一次函数的图象(一)教学设计
华师大版八下数学17.3.2一次函数的图象教学设计1
华师大版八下数学17.3.2一次函数的图象教学设计1一. 教材分析华东师范大学版八年级下册数学第17.3.2节一次函数的图象,是在学生已经掌握一次函数的定义、性质的基础上进行教学的。
本节内容主要让学生通过探究一次函数的图象,进一步理解一次函数的性质,提高学生分析问题、解决问题的能力。
教材通过例题和练习题,引导学生运用数形结合的思想,从而更好地理解一次函数的图象。
二. 学情分析学生在学习本节内容前,已经掌握了一次函数的定义、性质,对函数的概念有一定的理解。
但学生在解决实际问题时,还不能很好地将函数知识运用其中。
因此,在教学过程中,教师需要关注学生的知识掌握情况,引导学生将理论知识与实际问题相结合。
三. 教学目标1.理解一次函数的图象特点,掌握一次函数图象的画法。
2.能够通过一次函数的图象分析、解决实际问题。
3.提高学生数形结合的思想,培养学生的动手操作能力。
四. 教学重难点1.一次函数的图象特点及其画法。
2.如何在实际问题中运用一次函数的图象进行分析。
五. 教学方法采用探究式教学法、案例教学法和小组合作学习法。
通过引导学生自主探究、分析案例,激发学生的学习兴趣,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备一次函数图象的示例图。
3.准备学生分组讨论的素材。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一次函数的定义、性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一次函数图象的示例图,引导学生观察、分析一次函数图象的特点,如直线、斜率等。
同时,教师讲解一次函数图象的画法,如坐标轴的选取、直线的平移等。
3.操练(10分钟)教师给出一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格与原价的关系。
”引导学生运用一次函数的知识进行分析,画出函数图象。
学生在教师的指导下,进行动手操作,巩固所学知识。
4.巩固(10分钟)教师给出几个有关一次函数图象的问题,如“一次函数图象与坐标轴的交点坐标是什么?”、“斜率为正的一次函数图象在哪些象限?”等。
一次函数图象—教学设计【教学参考】
一次函数图象—教学设计【教学参考】4.3 一次函数图象(第一课时)【学习目标】1.了解一次函数的图象是一条直线、作函数图象的一般步骤.能熟练作出一次函数的图象.2.已知函数的代数表达式作函数的图象,在探究活动中发展学生的合作意识和探究能力.【学习重点】1.理解、归纳作函数图象的一般步骤, 熟练地作一次函数的图象.2.理解一次函数的代数表达式与图象之间的一一对应关系.【学习难点】理解一次函数的代数表达式与图象之间的一一对应关系.【学习过程】一、复习练习,导入新课.1、一次函数y=2x+1,当x= 3时,y= .2、把一个函数的自变量x 和对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,再顺次连结起来,你认为这个图形是什么? 二、探索新知1、什么是函数的图象?把一个函数的自变量x 与对应的因变量y 的值分别作为点的 坐标和 坐标,在直角坐标系内描出它的 ,所有这些点组成的图形叫做该函数的图象xy 5 43 2 1O -1 -2-11 2(graph )。
2、例1 请作出一次函数y=2x+1的图象. 解:列表:描点:以表中各组对应值作为点的坐标, 在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x+1的图象. 这个图象是 。
3、作一个函数的图象需要三个步骤:列表,描点,连线. 三、学有所用(做一做、议一议)1、(1)在右上的直角坐标系中作出一次函数y=2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=2x+5.(3)满足关系式y=2x+5的x ,y 所对应的点(x ,y )都在一次函数y=2x+5的图象上吗?(4)一次函数y=2x+5的图象上的点(x ,y )都满足关系式y=2x+5吗?(5)一次函数y=kx+b 的图象有什么特点?------(6)一次函数y=kx+b 的图象是 ,也可以称一次函数y=kx+b 的图象为 y=kx+b .(7)既然我们得出一次函数y=kx+b 的图象是一条直线.那么在画一次函数图象时有没有什么简单的方法呢?因为“两点确定一条直线 ”,所以画一次函数图象时可以只描出 个点就可以了.2、练习(P188随堂练习):在同一直角坐标系中分别作出y=x 与y=3x+9的图象. 解:列表x… y=x…y=3x+93、练习(课本习题知识技能第1题) 下列哪些点在一次函数y=2x-3的图象上? (2,3),(2,1),(0,3),(3,0)☆4、如果y+3与x-2成正比例,且x=1时,y=1.(1)写出y 与x 之间的函数关系式; (2)画出函数的图象;(3)求当x=0时,y 的值和y=0时,x 的值.12-12-xx5 4 3 2 1 O -1 -2-2-1 -31 2四、感悟与收获本节课我们通过对一次函数图象的研究,你掌握了以下内容吗?(1)函数与图象之间是一一对应的关系;(2)作一次函数图象时,只取两个点,就能很快作出. 六、作业: 七、课堂小测1、下列四个点中,在直线 y=2x-3 上的是( )A (1,2)B (1,-1)C (3,0)D (0,3)2、在直角坐标系中作出y=x+3的图象. x … y=-x+3…xx5 4 3 2 1O -1 -2-2-1 -31 2。
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计(新版北师大版)一. 教材分析《八年级数学上册4.3一次函数的图象》这一节,主要介绍了一次函数的图象和性质。
其中,正比例函数是特殊的一次函数,它的图象是一条通过原点的直线。
本节内容是学生学习一次函数的基础,对于学生理解和掌握一次函数的图象和性质,以及后续学习其他类型的函数具有重要意义。
二. 学情分析八年级的学生已经学习了代数基础知识,对于函数的概念有一定的理解。
但是,对于函数的图象和性质,特别是正比例函数的图象和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作,观察和分析正比例函数的图象和性质,从而加深对一次函数的理解。
三. 教学目标1.理解正比例函数的图象是一条通过原点的直线。
2.掌握正比例函数的性质,即当x增大或减小时,y的值也按比例增大或减小。
3.能够通过观察图象,分析正比例函数的性质。
四. 教学重难点1.重难点:正比例函数的图象和性质。
2.难点:如何引导学生通过观察图象,分析正比例函数的性质。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察和操作,发现正比例函数的图象和性质。
同时,结合小组合作学习,让学生在讨论中加深对一次函数的理解。
六. 教学准备1.准备正比例函数的图象和性质的相关教学材料。
2.准备计算机和投影仪,用于展示图象和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出正比例函数的概念,并提出问题:“正比例函数的图象是什么样的?”2.呈现(10分钟)利用计算机和投影仪,展示正比例函数的图象,并引导学生观察和分析。
3.操练(10分钟)让学生分组进行实际操作,通过改变x的值,观察y的变化,从而深入理解正比例函数的性质。
4.巩固(5分钟)通过一些练习题,让学生巩固对正比例函数图象和性质的理解。
5.拓展(5分钟)引导学生思考:除了正比例函数,还有其他类型的函数图象和性质是什么?6.小结(5分钟)对本节课的内容进行小结,强调正比例函数的图象是一条通过原点的直线,性质是当x增大或减小时,y的值也按比例增大或减小。
苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计
苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计一. 教材分析《一次函数的图象》是苏科版数学八年级上册6.3节的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
本节主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够通过图象判断一次函数的性质。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念和一次函数的定义,但对于一次函数的图象可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
三. 教学目标1.让学生了解一次函数的图象特征,学会如何绘制一次函数的图象。
2.培养学生通过图象判断一次函数的性质的能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.一次函数的图象特征。
2.如何绘制一次函数的图象。
3.通过图象判断一次函数的性质。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
在教学过程中,注重让学生观察、思考、交流、总结,提高学生的动手能力和思维能力。
六. 教学准备1.准备一次函数的图象示例。
2.准备绘图工具,如直尺、圆规、画图软件等。
七. 教学过程1.导入(5分钟)通过展示一次函数的图象示例,让学生初步感受一次函数的图象特征。
引导学生思考:一次函数的图象是什么样的?有哪些特点?2.呈现(10分钟)讲解一次函数的图象特征,让学生明白一次函数的图象是一条直线。
引导学生思考:一次函数的图象是如何得到的?如何绘制一次函数的图象?3.操练(10分钟)让学生分组进行实际操作,尝试绘制一次函数的图象。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)让学生展示自己的绘制成果,互相评价,教师点评。
引导学生总结一次函数图象的特征和绘制方法。
5.拓展(5分钟)让学生思考:如何通过一次函数的图象判断其性质?引导学生观察图象,总结一次函数的性质。
沪教版数学八年级下册20.2《一次函数的图象与性质》教学设计1
沪教版数学八年级下册20.2《一次函数的图象与性质》教学设计1一. 教材分析沪教版数学八年级下册20.2《一次函数的图象与性质》是学生在学习了函数概念、一次函数表达式的基础上,进一步研究一次函数的图象与性质。
本节内容主要包括一次函数的图象、一次函数的性质、一次函数的应用等。
通过本节的学习,使学生进一步理解函数与方程的关系,提高解决实际问题的能力。
二. 学情分析学生在之前的学习中已经掌握了函数概念、一次函数表达式,对于一次函数的图象与性质有一定的了解。
但部分学生对于一次函数的性质理解不够深入,对于一次函数在实际问题中的应用还不够熟练。
因此,在教学过程中,要注意引导学生通过观察、操作、思考、交流等活动,深入理解一次函数的性质,提高解决实际问题的能力。
三. 教学目标1.理解一次函数的图象与性质;2.学会如何运用一次函数解决实际问题;3.提高学生的数学思维能力、合作交流能力和动手操作能力。
四. 教学重难点1.一次函数的图象与性质;2.一次函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、操作、思考、交流等活动,深入理解一次函数的图象与性质,提高解决实际问题的能力。
六. 教学准备1.准备相关的一次函数图象与性质的PPT;2.准备一些实际问题,用于引导学生运用一次函数解决;3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾一次函数表达式,为新课的学习做好铺垫。
2.呈现(15分钟)利用PPT展示一次函数的图象与性质,引导学生观察、思考,理解一次函数的图象与性质。
3.操练(15分钟)让学生通过动手操作,绘制一次函数的图象,进一步理解一次函数的性质。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的一次函数的图象与性质知识。
5.拓展(10分钟)引导学生运用一次函数解决实际问题,提高学生的应用能力。
6.小结(5分钟)对本节课的主要内容进行小结,加深学生对一次函数图象与性质的理解。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。
6.3一次函数的图像》教学设计-优秀教案
6.3一次函数的图像(1)班级姓名学号【学习目标】1. 了解画函数图象的一般步骤,能熟练地作出一次函数的图象知道一次函数的图象是一条直线。
2. 会选取两个适当的点画一次函数的图象。
会根据坐标判断所给的点是否在所给的图象上。
【重点难点】教学重点:掌握一次函数的图象的画法。
教学难点:会选取两个适当的点画一次函数图象。
【教学过程】一、温故知新:(1) 一次函数的定义:(2) 正比例函数的定义:(3) 函数有几种表达形式?(4) 函数图像的概念:把一个函数的自变量与对应的因变量的值作为点的坐标和坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像.那么一次函数的图象是怎样的?(导入新课)二、创设情境点燃一支香,感受它的长度随时间的变化而变化.观察上面的图片,说一说获得哪些信息?(设计意图:通过生活中的情景引入新课,提高学生的学习兴趣.)探究活动一1.将你的观察结果填在书中的表格内.2.如果用y (cm)表示香的长度、x(min)表示香燃烧的时间,你能写出y与x之间的函数表达式吗?3.操作:依次连接图片中香的顶端,你有什么发现?4.你能用平面直角坐标系,揭示图片中的信息吗?要求:学生在观察、思考的基础上填表,并与同学交流各时刻香的状态.点燃时间/分0 5 10 15 20香的长度/cm 16 12 8 4 0由图片知,点燃后香的长度越来越短,平均每分钟缩短0.8cm ,直至燃尽.所以y 与x 之间的函数表达式为y =16-0.8x (0≤x ≤20).依次连接图片的顶端,发现在一条直线上.(设计意图:通过连接图片中香的顶端,联系平面直角坐标系中的描点,引导学生初步思考一次函数的图像是否是一条直线,引导学生的探究意识,同时为学习图像的画法作必要的铺垫.)5.以x 轴表示点燃时间,以y 轴表示香的长度,建立直角坐标系,并分别描点(0,16)、 (5 ,12)、(10 ,8)、(15 ,4)、(20,0).问题:这5个点的坐标都满足y =16-0.8x 吗?这个一次函数的图像是什么?由此猜测… 要求:学生在学案上描点画图.学生讨论交流.(设计意图:将生活中的实际问题用数学的眼光,严谨的态度分析解决,引导学生利用适当的工具科学、合理地抓住其数学本质.)探究活动二按下列步骤,在平面直角坐标系中,画一次函数(1)y = -x 21(2)y = -x+3的图像 解:(1)列表1: 列表2:(2)描点:以表中各对x 、y 的值为点的坐标,在直角坐标系内描出相应的点. (3)连线:顺次连接描出的各点.x… -2 -1 0 1 2 … y=-x 21 ……x … -2 -1 0 1 2 … y =-x +3……议一议:(1)满足关系式的x ,y 所对应的点(x ,y )都在函数图象上吗?(2)函数的图象上的点(x ,y )都满足关系式吗?(3)画一次函数图像的一般步骤 (4)你能用更简便的方法作出它的图像吗?说说你的想法. (5)通常取哪两点比较方便? ①观察y=-x 21的图像可知:它的图像是一条 ,过坐标系中点 ,并经过点 , 它经过 象限.②观察y=-x+3的图像可知:它的图像是一条 ,与x 轴交于点 ,与y 轴交于点 , 它经过 象限.(设计意图:学生模仿上例,自己尝试画图,并与小组内的同学交流,对比,总结方法.学生经历画图的过程,感受画图的方法,引导学生经历作图的过程,思考每个步骤之间的联系,掌握利用描点法画出函数图像,关注其中的细节.)小结:①作一次函数图像的步骤:②由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定图像 上 的位置,再过这两点画直线即可.③一次函数y kx b =+(k 、b 为常数,且0k ≠)的图像是经过点(0, )和( ,0)的一条 .④作正比例函数y =kx (k ≠0)的图象时,一般找(0, )(1, )两点.(设计意图:学生结合自己的观察和动手实践的经验回答.根据基本事实,“两点确定一条直线”,画一次函数图像时,只要先确定这个图像上两个点的位置,再过这两点画直线就可以了.在巩固画图过程的基础上,引导学生思考如何简化作图的过程,培养学生勤学好思的良好习惯.)三、例题分析例 已知一次函数y=-3x+3:(1)画出一次函数的图象; (2)写出这个函数的图象与x 轴,y 轴的交点的坐标__________,___________;(3)若(2,a+3)在函数图象上,求a 的值. (4)判断点(71,42)是否在所画的图象上?(设计意图:学生利用总结的方法,画图实践.通过带入函数表达式结合观察图像做出判断.巩固画一次函数图像的技能.体会“数形结合”的思想方法.)四、课堂练习1.下列两点在函数y =-2x +3图像上的是 ( ).A .原点和点(1,1);B .点(1,1)和点(2,3);C .点(0,3)和点(1,1);D .点(0,3)和点(2,3). 要求:学生解答,互相交流方法.2. 在同一坐标系中(1)画出一次函数y =-2x 、y =-2x-2、y =-2x+2的图象 (2)如果(a ,4)在y =-2x +2的图象上,求a 的值。
八年级数学上册 一次函数的图象(第一课时)教案 北师大版【精品教案】
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x 与y 的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.三、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.[师]由此看来,满足函数关系式y =-2x +5的x ,y 所对应的点(x ,y )都在一次函数y = -2x +5的图象上;反过来,一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )[生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B )[生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7; 当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号.∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计。
一次函数的图象-教学设计
华东师大版17.3.2《一次函数的图象》教学设计一、内容和内容分析内容:华师大版八年级下册“17.3.2 一次函数的图象和性质”.本节教学内容属于“数与代数”知识领域中的函数部分,函数是刻画和研究现实世界变化规律的重要模型,是中学数学的重要内容之一,而一次函数是函数中最简单最基本的函数类型之一。
本节课是华东师大版教材中第17章第3节第2课时内容,通过前两节的学习,学生初步掌握了一次函数等相关概念,并且经历了列表、描点、连线画图象的过程,简单体会到数形结合的思想。
本节课是在此基础上,通过动手操作接受一次函数图象是直线这一事实,并在实践中体会“两点法”的简便性,同时向学生再次渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现k和b对一次函数图象的影响。
本节课内容为探索下节课一次函数的性质作准备。
同时它的研究方法具有一般性和代表性,为后面研究反比例函数和二次函数奠定了基础。
基于上述分析,确定本节教学本节教学重点如下:1.会熟练作出一次函数的图象;2.理解一次函数解析式中k,b的取值对函数图象的影响;二、目标和目标解析1.理解用描点画出一次函数的图象一般步骤,经历描点法画函数图象的全过程,巩固并掌握描点法画函数图象的一般方法,掌握一次函数图象形状,培养良好的动手操作能力.2.掌握一次函数图象及其特征,培养学生观察、比较、探究、分析、归纳、概括的能力,学会数形结合地研究函数问题的方法.3.进一步体会并理解数形结合思想.三、问题诊断分析1.教师教学可能存在的问题:(1)直接帮助学生用描点法画出一次函数图象,没有让学生亲身经历画图过程;(2)没有提前准备好网络画板用动态演示的方法让学生再次观察图象变化;(3)不能设计合理的探究方案,适当引导学生小组合作去观察、体会、归纳、概括出一次函数的图象特征;(4)过分强调知识的获得,忽略了数形结合数学思想方法的渗透.2.学生学习中可能出现的问题:(1)识图读图能力不强,不能发现并全面概括出函数的图象特征;(2)个别学生互助合作学习的热情和参与探索的积极性不高.鉴于上述分析,确定本节的教学难点是:通过设计合理有效的数学实验,激活学生的数学思维,引导观察、归纳函数的图象特征探讨k,b对一次函数图象的影响,渗透数形结合的数学思想方法.四、教学支持条件设计教学中,为使能较好地帮助学生深入理解一次函数的图象特征,利用网络画板的画图和动画功能,直观、形象地展现函数图象的变化规律,发现k,b对一次函数图象的影响、体会数形结合思想,激发学生参与的积极性,提高分析和解决问题的能力.五、教学过程设计导言上节课我们与一次函数初次相识,我们知道认识了一个新事物就更想再深入了解它的性质和应用,而函数图象正是能帮助我们了解函数方方面面性质的一个有力工具,所以今天我将带领大家一同来探讨一次函数的图象问题.活动一:导学诱思问题1一次函数的概念是什么?能否将黑板上有一次函数的卡片挑出来?问题2用描点法画图的一般步骤是什么?活动方式:教师提出问题,由学生口答之后,通过生生互评、师生共评,纠正出现的问题.设计目的:从提问复习入手,承接上一节课的内容,同时引出本节课的内容,既起到复习巩固的作用,又激发学生的学习兴趣,同时为本节课的学习奠定基础.活动二:自主探究问题1选一个你喜欢的一次函数,并用描点法画出该函数图象.问题2 观察你所画的一次函数图象是什么形状?问题3 几个点确定一条直线?有没有简单的一次函数图象的作图方法?活动方式:学生动手画图,自主探究,之后教师提问,学生回答.设计目的:让学生在动手作图的过程中从“形”的角度感知一次函数的图象的形状,发挥学生的主动性,锻炼学生动手操作能力,激发学生学习兴趣.活动三:合作探究提出问题:对于一次函数y=kx+b(k,b为常数,k≠0),常数k和b的取值分别对一次函数的图象有什么影响?活动方式:教师展示多个一次函数图象,师生共同观察,发现不同之处.设计目的:引导学生从“形”的角度观察多个一次函数图象的不同之处,同时从“数”的角度发现解析式的不同之处,由此提出问题.解决问题:设计数学实验.数学试验1:当b相同,k不同时 (第1,3,5组完成)合作要求:组长先确定一个b值,每位组员再各自确定一个k值,依次在同一个坐标纸中画出对应函数图象.数学试验2:当k相同,b不同时(第2,4,6组完成)合作要求:组长先确定一个k值,每位组员再各自确定一个b值,依次在同一个坐标纸中画出对应函数图象.规律总结:当b相同,k不同时,观察函数图象发现:相同点:与y轴交点相同,都为(0,b).不同点:直线的方向不同,倾斜程度不同.在直线y=k1x+b1与直线y=k2x+b2中,如果b1= b2,k1≠k2,那么这两条直线与y轴相交于同一个点.当k相同,b不同时,观察函数图象发现:相同点:直线的倾斜程度一样,直线相互平行.不同点:直线与y轴交点不同.在直线y=k1x+b1与直线y=k2x+b2中,如果k1 = k2,b1 ≠b2,那么这两条直线平行.活动方式:小组合作,先作图,再看图,总结结论,小组代表通过学生平板用“学生讲”的方式展示交流,随后教师借助平板网络画板进行动态演示.设计目的:让学生充分感受图形特点,找到规律,锻炼学生动手操作、观察、归纳、合作探究的能力,体会数学充满探究性和创造性,小组代表展示交流,培养学生的表现力和语言表达能力,教师动画演示,再次渗透“数形结合”思想.活动四:达标检测1.已知一次函数y=kx+b的图象与y=x的图象平行,那么它必过点()A.(-1 , 0)B.(2 , -1)C.(2 , 1)D.(0 , -1)2.已知点(k , b)在第四象限内,则一次函数y=-kx+b的图象大致是()A. B. C. D.3.在平面直角坐标系中,将直线l1:y=-2x-2平移后得到直线l2:y=-2x+4,则下列平移作法中,正确的是()A.将直线l1向上平移6个单位 B.将直线l1向上平移3个单位C.将直线l1向上平移2个单位 D.将直线l1向上平移4个单位4.一次函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y=3x+3的图象与x轴交点的坐标是()A.(1 , 0) B.(-1 , 0) C.(0 , 1) D.(0 , -1)活动方式:学生利用平板,在线作答,完成后提交答案,教师根据后台数据精准讲解.设计目的:学生在前面学习的基础上进行练习,一方面对所学内容加以巩固,另一方面让学生将所学知识学会应用。
一次函数的图像1 -完整版公开课教学设计
一次函数的图像教学目标1.了解一次函数图像是一条直线,会用描点法画一次函数图像;2.掌握直线的截距的概念,并能根据解析式写出直线的截距;3.理解一次函数图像与x 轴、y 轴交点含义,并会求出交点坐标. 教学重点及难点1.画出一次函数图像,写出直线的截距;2.会求直线与坐标轴交点坐标. 教学用具准备三角板、ppt 课件、多媒体设备 教学过程设计 一、 情景引入 1.操作按照下列步骤画正比例函数y=12x 和一次函数y=12x+3的图像,并进行比较(2)描点:分别以所取x 的值和相应的函数值y 作为点的横坐标和纵坐标,描出这些坐标所对应的点.(3)连线:用光滑的曲线(包括直线)把描出的的这些点联结起来.(图略) 2.观察观察表格和图像,对于x 的每一个相同值,函数y=12x+3的对应值比函数y=12x 的对应值都大多少?说明 不论从表中或图像上都可以看出, 对于x 的每一个相同值, 函数y=12x+3的对应值比函数y=12x 的对应值都大3个单位.因此, 函数y=12x+3的图像是由函数y=12x 的图像向上平移3个单位得到的.3.思考我们知道,正比例函数是特殊的一次函数,而正比例函数的图像是一条直线,那么一次函数的图像是直线吗? 二、学习新课 1.概念辨析一般来说, 一次函数y=kx+b(其中k 、b 是常数,且k ≠0)的图像是一条直线. 一次函数y=kx+b 的图像也称为直线y=kx+b. 一次函数解析式y=kx+b 称为直线的表达式. 2.例题分析例1在平面直角坐标系xOy 中,画一次函数y=32x-2的图像.分析 因为两点确定一条直线,所以画一次函数的图像时,只要先描出直线上的两点,再过两点画直线就可以了. 解: 由y=32x-2可知,当x=0时,y=-2;当y=0时, x=3. 所以A(0,-2)、B(3,0)是函数y=32x-2的图像上的两点. 过点A 、B 画直线,则直线AB 就是函数y=32x-2的图像.(图略). 说明 (1)画直线y=kx+b 时,通常先描出直线与x 轴、y 轴的交点,如果直线与x 轴、y 轴的交点坐标不是整数,为了画图方便、准确, 通常是描出直线上的整数点.(2)本例讲述了求直线与坐标轴交点的方法,同时,为引出直线的截距概念作好铺垫.由点A 的横坐标x=0,可知点A 在y 轴上;由点B 的纵坐标y=0,可知点B 在x 轴上.又点A 、B 在直线y=32x-2上,所以点A 、B 是直线y=32x-2分别与y 轴、x 轴的交点. 3.概念辨析一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距. 一般地,直线y=kx+b(k ≠0)与y 轴的交点坐标是(0,b).直线y=kx+b(k ≠0)的截距是b. 4.例题分析例2 写出下列直线的截距:(1)y=-4x-2; (2)y=8x ;(3)y=3x-a +1; (4)y=(a+2)x+4(a ≠-2). 解 (1)直线y=-4x-2的截距是-2. (2)直线y=8x 的截距是0. (3)直线y=3x-a +1的截距是-a +1. (4)直线y=(a +2)x+4(a≠-2)的截距是4.说明 本例是巩固对直线截距概念的理解, 直线的截距是由x=0,求得对应的y 值,同时,注意截距与距离的区别.例3 已知直线y=kx+b 经过A(-20,5)、B(10,20)两点,求: (1)k 、b 的值;(2)这条直线与坐标轴的交点的坐标.分析 直线经过点,即点在图像上,所以点的坐标满足直线解析式,根据条件,建立k 、b 的方程组,解方程组,就可求得k 、b 的值.解 (1)因为直线y=kx+b 经过点A(-20,5)、B(10,20),所以 ⎩⎨⎧=+=+20b 10k 5b 20k - 解得 k=21, b=15.(2)这条直线的表达式为 y=21x+15. 由y=21x+15,令y=0,得21x+15=0,解得x=-30;令x=0,得y=15.所以这条直线与x 轴的交点的坐标为(-30,0),与y 轴的交点的坐标为(0,15). 说明 本例进一步讲述了求直线与坐标轴交点的方法.强化重难点. 三、巩固练习1.(口答)说出下列直线的截距:(1)直线y=3x+2;(2)直线y=-2x-5;(3)直线y=3x+1-2. 2.在平面直角坐标系xOy 中,画出函数y=-32x+2的图像,并求这个图像与坐标轴的交点的坐标.3.已知直线经过点M(3,1),截距是-5,求这条直线的表达式.4.已知直线y=kx+b 经过点A(-1,2)和B(21,3),求这条直线的截距. 四、课堂小结(学生归纳,教师引导)1、一次函数y=kx+b (k ≠0)的图像是什么样的形状? 如何画一次函数的图像?2、什么叫直线的截距? 如何求直线的截距?3、用什么方法求直线解析式? 如何求直线与坐标轴交点的坐标? 五、作业布置 练习册习题20.2(1) 分层作业:已知直线y=mx+2与x 轴、y 轴的交点分别为A 、B,点O 为坐标原点,如果OA=21OB,求直线的表达式.解: 由y=mx+2,令y=0,得mx+2=0,解得x=-m 2,得点A 坐标(-m2,0);令x=0,得y=2.得点B 坐标为(0,2)所以OA=│-m2│, OB=2 由OA=21OB, 得│-m 2│=1, 所以m=±2所以直线的表达式为y=2x+2 或 y=-2x+2说明本题要求出直线的表达式,只要求出待定系数m的值即可,解决问题的关键是正确运用点的坐标表示线段的长度.本题谨防漏解.教学反思:对已知解析式求与坐标轴的交点,求与坐标轴围成的面积,学生掌握很好,但已知面积求解析式,经常不会考虑两种情况,忽略了坐标并不和距离是等同的。
苏科版数学八年级上册6.3《一次函数的图象》教学设计1
苏科版数学八年级上册6.3《一次函数的图象》教学设计1一. 教材分析苏科版数学八年级上册6.3《一次函数的图象》是学生在学习了《一次函数》的基础上,进一步研究一次函数的图象和性质。
本节内容通过探究一次函数的图象,帮助学生理解一次函数与坐标系的关系,掌握一次函数图象的性质,提高学生分析问题、解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了《一次函数》的基本概念和性质,具备一定的代数基础。
但学生对函数图象的理解和绘制还较为薄弱,需要通过本节内容的学习,提高学生绘制和分析一次函数图象的能力。
三. 教学目标1.了解一次函数图象的性质,能够绘制一次函数图象。
2.能够通过一次函数图象分析问题,解决问题。
3.培养学生的观察能力、分析能力和动手能力。
四. 教学重难点1.一次函数图象的性质。
2.一次函数图象的绘制方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、分析、实践,掌握一次函数图象的性质和绘制方法。
六. 教学准备1.教学PPT。
2.坐标纸。
3.函数计算器。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考一次函数与坐标系的关系,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示一次函数图象的性质,包括:斜率、截距、图象的形状和位置等。
引导学生观察、分析,理解一次函数图象的性质。
3.操练(10分钟)让学生分组合作,利用坐标纸和函数计算器,绘制一次函数图象。
在实践中掌握一次函数图象的绘制方法。
4.巩固(5分钟)学生分组讨论,总结一次函数图象的性质和绘制方法。
教师进行点评,巩固所学知识。
5.拓展(5分钟)出示一些拓展问题,让学生利用一次函数图象进行分析,解决问题。
提高学生的分析问题和解决问题的能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。
7.家庭作业(5分钟)布置一些有关一次函数图象的练习题,让学生课后巩固所学知识。
8.板书(5分钟)教师在黑板上板书一次函数图象的性质和绘制方法,方便学生复习和记忆。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
4.导入新课:通过以上环节,自然地导入本节课的主题——一次函数的图像。
(二)讲授新知
在这一环节中,我将详细讲解一次函数的定义、图像特点及其增减性。
1.一次函数定义:讲解一次函数的一般形式y=kx+b(k≠0,k、b是常数),并解释k、b的含义。
4.培养学生运用描点法绘制一次函数图像的方法,培养学生数形结合的数学思想。
(三)情感态度与价值观
1.培养学生对数学的兴趣和爱好,激发学生的学习积极性,使学生树立学习数学的信心高学生对数学价值的认识。
3.通过一次函数图像的学习,培养学生勇于探索、善于发现的精神,增强学生的创新意识。
1.分组:将学生分成若干小组,确保每个小组成员在数学水平上具有一定的互补性。
2.讨论任务:让各小组讨论一次函数图像的绘制方法、增减性及其在实际问题中的应用。
3.交流分享:在各小组讨论的基础上,组织学生进行班级分享,互相学习、取长补短。
4.教师点评:对各小组的讨论成果进行点评,强调重点、难点,并解答学生在讨论过程中遇到的问题。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式:y=kx+b(k≠0,k、b是常数),并能够识别实际问题中的一次函数关系。
2.能够通过描点法绘制一次函数的图像,了解一次函数图像的特点,即直线图形。
3.能够根据一次函数的图像,判断函数的增减性,理解当k>0时,函数图像呈现上升趋势;当k<0时,函数图像呈现下降趋势。
1.基础巩固题:
(1)请同学们回顾一次函数的定义,并用自己的话简要解释一次函数中k和b的含义。
《一次函数的图象和性质》教学设计优秀5篇
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
人教版八年级数学下册19.2一次函数的图象和性质教学设计
-在实际问题中,学生可能难以识别一次函数关系,需要培养他们的观察能力和抽象思维能力。
(二)教学设想
1.利用互动式教学,强化学生对一次函数概念的理解。
-设计课堂提问,引导学生思考一次函数的定义和特征。
-通过小组讨论,让学生在交流中加深对一次函数图像和性质的理解。
1.回顾已学的线性方程和不等式,引导学生思考这些知识在一次函数学习中的作用。
-提问:“我们之前学习的线性方程和不等式与今天要学习的一次函数有什么联系?”
-通过回顾,让学生意识到一次函数是线性方程和不等式的图像表现形式。
2.创设生活情境,提出问题,引发学生思考。
-情境:“小明乘公交车去动物园,公交车的速度是恒定的,请问小明离动物园的距离是如何随时间变化的?”
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、图像与性质的理解和应用。
-准确理解一次函数的标准形式,掌握斜率和截距的概念。
-学会绘制一次函数的图像,并能通过图像分析一次函数的性质。
-能够将一次函数的性质应用于解决实际问题。
2.难点:一次函数图像与性质之间的关系,以及将实际问题抽象为一次函数模型。
-提高学生的学习策略,培养他们的自主学习能力。
3.对学生在课堂上的表现给予评价,激发他们的学习积极性。
-肯定学生的努力,鼓励他们在今后的学习中继续进步。
五、作业布置
为了巩固学生对一次函数的理解和应用,我将布置以下作业:
1.基础知识巩固题:请学生完成教材第19.2节后的练习题1-5,包括绘制一次函数图像、计算斜率和截距等。这些题目旨在帮助学生巩固一次函数的基本概念和性质。
一次函数的图象教案6篇
一次函数的图象教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!一次函数的图象教案6篇下面是本店铺收集的一次函数的图象教案6篇一次函数图像教学内容分析,供大家参阅。
一次函数的图像1教学设计
《一次函数的图像1》教学设计教学目标1、经历描点法作函数图像的过程,了解作图的一般步骤,知道一次函数的图像是一条直线。
2、会求图像与坐标轴的交点坐标,会选取两个适当的点画一次函数的图像。
3、进一步培养自己数形结合的意识和能力,在探究活动中发展自己的合作意识和能力。
学情分析(1)学生基础分析:学生通过直角坐标系、函数的概念、函数的表示方法及一次函数定义的学习,获得了函数研究方法的经验,通过一次函数的学习,获得了具体一类函数的数形结合的探究经验。
(2)学习困难分析: ①在具体的学习过程中,如果学生没有经历画图、观察、概括的过程,可能只是记住结论,很难理解一次函数的图象是一条直线。
②对于通过具体一次函数图象猜想一般的一次函数图象的形状,学生容易停留在只从“形”的角度认识一次函数的图象,不会从函数和变量的方法去思考问题,即从“数”(解析式)的角度加深理解。
重点难点评重点:熟练地作出一次函数的图像。
难点:理解一次函数的函数表达式与图像的对应关系。
教学过程【导入】情景引入~看课本p148,观察图片,你能得到哪些信息? 请将观察的结果填入下表:2.设香的长度为y(cm),点燃时间为x(分钟),你能写出y与x的关系式吗?【讲授】明确概念1、教师引导学生回顾函数的三种不同的表示方法:列表法、函数关系式法、图像法。
2、得出函数图象的概念:把一个函数的自变量x的值与函数y的对应值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做这个函数的图象。
把这些点绘制到平面直角坐标系中,并依次把这些点连接起来,从而得到了函数的图象。
3、比较三种不同的表示方法,说说他们各自的优缺点。
【活动】探索一次函数的图象及其画法环节1:自主探究——一次函数y=2x+1图象的画法环节2:小组合作——以四人小组为单位,交流探究过程环节3:课堂展示——选择有代表性的小组进行汇报汇报流程:请小组派代表进行汇报——小组成员补充——同学提出疑问教师引导学生解决如下问题:1.列表根据学生的展示,强调列表注意以下几点: ①一般情况下,我们所选取的点应有代表性,x的值可以取正数、0、负数。
一次函数的图象⑴教学案例
一次函数的图象⑴教学案例学习目标1.知道一次函数的图象是一条直线2.会选取两个适当的点画一次函数的图象3.正确理解正比例函数与一次函数图象的关系学习难点1.会选取两个适当的点画一次函数的图象2.理解正比例函数y=kx图象和一次函数y=kx+b图象的关系教学过程一、导入师:前面,我们已学过了什么是正比例函数、一次函数及用待定系数法确定一次函数关系式的方法,今天我们要从另外的角度来进一步认识它们,若把满足y=x的一对x、y的值作为一个点的坐标(x,y),那么所有这些点所组成的图形,会是怎样的呢?下面我们先通过列表来找出它们的一些对应值:(教师板演)师:请同学们在各自的方格纸上,描出上表中的各点,看看你会有什么发现?生:这些点看起来都在同一条直线上。
师:好,下面我们通过连线再看看。
这些点都在一条直线上吗?生:都在一条直线上。
师:它们为什么会在同一条直线上呢?一定会在一条直线上么?学生思考……师(总结):因为这些点都在一些具有公共顶点(原点),大小相套的正方形的对角线上。
师:(1)你画的这条直线上的点是否都满足y=x(即横坐标与纵坐标相等)?学生观察思考……生:满足!师:这条直线上有没有不符合y=x的点?学生继续思考……生:没有。
师:好,这说明(没掺杂)。
师:(2)满足y=x的点是否都在这条直线上?(即横坐标与纵坐标相等的点会不会在其他地方还有?)学生观察思考……生:不会!都在这条直线上。
因为其他地方的点不满足y=x。
师:好,这也就说明(没遗漏)。
师(总结):没掺杂,又没遗漏,因此我们可以说正比例函数y=x 的图象就是这一条直线,它是一、三象限的角平分线。
师:我们刚才在画函数y=x的图象时,分哪几个步骤来完成的?生:①列表;②描点;③连线。
师:通过上面的例子,下面若再画y=-x的图象。
我相信同学们都能自己动手画出来了吧?生:能。
(仿照上面的例子,学生观察得出y=-x的图像也是一条直线,且为二、四象限的角平分线)师:那么y=2x的图象又会是怎样的呢?同学们都会画了么?生:会了。
北师大版八年级数学上册《一次函数的图象》第1课时示范课教学设计
第四章一次函数3 一次函数的图象第1课时一、教学目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线,能熟练画出正比例函数的图象.2.能根据正比例函数的图象和表达式y=kx(k≠0)理解k>0和k<0时,函数的图象特征与增减性,培养学生数形结合的意识和能力.3.理解正比例函数的代数表达式与图象之间的一一对应关系.4.掌握正比例函数的性质,并能灵活运用解答有关问题.二、教学重难点重点:能熟练画出正比例函数的图象.难点:理解函数的图象特征与增减性,掌握正比例函数的性质.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(4)y=8x; (5)y=5x2-4x+1. (6)y=(x+1)2预设答案:(1)(2)(4)是一次函数.(1)(4)是正比例函数.问题3:若函数y=(6-3m)x+4n-4是一次函数,则m,n满足什么条件?若是正比例函数,则m,n应满足什么条件?预设答案:解:根据y=(6-3m)x+4n-4是一次函数得:6-3m≠0,则m≠2,n取任何实数;若是正比例函数,得6-3m≠0且4n-4=0,则m≠2,n=1.【思考】把摩天轮上一点的高度h(m)与旋转时间t (min)之间的函数关系通过下列图形表示:教师活动:如何定义这种图形?【探究】把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.教师活动:这是摩天轮上一点的高度h与旋转时间t之间函数关系的图象.【例1】画出正比例函数y=2x的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=2x的图象,它是一条直线.画函数图象的步骤可以概况为三步:教师活动:这种画函数图象的方法叫做描点法.【做一做】画出正比例函数y=-3x的图象.列表:描点:连线:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.教师活动:通过两个点(-1.5,4.5),(0.5,-1.5)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】(1) 满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x的图象上吗?预设答案:都在正比例函数y=-3x的图象上.(2) 正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?预设答案:都满足.(3) 正比例函数y=kx的图象有何特点?你是怎样理解的?预设答案:都经过原点.【探究】观察上述两组正比例函数图象,说一说正比例函数y=kx的图象有何特征?特征:正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只要再确定一个点,过这点与原点画直线就可以了.不同点:函数y=2x的比例系数k>0,图象经过第一、三象限;函数y=-3x的比例系数k<0,图象经过第二、四象限.【归纳】教师活动:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可.【做一做】在同一直角坐标系内画出正比例函数y=x,y=3x,12y x=-和y=-4x的图象.教师活动:这四个函数中,随着x的增大,y 的值分别如何变化?相应图象上的点的变化趋势如何?当k>0时,x增大时,y的值也增大;y随x的增大而增大.当k<0时,x增大时,y的值反而减小;y随x的增大而减小.【归纳】在正比例函数y=kx中:1. 当k>0时,y的值随着x值的增大而增大,相应图象上的点从左往右呈上升趋势;2. 当k<0时,y的值随着x值的增大而减小,相应图象上的点从左往右呈下降趋势.【想一想】正比例函数y=x和y=3x中,随着x值的增【典型例题】教师活动:教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例2】 在同一直角坐标系内画出正比例函数12y x =与13y x =-的图象,并指出随着x 值的增大,y 的值分别如何变化?解:画图:对于函数12y x =,y 的值随着x 值的增大而 增大;对于函数13y x =-,y 的值随着x 值的增大而减小.所以-6=4k,解得32k=-,所以32y x=-.当x=-4时,y=6,所以点(-4,6)在此正比例函数图象上.故选B.4.在正比例函数y=-3mx中,y随x的增大而增大,则点P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:因为y随x的增大而增大,所以-3m>0,所以m<0,所以点P(m,5)在第二象限.故选B.5.画出函数y=-2x的图象.解:列表,描点、连线,得到y=-2x的图象如图所示:6.已知正比例函数y=mx的图象经过点(m,9),且y的值随着x值的增大而减小,求m的值.解:因为正比例函数y=mx的图象经过点(m,9)所以9=m∙m,解得m=±3.又因为y的值随着x值的增大而减小,所以m<0,故m=-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章一次函数
3.一次函数的图象(一)
成都七中育才学校薛成权、陈开文
一、学生起点分析
八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.
二、教学任务分析
《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.
三、教学目标分析
知识与技能目标
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.
过程与方法目标
1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.
2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.
情感、态度与价值观目标
1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.
2.在探究活动中发展学生的合作意识和探究能力.
教学重点
1.熟练地作一次函数的图象.
2.理解、归纳作函数图象的一般步骤:列表、描点、连线.
3.理解一次函数的代数表达式与图象之间的一一对应关系.
教学难点
理解一次函数的代数表达式与图象之间的一一对应关系.
四、教法学法
1、教学方法
讲、议、练相结合。
2、课前准备
教具:教材、多媒体课件。
学具:教材、铅笔、直尺、练习本。
五、教学过程
本节课设计了七个教学环节:
第一环节:创设情境引入课题;
第二环节:画一次函数的图象;
第三环节:动手操作,深化探索;
第四环节:巩固练习,深化理解; 第五环节:课时小结; 第六环节:拓展探究; 第七环节:作业布置.
第一环节:创设情境 引入课题
内容:
一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S (米)与小明父亲出发的时间t (分)之间的函数关系式是怎样的?它是一次函数吗?S=80t+400(t ≥0)
下面的图象能表示上面问题中的S 与t 的关系吗?
我们说,上面的图象是函数S=80t+400(t ≥0)的图象,这就是我们今天
要学习的主要内容:一次函数的图象。
意图:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.
效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.
第二环节:画一次函数的图象
内容:首先我们来学习什么是函数的图象?
把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ).
例1 请作出一次函数y=2x+1的图象.
描出相应的点.
连线:把这些点依次连结起来,得到y=2x+1的图象.
由例1我们发现:作一个函数的图象需要三个步骤: 列表,描点,连线.
意图:通过本环节的学习,让学生明确作一个函数图象的
一般步骤,能做出一个函数的图象,同时感悟一次函数图象是一条直线.
效果:学生通过学习,掌握了作一个函数图象的一般方法,能作出一个函数的图象,同时感悟到一次函数图象是一条直线.
第三环节:动手操作,深化探索
内容:做一做
(1)作出一次函数y=-
2x+5的图象.
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-2x+5.
请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.
(1)满足关系式y=-2x+5的x ,y 所对应的点(x ,y )都在一次函数y=-2x+5的图象上吗? (2)一次函数y=-2x+5的图象上的点(x ,
y )都满足关系式y=-2x+5吗? (3)一次函数y=kx+b 的图象有什么特点? 明晰
由上面的讨论我们知道:一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的x ,y 所对应的点(x ,y )都在一次函数的图象上;一次函数的图象上的点(x ,y )都满足一次函数的代数表达式.一次函数y=kx+b 的图象是一条直线,以后可以称一次函数y=kx+b 的图象为直线y=kx+b .
议一议
既然我们得出一次函数y=kx+b的图象是一条直线.那么在画一次函数图象时有没有什么简单的方法呢?
因为“两点确定一条直线”,所以画一次函数图象时可以只描出两个点就可以了.
例2作出y=-x+2的图象.
y=-x-2的图象.
意图:做一做“作出一次函数y=-2x+5的图象”,意在让学生进一步熟悉如何作一个函数的图象,同时要求学生在作这个函数的图象时,尽量准确,为后面研究函数与图象的对应关系和得出一次函数的图象是一条直线作好铺垫和准备.在得出一次函数的图象是一条直线后,设计例2,则是让学生明确,以后作一次函数图象,只要描出两个点了就可以,在这里应让学生学会书写过程.关于直线的倾斜程度与k的绝对值的关系,在第二课时研究.
效果:学生通过作出一次函数的图象,明确了作函数图象的一般方法.在探究函数与图象的对应关系中加深了理解,并能很快地作出一次函数的图象.
第四环节:巩固练习,深化理解
内容:
练习1:在同一直角坐标系中分别作出y=1
2
x与y=-3x+9的图象.
由上面的图象,你发现了什么?
提示:由上面的图象我们发现,正比例函数的图象是一条经过原点的直线,一次函数y=kx+b 的图象是一条经过(0,b)的直线.当b大于0时,直线与y轴交于正半轴,当b小于0时,直线与y轴交于负半轴.
练习2:如果y+3与x-2成正比例,且x=1时,y=1.
(1)写出y与x之间的函数关系式;
(2)画出函数的图象;
(3)求当x=0时,y的值和y=0时,x的值.
意图:这里的两个练习题,一是让学生熟练一次函数图象的作法,二是明确正比例函数和一次函数图象的一般特征.练习2中的第(3)小题渗透了求函数图象与坐标轴的交点的方法.同时让学生明确b的正负决定直线与y轴交点的位置.
效果:学生通过练习,进一步熟练了一次函数图象的作法,对正比例函数和一次函数图象的一般特征有了清楚的认识.
第五环节:课时小结
内容:本节课我们通过对一次函数图象的研究,掌握了以下内容:
(1)函数与图象之间是一一对应的关系;
(2)正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b)的直线.
(3)作一次函数图象时,只取两个点,就能很快作出.
意图:让学生在回忆的过程中,进一步加深对一次函数图象的理解,同时对本节所学知识有一个总结性的认识.
效果:学生通过对本节学习的回顾和小结,对所学知识更清楚,抓住了重点,明确了关键.
第六环节:拓展探究
在前面所提出的问题中:
(1)小明的父亲用多少时间可追上小明?
(2)如果这个问题至小明父亲追上小明止,你能写t的准确的取值范围吗?请写出来;
(3)请画出这个函数的图象;
(4)若用S1(米)表示小明父亲离家的距离,请写出S1(米)与t(分)之间的函数关系式;在(2)的条件下,作出这个函数图象.
答案:(1)10分钟,(2)0≤t≤10,(3)作出的图象是一条线段,(4)S1=120t(0≤t≤10),作出的图象也是一条线段.
意图:对学有余力的学生,能进一步提高,让他们的学习活动深入下去,同时为以后学习一次函数图象的应用奠定基础.
效果:学生通过对上面问题的探究,对一次函数图象的认识更深入.
第七环节:作业布置
习题6.3 1,2,3.
六、教学设计反思
这节内容是学生第一次利用数形结合的思想去研究一次函数的图象,感到陌生是正常的.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出一次函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.
当然,根据学生状况,教学设计也应做出相应的调整。
如第一环节:创设情境引入课题,固然可以激发学生兴趣,但也可能容易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征——-一次函数图象。
附:板书设计。