浇注系统浇口尺寸计算
浇注系统简介行业知识
3、浇口杯的类型;
4、浇口杯的设计。
向阳课件
浇口杯
浇口杯: 单独制造或直接在铸型内形成,成为直浇道顶部的扩大部分。
浇口杯的作用: 1、用来承受来自浇包的金属液流并引入直浇道,防止过浇而溢出; 2、避免流股直冲直浇道,减少液流对铸型的冲击; 3、有一定的挡渣作用; 4、当砂箱高度低、压头不够时,又可用以增加金属液的静压头。
浇口杯设计
向阳课件
设计范列;满注的浇口杯具有练好的撇渣能力但由于种种原因,造成浇口杯难以自始至终保持满注 。
浇口杯设计
浇铸时,浇口杯右部金属液面超出H1,芯1发挥挡渣功能,金属液超出H2,干净金属液进入浇道,此后,浇铸速度虽回影响金属液面,但不会造成浇口杯右部金属液低于H2,故该浇口杯除浇铸初期金属液未超出H1,熔渣有可能进入浇道外,浇口杯金属液面自始至终保持充满,具有较强的撇渣能力
向阳课件
三、热压室压铸机用直浇道热压室压铸机用直浇道是由压铸机上的喷嘴与压铸模上的浇口套、分流锥组成。
向阳课件
直浇道的特点
直浇道其特点是:造型时起模方便,浇注时充型速度快,金属液在直浇道呈正在压流状态流动
直浇道的形状 直浇道是上大下小的圆锥形,可防止气体和杂质卷入型腔,这种形状的直浇道应用得最广泛。在高效率半自动造型生产线上,直浇道模样大多固定的模板上,因此直浇道必须制成所示上小下大的倒锥形,才能从铸型中拔出,对于浇注铸钢件,特别是浇注中大型铸钢件,多用耐火材料管形浇注系统,直浇道有有没有斜度的圆管形和为蛇形直浇道,用于有色金属铸件,其阻力大,可降低金属液流速,平稳充型,减少卷入气体。
向阳课件
横浇道
横浇道是直浇道的末端到内浇口前段的连接通道
向阳课件
D
3.4.9内浇口截面积计算(方法2)讲解
内浇口截面积:
Ag=217mm2/4=54mm2
结束语
谢
谢
压铸模具设计与制造
任务描述
内浇口截面积计算 (方法2)
主讲人:柯春松
1 内浇口截面积计算
根据管接头三维模型 产品体积:V=48898mm3
铝合金密度:ρ=2.7g/cm3
产品质量:G=ρ×V=132g。
1 内浇口截面积计算
由于产品一模四腔,所以产品总重 量G产= 4×132g=528g 考虑浇注系统和排溢系统的重量,
DCC160 1600
254
DCC280 2800
315
DCC400 4000
405
射料行程/mm 340 400 500 冲头直径/mm 40 50 60 50 60 70 60 70 80 射料量(铝 0.8 1.3 1.8 1.5 2.1 2.9 2.7 3.6 4.7 )kg 铸造压力(增 112. 82. 144. 202.3 129.5 89.9 162 106.1 81.2 压)/MPa 5 6 4 铸造面积/cm2 72.5 120 175 170 245 335 275 375 490 最大铸造面积 400 700 1000 (40MPa)/ cm2
整个铸件重量是产品的2倍,则
G铸=2×G产=2×528g=1056g
1 内浇口截面积计算
压室充满度取50% 压室充满度=铸件重量/压机射料量 压机射料量=铸件重量/压室充满度 =1056g/50%
=2112g(即2.112Kg)
1 内浇口截面积计算
表 力劲卧式冷室压铸机参数
项目名称 锁模力/kN 压射力(增压) kN
1 内浇口截面积计算
根据压铸机参数,选取与射料量相 近的压射冲头直径Ф60。 压射冲头截面积:A冲=2826mm2
第三章 浇注系统的设计与计算
湖北汽车工业学院材料工程系 Department of Materials Engineering
复习题
1.浇注系统由哪些部分组成?分别说明各个组元的 作用? 2.比较顶注式和底注式浇注系统的优缺点。 3.比较封闭式和开放式浇注系统的优缺点。
4 . 如何提高横浇道的撇渣效果?
5. 内浇道在铸件浇铸中能够起到哪些重要作用? 6.确定内浇道位置要注意哪些具体问题? 湖北汽车工业学院材料工程系
配套措施:
1)浇口杯应足够大; 2)严格控制浇注时间。
湖北汽车工业学院材料工程系 Department of Materials Engineering
计算实例:
1、绘制模板布置简图
各层铸件内浇道的金属压力头: h1=100mm; h2=250mm; h3=350mm。
2、计算型内金属质量 m /kg
阶梯式的优缺点
兼有底注式和顶注式 的优点,充型平稳。 但结构复杂,设计和 计算较难。 用于高度大的中、大 型铸件。阶梯式或缝 隙式用于垂直分型无 箱挤压造型或金属型 铸造
湖北汽车工业学院材料工程系 Department of Materials Engineering
(二)按浇注系统各组元截面积的比例关系分
4、 选用浇口杯 根据铸型的浇注速度,使用4号浇口杯,铁液积存5.5 kg; 5、分别计算或由内浇道计算诺谟图查各层内浇道截面积: (流量系数取 μ=0.5) S1=70mm2 ; S2=45mm; S3=38mm2。 6、分直浇道截面积 ∑S内 =2×(70+45+38)=306mm2, S分直=1.2×S内=306×1.2=367mm2 分直浇道的截面尺寸: 上底宽11mm;下底宽22mm;高22mm 。 实际:S分直=363mm2。 7、 水平横浇道尺寸 S横=1.3×363 mm2=472 mm2。 选上底宽12.5mm;下底宽25mm;高25mm; 实际截面积469mm2。
浇口的设计
5.2.4浇口的设计浇口亦称进料口,是连接分流道与型腔的熔体通道。
浇口的设计与位置的选择恰当与否直接关系到塑件能否被完好地高质量地注射成型。
浇口可分成限制性浇口和非限制性浇口两大类。
限制性浇口的作用:限制性浇口是整个浇注系统中截面尺寸最小的部位,通过截面积的突然变化,使分流道送来的塑料熔体产生突变的流速增加,提高剪切速率,降低粘度,使其成为理想的流动状态,从而迅速均衡地充满型腔。
对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的,提高塑件质量。
限制性浇口还起着较早固化防止型腔中熔体倒流的作用。
非限制性浇口的适用范围:非限制性浇口是整个浇口系统中截面尺寸最大的部位,它主要是对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。
常用的浇口可分成以下几种形式:(1)直接浇口直接浇口又称主流道型浇口,它属于非限制性型浇口,如图5.18所示。
塑料熔体由主流道的大端直接进入型腔,因而具有流动阻力小、流动路程短及补缩时间长等特点。
由于注射压力直接作用在塑件上,故容易在进料处产生较大的残余应力而导致塑件翘曲变形。
这种形式的浇口截面大,去除浇口较困难,去除后会留有较大的浇口痕迹,影响塑件的美观。
这类浇口大多用于注射成型大、中型长流程深型腔筒形或壳形塑件,尤其适合于如聚碳酸脂、聚砜等高粘度塑料。
另外,X这种形式的浇口只适于单型腔模具。
在设计直接浇口时,为了减小与塑件接触处的浇口面积,防止该处产生缩孔、变形等缺陷,一方面应尽量选用较小锥度的主流道锥角a(a=2° ~ 4° ),另一方面尽量减小定模板和定模座板的厚度。
直接浇口的浇注系统有着良好的熔体流动状态,塑料熔体从型腔底面中心部位流向分型面,有利于消除深型腔处气体不易排出的缺点,使排气通畅。
这样的浇口形式,使塑件和浇注系统在分型面上的投影面积最小,模具结构紧凑,注射机受力均匀。
(2)中心浇口当筒类或壳类塑件的底部中心或接近于中心部位有通孔时,内浇口就开设在该孔口处,同时中心设置分流锥,这种类型的浇口称中心浇口,如图5.19 所示。
10浇注系统设计
锥度对于流动性差的塑料 可取到6度。
主流道大端尺寸D:
Q1 D 2( )3(cm)
其中: D:大端直径,cm; Q:流经该流道的熔体的体积流率,cm3/s; γ:熔体在该流道的剪切速率,1/s;主流道: 5x103。
29.09.2020
目的与要求: 1.掌握浇注系统设计原则,组成、作用。 2.掌握主流道的作用、设计要点。 3.掌握分流道的作用、类型,设计要点。 重点与难点: 难点:浇注系统尺寸分析 重点:浇注系统各部分尺寸设计
29.09.2020
一、普通浇注系统的组成及设计原则 (一)浇注系统的概念
浇注系统:指由注射机喷嘴中喷出的塑料熔体进入型腔的流动 通道。 作用:使塑料熔体平稳有序地填充型腔,并在填充和凝固过程 中把注射压力充分传递到各个部分,以获得组织致密的塑件。
29.09.2020
29.09.2020
4.在多腔模中,各个型腔浇口方位必须保持一致
29.09.2020
5.减少熔结痕和提高熔结痕的强度
29.09.2020
6.浇口位置应使浇口便于修整
29.09.2020
29.09.2020
7.防止料流将型芯或嵌件挤歪变形
29.09.2020
(二)浇注系统平衡 计算多型腔模具各浇口的BGV值,同一塑件的多腔 模各浇口BGV值相同,不同塑件的多腔模各浇口的 BGV值与塑件质量成正比
29.09.2020
29.09.2020
主浇道穿过两块模板时应呈阶梯状,或采用浇口套
保证顺利拔出
H7/m6(过渡)、H7/n6(过盈)
塑料件模具设计--浇注系统设计
(6)轮辐式浇口
轮辐式浇口的适用范围类似 于盘形浇口,带有矩形内 孔的塑件也适用,但是它 将整个周边进料改成了几 小段直线进料。这种浇口 切除方便,流道凝料少, 型芯上部得到定位而增加 了型芯的稳定性。
31
(7)护耳式浇口
它在型腔侧面开设耳槽,熔体通过浇口冲击在 耳槽侧面上,经调整方向和速度后再进入型 腔,因此可以防止喷射现象,是一种典型的 冲击性浇口,它可减少浇口附近的内应力, 对于流动性差的塑料极为有效,浇口应设置 在塑件的厚壁处。
这种浇口的去除比较 困难,痕迹大
32
(8)点浇口
点浇口又称针点浇口或菱形浇口,是一 种截面尺寸很小的浇口,俗称小浇口。 这类浇口由于前后两端存在较大的压力 差,能较大地增大塑料熔体的剪切速率 并产生较大的剪切热,从而导致熔体的 表观粘度下降,流动性增加,有利于型 腔的充填。
33
(8)点浇口的设计形式
图a所示为直接式,直径为d的圆锥形的小端直接与塑件相 连。
图b所示为圆锥形的小端有一段直径为d、长度为l的点浇口 与塑件相连。这种形式的浇口直径d不能太小,浇口长度l 不能大长,否则脱模时浇口凝料会断裂而堵塞住浇口,影 响注射的正常进行。上述两种形式的点浇口制造方便,但 去除浇口时容易相伤塑件,浇口也容易磨损,仅适于批量 不大的塑件成型和流动性好的塑料。
非限制性浇口是整个浇口系统中截面尺寸最大的部位,它主 要对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。
21
1、浇口的类型
(1)直接浇口(又称主流道形浇口)
在单型腔模中,熔体直接流入型腔,因 而压力损失小,进料速度快,成型比 较容易,对各种塑料都能适用。它传 递压力好,保压补缩作用强,模具结 构简单紧凑,制造方便。
浇注系统设计
23:29
38
• C)根据标准冒口形状,从圆柱形冒口中 选择与计算值最接近且大于计算值的冒 口。MR=0.84(6#)符合条件:
MR ≥0.79cm
23:29
39
• d) 冒口直径为:DR=45mm • e)冒口径的横截面积计算如下:
冒口径直径: DN>1/3DR=45/3=15mm 冒口径的面积(为圆形)
34
冒口计算范例
• 为更好的说明冒口计算,此处以球铁的 万向节冒口设计为例。很显然圆柱支柱 是铸件最紧实部分,这部分冷却最慢, 凝固最晚,因此在金属收缩时需要金属 补缩。模板的布置图如下:冒口放置在
圆柱的顶部,以便(1)获得顺序凝固
(2)补缩时借助重 力
23:29
35
如图:
冒口计算范例
35mm
80mm
45
铸造常见的几种缺陷
23:29
1.冷隔 2.砂渣眼 3.掉砂 4.粘板 5.押入
6.错模 7.粘砂 8.气孔 9.缩孔 10.打联
46
分析对铸件缺陷产生原因
1.浇注系统
a)因浇道位置引起的铸件缺陷。 b)因浇道形状引起的铸件缺陷。 c)因浇道面积引起的铸件缺陷。
2.因机器参数设置引起的缺陷
23:29
4. 冒口与铸件如何连接(冒口径) 冒口径的形状设计必须能保证冒口与铸
件间通道始终畅通,金属液以最佳的方式 对铸件进行补缩。
23:29
26
冒口有两种类型的收缩
1.表面缩孔。 2.内部缩松。 改善内部的缩松对策:
a.提高CE值 b.增加砂型强度 c.使用冷铁 d.顺序凝固 e.减少孕育用量 f.铁液净化 g.镁残留量趋进0.035
23:29
浇注系统
《注塑模具理论》浇注系统中国模具设计网w w w .z g m j s j .c o m 中国模具设计网前言 浇注系统是注塑模具里面特别重要的部分,它的主要作用是把注塑机里面可流动的塑料引入到模具的型腔里面.就相当于人吃饭时的食管,灌水用的渠道.中国模具设计网w w w .z g m j s j .c o m中国模具设计网中国模具设计网w w w .z g m j s j .c o m 中国模具设计网第一节 浇注系统的构成一、大水口浇注系统的构成:整个浇注系统又可以称为“废料”。
1、主流道:2、分流道:1)主分流道 2)次分流道3、胶口:4、冷料井:中国模具设计网w w w .z g m j s j .c o m 中国模具设计网二、大水口浇注系统各部分的详解:1、主流道:它的作用是把注塑机里面可流动的塑料引入到模具里面,是可流动的塑料经过模具的第一段通道,它一般在唧嘴里面成形。
注意:唧嘴是标准件,则主流道的大小尺寸由唧嘴来决定,为了减少“废料”,可以缩短唧嘴的长度,则保证上图当中的“M”不小于10即可.设计时,就算唧嘴选取错误了,也不要紧,可以直接更换.中国模具设计网w w w .z g m j s j .c o m 中国模具设计网注塑机喷嘴要与模具的唧嘴来配合,注意事项如下:中国模具设计网w w w .z g m j s j .c o m 中国模具设计网2、分流道:当模具存在“一模多穴”时,就必须有分流道,它把主流道里面的塑料分别引入到各个不同的模穴当中。
1) “一模多穴”的含义:一模四穴,指的是一套模具开一次模就有四个一模一样的产品。
1+2式:指的是一套模具开一次模有两种不同的总共三个产品,一 种产品数量为一个,另一种产品数量是二个。
中国模具设计网w w w .z g m j s j .c o m 中国模具设计网2) 分流道的截面:大水口模具的分流道多用圆形截面,前后模仁各占一半,也可以是半圆形,依据具体要求前后模仁分别放置。
材料成型浇注系统
浇注系统是为填充型腔和冒口而开设于铸型中的一系列通道。
常用的浇注系统大多由浇口杯、直浇道、横浇道、内浇道等部分组成。
除导入液态合金这一基本作用外,浇注系统还能实现其它的一些作用,其作用如下:(1)使液态合金平稳充满砂型,不冲击型壁和砂芯,不产生激溅和涡流,不卷入气体,并顺利地让型腔内的空气和其它气体排出型外,以防止金属过渡氧化及生产砂眼、铁豆、气孔等缺陷。
(2)阻挡夹杂物进入型腔,以免在铸件上形成渣孔。
(3)调节砂型及铸件上各部分温差,控制铸件的凝固顺序,不阻碍铸件的收缩,减少铸件变形和开裂等缺陷。
(4)起一定的补缩作用,一般是在内浇道凝固前补给部分液态收缩。
(5)让液态合金以最短的距离,最合宜的时间充满型腔,并有合适的型内液面上升速度,得到轮廓完整清晰的铸件。
(6)充型流股不要对正冷铁和芯撑,防止降低外冷铁的激冷效果及表面熔化,不使芯撑过早软化和熔化,而造成铸件壁厚变化。
(7)在保证铸件质量的前提下,浇注系统要有利于减小冒口体积,结构要简单,在砂型中占据的面积和体积要小,以方便工人操作、清除和浇注系统模样的制造,节约金属液和型砂的消耗量,提高砂型有效面积的利用。
一、浇注系统各组成部分与作用:(1)浇口杯:浇口杯又称外浇口,其作用是承接来自浇包的金属液,减轻金属液对铸型的冲击,阻止熔渣、杂物、气泡等进入直浇道,增加金属液的充型压力等。
常用浇口杯有呈漏斗形和池形(浇口盆),漏斗形浇口杯可单独制造或直接在铸型内形成,成为直浇道顶部的扩大部分;它结构简单,体积小,可节约金属,但阻渣能力较差,它常用于中、小型铸件,在机器造型中广泛采用。
对大、中型铸件,特别是铸铁件,常采用浇口盆,它具有较好的阻渣效果,浇口盆是与直浇道顶端连接,用以承接导入熔融金属的容器。
在浇口盆出口处常放置有浇口塞,当浇口盆充满金属后,塞子升起即开始浇注。
(2)直浇道:浇注系统中的垂直通道,它通常带有一定的锥度。
对黑色金属,直浇道应做成上大下小的锥体,锥度一般为1:20,其底部常比横浇道的底部稍低并呈(它可储存最初进入的金属液,球形。
浇注系统
设计浇口时,必须注意塑料是何种塑料,以下是指定潜水设计‘D’形或锥形入水,除客户指
定其设计外,必须遵守。
Round gate
结晶体-圆头潜浇口 Crystalline-Round Gate Nylon,PA PBT PET POM PPS
e. H的高度是能做短就做短。
f. G>H。
应用:适用于外观不允许露出浇口痕迹的胶件。对于一模多腔的胶件,应保证各腔从浇口到型腔 的阻力尽可能相近,避免出现滞流,以获得较好的流动平衡。 手机模上广泛应用。
(5)牛角水口(HOOK GATE)(图5.6)
一般用于成品向外面不能有浇口痕,而亦不能用潜水或潜顶针。
使针点浇口 拉断时不致损伤胶件,R2为(1.5~2.0)mm,
R3为(2.5~3.0)mm,深度h=(0.4~0.8)mm。
应用:其表面浇口痕迹有一定要求的塑件。
R1
δ R2 R3
第四节:浇口的选用
由于不同的塑胶材料有不同的流动性能和充填性能,所以浇口类型的选用与塑胶材 料的种类有直接的关系,进行浇口设计时一定要明确产品材料,并根据产品材料、 产品外观要求、产品结构综合考虑浇口类型和尺寸。表2所列为浇口形式与塑料种 类的适用关系。
α
β
d A
缺点:a.浇口位置容易拖胶粉。 b.入水位置容易产生烘印。 c.需人工剪除胶片。 d.从浇口位置到型腔压力损失较大。
H G
h
参数:a. 浇口直径d为0.3~1.5mm。
b. 进胶方向与垂直方向的夹角α为30°~50°之间。
c.入水嘴的锥度β为15°~25°之间。
铸造手册中非铁合金铸件浇注系统尺寸的确定
铸造手册中非铁合金铸件浇注系统尺寸的确定铸造是制造业中常见的一种工艺,通过将熔化的金属或非金属材料注入模具中,然后冷却凝固成型,来制造各种零部件和构件。
而在铸造过程中,浇注系统是至关重要的一环,它直接影响着铸件的质量和成型效果。
本文将从深度和广度的角度,探讨铸造手册中非铁合金铸件浇注系统尺寸的确定。
一、什么是铸造手册中的非铁合金铸件浇注系统尺寸?铸造手册中的浇注系统尺寸,指的是对于非铁合金铸件来说,根据铸件的设计和要求,在进行铸造时所需要的浇注系统的各项尺寸参数。
这些尺寸参数包括浇口直径、浇道截面积、浇道长度以及浇注冒口的设计尺寸等等。
二、确定铸造手册中非铁合金铸件浇注系统尺寸的重要性1. 影响铸件的质量浇注系统的尺寸设计不合理会导致浇注不充分,使得铸件出现缺陷,比如气孔、热裂纹等。
合理确定浇注系统的尺寸对于保证铸件的质量至关重要。
2. 影响铸造效率合理的浇注系统尺寸可以降低金属的浇注阻力,提高浇注速度,从而提高铸造的效率。
3. 影响工艺成本如果浇注系统设计不合理,会导致金属浪费或者二次加工,增加了生产成本和周期。
三、如何确定铸造手册中非铁合金铸件浇注系统尺寸?1. 按照铸件的形状和尺寸进行确定铸件的形状和尺寸是确定浇注系统尺寸的基础。
不同形状和大小的铸件,其浇注系统的尺寸也会有所不同。
2. 根据金属流动原理设计根据金属液体在浇注系统中的流动原理,合理设计浇口、浇道和冒口的尺寸和位置,以保证金属充分、均匀地填充模腔。
3. 结合铸造工艺要求根据具体的铸造工艺要求,包括金属的浇注温度、浇注方式、模具的放热要求等,综合考虑确定浇注系统尺寸。
四、个人观点和理解在确定铸造手册中非铁合金铸件浇注系统尺寸时,我认为应该遵循以下原则:一是充分考虑金属流动原理及浇注系统设计的合理性,以保证铸件质量;二是结合具体的铸造工艺要求,使得浇注系统尺寸能够满足铸造过程中的各种要求。
只有在这样的基础上,确定的浇注系统尺寸才能最大程度地保证铸件的质量,提高铸造效率,并节约工艺成本。
浇注系统
4、扇形浇口(fan gate) (1)结构 (2)特点: 成型宽度较大的制品; 易于型腔气体的排出; 制品内应力小;
(三)浇口型式 1、针点浇口(pin point gate) (1)结构 (2)特点 相比较而言,浇口的位置不受限制; 对多型腔模具, 能取得浇口的平衡; 开模时,能自动切断料把,制品表面光滑 ; 对投影面积大又易变形的制品,点浇口可以防止变形;
热流道模具大都采用点浇口。 3)计算公式
D=( Q / γ) ^ 1 / 3 (cm)
以流道的断面积相等为条件,圆形流道的比表面积最小,矩形也比较小。 因此流道的形状常采用圆形、半圆形、梯形和 U 形。
2、分流道的尺寸
影响分流道尺寸的因素: 制品的体积与壁厚;主流道到型腔的距离。
圆形浇口直径: D=( Q / γ) ^ 1 / 3 (cm)
矩形浇口深度: h=( 4 Q / γ) ^ 1 / 3 (cm)
(1)结构
(2)特点
成型圆环形制品,进料均匀,易排气;
无熔接痕;
浇口去除困难。
(3)常用尺寸
同侧浇口。
7、轮辐式浇口
(spoke gate)
(1)结构
(2)特点
圆环形浇口的改进;
浇口去除容易;
制品中有熔接痕,制品强度降低。
(3)常用尺寸
同侧浇口。
8、直浇口 (1)结构 (2)特点 流动阻力小,适于大型 深制品; 注射压力直接作用在制品上,易产生残余应力; 浇口尺寸大,补料时间长; 成型薄而平制品时易变形,浇口去除困难。 (3)常用尺寸
浇注系统设计方案
流道设计的优化与改进
减少流道阻力
采用大截面、短流程的流道
防止金属液氧化
采用密封式或保护气氛浇注系 统
提高充型能力
采用多浇口、分流道设计
降低能耗
采用热平衡设计,减少热量损 失
04 模具设计
模具材料的选用
01
02
03
耐热性
选择耐热性好的材料,如 钢材、铝合金等,以确保 模具在高温下件结构、生产批量、合金种类、浇注条件
适用场合
直浇道适用于中小型铸件的大批量生产;横浇道适用于大型铸件的 单件、小批量生产;内浇道适用于各种铸件
流道尺寸与形状的确定
流道截面积
满足金属液的流量要求,保证充 型能力
流道长度与宽度
根据铸件大小、浇注温度和速度确 定
流道高度
根据金属液的静压力头和浮力确定
调整工艺参数
调整浇注温度、注射压力和注射速度等工艺 参数,提高浇注质量和效率。
改进模具结构
优化模具冷却、排气和顶出机构,提高模具 使用寿命。
采用先进的浇注技术
如应用热流道技术、顺序阀控制等,提高生 产效率和浇注质量。
浇注系统方案的经济性分析
模具成本
生产成本
评估不同浇注系统方案对模具材料、加工 和装配成本的影响。
排溢系统设计
设计有效的排溢系统,以 排除模具内的气体和溢出 的金属液,防止产品产生 气孔和浇不足等缺陷。
模具冷却系统的设计
冷却水道设计
合理布置冷却水道,以提高模具的冷 却效果,减少冷却时间,提高生产效 率。
冷却介质选择
冷却水道密封
确保冷却水道的密封性,防止冷却液 泄漏,以保证生产安全和产品质量。
根据模具材料和使用条件,选择合适 的冷却介质,如水、油等。
Moldflow设计指南——浇口及浇注系统
华东交通大学 材料工程系
主要内容
聚合物在注射模塑中的流动行为 成型条件与注射压力 熔体充模图 Moldflow设计原则 Moldflow网格技术 产品设计 浇口设计 浇注系统设计 冷却系统设计 收缩与翘曲 Moldflow设计流程 制件缺陷
浇口设计
浇口设计
浇口设计准则
确定浇口数
过保压引发 翘曲
浇口数主要由熔体充模压 力决定,不考虑流道时充 模压力应低于设备额定压 力的一半 有时需增加浇口以平衡熔 体充模
增加浇口后各浇口的子 模塑区的压力降应相等、 体积相近; 熔接线置于不敏感处; 避免迟滞、潜流现象
浇口设计
熔体前沿推进越平稳越均匀越好,最 理想的是熔体前沿以单向流动方式充 满整个模腔
浇口位置影响熔体流 动形态,借助MF可在 设计约束范围内确定 最佳浇口位置 浇口厚度一般为制件 壁厚的2/3 浇口厚度可用来控制 保压时间
浇口截面较大,可降 低流速及剪切热,允 许更长时间保压,从 而获得更好外观、更 低内应力及更好的尺 寸稳定性。
浇口设计
浇口类型
手工去浇类浇口
浇口截面尺寸过大,开模动作无法剪断浇口 剪应力敏感的材料,不宜采用具有高剪切速率的自 动去浇口结构 获取自动去浇类浇口无法获得的纤维或分子取向 浇口形式有:直浇口、护耳浇口、边缘浇口、重叠 式浇口、扇形浇口、盘浇口、环形浇口、轮辐式浇 口和膜浇口
从模具入口到模腔间的熔体流动通道
每个成型周期需取出流道系统冷凝料 包括有主流道、分流道、浇口
冷流道系统
主流道必须有锥度, 小端与喷嘴相接
浇注系统设计
浇注系统浇口尺寸计算
浇注系统相关尺寸计算
非平衡式布置: 特点:分流道到各型腔浇口长度不相等的布置。 优点:适应于型腔数量较多的模具,使模具结构紧凑 缺点:不利于均衡送料。为同时充满型腔,各浇口的断面尺寸要 制作得不同,在试模中要多次修改才能实现。
浇注系统相关尺寸计算
浇口的平衡 当采用非平衡式布置的浇注系统或者同模生产不同塑件时,需
浇注系统相关尺寸计算
2.分流道的设计
分流道是主流道末端与浇口之间的通道。用于一模多腔或单型腔 多浇口(塑件尺寸大)的场合。
浇注系统相关尺寸计算
分流道的截面形状及尺寸 为便于机械加工及凝料脱模,分流道一般设置在分型面上。
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
浇注系统相关尺寸计算
主流道小端直径d一般取3~6mm,主流道的长度由定模座厚 度确定,一般L不超过60mm,主流道大端与分流道相接处应有 过渡圆角(通常r′取1~3mm)以减少料流转向时的阻力。
浇注系统相关尺寸计算
正确情况:主流道小端直径d比注射机喷嘴直径d0大0.5~1mm, R≥r+(0.5~1)mm。
在设计浇口时往往先取较小的尺寸值以便在试模时逐步加以修正2浇口的类型直接浇口直接浇口又称中心浇口主流道浇口这种浇口由主流道直接进料常用于成型大而深的塑件侧浇口侧浇口又称边缘浇口一般开设在分型面上调整其截面的厚度和宽度可以调节熔体充模时的剪切速率及浇口固化时间主要用于中小型塑件的多型腔
浇注系统相关尺寸计算
浇注系统相关尺寸计算
④点浇口 又称针点浇口或橄榄形浇口,是一种在塑件中央开设浇口时使 用的圆形限制性浇口,用于成型壳类、盒类的热塑性塑件。
优点: 浇口残留痕迹小,易取 得浇注系统的平衡,也利于 自动化操作。 缺点: 在模具结构上需增加一个 分型面,即双分型面,以便 浇口凝料取出。
浇注系统浇口尺寸计算
若不满足上述条件,需要通过调节浇口尺寸使各浇口 的流量及成型工艺条件达到一致,这就是浇注系统的平衡。
浇注系统相关尺寸计算
分流道的布置 在多型腔模具中分流道的布置中有平衡式和非平衡式两类: 平衡式布置:
③扇形浇口 成型大平面板状及薄壁塑件时,宜采用扇形浇口。在扇形浇口的
整个长度上,沿进料方向截面宽度逐渐变大,为保持断面积处处相 等,浇口的截面厚度逐渐减小。
浇注系统相关尺寸计算
④点浇口 又称针点浇口或橄榄形浇口,是一种在塑件中央开设浇口时使
用的圆形限制性浇口,用于成型壳类、盒类的热塑性塑件。
优点: 浇口残留痕迹小,易取
浇注系统相关尺寸计算
浇口的平衡 当采用非平衡式布置的浇注系统或者同模生产不同塑件时,需
对浇口的尺寸加以调整,以达到浇注系统的平衡。
浇口平衡的计算思路: 通过计算各个浇口的BGV值(Balanced Gate Value)来判断和 设计。 浇口平衡时满足下述要求:
①相同塑件多型腔,各浇口BGV值必须相等 ②不同塑件多型腔,各剪口BGV值必须与其塑件的填充量成正比
由上式可得:
AG1 3t12 0.73mm2,t1 0.49mm,b1 3t1 1.47mm AG3 3t32 1.87mm2, t3 0.79mm,b3 3t3 2.37mm
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
浇注系统相关尺寸计算
浇口的尺寸一般根据经验确定,截面积为分流道断面积的 3%~9%,截面形状常为矩形或圆形,浇口的长度为1~1.5mm。
注塑模具设计浇口
30
浇口位置选择
31
浇口位置选择
32
浇口位置选择
一个好的浇口可以使塑料快速﹑均匀及更好的单方向性流 动﹐并且有着合适的浇口凝固时间。
⑴防止浇口处产生喷射现象而在 充填过程中产生波纹状痕迹。 防止办法:加大浇口尺寸或采用 冲击型浇口。
21
§4.3 普通浇注系统的设计及制造
七、浇口的设计及制造
4.浇口的设计原则
⑵对称的浇口可以防止翘曲
⑶浇口的位置要有利于熔体的流动和补缩。
典型的浇口厚度是0.25至1.27mm。
7
普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
环状浇口
使用环状浇口﹐熔料自由地沿 著环状浇口中心部分流动﹐然 后熔料向下流动充填模具。 典型的浇口厚度是0.25至1.6mm。
8
普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
典型的浇口尺寸为:厚度为0.4至 6.4mm,宽度为1.6至12.7mm。
4
普通浇注系统的设计及制造
七、浇口的设计及制造
2.浇口的类型及特点
重叠浇口 重叠浇口与侧浇口类似﹐浇口与 成品侧壁或成品表面有重叠。 典型的浇口尺寸为:厚度0.4至 6.4mm﹐宽度为1.6至12.7mm。
5
普通浇注系统的设计及制造
不推荐
推荐
22
普通浇注系统的设计及制造
七、浇口的设计及制造
4.浇口的设计原则
⑷防止熔体直接冲击细长型芯或嵌件。
23
普通浇注系统的设计及制造
七、浇口的设计及制造
4.浇口的设计原则
⑸浇口位置要有利于排气以避免包风。
点浇口类型与注射模设计
参考答案:
从形状、位置、去除浇口、取出浇注系统凝料等几方面讨论。
二.点浇口的浇口直径应为多少?
参考答案:
点浇口的各种尺寸如图6.5所示,直径d = 0.5 ~ 1.5 mm,最大不超过2 mm。
点浇口的直径也可以用下面的经验公式计算:
潜伏式浇口由于浇口与型腔相连时有一定角度,形成了能切断浇口的刃口,这一刃口在脱模或分型时形成的剪切力可将浇口自动切断。
五.点浇口适于哪类塑料原料的注射成型?
参考答案:
点浇口由于前后两端存在较大的压力差,可较大程度地增大塑料熔体的剪切速率并产生较大的剪切热,从而导致熔体的表观粘度下降,流动性增加,有利于型腔的充填,因而对于薄壁塑件以及诸如聚乙烯、聚丙烯等表观粘度随剪切速率变化敏感的塑料成型有利,但不利于成型流动性差及热敏性塑料,也不利于成型平薄易变形及形状非常复杂的塑件。
式中 d --点浇口直径,mm;
δ --塑件在浇口处的壁厚,mm;
A --型腔表面积,mm2。
三.潜伏式浇口的倾斜角度为多少适宜?
参考答案:
潜伏浇口的倾斜角α为45°~ 60°。
四.潜伏式浇口如何将浇口自动切断?
参考答案:
八.塑料制品采用潜伏浇口有何特点?
参考答案:
采用潜伏式浇口的塑料制品,即有采用点浇口制品的浇口痕迹细小、外表美观的特点,又可以采用单分型面注射模具生产,简化了模具结构,用途广泛。
九.图6.4所示的双分型面注射模采用的推出机构如何工作?
参考答案:
图6.4所示的双分型面注射模采用的推出机构由推件板4、推杆11、推杆固。
十.推板9组成。
ቤተ መጻሕፍቲ ባይዱ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浇注系统相关尺寸计算
浇口的平衡例题
解:由排列位置知2A2B4A4B相同,3A3B5A5B相同,1A1B相同, 因此只需求1A2A3A尺寸即可。先求2A尺寸,并以此为基准求2A3A 的尺寸。 2 2
d 5.08 1)分流道圆形截面积 AR :AR R mm 2 20.27 mm 2 2 2
2)基准浇口2A的截面尺寸: 由:AG 2 0.07 AR 1.42 mm2 得:t2 0.69mm, b2 3t2 2.07mm 3)求其他两组浇口的截面尺寸,由BGV相等得:
AG1 AG3 1.42 BGV 0.08 102 102 102 1.27 2 143 1.27 143 1.27 2 2 2
浇注系统相关尺寸计算
④点浇口 又称针点浇口或橄榄形浇口,是一种在塑件中央开设浇口时使 用的圆形限制性浇口,用于成型壳类、盒类的热塑性塑件。
优点: 浇口残留痕迹小,易取 得浇注系统的平衡,也利于 自动化操作。 缺点: 在模具结构上需增加一个 分型面,即双分型面,以便 浇口凝料取出。
浇注系统相关尺寸计算
浇注系统相关尺寸计算
浇口的平衡例题
由上式可得:
AG1 3t1 0.73mm2 , t1 0.49mm, b1 3t1 1.47 mm
2
AG3 3t3 1.87 mm2 , t 3 0.79mm, b3 3t3 2.37mm
2
计算结果:
1A/1B 型腔号、 尺寸
浇注系统相关尺寸计算
浇口的尺寸一般根据经验确定,截面积为分流道断面积的 3%~9%,截面形状常为矩形或圆形,浇口的长度为1~1.5mm。
注意: 在设计浇口时,往往先取较小的尺寸值,以便在试模时 逐步加以修正。
浇注系统相关尺寸计算
(2)浇口的类型 ①直接浇口 直接浇口又称中心浇口、主流道浇口,这种浇口由主流道直接进 料,常用于成型大而深的塑件。
Wa、Wb ----分别为a、b型腔的填充量(熔体质量或体积) AGa、AGb ----分别为a、b型腔的浇口截面积( mm2)
LRa、LRb ----分别为主流道中心到达a、b型腔的流动通道的长度 ( mm) LGa、LGb----分别为a、b型腔的浇口长度( mm )
浇注系统相关尺寸计算
浇口的平衡 无论是相同塑件还是不同塑件多型腔,一般在设计时取矩形浇口 或圆形浇口,浇口截面积 AG 与分流道的截面积 AR 的比值取:
若不满足上述条件,需要通过调节浇口尺寸使各浇口
的流量及成型工艺条件达到一致,这就是浇注系统的平衡。
浇注系统相关尺寸计算
分流道的布置 在多型腔模具中分流道的布置中有平衡式和非平衡式两类: 平衡式布置: 特点:分流道到各型腔浇口的长度、断面形状、尺寸都相同。 优点:可均衡送料和同时充满型腔,塑件的力学性能基本一致。 缺点:分流道比较长。
2A/2B
3A/3B
4A/4B
5A/5B
长度
宽度b 厚度t
LG
1.27
1.47 0.49
1.27
2.07 0.69
1.27
2.37 0.79
1.27
2.07 0.69
1.27
2.37 0.79
浇注系统相关尺寸计算
②侧浇口 侧浇口又称边缘浇口,一般开设在分型面上,调整其截面的厚 度和宽度可以调节熔体充模时的剪切速率及浇口固化时间,主要用 于中小型塑件的多型腔模具。
浇注系统相关尺寸计算
③扇形浇口 成型大平面板状及薄壁塑件时,宜采用扇形浇口。在扇形浇口的 整个长度上,沿进料方向截面宽度逐渐变大,为保持断面积处处相 等,浇口的截面厚度逐渐减小。
⑤潜伏浇口 浇口的分流道位于分型面上,浇口本身设在模具内的隐蔽处,不 致因浇口痕迹而影响塑件的表面美观效果。
浇注系统相关尺寸计算
浇注系统的平衡问题
中小塑件的注射模广泛采用一模多腔形式,设计时应保证所
有型腔同时充填和成型。
一般在塑件形状及模具结构允许的情况下,主流道到各型腔的分 流道设计成长度相等、形状及截面尺寸相同的形式(型腔布局为对 称式布局)。
浇注系统相关尺寸计算
主流道小端直径d一般取3~6mm,主流道的长度由定模座厚 度确定,一般L不超过60mm,主流道大端与分流道相接处应有 过渡圆角(通常r′取1~3mm)以减少料流转向时的阻力。
浇注系统相关尺寸计算
正确情况:主流道小端直径d比注射机喷嘴直径d0大0.5~1mm, R≥r+(0.5~1)mm。
浇口的平衡
相同塑件多型腔的BGV值
BGV
AG ----浇口的截面积( mm2)
AG LR LG
L R ----从主流道中心到浇口的流动通道的长度( mm2)
LG ----浇口的长度( mm)
浇注系统相关尺寸计算
浇口的平衡
2)不同塑件多型腔的BGV值
Wa BGVa AGa LRb LGb Wb BGVb AGb LRa LGa
浇注系统相关尺寸计算
2.分流道的设计
分流道是主流道末端与浇口之间的通道。用于一模多腔或单型腔 多浇口(塑件尺寸大)的场合。
浇注系统相关尺寸计算
分流道的截面形状及尺寸 为便于机械加工及凝料脱模,分流道一般设置在分型面上。
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
对浇口的尺寸加以调整,以达到浇注系统的平衡。
浇口平衡的计算思路: 通过计算各个浇口的BGV值(Balanced Gate Value)来判断和 设计。 浇口平衡时满足下述要求: ①相同塑件多型腔,各浇口BGV值必须相等 ②不同塑件多型腔,各剪口BGV值必须与其塑件的填 : AR 0.07 ~ 0.09
矩形浇口的截面的宽度b与厚度t的比值常取:
b : t 3 :1
注意:求解时,一般取浇口长度为定值,通过调
节浇口的宽度和厚度来谋求浇口的平衡。
浇注系统相关尺寸计算
浇注系统相关尺寸计算
浇口的平衡例题 下图为相同10个型腔的模具流道分布图,各浇口均为矩形狭缝,且 各段分流道直径(d R =5.08mm)相等,各浇口长度 LG =1.27mm, 各相邻型腔中心相距143mm,上下型腔分流道长度为102mm。为 保证浇注系统平衡,试确定浇口尺寸?
浇注系统相关尺寸计算
一、浇注系统设计 1.主流道的设计 主流道轴线垂直于分型面,属于直浇注系统;主流道轴线平行于 分型面,属于横浇注系统。
直浇注系统
横浇注系统
浇注系统相关尺寸计算
为便于流道凝料的脱出,内壁粗糙度Ra小于0.4μm,主流道 设计成圆锥形,其锥度α=2°~6°,如果锥度过大,易发生涡 流,锥度过小则流道凝料脱出困难
浇注系统相关尺寸计算
非平衡式布置: 特点:分流道到各型腔浇口长度不相等的布置。 优点:适应于型腔数量较多的模具,使模具结构紧凑 缺点:不利于均衡送料。为同时充满型腔,各浇口的断面尺寸要 制作得不同,在试模中要多次修改才能实现。
浇注系统相关尺寸计算
浇口的平衡 当采用非平衡式布置的浇注系统或者同模生产不同塑件时,需