高考数学总复习专题102双曲线

合集下载

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

高中数学(学生+老师)高考总复习双曲线习题及详解

高中数学(学生+老师)高考总复习双曲线习题及详解

高中数学高考总复习双曲线习题及详解(教师)一、选择题1.(文)(2010·山东潍坊)已知焦点在y轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是()A.17B.15C.174 D.154[答案] C[解析]设双曲线方程为y2a2-x2b2=1,则由题意得,ab=4,∴a2c2-a2=16,∴e=174.(理)(2010·河北唐山)过双曲线x2a2-y2b2=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为()A.2 B. 5C. 2D. 3[答案] C[解析]如图,FM⊥l,垂足为M,∵M在OF的中垂线上,∴△OFM为等腰直角三角形,∴∠MOF=45°,即ba=1,∴e= 2.2.(2010·全国Ⅰ文)已知F1、F2为双曲线C x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=()A.2B.4C.6D.8[答案] B[解析]在△F1PF2中,由余弦定理cos60°=|PF1|2+|PF2|2-|F1F2|2 2|PF1|·|PF2|=(|PF 1|-|PF 2|)2-|F 1F 2|2+2|PF 1|·|PF 2|2|PF 1|·|PF 2|=4a 2-4c 22|PF 1||PF 2|+1=-2b 2|PF 1|·|PF 2|+1, ∵b =1,∴|PF 1|·|PF 2|=4.3.(文)(2010·合肥市)中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆(x -2)2+y 2=1都相切,则双曲线C 的离心率是( )A.233或2B .2或 3 C.3或62D.233或62[答案] A[解析] 焦点在x 轴上时,由条件知b a =13,∴c 2-a 2a 2=13,∴e =c a =233,同理,焦点在y 轴上时,ba=3,此时e =2.(理)已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率为( )A .4+2 3 B.3-1 C.3+12D.3+1[答案] D[解析] 设线段MF 1的中点为P ,由已知△F 1PF 2为有一锐角为60°的直角三角形, ∴|PF 1|、|PF 2|的长度分别为c 和3c . 由双曲线的定义知:(3-1)c =2a , ∴e =23-1=3+1. 4.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程为( )A .x =±152y B .y =±152x C .x =±34yD .y =±34x[答案] D[解析] 由题意c 2=3m 2-5n 2=2m 2+3n 2, ∴m 2=8n 2,∴双曲线渐近线的斜率k =±3|n |2|m |=±34.方程为y =±34x .5.(文)(2010·湖南师大附中模拟)已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A 、B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .20[答案] B[解析] 由已知,|AB |+|AF 2|+|BF 2|=20,又|AB |=4,则|AF 2|+|BF 2|=16.据双曲线定义,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9,故选B.(理)(2010·辽宁锦州)△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-m 2,0,C ⎝⎛⎭⎫m2,0(其中m >0,且m 为常数),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为( )A.16y 2m 2-16x 23m2=1B.x 216-y 2163=1 C.16x 2m 2-16y 23m 2=1(x >m4)D.16x 2m 2-16y 23m2=1 [答案] C[解析] 依据正弦定理得:|AB |-|AC |=12|BC |=m2<|BC |∴点A 的轨迹是以B 、C 为焦点的双曲线的右支,且a =m 4,c =m 2,∴b 2=c 2-a 2=3m 216∴双曲线方程为16x 2m 2-16y 23m 2=1(x >m4)6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点为F 1、F 2,点Q 为双曲线左支上除顶点外的任一点,过F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分[答案] D[解析] 延长F 1P 交QF 2于R ,则|QF 1|=|QR |. ∵|QF 2|-|QF 1|=2a ,∴|QF 2|-|QR |=2a =|RF 2|,又|OP |=12|RF 2|,∴|OP |=a .7.(文)(2010·温州市十校)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)[答案] B[解析] 由题意易知点F 的坐标为(-c,0),A ⎝⎛⎭⎫-c ,b 2a ,B ⎝⎛⎭⎫-c ,-b2a ,E (a,0),因为△ABE 是锐角三角形,所以EA →·EB →>0,即EA →·EB →=⎝⎛⎭⎫-c -a ,b 2a ·⎝⎛⎭⎫-c -a ,-b 2a >0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0,∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2),故选B.(理)(2010·浙江杭州质检)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若FM =ME ,则该双曲线的离心率为( )A .3B .2 C. 3D. 2[答案] D[解析] 由条件知l :y =b a x 是线段FE 的垂直平分线,∴|OE |=|OF |=c ,又|FM |=|bc |a 2+b 2=b ,∴在Rt △OEF 中,2c 2=4b 2=4(c 2-a 2), ∵e =ca>1,∴e = 2.8.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0D.⎝⎛⎭⎫-153,-1[答案] D[解析] 直线与双曲线右支相切时,k =-153,直线y =kx +2过定点(0,2),当k =-1时,直线与双曲线渐近线平行,顺时针旋转直线y =-x +2时,直线与双曲线右支有两个交点,∴-153<k <-1. 9.(文)(2010·福建理)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)[答案] B[解析] 由条件知a 2+1=22=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1.设P 点坐标为(x ,y ),则OP →=(x ,y ),FP →=(x +2,y ), ∵y 2=x 23-1,∴OP →·FP →=x 2+2x +y 2 =x 2+2x +x 23-1=43x 2+2x -1 =43(x +34)2-74. 又∵x ≥3(P 为右支上任意一点) ∴OP →·FP →≥3+2 3.故选B.(理)(2010·新课标全国理)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1D.x 25-y 24=1 [答案] B[解析] 设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 12a 2-y 12b 2=1x 22a 2-y22b 2=1,两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,∵k AB =y 1-y 2x 1-x 2,且k AB =-15-0-12-3=1,所以4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1,故选B. 10.(文)过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点垂直于x 轴的弦长为12a ,则双曲线x 2a 2-y 2b 2=1的离心率e 的值是( )A.54 B.52 C.32D.54[答案] B[解析] 将x =c 代入椭圆方程得,c 2a 2+y 2b 2=1,∴y 2=⎝⎛⎭⎫1-c 2a 2×b 2=a 2-c 2a 2×b 2=b 2a 2×b 2,∴y =±b 2a. ∴b 2a =14a ,∴b 2=14a 2,e 2=c 2a 2=a2+14a 2a 2=54, ∴e =52,故选B. (理)(2010·福建宁德一中)已知抛物线x 2=2py (p >0)的焦点F 恰好是双曲线y 2a 2-x 2b 2=1的一个焦点,且两条曲线交点的连线过点F ,则该双曲线的离心率为( )A. 2B .1±2C .1+ 2D .无法确定[答案] C[解析] 由题意知p2=c ,根据圆锥曲线图象的对称性,两条曲线交点的连线垂直于y 轴,对双曲线来说,这两个交点连线的长度是2b 2a ,对抛物线来说,这两个交点连线的长度是2p ,∵p =2c ,2b 2a=4c ,∴b 2=2ac ,∴c 2-a 2=2ac ,∴e 2-2e -1=0,解得e =1±2, ∵e >1,∴e =1+ 2. 二、填空题11.(文)(2010·广东实验中学)已知P 是双曲线x 2a 2-y 29=1右支上的一点,双曲线的一条渐近线的方程为3x -y =0.设F 1、F 2分别为双曲线的左、右焦点.若|PF 2|=3,则|PF 1|=________.[答案] 5[解析] 由双曲线的一条渐近线的方程为3x -y =0且b =3可得:a =1,由双曲线的定义知|PF 1|-|PF 2|=2a ,∴|PF 1|-3=2,∴|PF 1|=5.(理)(2010·东营质检)已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为________.[答案] y =±23x[解析] 由题意知9+a =13,∴a =4,故双曲线的实半轴长为a ′=3,虚半轴长b ′=2, 从而渐近线方程为y =±23x .12.(2010·惠州市模考)已知双曲线x 2a 2-y 2=1(a >0)的右焦点与抛物线y 2=8x 焦点重合,则此双曲线的渐近线方程是________.[答案] y =±33x[解析] y 2=8x 焦点是(2,0), ∴双曲线x 2a 2-y 2=1的半焦距c =2,又虚半轴b =1,又a >0,∴a =22-12=3, ∴双曲线渐近线的方程是y =±33x .13.(2010·北京东城区)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线离心率的取值范围是________.[答案] 1<e ≤2[解析] 由题意⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a|PF 1|=3|PF 2|,∴⎩⎪⎨⎪⎧|PF 1|=3a |PF 2|=a , ∵|PF 1|≥|AF 1|,∴3a ≥a +c , ∴e =ca ≤2,∴1<e ≤2.14.下列有四个命题:①若m 是集合{1,2,3,4,5}中任取的一个值,中心在原点,焦点在x 轴上的双曲线的一条渐近线方程为mx -y =0,则双曲线的离心率小于4的概率为35.②若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2;③将函数y =cos2x 的图象向右平移π6个单位,可以得到函数y =sin ⎝⎛⎭⎫2x -π6的图象; ④在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22;类比到空间,若三棱锥S -ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S -ABC 的外接球的半径R =a 2+b 2+c 22.其中真命题的序号为________.(把你认为是真命题的序号都填上) [答案] ①②④[解析] ①设双曲线方程为m 2x 2-y 2=1, ∵a 2=1m 2,b 2=1,c 2=a 2+b 2=m 2+1m2 ∴e =ca =m 2+1<4,∴m <15∴m 取值1、2、3故所求概率为35,故①正确.②根据双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,可得ba =3,因此离心率e =ca =a 2+b 2a =a 2+(3a )2a=2,②正确;③函数y =cos2x 的图象向右平移π6个单位得y =cos2(x -π6)=cos(2x -π3)=sin[π2+(2x -π3)]=sin(2x +π6)的图象,③错误;④将三棱锥S -ABC 补成如图的长方体,可知三棱锥S -ABC 外接球的直径就等于该长方体的体对角线的长,则R =a 2+b 2+c 22,④正确.三、解答题15.(文)已知双曲线的中心在原点,离心率为2,一个焦点F (-2,0) (1)求双曲线方程;(2)设Q 是双曲线上一点,且过点F 、Q 的直线l 与y 轴交于点M ,若|MQ →|=2|QF →|,求直线l 的方程.[解析] (1)由题意可设所求的双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0) 则有e =ca =2,c =2,∴a =1,则b = 3∴所求的双曲线方程为x 2-y 23=1. (2)∵直线l 与y 轴相交于M 且过焦点F (-2,0) ∴l 的斜率k 一定存在,设为k ,则l :y =k (x +2) 令x =0得M (0,2k )∵|MQ →|=2|QF →|且M 、Q 、F 共线于l ∴MQ →=2QF →或MQ →=-2QF → 当MQ →=2QF →时,x Q =-43,y Q =23k∴Q ⎝⎛⎭⎫-43,23k , ∵Q 在双曲线x 2-y 23=1上, ∴169-4k 227=1,∴k =±212, 当MQ →=-2QF →时,同理求得Q (-4,-2k )代入双曲线方程得, 16-4k 23=1,∴k =±32 5则所求的直线l 的方程为: y =±212(x +2)或y =±352(x +2) (理)(2010·湖南湘潭市)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.[解析] (1)设双曲线x 2a 2-y 2b2=1,由已知得a =3,c =2,再由a 2+b 2=22得,b 2=1, 故双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1中得,(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(62k )2+36(1-3k 2)=36(1-k 2)>0, ∴k 2≠13且k 2<1①设A (x A ,y A ),B (x B ,y B ), 则x A +x B =62k1-3k 2,x A x B =-91-3k 2由OA →·OB →>2得,x A x B +y A y B >2, x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)·-91-3k 2+2k ·62k1-3k 2+2=3k 2+73k 2-1于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解此不等式得13<k 2<3②由①②得13<k 2<1,∴33<k <1或-1<k <-33.故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1. 16.(2010·江苏苏州模拟)已知二次曲线C k 的方程:x 29-k +y 24-k =1.(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线C k 与直线y =x +1有公共点且实轴最长,求双曲线方程;(3)m 、n 为正整数,且m <n ,是否存在两条曲线C m 、C n ,其交点P 与点F 1(-5,0),F 2(5,0)满足PF 1→·PF 2→=0?若存在,求m 、n 的值;若不存在,说明理由.[解析] (1)当且仅当⎩⎪⎨⎪⎧9-k >04-k >0,即k <4时,方程表示椭圆.当且仅当(9-k )(4-k )<0,即4<k <9时,方程表示双曲线. (2)解法一:由⎩⎪⎨⎪⎧y =x +1x 29-k +y 24-k =1化简得, (13-2k )x 2+2(9-k )x +(9-k )(k -3)=0 ∵Δ≥0,∴k ≥6或k ≤4(舍)∵双曲线实轴最长,∴k 取最小值6时,9-k 最大即双曲线实轴最长, 此时双曲线方程为x 23-y 22=1.解法二:若C k 表示双曲线,则k ∈(4,9),不妨设双曲线方程为x 2a 2-y 25-a 2=1,联立⎩⎪⎨⎪⎧y =x +1x 2a 2-y 25-a 2=1消去y 得, (5-2a 2)x 2-2a 2x -6a 2+a 4=0 ∵C k 与直线y =x +1有公共点, ∴Δ=4a 4-4(5-2a 2)(a 4-6a 2)≥0, 即a 4-8a 2+15≥0,∴a 2≤3或a 2≥5(舍), ∴实轴最长的双曲线方程为x 23-y 22=1.解法三:双曲线x 29-k +y 24-k =1中c 2=(9-k )+(k -4)=5,∴c =5,∴F 1(-5,0),不妨先求得F 1(-5,0)关于直线y =x +1的对称点F (-1,1-5),设直线与双曲线左支交点为M ,则 2a =|MF 2|-|MF 1|=|MF 2|-|MF |≤|FF 2| =(-1-5)2+(1-5)2=2 3∴a ≤3,∴实轴最长的双曲线方程为x 23-y 22=1.(3)由(1)知C 1、C 2、C 3是椭圆,C 5、C 6、C 7、C 8是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间也无公共点设|PF 1|=d 1,|PF 2|=d 2,m ∈{1,2,3},n ∈{5,6,7,8}则根据椭圆、双曲线定义及PF 1→·PF 2→=0(即PF 1⊥PF 2),应有⎩⎨⎧d 1+d 2=29-m |d 1-d 2|=29-n d 12+d 22=20,所以m +n =8.所以这样的C m 、C n 存在,且⎩⎪⎨⎪⎧ m =1n =7或⎩⎪⎨⎪⎧ m =2n =6或⎩⎪⎨⎪⎧m =3n =5.17.(文)(2010·全国Ⅱ文)已知斜率为1的直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3).(1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明:过A 、B 、D 三点的圆与x 轴相切.[解析] (1)由题意知,l 的方程为:y =x +2, 代入C 的方程并化简得, (b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=4a 2b 2-a 2,x 1·x 2=-4a 2+a 2b 2b 2-a2①由M (1,3)为BD 的中点知x 1+x 22=1,故12×4a 2b 2-a 2=1即b 2=3a 2② 故c =a 2+b 2=2a , ∴C 的离心率e =ca=2.(2)由②知,C 的方程为3x 2-y 2=3a 2,A (a,0),F (2a,0),x 1+x 2=2,x 1·x 2=-4+3a 22<0,故不妨设x 1≤-a ,x 2≥a ,|BF |=(x 1-2a )2+y 12=(x 1-2a )2+3x 12-3a 2=a -2x 1, |FD |=(x 2-2a )2+y 22=(x 2-2a )2+3x 22-3a 2=2x 2-a ,|BF |·|FD |=(a -2x 1)(2x 2-a )=-4x 1x 2+2a (x 1+x 2)-a 2=5a 2+4a +8. 又|BF |·|FD |=17,故5a 2+4a +8=17, 解得a =1,或a =-95.故|BD |=2|x 1-x 2|=2(x 1+x 2)2-4x 1·x 2=6 连结MA ,则由A (1,0),M (1,3)知|MA |=3, 从而MA =MB =MD ,∠DAB =90°,因此以M 为圆心,MA 为半径的圆过A 、B 、D 三点,且在点A 处与x 轴相切, 所以过A 、B 、D 三点的圆与x 轴相切.(理)(2010·广东理)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2.求h 的值. [分析] (1)由条件写出直线A 1P 与A 2Q 的方程,两式相乘后消去x 1,y 1得交点E 的方程;(2)l 1,l 2与E 只有一个交点,写出l 1与l 2的方程与曲线E 的方程联立,运用Δ=0求解. [解析] (1)由条件知|x 1|>2,∵A 1、A 2为双曲线的左、右顶点∴,A 1(-2,0),A 2(2,0).A 1P y =y 1-0x 1+2(x +2),A 2Q y =-y 1-0x 1-2(x -2),两式相乘得y 2=-y 12x 12-2(x 2-2),① 而点P (x 1,y 1)在双曲线上,所以x 122-y 12=1,即y 12x 12-2=12,代入①式,整理得, x 22+y 2=1. ∵|x 1|>2,∴点A 1(-2,0),A 2(2,0)均不在轨迹E 上,又双曲线的渐近线方程为y =±22x ,故过点(0,1)和A 2(2,0)的直线与双曲线仅有一个交点A 2(2,0),故点(0,1)不在轨迹E 上,同理点(0,-1)也不在轨迹E 上,∴轨迹E 的方程为x 22+y 2=1(x ≠±2,且x ≠0).(2)设l 1y =kx +h ,则由l 1⊥l 2知,l 2y =-1kx +h .将l 1y =kx +h 代入x 22+y 2=1得x 22+(kx +h )2=1,即(1+2k 2)x 2+4khx +2h 2-2=0, 由l 1与E 只有一个交点知,Δ=16k 2h 2-4(1+2k 2)(2h 2-2)=0, ∴1+2k 2=h 2.同理,由l 2与E 只有一个交点知,1+2·1k 2=h 2,消去h 2得1k2=k 2,即k 2=1,从而h 2=1+2k 2=3,即h = 3.又分别过A 1、A 2且互相垂直的直线与y 轴正半轴交于点(0,2),∴h =2符合题意,综上知h =2或 3.高中数学高考总复习双曲线习题(学生)一、选择题1.(文)(2010·山东潍坊)已知焦点在y 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是 ( )A.17B.15C.174D.154(理)(2010·河北唐山)过双曲线x 2a 2-y 2b 2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为( )A .2 B. 5 C. 2D. 32.(2010·全国Ⅰ文)已知F 1、F 2为双曲线C x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .2B .4C .6D .83.(文)(2010·合肥市)中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆(x -2)2+y 2=1都相切,则双曲线C 的离心率是( )A.233或2B .2或 3C.3或62D.233或62(理)已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率为( )A .4+2 3 B.3-1 C.3+12D.3+14.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程为( )A .x =±152y B .y =±152x C .x =±34yD .y =±34x5.(文)(2010·湖南师大附中模拟)已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A 、B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .20(理)(2010·辽宁锦州)△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-m 2,0,C ⎝⎛⎭⎫m2,0(其中m >0,且m 为常数),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为( )A.16y 2m 2-16x 23m2=1B.x 216-y 2163=1 C.16x 2m 2-16y 23m 2=1(x >m4)D.16x 2m 2-16y 23m2=1 6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点为F 1、F 2,点Q 为双曲线左支上除顶点外的任一点,过F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分7.(文)(2010·温州市十校)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)(理)(2010·浙江杭州质检)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若FM =ME ,则该双曲线的离心率为( )A .3B .2 C. 3D. 28.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0D.⎝⎛⎭⎫-153,-1 9.(文)(2010·福建理)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)(理)(2010·新课标全国理)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1D.x 25-y 24=1 10.(文)过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点垂直于x 轴的弦长为12a ,则双曲线x 2a 2-y 2b 2=1的离心率e 的值是( )A.54 B.52 C.32D.54(理)(2010·福建宁德一中)已知抛物线x 2=2py (p >0)的焦点F 恰好是双曲线y 2a 2-x 2b 2=1的一个焦点,且两条曲线交点的连线过点F ,则该双曲线的离心率为( )A. 2B .1±2C .1+ 2D .无法确定二、填空题11.(文)(2010·广东实验中学)已知P 是双曲线x 2a 2-y 29=1右支上的一点,双曲线的一条渐近线的方程为3x -y =0.设F 1、F 2分别为双曲线的左、右焦点.若|PF 2|=3,则|PF 1|=________.(理)(2010·东营质检)已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为________.12.(2010·惠州市模考)已知双曲线x 2a 2-y 2=1(a >0)的右焦点与抛物线y 2=8x 焦点重合,则此双曲线的渐近线方程是________.13.(2010·北京东城区)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线离心率的取值范围是________.14.下列有四个命题:①若m 是集合{1,2,3,4,5}中任取的一个值,中心在原点,焦点在x 轴上的双曲线的一条渐近线方程为mx -y =0,则双曲线的离心率小于4的概率为35.②若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2;③将函数y =cos2x 的图象向右平移π6个单位,可以得到函数y =sin ⎝⎛⎭⎫2x -π6的图象; ④在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22;类比到空间,若三棱锥S -ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S -ABC 的外接球的半径R =a 2+b 2+c 22.其中真命题的序号为________.(把你认为是真命题的序号都填上) 三、解答题15.(文)已知双曲线的中心在原点,离心率为2,一个焦点F (-2,0) (1)求双曲线方程;(2)设Q 是双曲线上一点,且过点F 、Q 的直线l 与y 轴交于点M ,若|MQ →|=2|QF →|,求直线l 的方程.(理)(2010·湖南湘潭市)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.16.(2010·江苏苏州模拟)已知二次曲线C k 的方程:x 29-k +y 24-k =1.(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线C k 与直线y =x +1有公共点且实轴最长,求双曲线方程;(3)m 、n 为正整数,且m <n ,是否存在两条曲线C m 、C n ,其交点P 与点F 1(-5,0),F 2(5,0)满足PF 1→·PF 2→=0?若存在,求m 、n 的值;若不存在,说明理由.17.(文)(2010·全国Ⅱ文)已知斜率为1的直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3).(1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明:过A 、B 、D 三点的圆与x轴相切.(理)(2010·广东理)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2.求h 的值.。

2021人教A版高考数学总复习《双曲线》

2021人教A版高考数学总复习《双曲线》

4.(2019·北京卷)已知双曲线ax22-y2=1(a>0)的离心率是 5,则 a=(
)
A. 6
B.4
C.2
D.1
2
解析 由双曲线方程ax22-y2=1,得 b2=1,∴c2=a2+1.
∴5=e2=ac22=a2a+2 1=1+a12.
结合 a>0,解得 a=1. 2
答案 D
5.(2019·全国Ⅲ卷)已知 F 是双曲线 C:x2-y2=1 的一个焦点,点 P 在 C 上,O 45
x20=596, y20=295,所以
P
2
14,5 33

所以 S△OPF=12|OF|·y0=12×3×53=52.
答案 B
6.(2019·江苏卷)在平面直角坐标系 xOy 中,若双曲线 x2-by22=1(b>0)经过点(3,
4),则该双曲线的渐近线方程是________.
解析 因为双曲线 x2-by22=1(b>0)经过点(3,4),所以 9-1b62=1(b>0),解得 b= 2,
焦距.其数学表达式:集合 P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中 a,c 为
常数且 a>0,c>0:
(1)若 a<c,则集合 P 为双曲线;
(2)若 a=c,则集合 P 为两条射线;
(3)若 a>c,则集合 P 为空集.
2.双曲线的标准方程和几何性质
标准方程
ax22-by22=1(a>0,b>0)
即双曲线方程为 x2-y2=1,其渐近线方程为 y=± 2x. 2
答案 y=± 2x
考点一 双曲线的定义及应用
【例 1】 (1)(2020·滨州质检) x2+(y-3)2- x2+(y+3)2=4 表示的曲线方

高考数学复习 双曲线及其标准方程(修改版)

高考数学复习 双曲线及其标准方程(修改版)
(1) a=___3____ , c =____5___ , b =__4_____
(2) 双曲线的标准方程为______________
(3)双曲线上一点P,| |PF1| - |PF2| | = 6
若 |PF1|=10, 则|PF2|=__4_或__1_6___
题后反思: 求标准方程要做到 先定型,后定量。
③ c2 a2 。 b2
x ④如果 x 2的系数是正的,则焦点在 轴上;如果 y 2的系数是正的,则
焦点在 y轴上。
四、双曲线与椭圆之间的区别与联系
椭圆
双曲线
定义 方程
|MF1|+|MF2|=2a
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
||MF1|-|MF2||=2a
1 y2
x2
20 16
例2已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地
晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程.
解: 由声速及在A地听到炮弹爆炸声比在B地晚2s,可知A地与爆炸点
的距离比B地与爆炸点的距离远680m.因为|AB|>680m,所以爆炸点 的轨迹是以A、B为焦点的双曲线在靠近B处的一支上.
距为2c(c>0),F1(-c,0),F2(c,0) 常数为2a
F1 O
3.列式.||MF1| - |MF2||= 2a
M F2 x
即 (x c)2 y2 (x c)2 y2 2a.
4.化简.
• 想一想
y
M
焦点在y轴上的双曲线
F2
的标准方程是什么?
x
F1 (0,-c) , F2 (0,c)

新高考数学总复习双曲线的定义标准方程及其几何性质课件教案练习题

新高考数学总复习双曲线的定义标准方程及其几何性质课件教案练习题
则|PF1|min=a+c,|PF2|min=c-a.
2 2
3.同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为 .

2 2
2 2
4.与双曲线 2 - 2 =1(a>0,b>0)有共同渐近线的方程可表示为 2 - 2 =t(t≠0).


5.双曲线的离心率公式可表示为e= 1 +
9 7
返回 27
[例3](1)(2024·成都模拟)已知直线y=
2 2
2x是双曲线C: 2 - 2 =1(a>0,b>0)的一条渐近线,

且点(2 3,2 3)在双曲线C上,则双曲线C的方程为(
2 2
A. - =1
3 4
2 2
B. - =1
3 6
2 2
C. - =1
6 12
2 2
D. - =1
12 24
)
2 2


【解析】选C.由双曲线C: 2 - 2 =1,则其渐近线方程为y=± x,由题意可得: =



可得b= 2a,将(2 3,2
12 12
3)代入双曲线方程可得 2 - 2 =1,解得a2=6,b2=12,
3.了解双曲线几何性质的简单应用.
【核心素养】
数学运算、逻辑推理、直观想象.
返回 3
【命题说明】
考向
考法
高考对双曲线的考查形式有两种:(1)根据题设条件求双曲线的标准
方程;(2)通过双曲线的标准方程研究双曲线的基本性质,常以选择题
或填空题形式出现.
预计2025年高考在双曲线的标准方程、几何性质仍会出题,一般在
A. 37+4

高考数学——双曲线-考点复习

高考数学——双曲线-考点复习

3
考向一 双曲线的定义和标准方程
1.在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值 为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一 支.同时注意定义的转化应用. @#网
2.求双曲线方程时,一是注意判断标准形式;二是注意 a、b、c 的关系易错易混.
y= ±bx a
y= ±ax b
=e 2=c c (e > 1) 2a a
2.等轴双曲线的概念和性质
实轴和虚轴等长的双曲线叫做等轴双曲线.等轴双曲线具有以下性质:
(1)方程形式为 x2 − y2 = λ(λ ≠ 0) ; (2)渐近线方程为 y = ± x ,它们互相垂直,并且平分双曲线实轴和虚轴所成的角; (3)实轴长和虚轴长都等于 2a ,离心率 e = 2 .
(2)符号语言: MF1 − MF2 = 2a,0 < 2a < F1F2 .
(3)当 MF1 − MF2 = 2a 时,曲线仅表示焦点 F2 所对应的双曲线的一支; 当 MF1 − MF2 = −2a 时,曲线仅表示焦点 F1 所对应的双曲线的一支; 当 2a =| F1F2 | 时,轨迹为分别以 F1,F2 为端点的两条射线; 当 2a >| F1F2 | 时,动点轨迹不存在.
得 | PF2 |2 =8a,则双曲线的离心率的取值范围是
.
PF1
【答案】(1,3]
4.已知点 P 为双曲线
x2 a2

y2 b2
= 1(a
> 0,b
>
0) 右支上一点,点 F1, F2 分别为双曲线的左、右焦点,点 I

△PF1F2 的内心(三角形内切圆的圆心),若恒有 S△IPF1

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。

2024年高考数学---双曲线及其性质

2024年高考数学---双曲线及其性质

1)与双曲线 x2 - y2 =1(a>0,b>0)渐近线相同的双曲线方程可设为 x2 - y2 =λ
a2 b2
a2 b2
(λ≠0);
2)过两个已知点的双曲线方程可设为mx2+ny2=1(mn<0)或mx2-ny2=1(mn>0).
例1 (2022辽宁鞍山一中月考,13)与椭圆 x2 + y2 =1有公共焦点,且离心率
基础篇
考点一 双曲线的定义及标准方程
1.定义
把平面内与两个定点F1,F2的距离之差的绝对值等于常数2a(0<2a<|F1F2|) 的点的轨迹叫做双曲线.
2.标准方程
焦点在x轴上: x2 - y2 =1(a>0,b>0);
a2 b2
焦点在y轴上: y2 - x2 =1(a>0,b>0).
a2 b2
3.焦点三角形问题
考点三 直线与双曲线的位置关系
直线与双曲线的位置关系主要是指公共点问题,相交弦问题及其他
综合问题,常用下面的方法解题:
联立双曲线C的方程 x2 - y2 =1(a>0,b>0)与直线l的方程y=kx+m(m≠0),消去
a2 b2
y,整理得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.
c2 a2
=
a2 b2 a2
=
1
b2 a2
求解.
2.列出含有a,b,c的齐次方程(或不等式),借助b2=c2-a2消去b,然后转化为关
于e的方程(或不等式)求解.
3.构造焦点三角形,利用定义转化为焦点三角形三边的关系,如图,e= c =
a
2c = | F1F2 |

高中数学高考总复习---双曲线及其性质知识讲解及考点梳理

高中数学高考总复习---双曲线及其性质知识讲解及考点梳理


(4)渐近线:
.
考点四、有关双曲线的渐近线的问题 (1)已知双曲线方程求渐近线方程:
若双曲线方程为
渐近线方程
(2)已知渐近线方程求双曲线方程:
若渐近线方程为
双曲线可设为
2
(3)若双曲线与 ,焦点在 y 轴上)
(4)特别地当
有公共渐近线,可设为

,焦点在 轴上,
离心率
两渐近线互相垂直,分别为
,此时双曲线为
【解析】依题意设双曲线方程为
由已知得 又双曲线过点
, ,∴

3
故所求双曲线的方程为
.
【总结升华】先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程, 再利用待定系数法确定 、 .
举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.
(1)一渐近线方程为
,且双曲线过点
.
(2)虚轴长与实轴长的比为 【解析】
,焦距为 10.
(1)依题意知双曲线两渐近线的方程是
,故设双曲线方程为

∵点
在双曲线上,

,解得

∴所求双曲线方程为
.
(2)由已知设 依题意
,
,则
,解得 .
()
∴双曲线方程为

.
类型二:双曲线的焦点三角形
例 2.中心在原点,焦点在 x 轴上的一个椭圆与双曲线有共同焦点 和 ,且

当 的系数为正时,焦点在 轴上,双曲线的焦点坐标为

.
考点三、双曲线的简单几何性质
双曲线
的简单几何性质
(1)范围:
(2)焦点
,顶点

高考数学总复习考点双曲线教案

高考数学总复习考点双曲线教案

2019届高考数学总复习考点双曲线教案【小编寄语】查字典数学网小编给大家整理了2019届高考数学总复习考点双曲线教案,希望能给大家带来帮助!高三数学理科复习40-----双曲线【考纲要求】了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

【自学质疑】1.双曲线的轴在轴上,轴在轴上,实轴长等于,虚轴长等于,焦距等于,顶点坐标是,焦点坐标是,渐近线方程是,离心率,若点是双曲线上的点,则,。

2.又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是3.经过两点的双曲线的标准方程是。

4.双曲线的渐近线方程是,则该双曲线的离心率等于。

5.与双曲线有公共的渐近线,且经过点的双曲线的方程为【例题精讲】1.双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。

3.设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。

【矫正巩固】1.双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。

2.与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。

3.若双曲线上一点到它的右焦点的距离是,则点到轴的距离是4.过双曲线的左焦点的直线交双曲线于两点,若。

则这样的直线一共有条。

【迁移应用】1. 已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率2. 已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。

3. 双曲线的焦距为4. 已知双曲线的一个顶点到它的一条渐近线的距离为,则5. 设是等腰三角形,,则以为焦点且过点的双曲线的离心率为.要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

高考数学复习-双曲线的简单几何性质一_ppt

高考数学复习-双曲线的简单几何性质一_ppt

焦点F1 (10,0), F2 (10,0)
课堂练习
4 1、若双曲线的渐近线方程为 y x, 则双曲线 3
的离心率为 。 5 3
2、若双曲线的离心率为2,则两条渐近线的交角 为 。 600
例题讲解
例3 :求下列双曲线的标准方程:
x2 y2 ⑴与双曲线 1 有共同渐近线,且过点 ( 3, 2 3 ) ; 9 16
A1 -a
y b
B2
o a A2 x
x y m ( m 0)
2 2
-b B 1
4、渐近线
y 2项的分母的开方 x 渐近线方程: y 2 x 项的分母的开方
双曲线在第一象限内部 分的方程为 2 2 x y (1) 双曲线 b 2 a 2 2 b 2 1(a 0, b 0) y x a ( x 0) a b 的渐近线为y x a b 它与y x的位置关系 : 2 2 a 等轴双曲线 x y m (2) A1 b 在y x的下方 (m 0)的渐近线为 a
(1)范围: y a, y a
(2)对称性: 关于x轴、y轴、原点都对称
(3)顶点: (0,-a)、(0,a) (4)渐近线: y a x
b
-b
a
o b x
-a
c (5)离心率: e a
例题讲解
例1 :求双曲线
9y2 16x2 144 的实半轴长,虚半轴长,
y2 x2 2 1 2 4 3
2
课堂新授
类比椭圆的几何性质,应研究双曲线那些性质?
x2 y2 2 1(a 0, b 0) 性质
y
(x,y)
1、范围 2 x 2 2 2 1,即x a a x a, x a 2、对称性

高考数学专题——双曲线的定义及几何性质

高考数学专题——双曲线的定义及几何性质

高三数学一轮复习专讲专练——双曲线一、要点精讲1、双曲线的定义与几何性质:定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22b x =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x ab y ±= x ba y ±= 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F ()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=2、双曲线的形状与e 的关系:因为双曲线的斜率1222-=-==e aa c ab k ,所以e 越大,则渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。

故双曲线的离心率越大,它的开口就越宽阔。

3、共渐近线的双曲线系方程:与-22a x 22b y =1有相同渐近线的双曲线系方程可设为-22ax ()022≠=λλb y ,若0>λ,则双曲线的焦点在 轴上;若0<λ,则双曲线的焦点在 轴上。

二、高考链接1、(2010安徽理)双曲线方程为2221x y -=,则它的右焦点坐标为A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、52⎛⎫⎪ ⎪⎝⎭C 、62⎛⎫⎪ ⎪⎝⎭D 、)3,02.(2013年湖北)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( ) A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.(2013课标)已知双曲线2222:1x y C a b -=(0,0)a b >>52则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±4.(2013湖南)设F 1、F 2是双曲线C,22221a x y b-= (a>0,b>0)的两个焦点。

2024年高考数学一轮复习课件(新高考版) 第8章 §8.6 双曲线

2024年高考数学一轮复习课件(新高考版)  第8章 §8.6 双曲线
是双曲线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.( × ) (3)双曲线mx22-ny22=1(m>0,n>0)的渐近线方程是mx ±ny=0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )
教材改编题
1.已知曲线 C 的方程为k+x21+5-y2 k=1(k∈R),若曲线 C 是焦点在 y 轴上
(2)(2023·连云港模拟)在平面直角坐标系中,已知双曲线ax22-by22=1(a>0,
b>0)的右焦点为 F,点 A 在双曲线的渐近线上,△OAF 是边长为 2 的等
边三角形,则双曲线的标准方程为
A.x42-1y22 =1 C.x32-y2=1
B.1x22 -y42=1
√D.x2-y32=1
性质
对称性 顶点

对称轴:_坐__标__轴__;对称中心:_原__点___
_A__1(_-__a_,0_)_,__A_2_(_a_,0_)_
_A_1_(_0_,__-__a_),__A_2_(_0_,__a_)_
实轴:线段__A_1_A_2__,长:__2_a_;虚轴:线段B1B2,
长:__2_b__,实半轴长:_a__,虚半轴长:_b__
4.若 P 是双曲线上不同于实轴两端点的任意一点,F1,F2 分别为双曲线
的左、右焦点,则 S△

PF1F2
b2θ,其中 θ 为∠F1PF2.
tan 2
常用结论
5.与双曲线ax22-by22=1(a>0,b>0)有共同渐近线的方程可表示为ax22-by22 =t(t≠0).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹

高考数学讲义双曲线.复习题

高考数学讲义双曲线.复习题

一、双曲线的方程【例1】 双曲线221169x y -=的焦距为( )A .10B .7C .27D .5 【答案】A ;【例2】 双曲线方程为2221x y -=,则它的右焦点坐标为A .202⎛⎫⎪ ⎪⎝⎭, B .502⎛⎫⎪ ⎪⎝⎭, C .602⎛⎫⎪ ⎪⎝⎭, D .()30,【例3】 双曲线22149y x -=的渐近线方程是( )A . 32y x =±B . 23y x =±C . 94y x =±D . 49y x =±【答案】B .【例4】 到两定点1(30)F -,.2(30)F ,的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线 【答案】D ;【例5】 若R k ∈,则“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件.B .必要不充分条件.C .充要条件D .既不充分也不必要条件【答案】A .【例6】 若双曲线的渐近线方程为3y x =±,它的一个焦点是(0,10),则双曲线的方程是______. 【答案】2219y x -=.双曲线.复习题【例7】 双曲线C 的左、右焦点12F F ,与椭圆2214924x y +=的焦点相同,且离心率互为倒数,则双曲线C 的方程是______________;它的渐近线的方程是__________. 【答案】2249491625600x y -=;265y x =;【例8】 根据下列条件,求双曲线的标准方程.⑴6c =(52)-,,焦点在x 轴上.⑵与双曲线221164x y -=有相同焦点,且经过点(322). 【答案】⑴2215x y -=;⑵221128x y -=.【例9】 已知下列双曲线方程,求它们的焦点坐标、顶点坐标、渐近线方程,以及焦距、实轴和虚轴长,并在同一坐标系中分别画出这两个双曲线的图象. ⑴223412x y -= ⑵224312y x -= 【答案】⑴焦点坐标为(70),顶点坐标为(20)±,,渐近线方程为3y =, 焦距为227c =24a =,虚轴长为223b =;⑵焦点坐标为(07)±,,顶点坐标为(03)±,,渐近线方程为3y =, 焦距为227c =223a =24b =.F 2'F 1'F 2F 1O yx【例10】 已知点()30A 和)30B,动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,⑴求轨迹C 的方程;⑵求线段DE 的长.【答案】⑴2212y x -=;⑵线段DE 的长为45【例11】 已知椭圆的中心在原点,焦点在坐标轴上,焦距为23公共焦点,且其实轴比椭圆的长轴小8,两曲线的离心率之比为37∶,求此椭圆、双曲线的方程.【答案】椭圆方程为2214936x y +=,椭圆方程为22194x y -=或椭圆方程为2214936y x +=,双曲线方程为22194y x -=二、双曲线的离心率【例12】 设12F F ,分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=°且12||3||AF AF =,则双曲线的离心率等于( )A 5B 10C 15D 5【答案】B ;【例13】 下6) A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -=【答案】B ;【例14】 已知双曲线22219x y a -=()0a >的中心在原点,右焦点与抛物线216y x =的焦点重合,则该双曲线的离心率等于( )A .45B 855C .54D 47【答案】D ;【例15】 已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范围是( ) A .(1,)+∞ B .(1,3) C .(1,2) D .(1,12) 【答案】D ;【例16】 设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A .2B .3C .312+D .512+【例17】 已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60︒,则双曲线C 的离心率为_________. 6;【例18】 以双曲线两焦点为直径端点的圆与双曲线的四个交点连同双曲线的焦点恰好构成一个正六边形,则该双曲线的离心率为 . 31;【例19】 已知双曲线22221(00)x y a b a b-=>>,的左,右焦点分别为12F F ,,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 . 【答案】53三、双曲线的几何性质【例20】 双曲线221412x y -=的焦点到渐近线的距离为( )A .3B .2C 3D .1 【答案】A ;【例21】 设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,1F 、2F 分别是双曲线的左、右焦点,若1||3PF =,则2||PF =( ) A .1或5 B . 6 C .7 D .9 【答案】C ;【例22】 设12F F ,为双曲线22221(00)sin 2x y b b θθ-=<>π≤,的两个焦点,过1F 的直线交双曲线的同支于A B ,两点,如果||AB m =,则2AF B ∆的周长的最大值是( ). A .4m - B .4 C .4m + D .42m + 【答案】D .【例23】 已知双曲线2213y x -=的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则12PA PF ⋅u u u r u u u u r最小值为 _________ .【答案】2-;【例24】 P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆1C :22(5)4x y ++=和2C :22(5)1x y -+=上的点,则PM PN -的最大值为 . 【答案】9.【例25】 在平面直角坐标系xOy 中,已知双曲线221412x y -=上一点M 的横坐标是3,则M 到双曲线右焦点的距离为 . 【答案】4;【例26】舰A在舰B的正东6千米处,舰C在舰B的北偏西30°且与B相距4千米,它们准备捕海洋动物,某时刻A发现动物信号,4秒后B、C同时发现这种信号,A发射麻醉炮弹.设舰与动物均为静止的,若不计空气阻力与舰高,问舰A发射炮弹的方位角应是多少?【答案】北偏东30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10.2 双曲线【三年高考】1. 【2017高考江苏】在平面直角坐标系xOy 中,双曲线2213xy -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .2. 【2016高考江苏】在平面直角坐标系x Oy 中,双曲线22173x y -=的焦距是 ▲ .【答案】210 【解析】 试题分析:222227,3,7310,10,2210a b c a b c c ==∴=+=+=∴=∴=.故答案应填:210【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22221(0,0)x y a b a b-=>>揭示焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2222c a b =+,渐近线方程为by x a =±,离心率为22c a b a a+=. 2.【2012江苏,理8】在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m的值为__________. 【答案】2【解析】根据双曲线方程的结构形式可知,此双曲线的焦点在x轴上,且a2=m ,b2=m2+4,故c 2=m 2+m +4,于是222224(5)c m m e a m++===,解得m=2,经检验符合题意.4.【2017课标II ,理9】若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2 B.3 C .2D.23【答案】A【解析】【考点】双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式cea =;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)。

5. 【2017天津,理5】已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,2.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)22144x y-=(B)22188x y-=(C)22148x y-=(D)22184x y-=【答案】B【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.6.【2017北京,理9】若双曲线221y x m-=的离心率为3,则实数m =_________.【答案】2 【解析】试题分析:221,a b m == ,所以131c m a +== ,解得2m = . 【考点】双曲线的方程和几何性质【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意a 、b 、c 的关系222c a b =+,否则很容易出现错误.以及当焦点在x 轴时,哪些量表示22,a b ,根据离心率的公式计算.7.【2017课标1,理】已知双曲线C :22221x y a b-=(a >0,b>0)的右顶点为A,以A为圆心,b 为半径作圆A,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.23【解析】试题分析:【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是ab c. 8. 【2017课标3,理5】已知双曲线C :22221x y a b -= (a>0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C的方程为 A .221810x y -= ﻩB .22145x y -= ﻩC .22154x y -= D .22143x y -=【答案】B 【解析】试题分析:双曲线C:22221x ya b-= (a>0,b>0)的渐近线方程为by xa=±,椭圆中:2222212,3,9,c3a b c a b==∴=-== ,椭圆,即双曲线的焦点为()3,0±,据此可得双曲线中的方程组:222523bac a bc⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,解得:224,5a b==,则双曲线C的方程为2145x y2-= .故选B.【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程.【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()222x ya bλλ2-=≠,再由条件求出λ的值即可.10.【2017山东,理14】在平面直角坐标系xOy中,双曲线()222210,0x ya ba b-=>>的右支与焦点为F的抛物线()220x px p=>交于,A B两点,若4AF BF OF+=,则该双曲线的渐近线方程为 .【答案】22y x=±【考点】1.双曲线的几何性质.2.抛物线的定义及其几何性质.【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.10.【2016高考新课标1卷改编】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是 . 【答案】()1,3- 【解析】试题分析:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->∴223m n m -<<,由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距 ∴焦距2224c m =⋅=,解得1m =,∴13n -<<. 考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c ,这一点易出错.11.【2016高考新课标2理数改编】已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为 . 2 【解析】试题分析:因为1MF 垂直于x 轴,所以2212,2b b MF MF a a a ==+,因为211sin 3MF F ∠=,即2122132b MF ab MF a a==+,化简得b a =,故双曲线离心率e ==考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a,b ,c 的关系与椭圆中a ,b ,c的关系,在椭圆中a 2=b2+c 2,而在双曲线中c2=a2+b 2.双曲线的离心率e∈(1,+∞),而椭圆的离心率e ∈(0,1).12.【2016高考天津理数】已知双曲线2224=1x y b -(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C、D 四点,四边形的AB CD 的面积为2b,则双曲线的方程为 .【答案】2224=11x y - 【解析】试题分析:根据对称性,不妨设A 在第一象限,(,)A x y ,∴22422x x y bb y x y ⎧=⎧+=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩, ∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=. 考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(A B<0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m2x 2-n2y 2=λ(λ≠0).13.【2016高考山东理数】已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E的两个焦点,且2|AB |=3|BC|,则E的离心率是_______. 【答案】2【解析】试题分析:假设点A 在第一象限,点B在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a =,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2.考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.14.【2016年高考北京理数】双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OAB C的边OA,O C所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________. 【答案】2考点:双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.15.【2015高考福建,理3】若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于_______________. 【答案】9【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =.16.【2015高考广东,理7】已知双曲线:的离心率,且其右焦点,则双曲线的方程为___________.【答案】【解析】因为所求双曲线的右焦点为且离心率为,所以,,所以所求双曲线方程为.【2018年高考命题预测】纵观2017各地高考试题,可以看出,对双曲线的考查以选择、填空为主,主要侧重以下几点:(1)双曲线定义的应用;(2)求双曲线的标准方程.(3)以双曲线的方程为载体,研究与参数a,b ,c ,e及渐近线有关的问题,其中离心率和渐近线是考查的重点和热点,高考题中以选择、填空题为主,分值为5分,难度为容易题和中档题,个别省份以解答题形式考查双曲线的定义、标准方程、几何性质及直线与椭圆的位置关系,分值为12分左右,难度较大.2018年高考仍会延续这种情形,以双曲线的方程与性质为主.备考时应熟练掌握双曲线的定义、求双曲线标准方程的方法,能灵活运用双曲线定义及几何性质确定基本元素,,a b c .另外,要深入理解参数,,a b c 的关系、渐近线及其几何意义,应注意与向量、直线、圆等知识的综合.【2018年高考考点定位】高考对双曲线的考查有两种主要形式:一是考双曲线的定义与标准方程;二是考查双曲线的几何性质;三是考查直线与双曲线的简单位置关系,从涉及的知识上讲,常平面几何、平面向量、方程数学、不等式等知识相联系,字母运算能力和逻辑推理能力是考查是的重点. 【考点1】双曲线的定义与标准方程 【备考知识梳理】1.双曲线的定义:把平面内与两定点12,F F 的距离之差的绝对值等于常数(小于12||F F )的点C 12222=-b y a x 54e =()25,0F C 191622=-y x ()25,0F 54c e a ==5c =4a =2229b c a =-=221169x y -=的轨迹叫做双曲线,这两个定点叫双曲线的焦点,两焦点之间的距离叫焦距,符号表述为:12||||2PF PF a -=±(122||a F F <).注意:(1)当122||a F F =时,轨迹是直线12F F 去掉线段12F F .(2)当122||a F F >时,轨迹不存在.2.双曲线的标准方程:(1) 焦点在x 轴上的双曲线的标准方程为22221(0,0)x y a b a b -=>>;焦点在y轴上的双曲线的标准方程为22221(0,0)y x a b a b-=>>.给定椭圆221()x y m n m n+=与异号,要根据,m n 的正负判定焦点在哪个坐标轴上,焦点在分母为正的那个坐标轴上.(2)双曲线中,,a b c 关系为:222-a c b =. 【规律方法技巧】1.利用双曲线的定义可以将双曲线上一点到两焦点的距离进行转化,对双曲线上一点与其两焦点构成的三角形问题,常用双曲线的定义与正余弦定理去处理.2.求双曲线的标准方程方法(1)定义法:若某曲线(或轨迹)上任意一点到两定点的距离之差(或距离之差的绝对值)为常数(常数小于两点之间的距离),符合双曲线的定义,该曲线是以这两定点为焦点,定值为实轴长的双曲线,从而求出双曲线方程中的参数,写出双曲线的标准方程,注意是距离之差的绝对值是双曲线的两只,是距离之差是双曲线的一只,要注意是哪一只.(2)待定系数法,用待定系数法求双曲线标准方程,一般分三步完成,①定性-确定它是双曲线;②定位-判定中心在原点,焦点在哪条坐标轴上;③定量-建立关于基本量,,,a b c e 的关系式,解出参数即可求出双曲线的标准方程.3.若双曲线的焦点位置不定,应分焦点在x 轴上和焦点在y 轴上,也可设双曲线的方程为221Ax By +=,其中,A B 异号且都不为0,可避免分类讨论和繁琐的计算.4.若已知双曲线的渐近线方程为0ax bx ±=,则可设双曲线的标准方程为ax bx λ±=(0λ≠)可避免分类讨论.【考点针对训练】1.以抛物线y2=4x的焦点为焦点,以直线y =±x为渐近线的双曲线标准方程为________. 【答案】错误!-错误!=1.【解析】由题意设双曲线的标准方程为22221x y a b-=,y2=4x的焦点为()1,0,则双曲线的焦点为()1,0;y =±x为双曲线的渐近线,则1b a =,又因222a b c +=,所以2211,22a b ==,故双曲线标准方程为错误!-错误!=1.2.已知双曲线22:1916x y C -=的左、右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于___________.【答案】48【解析】由题意得101692||21=+=F F ,所以10||2=PF ,根据双曲线的定义得16610||1=+=PF ,12PF F ∆是等腰三角形,1PF 边上的高为681022=-,所以12PF F ∆的面积等于4816621=⨯⨯. 【考点2】双曲线的几何性质 【备考知识梳理】 1.双曲线的几何性质 焦点在x 轴上焦点在y 轴上图形标准方程22221(0,0)x y a b a b-=>> 22221(0,0)y x a b a b-=>> 焦点 (±c,0)(0,±c )焦距 |F1F 2|=2c (c 2=a2+b 2) 范围 |x |≥a ;y ∈Rx ∈R ;|y|≥a顶点实轴顶点(±a,0),虚轴顶点(0,实轴顶点(0,±a ),虚轴顶点(±b ,0)2.等轴双曲线: 实轴与虚轴相等的双曲线叫等轴双曲线,,其标准方程为22(0)x y λλ-=≠,,渐近线为y x =±. 【规律方法技巧】1.求解与双曲线性质有关的问题时要结合图像进行分析,围绕双曲线中的“六点”(两个顶点、两个焦点、虚轴的两个端点),“四线”(两条对称轴,两条渐近线),“两形”(中心、焦点、虚轴端点构成的特征三角形,双曲线上一点与两个交点构成的三角形),研究它们之间的关系,挖掘出它们之间的内在联系.2.双曲线取值范围实质实质是双曲线上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用.3.求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222c b a =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a +===221b a +⇒ba =. 4.双曲线22221(0,0)x y ab a b -=>>的渐近线方程为b y x a =±,可变形为x ya b =±,即22220x y a b -=,所以双曲线的渐近线方程可以看作把其标准方程中的1换为0得来的. 4.椭圆的通径(过焦点垂直于焦点所在对称轴的直线被椭圆截得的弦叫通径)长度为22b a,是过椭圆焦点的直线被椭圆所截得弦长的最小值.5. 双曲线上一点到双曲线一个焦点的距离的取值范围为[,c a -+∞). 【考点针对训练】1.双曲线22145x y -=的离心率为 ▲ .【答案】32【解析】由题意得22234,59.2c a b c e a ==⇒=⇒== 2.双曲线116922=-y x 的焦点到渐近线的距离为 . 【答案】4【解析】焦点()5,0±,渐近线43y x =±,即430x y -=,则2045d ==.【考点3】直线与双曲线的位置关系 【备考知识梳理】设双曲线的方程为22221(0,0)x y a b a b-=>>,直线0Ax By C ++=,将直线方程与双曲线方程联立,消去y 得到关于x 的方程20mx nx p ++=.(1) 若m ≠0,当△>0时,直线与双曲线有两个交点.当△=0时,直线与双曲线有且只有一个公共点,此时直线与双曲线相切. 当△<0时,直线与双曲线无公共点.(2)当m =0时,直线与双曲线只有一个交点,此时直线与双曲线的渐近线平行. 【规律方法技巧】1. 直线方程与椭圆方程联立,消元后得到一元二次方程,则一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,常设出交点坐标,用根与系数关系将横坐标之和与之积表示出来,这是进一步解题的基础.2.直线y =kx +b (k ≠0)与椭圆相交于A (x 1,y 1),B(x 2,y 2)两点,则弦长|A B|= 错误!|x1-x 2|= 错误!·错误!=错误!·|y 1-y2|=错误!·错误!.3.对中点弦问题常用点差法和参数法. 【考点针对训练】1.如图,双曲线的中心在坐标原点O ,, A C 分别是双曲线虚轴的上、下顶点,B 是双曲线的左顶点,F 为双曲线的左焦点,直线AB 与F C 相交于点D .若双曲线的离心率为2,则B D F ∠的余弦值是 _____________.7 【解析】可设双曲线方程为22221x y a b -=,即得(0,)A b ,(0,)C b -,(,0)B a -,(,0)F c -,所以AB 直线方程为1x y a b -+=,FC 直线方程为1x y c b --=,又2ca=,把AB 和FC 的直线方程联立解得4(,)33a b D --,又222b c a =-,所以3b a =,即43(,)3a D -,所以有4323()()33a a DF c =-+=-,3()3a DB =,则22331()339a a DB DF a =⨯-=,22237||()()333a DF a =-+=,2232||()()333a DB a a =+=,又2179cos 14||||27a DB DF BDF DB DF a a⋅===⋅⨯ 2.如图,1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ∆为等边三角形,则双曲线的离心率为_________________.【答案】7【解析】根据双曲线的定义,可得12||||2BF BF a -=,∵2ABF ∆是等边三角形,即2||||BF AB =,∴12||||2BF BF a -=,即11||||||2BF AB AF a -==,又∵21||||2AF AF a -=,∴21||||24AF AF a a =+=,∵12AF F ∆中,1||2AF a =,2||4AF a =,012120F AF ∠=,∴2220121212||||||2||||cos120F F AF AF AF AF =+-,即222214416224()282c a a a a a =+-⨯⨯⨯-=,解之得:7c a =,由此可得双曲线的离心率为7ce a==【两年模拟详解析】1. 【南京市、盐城市2017届高三年级第一次模拟】设双曲线2221(0)x y a a-=>的一条渐近线的倾斜角为30︒,则该双曲线的离心率为 ▲ . 【答案】33【解析】双曲线渐近线方程为x y a =±,所以123tan 30323a c e a =⇒==⇒= 2.【镇江市2017届高三年级第一次模拟】双曲线),(0012222>>=-b a by a x 的焦点到相应准线的距离等于实轴长,则双曲线的离心率为 .【答案】1【解析】由题意得21012222+=⇒=--⇒=-e e e a ca c3. 【2017年第三次全国大联考江苏卷】直线:210l y x =+过双曲线22221(0,0)x y a b a b-=>>一个焦点且与其一条渐近线平行,则双曲线方程为_____________.【答案】221520x y -=【解析】由题意得(5,0),5F c -=,2b a =,所以225,20,a b ==双曲线方程为221520x y -=.4.【2017年第一次全国大联考江苏卷】在平面直角坐标系xOy 中,与双曲线2213x y -=有相同渐近线,且位于x 轴上的焦点到渐近线距离为2的双曲线的标准方程为____________.【答案】221124x y -=【解析】与双曲线2213x y -=有相同渐近线的双曲线的标准方程可设为223x y λ-=,因为双曲线焦点在x 轴上,故0,λ>又焦点到渐近线距离为2,所以4λ=,所求方程为221124x y-=.5. 【2017年高考原创押题预测卷01(江苏卷)】已知双曲线221()x ny n +=∈R 与椭圆22162x y +=有相同的焦点,则该双曲线的渐近线方程为 .【答案】y =6. 【2017年高考原创押题预测卷03(江苏卷)】经过双曲线2222:1x y C a b-=(0,0)a b >>的左焦点F 与圆222:O x y a +=相切的直线,交双曲线的两条渐近线于,A B 两点,若||3AB a =,则双曲线C 的离心率为 . 【答案】2或23【解析】由题意不妨设圆的切线过焦点1(,0)F c -,借助图形可得其斜率ak b=,方程为()a y x c b =+与渐近线b y x a =联立可解得交点横坐标为2122a c xb a =-;方程为()ay x c b =+与渐近线b y x a=-联立可解得交点横坐标为22a x c =-,所以22212222212||||||c a b x x a b a c b a c -=+=--,则21221|3a x x a b +-=,即12||3cx x a b-=也即222223||c a b a b b a c ⋅-,所以2224(1)3(2)e e -=-,即42316160e e -+=,解之得24e =或243e =,所以2e =或23e =,故答案为:223. 7. 【泰州市2016届高三第一次模拟考试】在平面直角坐标系xOy 中,双曲线2212x y -=的实轴长为 . 【答案】22【解析】由双曲线方程得,2a =222a =8.【南京市、盐城市2016届高三年级第二次模拟考试】在平面直角坐标系xOy 中,抛物线y 2=2px (p >0) 的焦点为F ,双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别与抛物线交于A ,B两点(A ,B 异于坐标原点O ).若直线AB 恰好过点F ,则双曲线的渐近线方程是 .【答案】x y 2±=【解析】由题意得:一条渐近线过点),2(p p ,因此斜率为22=p p,双曲线的渐近线方程是x y 2±=.9.【南京市2016届高三年级第三次模拟考试】设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为 . 【答案】5【解析】不妨设22221,(c,0)x y F a b -=,则点P(c,2b)-±,从而有222222415 5.c b c e a b a-=⇒=⇒=10.【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】若双曲线221x my +=过点()22-,,则该双曲线的虚轴长为 ▲ . 【答案】4【解析】由题意得1241,4m m +==-,因此双曲线的虚轴长为22 4.⨯=11.【盐城市2016届高三年级第三次模拟考试】以双曲线22221(0,0)x y a b a b-=>>的右焦点F 为圆心,a 为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为▲ . 【答案】2【解析】由题意得.2=⇒=e b a12. 中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆:1)2(22=+-y x 都相切,则双曲线C 的离心率是_______________. 【答案】23或213.已知F 2,F1是双曲线22221(0,0)y x a b a b-=>>的上,下两个焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为______. 【答案】2【解析】设点F2关于渐近线a y x b =的对称点为(,)M x y ,由已知得22y c a xb yc bx a +⎧=⨯⎪⎪⎨-⎪=-⎪⎩,解得222ab x c a y c c ⎧=⎪⎪⎨⎪=-⎪⎩,又以F 1为圆心,|OF 1|为半径的圆的方程为222()x y c c ++=,把点M的坐标代入上式得22422244a b a c c c +=,又222a b c +=,所以222444()4a c a a c -+=,解得2c e a ==.14.设12,F F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,P 是C 的右支上的点,射线PT 平分12F PF ∠,过原点O 作PT 的平行线交1PF 于点M ,若121||||3MP F F =,则C 的离心率为____________. 【答案】32【解析】设PT 交x 轴于点T ,1||PF m =,则2||2PF m a =-,1212||||33cMP F F ==,由于//OM PT ,得1111||||||||F M F O F P FT =,即1223||m cc m F F -=,则1||23mc FT m c =-,所以21||2||223mcF T c FT c m c=-=--, 又PT 是12F PF ∠的角平分线,则有1122||||||||F P FT F P F T =,代入整理得43232c m a m c a -=-⇒=,所以C 的离心率为32.【一年原创真预测】1. 若双曲线22221x y a b-=(a>0,b>0)的焦点在x 轴上,过点()2,1作圆224x y +=的切线,切点分别为,A B ,直线AB 恰好经过()(),0,0,a b 点,则双曲线方程为 .【答案】221416x y -=. 【解析】设)1,2(M ,圆224x y +=的圆心为O ,则AB 是圆224x y +=与以OM 为直径的圆的公共弦所在直线,以OM 为直径的圆的方程为45)21()1(22=-+-y x ,即0222=--+y x y x ,两圆方程相减,即得AB 的方程为42=+y x ,则直线与坐标轴的交点为()()4,0,0,2.又因为焦点在x 轴上,则24a =,216b =,所以双曲线方程为221416x y-=.【入选理由】本题考查求双曲线的方程,圆的方程,圆的公共弦,以及平面几何等基础知识,意在考查分析问题、解决问题的能力、基本运算能力及推理能力,而此题巧妙地利用了平面几何知识,避免了烦琐的运算,故选此题.2.已知双曲线)0,0(12222>>=-b a b y a x 一条渐近线的倾斜角的取值范围⎥⎦⎤⎢⎣⎡3,4ππ,则该双曲线的离心率的取值范围是________________. 【答案】[2,2]【解析】因为一条渐近线的倾斜角的取值范围⎥⎦⎤⎢⎣⎡3,4ππ,所以22222221313242422,b b a b c ca a a a a+≤≤⇔≤≤⇔≤≤⇔≤≤⇔≤≤所以离心率取值范围为2,2].【入选理由】本题主要考查了双曲线的几何性质等基础知识,意在考查分析问题,解决问题的能力,基本运算能力,推理能力,及转化思想.,是高考常考题型, 故选此题.3. 点(,0)F c 为双曲线22221(0,0)x y a b a b-=>>的右焦点,点P 为双曲线左支上一点,线段PF与圆2224b x y +=相切于点Q ,且1=2PQ PF ,则双曲线的离心率等于__________.--【答案】5【入选理由】本题考查双曲线方程、圆的方程、双曲线的简单几何性质、切线等基础知识,意在考查数形结合思想和综合分析问题解决问题的能力,试题形式新颖,故选此题.--。

相关文档
最新文档