三角形④与哪些三角形成轴对称?
(2)整个图形是轴对称图形吗?它们共有几 条对称轴?
12
43
(1)1和3 (2)是 2条
2.如图,△ABC是轴对称图形,且直线AD是 △ABC的对称轴,点E,F是线段AD上的任意两 点,若△ABC的面积为12,求图中阴影部分的 面积之和.
轴对称。
◆ 这条直线叫做对称轴。
◆ 折叠后重合的点叫对应点,也叫对称点。
对比:
定义 联系 区别 注意
轴对称图形
两个图形成轴对称
如果一个平面图形延一条直线折叠 ,直线两旁的部分可以相互重合,
这个图形就叫做轴对称图形
把一个图形沿着某一条直线折 叠,如果它能够与另一个图形 重合,那么称这两个图形关于
这条直线成轴对称
第13章 轴对称
轴对称
目录
01 观察发现 02 得出结论 03 产生思考 04 再得结论 05 练习巩固 06 头脑风暴
观察这些图像有什么共同特点?
结论:如果一个平面图形延 一条直线折叠,直线两旁的 部分可以相互重合,这个图

《轴对称完整》课件

《轴对称完整》课件

对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称

沪科版数学八年级上册15.1.2轴对称课件(共17张PPT)

沪科版数学八年级上册15.1.2轴对称课件(共17张PPT)
创设情境
观察以上图形,有什么特点?
新知引入
知识点1 成轴对称
如果平面内两个图形在一条直线的两旁,如果沿着这条直线折叠,这两个图形能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴. 折叠后重合的两点叫做对应点(也叫对称点).
思考: 轴对称图形与两个图形成轴对称有什么区别与联系?
第十五章 轴对称图形与等腰三角形
15.1 轴对称图形15.1.2 轴对称
学习目标
学习重难点
重点
难点
1.掌握成轴对称的概念,会找成轴对称图形的对应点;2.理解垂直平分线的相关知识,掌握轴对称的两个性质.
掌握成轴对称的概念,会找成轴对称图形的对应点.
理解垂直平分线的相关知识,掌握轴对称的两个性质.
轴对称的两个特性:
1、成轴对称的两个图形全等,但全等的两个图形不一定成轴对称; 2、轴对称是图形的一种全等变换.
1、定义:两个图形、一条直线、完全重合; 2、反面观察法:从纸的反面观察,若观察到的图形和正面一样,就是轴对称.
识别轴对称的方法:
创设情境
结论: (1)线段AA'、BB'、CC'都与MN垂直
D
归纳小结
二者有区别,但实质一样
经过线段的中点并且垂直于这条线段的直线
同学们再见!
授课老师:
时间:2024年9月1日
随堂练习
下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是( )
B
练习1
如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠ACD的度数是________.
65°
练习2
练习3
如图是一个风筝的图案,直线AF是它的对称轴,下列结论不一定成立的是( )A.△ABD≌△ACD B.AF垂直平分EGC.直线BG,CE的交点在AF上 D.AD=DF

16.1 轴对称课件

16.1 轴对称课件

等边三角
形是 三条
正六边形
是 六条
正方形
是 四条

是 无数条
圆有无数条 对称轴
知识点2 轴对称
如图,两个图形,沿着图中的虚线对折后, 这两个图形完全重合.
一般地,如果两个图形沿某条 直线对折后,这两个图形能够完全 重合,那么我们就说这两个图形成 轴对称,这条直线叫做对称轴.
关于对称轴对称的点、对称的线段、对称的角分别 叫做对应点、对应线段、对应角.
1.指出下列图形各有几条对称轴,画出每个图形的对称轴.







图形代码
①②③




对称轴条数 2 2
46
2
3
4
2.下列图形中,不是轴对称图形的是
(C )
3.下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是( B )
1.请观察下列图形,看这些轴对称图形各有几条对称轴.
6条
1条
成轴对称图形的性质对于轴对称图形同样适用. 垂直且平分一条线段的直线,叫做这条直线的垂 直平分线,简称中垂线.
线段是轴对称图形,线段的中垂线是它的对称轴.
例1 如图(1),已知直线AB和直线l,画出线段AB 关于直线l的对称线段.
解:如图(2). (1)分别过点A和点B画直线l 的垂线段AO和BO',垂足分别 为O和O'. (2)分别延长AO到点A',BO' 到点B',使A'O=AO,B'O'=BO'. (3)连接A'B'. 线段A'B'即为所求.
知识点1 轴对称图形

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0

沪科版数学八年级上册15.1.1轴对称图形课件(共16张PPT)

沪科版数学八年级上册15.1.1轴对称图形课件(共16张PPT)
第十五章 轴对称图形与等腰三角形
15.1 轴对称图形15.1.1 轴对称图形
学习目标
学习重难点
重点
难点
1.认识轴对称图形,掌握轴对称的含义;2.能找出对称图形的对称轴.
认识轴对称图形,掌握轴对称的含义.
能找出对称图形的对称轴.
创设情境
请同学们先欣赏一组优美的建筑图片,并仔细观察图片中建筑物的左右结构有什么共同点?
同学们再见!
授课老师:
时间:2024年9月1日
不同的轴对称图形的对称轴数量不一定相同,有的轴对称图形只有一条对称轴,有的轴对称图形有多条对称轴,这要根据具体图形来确定。
随堂练习
指出下列图形各有几条对称轴,画出每个图形的对称轴.
图形代码







对称轴条数
2
2
4
6
2
34练习1 Nhomakorabea下列图形中,不是轴对称图形的是 ( )
C
练习2
请观察下列图形,看这些轴对称图形各有几条对称轴.
折痕所在的这条直线叫做对称轴。
轴对称图形
对称轴
注意:对称轴是直线,不是射线或线段
新知引入
下面的几何图形是轴对称图形吗?如果是请说出有几条对称轴?

等腰梯形
平行四边形
等腰三角形

一条

一条

一条
不是

无数条

六条

四条

三条
等边三角形
正方形
正六边形

圆有无数条对称轴
这些轴对称图形,你能画出它们的对称轴吗?
它们的左边和右边的结构是一样的,即对称的.

《轴对称图形》课件

《轴对称图形》课件
确定中心点:确定轴对称图形的中心点,以便于绘制对称图形 绘制对称图形:根据中心点,绘制对称图形的一半,然后使用对称工具将其复制 为另一半
调整细节:调整对称图形的细节,如颜色、大小、位置等,使其更加美观 保存和导出:将绘制好的轴对称图形保存为合适的格式,如PNG、JPG等,以便 于在PPT中使用
如何制作复杂的轴对称图形
分析当前轴对称图形的发展趋势和未来发展方向
轴对称图形在数学、物理、化学等领域的应用越来越广泛 轴对称图形在艺术、设计等领域的应用也越来越多 轴对称图形在计算机图形学、虚拟现实等领域的应用前景广阔 轴对称图形在教育、科普等领域的应用也越来越受到重视
对学习轴对称图形的建议和展望
建议:多观察生活中的轴对称图形,如建筑、自然景观等,提高对轴对称图形的感知和理解。
确定轴对称图形的中心点 绘制对称轴 绘制对称图形的一半
复制并翻转对称图形的另一半 调整对称图形的细节和形状 完成复杂的轴对称图形制作
如何解决制作轴对称图形时遇到的问题
掌握基本概念:理解轴对称图形的定义和性质 熟悉工具:熟练使用绘图软件中的工具和功能 练习操作:通过练习掌握制作轴对称图形的技巧 遇到问题:遇到难题时,查阅相关资料或请教他人 总结反思:总结制作过程中的经验和教训,不断提高制作水平
如何提高制作轴对称图形的效率
单击此处添加标题
利用工具:使用专业的图形设计软件,如Adobe Illustrator、 CorelDRAW等,可以快速制作出高质量的轴对称图形。
单击此处添加标题
掌握技巧:熟悉轴对称图形的制作技巧,如使用镜像、旋转等工具,可以 大大提高制作效率。
单击此处添加标题
简化设计:在设计轴对称图形时,尽量简化设计,避免过于复杂的图形, 可以提高制作效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称现象无处不在,从自 然景观到分子结构,从建筑物 到艺术作品,甚至日常生活用 品,人们都可以找到对称的例 子.请看:
中外著名建筑
脸谱艺术
剪纸艺术
剪纸
车标设计
国旗欣赏
交通标志
图案
几何图案
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们 身边!这是一种怎样的美呢? 请你谈谈你的感想?
那 么 请 大 家 再 看 看 右 面 两 组 图 形
•请你认真观察哟! •每一组里,左边的图形沿直线对折后与 右边的图形完全重合吗?
像这样,把一个图形沿着某一 条直线翻折过去,如果它能够与另 一个图形重合,那么就说这两个图 形成轴对称, 我们把这条直线叫做它们的对 称轴,两个图形中的对应点(即两 个图形重合时互相重合的点)叫做 对称点.
图 9.1.1
有的图形的对称轴这么多哇! 以后找对称轴我可得好好想想呀!
请看,圆有几条对称轴?
啊!无数条!
•你能举出日常生活中常见的轴 对称图形的例子吗?
如果想不出,不要紧,可 以先看看我们的周围有没 有?再想一想外面有没有?
一个图形 刚才我们研究了一个图形具有轴对称的特征,你 两个图形 想不想看看两பைடு நூலகம்图形是否也具有这样的特征呢?
后面还有智力测验, 你想试一试吗?
好,大家来玩一玩推理游戏, 你敢吗?
哇!只能剪一刀?真神奇!
提示
一.下面的字母哪些是轴对称图形?
A
E
B C
D
F G H
二.下面的数字哪些是轴对称图形?
0 1 2 3 4 5 6 7 8 9


1、生活中的轴对称现象 2、轴对称图形和对称轴的概念 3、区分轴对称图形和两个图形成轴对称
请你来做一做:
•请你标出下面图中A、B、C三点的对 称点A1、B1、C1
A1
C1
B1
请你试一试,动动手

在一半纸上滴几滴墨水,把纸张对折,随 后打开,看看形成的两块墨迹是不是关于 折痕对称?它们的对称轴是什么呢? 在一半纸上用毛笔写一个字或画一个图案, 把纸张对折,随后打开,看看形成的两块 墨迹是不是关于折痕对称?它们的对称轴 是什么呢?
这条直线叫这个图形的对称轴。
哇!我知道了什么 是轴对称图形!
1.准备一张纸
你能得到什么结论呢?
2.对折纸
3.展开你的想象力,在纸上画出你想要画的图案 4.沿线条剪下 5.把纸张开 6.向同组的同学展示你的作品
结论:从上面的操作可以看出,展开后对折的 两部分会重合在一起。
你能找出图1中各图形的对称轴吗?如果 能,请在图上画出来。是否有些图形的对称 轴不止一条呢?
轴对称和轴对称图形关系:
联系:都是沿一条直线折叠后能够互相重合。 区别: 轴对称图形是一个图形。 轴对称是两个图形之间的关系。

你来动动脑,想一想,说一说:
•你能举出日常生活中常见的两个 图形成轴对称的例子吗?
如果想不出,不要紧,可 以先看看我们的周围有没 有?再想一想外面有没有?
在下列常见几何图形中,判断是否是对称图 形,若是对称图形的,画出它的对称轴.
想一想:一辆汽车的车牌在水中的倒影如图所示, 你能确定该车车牌的号码吗?
这种现象你能解释吗?
走进今天的课堂,你就能解 释这其中的奥秘了!
真的吗?我可得 注意听听了!看你是不是骗我哟!
实验一:探索新知
请你想一想:你能将上图中的每一个图形沿某条
直线对折,使直线两旁的部分完全重合吗?
轴对称图形
如果一个图形能够沿某条直线对 折,对折的两部分是完全重合的,那 么就称这样的图形为轴对称图形,
相关文档
最新文档