全国2006年4月高等数学自学考试试卷

合集下载

2006gkssxx-数学B(文)

2006gkssxx-数学B(文)

绝密★启用前试卷类型:B2006年普通高等学校招生全国统一考试文科数学(必修+选修I )注意事项:1.本试卷分第一部分和第二部分。

第一部分为选择题,第二部分为非选择题。

2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的 试卷类型信息点。

3.所有答案必须在答题卡指定区域内作答,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)。

1.已知集合Q P x x R x Q x N x P 则集合},06|{},101|(2=-+∈=≤≤∈=等于(A ){-2,3}(B ){-3,2}(C ){3}(D ){2}2.函数)(11)(2R x xx f ∈+=的值域是(A )[0,1](B ))1,0[(C )]1,0((D )(0,1)3.已知等差数列8,}{82=+a a a n 中,则该数列前9项和S 9等于(A )45(B )36(C )27(D )184.设函数)1,0)((log )(≠>+=a a b x x f a 的图像过点(0,0),其反函数的图像过点(1,2), 则a +b 等于(A )3(B )4(C )5(D )65.设直线过点(0,a )其斜率为1,且与圆x 2+y 2=2相切,则a 的值为(A )±4(B )22±(C )±2(D )2±6.“α、β、γ成等差数列”是“等式sin(α+ γ)=sin2β成立”的(A )必要而不充分条件 (B )充分而不必要条件(C )充分必要条件(D )既不充分又不必要条件BB B 卷7.设y x ,为正数,则)41)((yx y x ++的最小值为(A )15(B )12(C )9(D )68.已知非零向量与满足 ||||AC AB +·=0 且 ||AB ||AC 21.则△ABC 为(A )等边三角形(B )直角三角形(C )等腰非等边三角形(D )三边均不相等的三角形9.已知函数)0(42)(2>++=a ax ax x f . 若21x x <,21x x +=0,则 (A ))()(21x f x f > (B ))()(21x f x f =(C ))()(21x f x f <(D ))()(21x f x f 与的大小不能确定10.已知双曲线)2(12222>=-a y ax 的两条渐近线的夹角为,3π则双曲线的离心率为 (A )332 (B )362 (C )3(D )211.已知平面α外不共线的三点A ,B ,C 到α的距离都相等,则正确的结论是 (A )平面ABC 必不垂直于α (B )平面ABC 必平行于α (C )平面ABC 必与α相交(D )存在△ABC 的一条中位线平行于α或在α内12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明 文(解密). 已知加密规则为:明文a ,b ,c ,d 对应密文a+2b ,2b +c ,2c +3d ,4d . 例如,明文 1,2,3,4对应密文5,7,18,16. 当接收方收到密文14,9,23,28时,则解密得到的明文为 (A )1,6,4,7 (B )4,6,1,7 (C )7,6,1,4 (D )6,4,1,7第二部分(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13. 167cos 43sin 77cos 43cos +的值为 . 14.(xx 12-)6展开式中的常数项为 (用数字作答).15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同 去,则不同的选派方案共有 种(用数字作答).16.水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R 的小球,它和下面的4个球恰好都相切,则小球的球心到水平桌面α的距离是 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分)甲,乙,丙3人投篮,投进的概率分别是.53,21,52现3人各投篮1次,求: (Ⅰ)3人都投进的概率;(Ⅱ)3人中恰有2人投进的概率. 18.(本小题满分12分)已知函数).()12(sin 2)62sin(3)(2R x x x x f ∈-+-=ππ(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求使函数)(x f 取得最大值的x 的集合.19.(本小题满分12分)如图,βαβαβα∈∈=⊥B A l ,,, ,点A 在直线l 上的射影为A 1,点B 在l 上的射影为B 1. 已知AB =2, AA 1=1,BB 1=2,求:(Ⅰ)直线AB 分别与平面βα,所成角的大小; (Ⅱ)二面角A 1—AB —B 1的大小. 20.(本小题满分12分)已知正项数列}{n a ,其前n 项和S n 满足65102++=n n n a a S ,且1531,,a a a 成等比数列,求数列}{n a 的通项.n a 21.(本小题满分12分)如图,三定点A (2,1),B (0,-1),C (-2,1);三动点D ,E ,M 满足AB t AD =,BC t BE =,].1,0[,∈=t t(Ⅰ)求动直线DE 斜率的变化范围; (Ⅱ)求动点M 的轨迹方程. 22.(本小题满分14分)设函数13)(23+-=x kx x f ).0(≥k(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若函数)(x f 的极小值大于0,求k 的取值范围.B 卷文科数学答案(必修+选修Ⅱ)答案一、选择题(本大题共12小题,每小题5分,共60分).1.A2.B3.C4.C5.B6.A7.B8.D9.A 10.D 11.D 12.C 二、填空题:(本大题共4小题,每小题4分,共16分).13.21-14.60 15.1320 16.3R. 三、解答题:(本大题共6小题,共74分). 17.解:(I )记“甲投进”为事件A 1,“乙投进”为事件A 2,“丙投进”为事件A 3,则.53)(,21)(,52)(321===A P A P A P ∴P(A 1A 2A 3)=P(A 1)·P(A 2)·P(A 3)=.253532152=⨯⨯ ∴3人都投进的概率为253.(II )设“3人中恰有2人投进”为事件B ,则,5019)531(215253)211(525321)521()()()()()()()()()()()()()(321321321321321321=-⨯⨯+⨯-⨯+⨯⨯-=⋅⋅+⋅⋅+⋅⋅=++=A P A P A P A P A P A P A P A A P A A A p A A A P A A A P B P∴3人中恰有2人投进的概率为5019.18.解:(I ))12(2cos 1)12(2sin 3)(ππ--+-=x x x f.22.1)32sin(21]6)12(2sin[21)]12(2cos 21)12(2sin 23[2πππππππ==∴+-=+--=+---=T x x x x(II )有取最大值时当,1)32sin(,)(=-πx x f}.,125|{),(125,2232Z k k x R x x Z k k x k x ∈+=∈∴∈+=+=-πππππππ的集合为所求即19.解法一:(I )如图,连接A 1B ,AB 1.∵α⊥β,α∩β=l ,AA 1⊥l ,BB 2⊥l ,∴AA 1⊥β,BB 1⊥a . 则∠BAB 1,∠ABA 1分别是AB 与α和β所成的角. Rt △BB 1A 中,BB 1=2,AB=2, ∴sin ∠BAB 1=,221=AB BB ∴∠BAB 1=45° Rt △AA 1B 中,AA 1=1,AB=2, ∴sin ∠ABA 1=,211=AB AA ∴∠ABA 1=30°. 故AB 与平面α,β,所成的角分别是45°,30°.(II )∵BB 1⊥α, ∴平面ABB 1⊥α.在平面α内过A 1 作A 1E ⊥AB 1交AB 1于E ,则A 1E ⊥平面AB 1B.过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则由三垂线定理得A 1F ⊥AB , ∴∠A 1FE 就是所求二面角的平面角.在Rt △ABB 1中,∠BAB 1=45°,∴AB 1=B 1B=2. ∴Rt △AA 1B 1中,AA 1=A 1B 1=1,∴.222111==AB E A 在Rt △AA 1B 中,.3142121=-=-=AA AB B A 由AA 1·A 1B=A 1F ·AB 得A 1F=,2323111=⨯=⋅AB B A AA ∴在Rt △A 1EF 中,sin ∠A 1FE=3611=F A E A ,∴二面角A —AB —B 1的大小为arcsin 36.解法二:(I )同解法一.(II )如图,建立坐标系,则A 1(0,0,0), A (0,0,1),B 1(0,1,0),B (2,1,0).在AB 上取一点F (x , y , z ),则存在t ∈R ,使得t =, 即(x , y , z -1)=t(2,1,-1), ∴点F 的坐标为(2t, t, 1-t). 要使,0,11=⋅⊥A A 须即(2t, t, 1-t)·(2,1,-1)=0, 2t+t -(1-t)=0,解得t=41, ∴点F 的坐标为).43,41,42(),43,41,42(1=∴A 设E 为AB 1的中点,则点E 的坐标为(0,),,3331214316316181161161162169161162)41,41,42()43,41,42(||||cos .,,0414121)1,1,2()41,41,42().41,41,42(1111==⋅+-=++⋅++-⋅=⋅=∠∠∴⊥∴=--=-⋅-=⋅-=∴EF F A FE A FE A 又为所坟一面角的平面角又∴二面角A 1—AB —B 1的大小为arccos33. 20.,65102++=n n n a a S ①,65101212++=∴a a a 解之得a 1=2或a 2=3.又)2(65101211≥++=---n a a S n n n ②由①—②得 0)5)((),(5)(10111212==-+-+-----n n n n n n n n n a a a a a a a a a 即35,2,,72,12,2.3,,,.73,13,3).2(5,0115123153111531153111-=∴=∴====≠===≥=->+--n a a a a a a a a a a a a a a a n a a a a n n n n n 有时当不成等比数列时当21.解:(I )解法一:如图(1)设D(x D , y D ), E(x E , y E ), M(x , y).由),2,2()1,2(,,--=--==t y x t t D D 知].1,1[],1,0[.21)22(2)12(12.12,2.12,22-∈∴∈-=+---+---=--=∴⎩⎨⎧-=-=⎩⎨⎧+-=+-=∴DE D E D EDE E E D D k t t t t t t x x y y k t y t x t y t x 同理 (II ),DE t DM =]2,2[)21(2],1,0[.4,4,)21(),21(2),24,2()24,2()1212,222()12,22(2222-∈-=∴∈==∴⎩⎨⎧-=-=∴--=--=-+--+-=-=-+∴t x t y x x y t y t x t t t t t t t t t t t y t x 即即所求轨迹方程为].2,2[,42-∈=x y x 解法二:(I )同上. (II )如图,.)1(2)1()1()(,)1()(,)1()(22OC t OB t t OA t OEt OD t OD OE t OD DE t OD DM OD OM OC t OB t OB OC t OB BC t OB BE OB OE OB t OA t OA OB t OA AD t OA AD OA OD +-+-=+-=-+=+=+=+-=-+=+=+=+-=-+=+=+=设M 点坐标为(x , y),由)1,2(),1,0(),1,2(-=-==得],2,2[],1,0[,4,)21(1)1()1(21)1(),21(2)2(0)1(22)1(222222-∈∴∈=⎪⎩⎪⎨⎧-=⋅+-⋅-+⋅-=-=-⋅+⋅-+⋅-=x t y x t t t t t t y t t t t t x 得消去故轨迹方程是 ]2,2[,42-∈=x y x 22.解:(I )当k =0时,f (x )=-3x 2+1.∴f (x )的单调增区间为],0,(-∞单调减区间为).,0[+∞当k >0时),2(363)(2k x kx x kx x f -=-='∴f (x )的单调增区间为),,2[],0,(+∞-∞k 单调减区间为]2,0[k.(II )当k =0时,函数f (x )不存在极小值.当k >0时,依题意 ,01128)2(22>+-=k k k f 即k 2>4. 由条件k >0,所以k 的取值范围为(2,+∞).。

(整理)全国2006年10月

(整理)全国2006年10月

------------- 全国2006年10月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(一)(每小题1分,共20分)1.函数y=xsinx 在其定义域内是( )A.有界函数B.周期函数C.无界函数D.奇函数2.函数2x 1x 1y --=的定义域是( )A.[)(]1,0,0,1-B.[)0,1-C.(][)+∞-∞-,1,1,D.(]1,03.函数2e e y xx --=是( )A.偶函数B.奇函数C.非奇非偶函数D.周期函数4.设|q|<1,则n n q lim ∞→=( )A.不存在B.-1C.0D.15.若函数f(x)在点x 0处可导且0)x (f 0≠',则曲线y=f(x)在点(x 0, f(x 0))处的法线的斜率等于()A.)x (f 0'-B.)x (f 10'-C. )x (f 0'D. )x (f 10'6.设y=x 4+ln3,则y '=( )A.4x 3B.31x 43+C.x 4lnxD. x 4lnx+31------------- 7.设y=a 0+a 1x+a 2x 2+a 3x 3,则y '''=( )A.6B.a 3C.0D.6a 38.设⎩⎨⎧-=+=t 1y t1x ,则=dxdy ( ) A.t 1t 1-+ B.- t 1t1-+ C. t 1t 1+- D.- t 1t1+-9.函数f(x)=arctgx 在[0,1]上使拉格朗日中值定理结论成立的c 是() A. ππ-4 B.-ππ-4 C.ππ-4 D.- ππ-410.函数y=x+tgx 在其定义域内( )A.有界B.单调减C.不可导D.单调增11.函数2x e y -=的图形的水平渐近线方程为( )A.y=1B.x=1C.y=0D.x=0 12.⎰x dx=( ) A.C x 2+ B.2x C.23x 32 D. 23x 32+C13.设⎰=Φ1x tdt sin )x (,则)x (Φ'=( )A.sinxB.-sinxC.cosxD.-cosx-------------14.广义积分⎰-112dx x 1( ) A.收敛B.敛散性不能确定C.收敛于-2D.发散15.方程组⎩⎨⎧==-8z z 8y 4x 22在空间表示( )A.双曲柱面B.(0,0,0)C.平面z=8上的双曲线D.椭圆 16.二元函数xy1cos z =的所有间断点是( ) A.{}0y 0x |)y ,x (==或 B.{}0x |)y ,x (=C.{}0y |)y ,x (=D.(0,0) 17.设y x z +=,则)1,1(x z ∂∂=( ) A.4 B.2C.1D.21 18.设(σ)是矩形域:a ≤x ≤b,c ≤y ≤d ,则⎰⎰σσ)(d =( )A.a+b+c+dB.abcdC.(b-a)(d-c)D.(a-b)(d-c)19.微分方程x(y ')2-2y y '+x=0是( )A.二阶微分方程B.一阶微分方程C.二阶线性微分方程D.可分离变量的微分方程20.等比级数a+aq+aq 2+…+aq n-1+…(a ≠0)( )A.当|q|<1时发散;当|q|≥1时收敛B.当|q|≤1时发散;当|q|>1时收敛C.当|q|≤1时收敛;当|q|>1时发散D.当|q|<1时收敛;当|q|≥1时发散(二)(每小题2分,共20分) 21.=→x1sin x lim 20x ( )------------- A.2B.1C.0D.不存在 22.=-→x 10x )x 1(lim ( ) A.e -1B.eC.+∞D.1 23.设函数f(x)=⎩⎨⎧>≤-0x ,x 0x ,1x ,则f(x)在x=0是( ) A.可微的B.可导的C.连续的D.不连续的 24.⎰=+dx 1e e x 2x( ) A.ln(e 2x +1)+CB.arctg(e x )+CC.arctgx+CD.tge x +C25.函数y=xe -x 的单调增区间是( )A.(-∞,+ ∞)B.[)+∞,1C.(]1,∞-D.(1+∞) 26.过两点P 1(1,1,1),P 2(2,3,4)的直线方程为( ) A.31z 21y 11x -=-=- B.x-1+2(y-1)+3(z-1)=0 C.41z 31y 21x -=-=- D.11z 11y 11x -=-=- 27.微分方程0y y =+''的通解为( )A.y=sinx+cosxB.y=cosxC.y=sinxD.y=C 1cosx+C 2sinx28.级数∑∞=1n 2n na sin ( ) A.发散B.绝对收敛------------- C.条件收敛D.敛散性不能确定29.微分方程xy 2y x y 2-='是( )A.一阶线性非齐次微分方程B.齐次微分方程C.可分离变量的微分方程D.二阶微分方程30.当|x|<1时,幂级数1+x+x 2+…+x n +…收敛于( ) A.x1x 2- B.1-x C.x 1x - D.x11- 二、计算题(本大题共7小题,每小题6分,共42分)31.求xx xx x e e e e lim --+∞→-+.32.设y=x x (x>0),求y '.33.求⎰x dx ln x .34.求⎰πθθ402d tg .35.求微分方程sinxcosydx=cosxsinydy 满足初始条件y|x=0=4π的特解.36.计算二重积分⎰⎰σσ+)(22d )y x (, 其中(σ)是圆环:1≤x 2+y 2≤4.37.判别级数∑∞=-+1n )n 1n (的敛散性.三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求由抛物线y 2=4ax(a>0)及直线x=x 0(x 0>0)所围成的平面图形绕x 轴旋转而成的旋转体的体积.39.求函数f(x)=xln x 的极值.------------- 40.设z=)x y (F , 其中F(u)为可导函数, 求证0yz y x z x =∂∂+∂∂.。

2006年普通高等学校招生全国统一考试

2006年普通高等学校招生全国统一考试

2006年普通高等学校招生全国统一考试数 学(江苏卷)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,恰有一项是符合题目要求的。

1. 已知a R ∈,函数()sin ||,f x x a x R =-∈为奇函数,则a =(A )0 (B )1 (C )1- (D )1±2.圆22(1)(1x y -++=的切线方程中有一个是(A )0x y -= (B )0x y += (C )0x = (D )0y =3.某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y ,已知这组数据的平均数为10,方差为2,则||x y -的值为(A )1 (B )2 (C )3 (D )44.为了得到函数2sin(),36x y x R π=+∈的图象,只需把函数2sin ,y x x R =∈的图象上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5.101)3x 的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )66.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为(A )28y x = (B )28y x =- (C )24y x = (D )24y x =-7.若A 、B 、C 为三个集合,A B B C =,则一定有 (A )A C ⊆ (B)C A ⊆ (C)A C ≠(D)A =∅ 8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是A BCD (A )||||||a b a c b c -≤-+- (B )2211a a aa +≥+ (C )1||2ab a b -+≥- (D≤-9.两个相同的正四棱锥组成如图1所示的几何体,可 放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。

2006年普通高等学校招生全国统一考试、数学(湖北卷.文)含答案

2006年普通高等学校招生全国统一考试、数学(湖北卷.文)含答案

2006年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

全卷共150分。

考试用时120分钟。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分散。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1、集合P ={x 」x 2-16<0},Q ={x 」x =2n ,n ∈Z },则P Q =A.{-2,2}B.{-2,2,-4,4}C.{2,0,2}D.{-2,2,0,-4,4} 2、已知非零向量a 、b ,若a +2b 与a -2b 互相垂直,则=baA. 41B. 4C. 21D. 2 3、已知2sin 23A ==32,A ∈(0,π),则sin cos A A +=A.3 B .3- C .53 D .53- 4、在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9A. 81B. 27527C.3 D. 2435、甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么A. 甲是乙的充分但不必要条件B. 甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件 6、关于直线m 、n 与平面α与β,有下列四个命题: ①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥;④若//,m n αβ⊥且αβ⊥,则//m n ; 其中真命题的序号是A .①②B .③④C .①④D .②③7、设f(x)=x x -+22lg,则)2()2(xf x f +的定义域为 A. ),(),(-4004 B.(-4,-1) (1,4) C. (-2,-1) (1,2) D. (-4,-2) (2,4) 8、在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂的指数是整数的有 A. 3项 B. 4项 C. 5项 D. 6项9、设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,若1,2且⋅=,则点P 的轨迹方程是A. )0,0(123322>>=+y x y x B. )0,0(123322>>=-y x y xC.)0,0(132322>>=-y x y x D.)0,0(132322>>=+y x y x 10、关于x 的方程()011222=+---k x x ,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3 答案 一、选择题:1.C 2.D 3.A 4.A 5.B 6.D 7.B 8.C 9.D 10.A 二、填空题:11.23 12. 0.94 13. (0,34) 14. 78 15.(34πR 3)`=4πR 2,球的体积函数的导数等于球的表面积函数。

06年高等数学(上)试题及答案

06年高等数学(上)试题及答案

华东交通大学2006—2007学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。

专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科06级) 课程类别:必闭卷(√) 考试日期:2007.1.15 题号 一 二三四 五 总分 12 3 4 5 6 7 1 2分值 10 15 7777777998阅卷人 (全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、填空题(每题2分,共10分)______)1(34)( 122=-+-=x x x x x x f 第一类间断点为设函数、___________ 11 2 02=+=⎰dy dt t y x则,设、_______)1 1(1 3==K xy 处的曲率,在点等边双曲线、_________141=+⎰dx x x、__________ } 3 2{}2 1 1{ 5==-=λλ则垂直,,,与,,已知向量、b a二、选择题(每题 3分,共15分)∞=--+∞→ D. 2 C. 1 B. 0 . A )B ()sin 11( 122limx x x x x 、22222221 D. )1(2 C. 12 B. 2 A.) C ( )()1ln(arctan 2t t t dxy d x y y t y t x -++==⎩⎨⎧+==则,确定设、 得分 评阅人得分 评阅人1dx x211+222ln 1-21xx ex e x x x e x xxsin D. C. )ln(1 B. 1 A.)D (0 3><>++<>时成立的是当下列各式中,、1cos D. 1cos C. 1sin B. 1sinA.) A ()1(1sin )( 42C x C x C x C x dx xf xx x f ++-++-='=⎰则,设、⎩⎨⎧==-+⎩⎨⎧==-+⎩⎨⎧==-+=-+⎩⎨⎧=+=++822 D. 0 822 C.0 822 B. 822 A.)D ( 19522222222222z y y x y y y x x y y x y y x xoy z y z y x 为平面上的投影曲线方程在曲线、三、计算题(每题 7分,共49分)x x x ex x 222sin 112lim--→、21 42 21422 1 2222limlimlimlim23042==-=-=--=→→→→xxe xe x xxe x x ex x xx x x xx 原式解:)22(2lim n n n n n --+∞→、 2 21214 224 limlim=-++=-++=∞→∞→nn nn n n nn n 原式解:得分 评阅人得分评阅人y e e y xx '++=求,设、 )1ln( 32 xx x x xxxx x x x e ee e e e e e e ee y 222122221 ]2)1(21[11 )1(11+=⋅++++='++++='-解:dxx x ⎰-2214、Cx x xCt t dtt tdttdttttdt dx t x +---=+--=-=====⎰⎰⎰arcsin 1 cot )1(csccot cos sincos cos sin 2222原式则,令解:dxx x ⎰1arctan 5、)1(arctan 121+=⎰x d x 原式解:得分 评阅人得分 评阅人得分 评阅人分扣缺1C。

2006年普通高等学校招生全国统一考试文科数学

2006年普通高等学校招生全国统一考试文科数学

2006年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A.6π B.4π C.3π D.2π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则 A.M N =∅ B.M N M = C.MN M = D.MN R =⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A.()22()x f x e x R =∈ B.()2ln 2ln (0)f x x x => C.()22()x f x e x R =∈ D.()2ln ln 2(0)f x x x =+> ⑷、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A.14-B.4-C.4D.14⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = A.8 B.7 C.6 D.5⑹、函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为A.,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B.()(),1,k k k Z ππ+∈C.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A.12B.35C.2D.0 ⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,若a 、b 、c 成等比数列,且2c a =,则cos B =A.14B.34 ⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 A.16π B.20πC.24πD.32π 抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑽、在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为A.120-B.120C.15-D.15 ⑾、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A.2B.2C.2D.220cm2006年普通高等学校招生全国统一考试理科数学第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

自学考试高等数学练习试卷4(题后含答案及解析)

自学考试高等数学练习试卷4(题后含答案及解析)

自学考试高等数学练习试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题选择题1.在下列极限求解中,正确的是( ).正确答案:C解析:根据洛必达法则可知2.设y=f(x)可导,则f(x-2h)-f(x)等于( ).A.f’(x)h+o(h)B.-2f’(x)h+o(h)C.-f’(x)h+o(h)D.2f’(x)h+o(h)正确答案:B解析:3.设函数f(x)的一个原函数为sin2x,则A.cos4x+CB.C.2cos4x+CD.sin4x+C正确答案:A解析:根据函数的定义,f(x)=F’(x)=(sin2x)’=2cos2x,f’(x)=-4sin2x,f’(2x)=-4sin4x,所以4.设二重积分的积分域D是x2+y2≤1,则等于( ).A.B.4πC.3πD.5π正确答案:A解析:积分区域D如图所示:0≤r≤1,0≤θ≤2π.所以5.在区间[-1,1]上,不满足罗尔定理的函数是( ).A.B.C.D.正确答案:C解析:罗尔定理必须满足下列条件:函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(x)在区间端点的函数值相等.6.在空间坐标系中,下列为平面方程的是( ).A.y2=xB.C.D.3x+4z=0正确答案:D解析:平面方程一般式:Ax+By+Cz+D=0故选D项.另外,A项:y2=x 是一条抛物线B项:是两条平面正交线,显然是一空间直线C项:是空间直线方程的一般式.填空题7.正确答案:1解析:8.yy”-(y)2=0的通解为_____________.正确答案:y=C2eC1x解析:令y’=p,则因为所以当p≠0时,则即y’=C1y y=C2eC1xp=0,那么y=C,方程通解为y=C2eC1x9.曲线y=x2(x-3)的拐点坐标是____________.正确答案:(1,-2)解析:y=x2(x-3)=x3-3x2y’=3x2-6x y”=6x-6当y”=6x-6=0时x=1,y=-2.10.设则正确答案:1解析:11.的收敛区间是____________.正确答案:[-1,1]解析:当x=1时,发散,当x=-1时,条件收敛,所以其收敛域为[-1,1).12.设y=C1e2x+C2e3x为某二阶常系数齐次线性微分方程的通解,则该微分方程为_____________.正确答案:y”-5y’+6y=0解析:由二阶常系数齐次线性微分方程通解y=C1e2x+C2e3x,可知特征根为λ1=2,λ2=3,对应特征方程为:(λ-2)(λ-3)=0,即λ2-5λ+6=0,所以对应微分方程为y”-5y’+6y=0.解答题13.若在x=0处连续,求a,b,c.正确答案:因为f(x)在x=0处连续,所以f(0-0)=f(0+0)=f(0),得:b=ce-4=1所以c=e4,b=1,a为任意实数.14.求不定积分正确答案:15.求正确答案:16.求函数哪一点上的切线与直线y=x成60°角?正确答案:设切线斜率为k2<0,y=x=k1=1解得那么解得17.已知u=f(x+y,x2,y sinx),求正确答案:18.求微分方程xy’-y=x2ex的通解.正确答案:原方程化为:19.求级数的和数.正确答案:∴对上式两边求导得:对上式两边再次求导,得:于是,对上式两边取x=1,得20.当k为何值时,广义积分收敛?当k为何值时,这个广义积分发散?又当k为何值时,广义积分取得最小值?正确答案:当k≠1时,当k=1时,发散,即,当k>1时,广义积分收敛;当k≤1时,广义积分发散.设则令f’(k)=0,得驻点但当k<k0时,f’(k)<0;当k>k0时,f’(k)>0,所以,当时,广义积分取极小值,也就是最小值.综合题21.设f(x)在闭区间[0,1]上连续,在(0,1)内大于0,并满足xf’(x)=f(x)+3x2.若曲线y=f(x)与x=1,y=0所围成的图形S的面积为2,求y=f(x).正确答案:由xf’=(x)=f(x)+3x2,可得所以q=3x.那么所以f(x)=(3x+C)x=3x2+Cx.由题意可得:所以C=2.所以f(x)=3x2+2x.设其中Dt,是由x=t,y=t以及坐标轴围成的正方形区域,函数f(x)连续.22.求a的值使得g(t)连续;正确答案:如图,画出积分区域,则根据函数连续定义,满足所以a=0.23.求g’(t).正确答案:当t≠0时,t=0时,所以,g’(t)=f(t).24.某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资金,销售收入z(万元)与电台广告费用x(万元)及报纸广告费用y(万元)之间有如下关系:z=15+14x+32y-8xy-2x2-10y2.问:在广告费用不限的情况下,怎样才能达到最优的广告策略?正确答案:广告策略最优,即要求公司通过做广告,获得的利润最大因利润函数:L(x,y)=R(x,y)-C(x,y) =15+14x+32y-8xy -2x2-10y2-(x+y) =15+13x+31y-8xy-2x2-10y2于是令得驻点又Lxx”(x,y)=-4,Lxy”(x,y)=-8,Lyy”(x,y)=-20,故B2-AC=64-(-4)×(-20)=一16<0.又A=-4<0,于是点(0.75,1.25)为极大值点,也是最大值点.即广告费用为0.75万元,报纸广告费用为1.25万元时,才能达到最优广告策略.证明题25.证明:当x>0时,成立.正确答案:(1)变形:这是对函数的增量形式令f(t)=lnt,t∈[x,1+x].(2)f(t)=lnt在[x,1+x]应用拉格朗日中值定理:ln(1+x)-lnx=(x+1-x),(3)∵x<ξ<x+1,故有26.设F(x)是f(x)的一个原函数,G(x)是的一个原函数且F(x)G(x)=-1,f(0)=1,证明:f(x)=ex或f(x)=e-x.正确答案:(1)因为F(x)·G(x)=-1,(2)讨论,(i)若F(x)=f(x),即lnf(x)=x+C1,f(x)=Cex 由f(0)=1,得C=1 故有f(x)=ex.(ii)若F(x)=-f(x),即f(x)=-f’(x) →lnf(x)=-x+C2,f(x)=Ce-x 由f(0)=1,得C=1.故有f(x)=e-x.。

全国2006年4月高等教育自学考试高等数学基础试题

全国2006年4月高等教育自学考试高等数学基础试题

全国2006年4月高等教育自学考试高等数学基础试题课程代码:00417一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设有向量=-=→→→→b a b a 2},0,2,1{},1,0,2{则( ) A .3→→→+-k j i 22 B .3→→→-+k j i 22 C .→→→--k j i 223D .-3→→→++k j i 222.向量的位置关系是及与向量→→→→⨯b a b a ( ) A .共面 B .共线 C .垂直D .斜交3.平面2(y-3)=0的位置特点是( ) A .平行于y 轴 B .垂直于y 轴 C .垂直于x 轴D .平行于yz 面 4.设平面5x+2y-3z-2=0与平面3x+ky+z+7=0互相垂直,则数k 的值等于( ) A .5 B .-5 C .6D .-65.直线052131121=++-=-+=-z y x z y x 与平面的位置关系是( ) A .平行 B .斜交C .互相垂直D .直线在平面上6.球面x 2+y 2+z 2-4x+6y+10z+36=0的半经为( ) A .2 B .2 C .3D .37.方程组⎩⎨⎧==+2422y y x 在空间直角坐标系中表示( )A .平面y=2中的圆B .点(0,2)C .平行于z 轴的直线D .直圆柱面8.下列各对函数中,为相等函数的是( ) A .y=|x|与y=2xB .y=2lnx 与y=lnx 2C .y=ln|x|与y=|lnx|D .y=x 与y=|x|9.设函数f(x)=⎩⎨⎧=≥<|)(|,01x f x xx 则( ) A .x B .-x C .|x|D .f(x)10.设有数列:1,0,}{01,,51,0,31n a n n na n 则数列为偶数为奇数即⎪⎩⎪⎨⎧= ( ) A .以0为极限B .以为极限n1C .有两个极限:0和n1D .没有极限11.下列命题正确的是( ) A .若数列{a n }有极限,则{a n }有界 B .若数列{a n }有界,则{a n }有极限 C .若数列{a n }无极限,则{a n }无界D .若数列{a n }有极限,则{a n }递增或者递减12.当x →0时,下列函数中以e 为极限的是( ) A .(1+x)x1 B .(1+x)x C .(1-x)x 1D .(1-x)x13.下列函数中,当x →0+时,与x 是等价无穷小的为( ) A .xB .x 2C .ln(1+x)D .1-cosx14.下列函数中,在点x=0处连续的是( )A .f(x)=x1B .f(x)=⎪⎩⎪⎨⎧=≠001x x xC .f(x)=xxsinD .f(x)⎪⎩⎪⎨⎧=≠010sin x x x x15.点x=1是函数f(x)=的23122+--x x x ( ) A .第一类且可去的间断点 B .第二类间断点 C .第一类但不可去的间断点D .连续点16.设f(x)=ln=)(',2x f x则( ) A .2x B .x 2 C .x1D .x1-17.设⎪⎩⎪⎨⎧≤≤===2),20(sin cos a x dx dy t t b y t a x 则π( )A .a bB .b a C .ab -D .ba -18.设f(x)是闭区间[a,b]上的连续函数,则( )A .f(x)一定在[a,b]上可微B .f(x)一定在[a,b]上有界C .至少有一点0)(),,(=∈ξξf b a 使得D .至少有一点0)('),,(=∈ξξf b a 使得19.函数f(x)=x+的极小值是)0(2>a xa ( ) A .-2a B .-a C .aD .2a20.下列函数中,在区间(0,+∞)内上凸的是( ) A .y=x1 B .y=x2 C .y=|x|D .y=-x1 21.设方程y-F(x)=0表示函数f(x)的一条积分曲线,则下列式子中正确的是( ) A .⎰=)()(x F dx x f B .F ′(x)=f(x) C .⎰+=C x f dx x F )()(D .f ′(x)=F(x)22.下列不等式成立的是( )A .⎰⎰<1142dx x dx xB .⎰⎰≤21212)(ln ln dx x xdxC .0⎰≤-≤2122)3(dx xxD .-1⎰≤-≤2121)3(dx x x23.设=+=+⎰)(,arctan)(11x C x dx x x ϕϕ则( )A .2xB .xC .x21D .x124.设G(x)=⎰=>21)('),0(1x x G x dt t则( )A .x1 B .x C .1D .225.n 阶排列123……n 的逆序数是( ) A .0 B .1 C .2)1(-n nD .n26.设方程⎩⎨⎧==+=+a ax x x ax 则有非零解,02121( )A .1B .-1C .1或-1D .027.下列行列式的值一定为零的是( )A .0021221112 n n nn a a a a a aB .nnn n in i i ini i n a a a a a a a a a a a a 21212111211222------------------------------C .n 阶行列式中零元素多于n 个D .行列式的转置行列式28.设A 为m ×n 矩阵,且其秩r(A)=r,则( ) A .A 中r 阶子式都不为零 B .r=min{m,n} C .A 中(r+1)阶子式都为零D .r=m 或r=n29.设A,B 为任意两个n 阶可逆方阵,则必有( )A .(AB)-1=A -1B -1 B .(AB) –1=B -1A -1C .(AB) –1=ABD .(AB) –1=AB -130.设Ax=0是非齐次线性方程组Ax=b 的导出组,则下列说法正确的是( ) A .Ax=0有非零解时,Ax=b 有无穷多个解 B .u 1,u 2是Ax=b 的解时,u 1-u 2是Ax=0的解. C .Ax=0只有零解时, Ax=b 有唯一解 D .Ax=0与Ax=b 同时有解或同时无解二、填空题(本大题共10小题,每小题1分,共10分)请在每小题的空格中填上正确答案。

00020高等数学(一)0604

00020高等数学(一)0604

2006年4月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的。

请将其代码填写在题后的括号内。

错选、多选或未选均无分。

二、填空题(大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
22.将一长为l的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形
与圆形面积之和最小,问这两段铁丝的长应各为多少?
五、应用题(本大题9分)
六、证明题(本大题5分)。

4月全国自考高等数学(工本)试题及答案解析

4月全国自考高等数学(工本)试题及答案解析

1全国2018年4月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在空间直角坐标系中,方程1222222=++cz b y a x 表示的图形是( )A.椭圆抛物面B.圆柱面C.单叶双曲面D.椭球面2.设函数z =x 2y ,则=∂∂xz( ) A.212-y yxB.x xyln 2C.x x yln 22 D.()12-y yx3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ωdxdydz ( ) A.81 B.61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( ) A.2C 1x +C 2cos x B.2Cx +cos x C.cos x +C (2x -cos x ) D.C (2x -cos x )5.设幂级数∑∞--1)3(n n nx a在x =1处收敛,则在x =4处该幂级数( )A.绝对收敛B.条件收敛2C.发散D.敛散性不定二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数y x y z cos sin =,则=∂∂xz. 7.已知dy e dx e y x yx +++是某函数()y x u ,的全微分,则()=y x u , .8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑=dS .9.微分方程x y 2sin =''的通解为y= .10.无穷级数∑∞=0!2n nn 的和为 .三、计算题(本大题共12小题,每小题5分,共60分) 11.求过点P (3,-1,0)并且与直线321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求x z ∂∂,yz∂∂. 13.设方程xyx ln=确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫⎝⎛4,22,22π处的切线方程.16.计算二重积分()dxdy e I Dy x⎰⎰+-=22,其中区域D :.0,422≥≤+y y x17.计算二次积分⎰⎰=22sin ππydx xxdy I . 18.计算对弧长的曲线积分()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段. 19.计算对坐标的曲线积分⎰+Lydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段3弧.20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解. 21.判断级数()∑∞=-+-131321n n nn 是否收敛,如果收敛,是条件收敛还是绝对收敛?22.设函数()⎩⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数()y x xy y x y x f 311381021,22-----=的极值.24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程. 25.将函数()2312+-=x x x f 展开为(x +1)的幂级数.。

2006年普通高等学校招生全国统一考试数学试卷四川卷理

2006年普通高等学校招生全国统一考试数学试卷四川卷理

2006年普通高等学校招生全国统一考试(四川)数 学(理工农医类)第I 卷参考公式:如果事件A 、B 互斥,那么P (A- B)=P(A)P(B)2球是表面积公式S = 4二R其中R 表示球的半径如果事件A 、B 相互独立,那么P(AB) = P(A) P(B)其中R 表示球的半径如果事件A 在一次试验中发生的概率是 P ,那么n 次独立重复试验中恰好发生 k 次的概率P n (k)二C :P k (— P)2、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

1•已知集合A= '1x 2-5x +6兰2 B 丄|2x -1如,则集合An B =(A ) Cx|2—x —3?( B )fx|2 乞 x :::3l ( C )1x|2::x_3?( D )「x|—1:::x ::3]lim f(x) =2lim f (x) =5(A ) f(x)在 x=1 处连续 (B ) f(1) = 5(C ) x 1—(D ) x 14.已知二面角。

T —卩的大小为600, m 、n 为异面直线,且口丄n丄卩,则m 、n 所成的角为5.下列函数中,图像的一部分如右图所示的是球的体积公式(A) 3.(B )- 3. ( C ) 2(D )— 2.3.已知f(x)/g 2,x=1F 面结论正确的是(A) 3000 0(B)60(C )90(D) 12009.直线y = x — 3与抛物线y 2 =4x 交于 A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足7•如图,已知正六边形pP2p3P4p5p6,下列向量的数量积中最大的是y =cos(2x )(D)66.已知两定点面积等于 A(-2,0), B(1,0),如果动点P 满足条件PA =2 PB ,则点p 的轨迹所包围的图形的 (A )二(B) 4_(C ) 8_:(D)9—I —HM(A ) pP 2 *P 1P3( B ) P 1P 2 *pP 4( C )pP2*pP5( D ) pP 2 *P1P 68.某厂生产甲产品每千克需用原料 A 和原料B 分别为引、b l千克,生产乙产品每千克需用原料A和原料B 分别为a 2、b 2千克。

全国2006年10月

全国2006年10月

全国2006年10月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(一)(每小题1分,共20分)1.函数y=xsinx 在其定义域内是( )A.有界函数B.周期函数C.无界函数D.奇函数2.函数2x 1x 1y --=的定义域是( )A.[)(]1,0,0,1-B.[)0,1-C.(][)+∞-∞-,1,1,D.(]1,03.函数2e e y xx --=是( )A.偶函数B.奇函数C.非奇非偶函数D.周期函数4.设|q|<1,则nn q lim ∞→=( )A.不存在B.-1C.0D.15.若函数f(x)在点x 0处可导且0)x (f 0≠',则曲线y=f(x)在点(x 0, f(x 0))处的法线的斜率等于()A.)x (f 0'-B.)x (f 10'-C. )x (f 0'D. )x (f 10'6.设y=x 4+ln3,则y '=( )A.4x 3B.31x 43+C.x 4lnxD. x 4lnx+317.设y=a 0+a 1x+a 2x 2+a 3x 3,则y '''=( )A.6B.a 3C.0D.6a 38.设⎩⎨⎧-=+=t 1y t1x ,则=dxdy ( ) A.t 1t 1-+ B.- t 1t1-+ C. t 1t 1+- D.- t 1t1+-9.函数f(x)=arctgx 在[0,1]上使拉格朗日中值定理结论成立的c 是() A. ππ-4 B.-ππ-4 C.ππ-4 D.- ππ-410.函数y=x+tgx 在其定义域内( )A.有界B.单调减C.不可导D.单调增11.函数2x e y -=的图形的水平渐近线方程为( )A.y=1B.x=1C.y=0D.x=0 12.⎰x dx=( ) A.C x 2+ B.2x C.23x 32D. 23x 32+C13.设⎰=Φ1x tdt sin )x (,则)x (Φ'=( )A.sinxB.-sinxC.cosxD.-cosx14.广义积分⎰-112dx x 1( )A.收敛B.敛散性不能确定C.收敛于-2D.发散15.方程组⎩⎨⎧==-8z z 8y 4x 22在空间表示( )A.双曲柱面B.(0,0,0)C.平面z=8上的双曲线D.椭圆 16.二元函数xy1cos z =的所有间断点是( ) A.{}0y 0x |)y ,x (==或 B.{}0x |)y ,x (=C.{}0y |)y ,x (=D.(0,0) 17.设y x z +=,则)1,1(x z ∂∂=( ) A.4 B.2C.1D.21 18.设(σ)是矩形域:a ≤x ≤b,c ≤y ≤d ,则⎰⎰σσ)(d =( )A.a+b+c+dB.abcdC.(b-a)(d-c)D.(a-b)(d-c)19.微分方程x(y ')2-2y y '+x=0是( )A.二阶微分方程B.一阶微分方程C.二阶线性微分方程D.可分离变量的微分方程20.等比级数a+aq+aq 2+…+aq n-1+…(a ≠0)( )A.当|q|<1时发散;当|q|≥1时收敛B.当|q|≤1时发散;当|q|>1时收敛C.当|q|≤1时收敛;当|q|>1时发散D.当|q|<1时收敛;当|q|≥1时发散(二)(每小题2分,共20分) 21.=→x1sin x lim 20x ( ) A.2 B.1C.0D.不存在 22.=-→x 1x )x 1(lim ( ) A.e -1 B.eC.+∞D.1 23.设函数f(x)=⎩⎨⎧>≤-0x ,x 0x ,1x ,则f(x)在x=0是( ) A.可微的B.可导的C.连续的D.不连续的 24.⎰=+dx 1e e x( ) A.ln(e 2x +1)+CB.arctg(e x )+CC.arctgx+CD.tge x +C25.函数y=xe -x 的单调增区间是( )A.(-∞,+ ∞)B.[)+∞,1C.(]1,∞-D.(1+∞) 26.过两点P 1(1,1,1),P 2(2,3,4)的直线方程为( ) A.31z 21y 11x -=-=- B.x-1+2(y-1)+3(z-1)=0 C.41z 31y 21x -=-=- D.11z 11y 11x -=-=- 27.微分方程0y y =+''的通解为( )A.y=sinx+cosxB.y=cosxC.y=sinxD.y=C 1cosx+C 2sinx 28.级数∑∞=1n 2n na sin ( ) A.发散B.绝对收敛C.条件收敛D.敛散性不能确定 29.微分方程xy 2y x y 2-='是( )A.一阶线性非齐次微分方程B.齐次微分方程C.可分离变量的微分方程D.二阶微分方程 30.当|x|<1时,幂级数1+x+x 2+…+x n +…收敛于( ) A.x1x 2- B.1-x C.x 1x - D.x11- 二、计算题(本大题共7小题,每小题6分,共42分)31.求xx xx x e e e e lim --+∞→-+. 32.设y=x x (x>0),求y '.33.求⎰xdx ln x .34.求⎰πθθ402d tg .35.求微分方程sinxcosydx=cosxsinydy 满足初始条件y|x=0=4π的特解. 36.计算二重积分⎰⎰σσ+)(22d )y x (, 其中(σ)是圆环:1≤x 2+y 2≤4. 37.判别级数∑∞=-+1n )n 1n (的敛散性.三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求由抛物线y 2=4ax(a>0)及直线x=x 0(x 0>0)所围成的平面图形绕x 轴旋转而成的旋转体的体积.39.求函数f(x)=xln x 的极值. 40.设z=)x y (F , 其中F(u)为可导函数, 求证0y z y x z x=∂∂+∂∂.。

06年《高等数学》试题及答案

06年《高等数学》试题及答案

2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷题号 一 二 三 四 五 六 总分 核分人 分数一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。

不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( ) A. ]1,21[B. ]1,1[-C. ]1,0[D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01ln )1ln()1ln()()(22==+++-+=-+x xx xx f x f A ⇒.3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim2-=-→xx xx C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5 解:B nn nnn n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim.5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x xe xf ax,在0=x 处连续,则 常数=a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a aexex f axx axx x ⇒=⇒+===-=→→→1122lim 1lim)(lim 2020.6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim( )A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f ' 解:xx f f f x f xx f x f x x )1()1()1()21(lim)1()21(lim--+-+=--+→→C f xf x f xf x f x x ⇒'=---+-+=→→)1(3)1()1(lim2)1()21(lim207. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( ) A. (2,5) B. (-2,5) C. (1,2) D.(-1,2) 得分 评卷人解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2- 解: D t tt t dxdy ⇒-=-=2sin sin 222.9.设2(ln )2(>=-n x x yn ,为正整数),则=)(n y ( )A.x n x ln )(+B. x1 C.1)!2()1(---n nxn D. 0解:B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x xx x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线 解:A y y y x x x x x xx x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim,4lim ,1lim)2)(1()3)(1(2332.11.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒.12. 函数xe y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C ey ey xx ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C eF exx++--)( B. C eF x+-)( C. C eF exx+---)( D. C eF x+--)(解:D C eF ed ef dx e f e xxxx x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且xe xf =-')12( ,则 =)(x f ( )A.C ex +-1221 B. C ex ++)1(212C.C ex ++1221 D. C ex +-)1(212解:B C ex f e x f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(.15. 导数=⎰batdt dxd arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D.211x-解:⎰baxdx arcsin 是常数,所以B xdx dxd ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( ) A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-badx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-badx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z ny x 与平面01343=++-z y x 平行,则常数=n( )A. 2B. 3C. 4D. 5解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{. 19.设yx y x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( )A.2B.1C.-1D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 设方程02=-xyz e z确定了函数),(y x f z = ,则xz ∂∂ = ( )A. )12(-z x z B.)12(+z x z C.)12(-z x y D. )12(+z x y解: 令xy e F yz F xyz e z y x F zz x z -='-='⇒-=222,),,(A z x z xyxyz yz xyeyz xz z⇒-=-=-=∂∂⇒)12(222.21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222xydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dzy x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值 解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x yz x y xz⇒=∂∂∂-=∂∂2,6222yx z yz 是极大值A ⇒.23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π 解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>a xa dy y x f dx0(),(,常数)的积分次序后可化为 ( )A. ⎰⎰a ydx y x f dy0),( B.⎰⎰aay dx y x f dy),( C. ⎰⎰aa dx y x f dy00),( D. ⎰⎰ayadx y x f dy),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为( )A. x yx 222≤+ B. 222≤+yxC. y yx 222≤+ D. 220yy x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y yx 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2 解:L :,1⎩⎨⎧-==xy x x x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L.27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nnπD .∑∞=1cos n n π解: ⇒<22sinnnππ∑∞=π12sinn n收敛C ⇒.28. 设幂级数n n nn a x a (0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( ) A. 绝对收敛 B. 条件收敛 C. 发散 D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n na 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cos得分C. C y x =sin sinD. C y x =cos cos 解:dx xx dy yy ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d yy d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. xeb ax x y -+=*)(2C. xeb ax y -+=*)( D. xaxe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设xe b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xxx x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim)31)(2()2(lim231lim2222x x x x x x xxx x x x123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+=.34.设函数bx axx x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f . 37.⎰-=+ππdx x x )sin(32 _________.解:3202sin)sin(323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-211112132)()1(e dx e dx x dt t f dx x f xtx .39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a. 40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y22=中的2y 换成22y z+,即得所求曲面方程x yz222=+.41.设函数y x xy z sin 2+= ,则 =∂∂∂yx z 2_________.解:⇒+=∂∂y x y xz sin 2y x yx z cos 212+=∂∂∂.42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dxdxdy x y 12101122322)()( .43. 函数2)(xex f -=在00=x 处展开的幂级数是________________.解: ∑∞=⇒=0!n n xn xe ∑∑∞=∞=-+∞-∞∈-=-==022),(,!1)1(!)()(2n n nnn xx xn n x ex f .44.幂级数∑∞=+++-0112)1()1(n n n nn x的和函数为 _________.解:∑∑∑∞=∞=-+∞=+++=-=+-=+-011111)21ln()2()1(1)2()1(2)1()1(n n nn n nn n n nx nx n x n x,)22(≤<-x .45.通解为xxeC eC y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.解:xxe C eC y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46.计算 xx exxx 2sin1lim322-→--.解:23042320161lim3222lim81lim2sin 1lim2222xexxex xexxx ex xx xx xx xx -=+-=--=---→-→-→-→161lim 161322lim220-=-=-=-→-→xx xx exxe.47.求函数xx x y 2sin 2)3(+=的导数dxdy .解:取对数得 :)3ln(2sin ln 2x x x y +=,得分 评卷人两边对x 求导得:x xxx x xx y y2sin 332)3ln(2cos 2122++++='所以]2sin 332)3ln(2cos 2[)3(222sin 2x xxx x x x x x y x+++++='x x x x x xx x xx x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分 ⎰-dx xx224.解:⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdxxxtx t )2cos 1(2sin4cos 2cos 2sin4422sin 22222C x x x C t t x C t t +--=+-=+-=242arcsin2cos sin 22arcsin 22sin 22.49.计算定积分⎰--+12)2()1ln(dx x x .解:⎰⎰⎰+---+=-+=-+11112)1)(2(12)1ln(21)1ln()2()1ln(dx x x xx xdx dx x x⎰=-=+-+=++--=112ln 312ln 322ln 12ln312ln )1121(312ln xx dx xx.50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求 yz xz ∂∂∂∂,.解:xv v g xu u g xy x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2(),(),()2(2xy x g y xy x g y x f v u'+'++'= =∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yv v g yu u g yy x y x f yz )2()2(),()2(xy x g x y x f v'++'. 51.计算二重积分⎰⎰=Dydxdy x I 2,其中D 由12,===x x y x y 及所围成.解:积分区域如图06-1所示, 可表示为:x y x x 2,10≤≤≤≤. 所以 ⎰⎰⎰⎰==10222xxDydy x dxydxdyx I10310323)2(105142122====⎰⎰xdx x ydx x xx.52.求幂级数nn nx n ∑∞=--+0)1()3(1的收敛区间(不考虑区间端点的情况).解: 令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数.xy x y =o12x y 2=图06-1因为 313)3(11)3(1lim1)3(1)3(1limlim11=--+-=+⋅-+-+==∞→+∞→+∞→nnn n nn nn n nn a a ρ,故级数nn nt n ∑∞=-+0)3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3).对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x .故所求级数的收敛区间为),(42-. 53.求微分方程 0)12(2=+-+dy x xy dy x 通解. 解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xx y xy -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y xy 通解为2xC y =.设非齐次线性微分方程的通解为2)(xx C y =,则3)(2)(xx C x C x y -'=',代入方程得C xx x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xC xy +-=.四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x xC (千元),乙厂月生产成本是3222++=y yC (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 .把8=+y x 代入目标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故 5=x 是唯一极值点且为极小值,即最小值点.此时有38,3==C y . 所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.解:平面图形如图06-2所示,此立体可看作X 型区域绕y 轴旋转一周而得到。

2006年普通高等学校招生全国统一考试(四川卷)文科数学及参考答案

2006年普通高等学校招生全国统一考试(四川卷)文科数学及参考答案

2006年普通高等学校招生全国统一考试(四川卷)文科数学及参考答案第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()((1)已知集合{}2560A x x x =-+=,集合{}213B x x =->,则集合A B =(A ){}23x x ≤≤ (B ){}23x x ≤< (C ){}23x x <≤ (D ){}13x x -<< (2)函数()()()ln 1,1f x x x =->的反函数是(A )()()11x f x e x R -=+∈ (B )()()1101x f x x R -=+∈ (C )()()11011x f x x -=+> (D )()()111x f x e x -=+> (3)曲线34y x x =-在点()1,3--处的切线方程是(A )74y x =+ (B )72y x =+ (C )4y x =- (D )2y x =-(4)如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是 (A )1213PP PP ⋅ (B )1214PP PP ⋅(C )1215PP PP ⋅ (D )1216PP PP ⋅(5)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生 (A )30人,30人,30人 (B )30人,45人,15人 (C )20人,30人,10人 (D )30人,50人,10人 (6)下列函数中,图象的一部分如右图所示的是(A )sin 6y x π⎛⎫=+⎪⎝⎭(B )sin 26y x π⎛⎫=-⎪⎝⎭(C )cos 43y x π⎛⎫=-⎪⎝⎭(D )cos 26y x π⎛⎫=-⎪⎝⎭(7) 已知二面角l αβ--的大小为060,,m n 为异面直线,且,m n ββ⊥⊥,则,m n 所成的角为(A )030 (B )060 (C )090 (D )0120(8) 已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π(9) 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一 个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是 (A )4π (B )8π (C )12π (D )16π(10) 直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为(A )36 (B )48 (C )56 (D )64(11)设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的(A )充要条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件(12)从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 (A )4160 (B )3854 (C )3554 (D )1954第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上。

全国2006年4月高等教育自学考试社会经济统计学原理试题及答案

全国2006年4月高等教育自学考试社会经济统计学原理试题及答案

全国2006年4月高等教育自学考试社会经济统计学原理试题课程代码:00042一、单项选择题(本大题共10小题,每小题1分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列属于数量标志的是()A.性别B.年龄C.民族D.籍贯2.统计设计的首要环节是()A.明确统计研究的目的B.确定统计指标C.确定统计分析的内容D.确定统计分析的方法3.调查项目是指()A.调查方案B.调查对象C.调查内容D.调查单位4.5个班级学生的平均年龄是21岁,则变量是()A.5个班级B.5个班级的年龄总数C.21岁D.年龄5.下列哪个相对数可以相加()A.比例相对数B.比较相对数C.强度相对数D.结构相对数6.标准差可以反映总体分布的()A.集中趋势B.离中趋势C.偏态D.峰度7.下列属于平均数时间数列的是()A.我国历年人口数B.我国历年钢产量C.某企业历年职工平均工资D.某企业历年流通费用率8.报告期产品成本降低了0.62%,产量增长13.6%,则生产费用()A.增长12.9%B.增长12.98%C.增长14.22%D.增长13.1%9.在相同条件下,重复抽样的抽样平均误差()A.等于不重复抽样的抽样平均误差B.大于不重复抽样的抽样平均误差C.小于不重复抽样的抽样平均误差D.不确定10.下列属于函数关系的是()A.施肥量与亩产量B.成本与利润C.身高与体重D.圆的半径与面积二、多项选择题(本大题共10小题,每小题1分,共10分)在每小题列出的五个备选项中有二至五个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选、少选或未选均无分。

11.下列属于品质标志的有()A.年龄B.性别C.民族D.婚姻状况E.健康状况12.统计指标()A.是用文字表示的B.是用数字表示的C.是说明总体特征的D.是说明个体特征的E.既可以用文字表示,又可以用数字表示的13.抽样法是()A.全面调查方法B.非全面调查方法C.推断的方法D.整理的方法E.分析的方法14.统计分组()A.对总体而言是分B.对总体而言是合C.对个体而言是分D.对个体而言是合E.可以区分事物的不同性质15.总量指标是()A.用绝对数表示的B.用相对数表示的C.用平均数表示的D.认识事物的起点E.计算相对指标和平均指标的基础16.下列标志变异指标中,那几个考虑了各个标志值的变异情况()A.全距B.平均差C.标准差D.平均差系数E.标准差系数17.将各月产值按先后顺序排列形成的数列为()A.时间数列B.时期数列C.时点数列D.绝对数时间数列E.相对数时间数列18.物价指数可采用()A.数量指数B.质量指数C.算术平均数指数D.调和平均数指数E.固定权数指数19.抽样平均误差与样本单位数的关系是()A.样本单位数越大,抽样平均误差越大B.样本单位数越小,抽样平均误差越大C.样本单位数越大,抽样平均误差越小D.样本单位数越小,抽样平均误差越小E.样本平均误差随样本单位数的增加而增加20.直线回归方程y=a+bx中()A.a,b为回归参数B.a,b为回归系数C.a为直线的斜率D.a为直线的截距E.b为直线的斜率三、填空题(本大题共10小题,每空1分,共10分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国2006年4月高等教育自学考试
高等数学(一)试题
课程代码:00020
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )
A .[a,3a]
B .[a,2a]
C .[-a,4a]
D .[0,2a]
2.=
→x sin x 1
sin x lim 20x ( ) A .1 B .∞
C .不存在
D .0
3.设D=D (p )是市场对某一商品的需求函数,其中p 是商品价格,D 是市场需求量,则需求价格弹性是(
) A .)p ('D p D
- B .)p ('D D p
-
C .)
D ('p p D - D .)D ('p D p
-
4.=⎰
→x tdt cos lim 0x 2
0x ( )
A .0
B .1
C .-1
D .∞
5.⎰⎰≤+=2
22y x dxdy ( )
A .π
B .4
C .2π
D .2
二、填空题(本大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

6.若f(x+1)=x+cosx 则f(1)=__________.
7..__________1n 5n )n 1(lim 233
x =++-∞→
8.若f(x)在x=x 0处可导,且.__________)x ('f ,3h
)h 5x (f )x (f lim 0000h ==+-→则 9.曲线y=x 3-5x 2+3x+5的拐点是__________.
10.曲线y=xe -x 为凹的区间是__________.
11.⎰=.__________xdx ln
12.微分方程e x y ′-1=0的通解是__________.
13.
⎰-=-31.__________dx |x 2|
14.⎰+∞=+1
2.__________x x dx 15.设z=.__________sin 2=∂∂y
z x y 则 三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.设y='.113
33y x x 求-+
17.求极限.)x
2x (lim x 3x +∞→ 18.计算不定积分.dx e 1x 2⎰-
19.计算定积分⎰+10.dx x 1x
20.设z=f(.,),dz f y
x 求可微且 四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.设y=x 2(lnx-1)-(1-x 2)lnx,求e
x dx dy =. 22.将一长为l 的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形与圆形面积之和最小,
问这两段铁丝的长应各为多少?
23.设D 是由x 轴,y=x-4和y=⎰⎰
D .xydxdy .x 2试求所围成的闭区域
五、应用题(本大题9分)
24.已知某企业生产某种产品q 件时,MC=5千元/件,MR=10-0.02q 千元/件,又知当q=10件时,总成本为250千
元,求最大利润.(其中边际成本函数MC=,dq dC 边际收益函数MR=)dq
dR
六、证明题(本大题5分)
25.设f(x)=⎰⎰-===x t dx x f t t dt t t ππ00.2)(),1sin (sin 证明定义。

相关文档
最新文档