运用矢量三角形解决动态平衡相关问题相关知识点资料

合集下载

高一物理竞赛讲义五——动态平衡的矢量三角形法则

高一物理竞赛讲义五——动态平衡的矢量三角形法则

不变, 使线的 B 端沿半径等于 OA 的圆周向 C 移动, 则在移动过程
中 OB 线的拉力的变化情况是 ( ), (A) 先减小后增大
O
C
(B) 先增大后减小
(C) 总是减小
(D) 总是增大
3、如图所示,在《验证力的平行四边形定则》的实验中,使
b 弹簧秤从图示位置开始
顺时针缓慢转动,在这过程中,保持 O 点的位置和 a 弹簧秤的拉伸方向不变,则在整
小于 90O,现保持弹簧秤 A 的示数不变而改变其拉力方向使

B
减小,那么要使结点仍在位置 O,就应调整弹簧秤 B 的拉力大
小及 β角,则下列调整方法中可行的是 ( ), (A) 增大 B 的拉力,增大 β角
β O
(B) 增大 B 的拉力, β角不变
A
(C) 增大 B 的拉力,减小 β角
(D)B 的拉力大小不变,增大 β角
OA
拉力 T1 和绳 OB拉力 T2 的变化情况:有向线段②从O′C 到
O′C1 到O′C2……弦长增大到成为一条直径再逐渐减小, 转
过 90°时为O′ O; 有向线段③一开始处于直径位置, 以后一
直减小,到转过 90°时减为零.故 T1 是先增大后减小; T2 则
一直减小直至零.正确答案为选项 BCD.
分析与解 由于绳 AC以不同方向拉杆,使杆 AB有一系列可能的平
衡状态.我们考察两绳系在直立杆顶端的结点
A,它在绳 AC的拉力
T、重物通过水平绳的拉力 F( F=G)和杆 AB的支持力作用下平衡. 三
力中,水平绳拉力不变,杆支持力方向不变,总是竖直向上,大小
如何变化待定; 而绳 AC的拉力大小、 方向均不确定. 用代表这三个

利用矢量三角形巧解三力动态平衡问题

利用矢量三角形巧解三力动态平衡问题

利用矢量三角形巧解三力动态平衡问题共点力平衡高中物理的一个重要的知识点,是高考中的一个重要考点,其中动态平衡问题又是平衡问题中的重点和难点,如何快速准确的解决这类问题呢?首先要了解动态平衡有哪几种类型,不同的情况有不同的技巧和方法解决。

第一种类型:已知一个力的大小和方向和另一个力的方向,计算或判定第三个力的大小和方向例题1:(2019·青海省平安一中高三月考)一个挡板固定于光滑水平地面上,截面为1/4圆的柱状物体甲放在水平面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与地面接触而处于静止状态,如图所示。

现在对甲施加一个水平向左的力F,使甲沿地面缓慢地移动,直至甲与挡板接触为止。

设乙对挡板的压力为F1,乙对甲的压力为F2,甲对地压力为F3,在此过程中()A.F1缓慢增大,F2缓慢增大,F3缓慢增大B.F1缓慢增大,F2缓慢减小,F3缓慢减小C.F1缓慢减小,F2缓慢增大,F3保持不变D.F1缓慢减小,F2缓慢减小,F3保持不变【解析】先以乙为研究对象,分析受力情况如图当甲向左移动时,N2与竖直方向的夹角减小,因此甲对乙的弹力N2与挡板对乙的弹力N1均减小。

根据牛顿第三定律可知,乙对挡板的压力为 F1=N1乙对甲的压力为 F2=N2因此F1、F2均逐渐减小。

再对整体分析受力如图所示由平衡条件可得,地面对整体的支持力为 N=G总根据牛顿第三定律可知,甲对地压力为 F3=N=G总因此F3不变。

故ABC错误,D正确。

故选D。

结论:矢量三角形法或平行四边形法第二种类型:已知一个力的大小和方向和另两个力的大小相等,这两力方向发生变化。

计算或判定另两个力的大小变化例题2:(2020·四川省泸县五中高三月考)如图所示,直杆AB可绕其中心O在竖直面内自由转动,一根细绳的两端分别系于直杆的A、B两端,重物用光滑挂钩吊于细绳上,开始时重物处于静止状态,现将直杆从图示位置绕O点沿顺时针方向缓慢转过90°,则此过程中,细绳上的张力()A.先增大后减小B.先减小后增大C.一直减小D.大小不变【解析】:挂钩相当于滑轮,因此绳上的张力相等,且两边绳子与竖直方向的夹角相等,设两边绳子与竖直方向的夹角为θ,将直杆从图示位置绕O点沿顺时针方向缓慢转过90°的过程中,θ先增大后减小,由2Fcosθ=mg可知绳上的张力先增大后减小,选项A正确。

高中物理受力分析(动态平衡问题)超精辟

高中物理受力分析(动态平衡问题)超精辟

做题技巧:高中物理受力分析(动态平衡问题一般有三种做法,一种是用矢量三角形也是本次专题所讲解的内容,另外两种分别是用相似三角形和动态圆,我们下次讲解)动态平衡(矢量三角形)的做法分为以下几步:1、找一个大小和方向都不改变的力(一般为重力)2、找另外一个力(方向不变,大小在改变)3、第三个力,可以看这个力是怎样转动的,或者看这个力与水平方向上或者竖直方向上的夹角怎么改变。

因为是受到三个力,三个力平移到一个三角形里面满足首尾相连的矢量三角形,故边长边长则力变大,否则反之。

三、单选题(共15小题)1.如图所示,保持θ不变,将B点向上移,则BO绳的拉力将:A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小例如:1、保持重力的大小方向不变,画出F1(OC方向上的力)2、保持角度θ不变,即AO方向上的力的方向不变3、B点上移,即BO与竖直方向上夹角变小接下来只需要构建矢量三角形即可,得出边长的变化关系进而得出力的变化关系2.如图,用两根等长轻绳将木板悬挂在竖直木桩上的等高的两点,制成一简易秋千.某次维修时将两绳各剪去一小段,但仍保持等长且悬挂点不变.木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小3.将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示.用力F拉小球b,使两个小球都处于静止状态,且细线Oa与竖直方向的夹角保持θ=60°,则F的最小值为()A. B.mgC.D.4.如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上.现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动.则在这一过程中,环对杆的摩擦力F f和环对杆的压力F N的变化情况是()A.F f不变,F N不变B.F f增大,F N不变C.F f增大,F N减小D.F f不变,F N减小5.如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向60°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是()A. 90°B. 45°C. 30°D. 0°6.如图所示,在倾角为α的斜面上,放一质量为m的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是()A.mg cosαB.mg tanαC.D.mg7.一个挡板固定于光滑水平地面上,截面为圆的柱状物体甲放在水平面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与地面接触而处于静止状态,如图所示.现在对甲施加一个水平向左的力F,使甲沿地面极其缓慢地移动,直至甲与挡板接触为止.设乙对挡板的压力F1,甲对地面的压力为F2,在此过程中()A.F1缓慢增大,F2缓慢增大B.F1缓慢增大,F2不变C.F1缓慢减小,F2不变D.F1缓慢减小,F2缓慢增大8.如图所示,一定质量的物体通过轻绳悬挂,结点为O.人沿水平方向拉着OB绳,物体和人均处于静止状态.若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是()A.OA绳中的拉力先减小后增大B.OB绳中的拉力不变C.人对地面的压力逐渐减小D.地面给人的摩擦力逐渐增大9.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大10.如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上.现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力F、环与杆的摩擦力F f和环对杆的压力F N的变化情况是()A.F逐渐增大,F f保持不变,F N逐渐增大B.F逐渐增大,F f逐渐增大,F N保持不变C.F逐渐减小,F f逐渐增大,F N逐渐减小D.F逐渐减小,F f逐渐减小,F N保持不变11.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大12.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1增大,F2增大C.F1减小,F2减小D.F1减小,F2增大13.如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中() A.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大14.半圆柱体P放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN.在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图所示是这个装置的纵截面图.若用外力使MN保持竖直,缓慢地向右移动,在Q落到地面以前,发现P始终保持静止.在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C.P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大15.如图所示,用OA、OB两根轻绳将物体悬于两竖直墙之间,开始时OB绳水平.现保持O点位置不变,改变OB 绳长使绳端由B点缓慢上移至B′点,此时绳OB′与绳OA之间的夹角θ<90°.设此过程中绳OA、OB的拉力分别为FOA、FOB,下列说法正确的是()A.FOA逐渐增大B.FOA逐渐减小C.FOB逐渐增大D.FOB逐渐减小答案解析1.【答案】C【解析】结点O在三个力作用下平衡,受力如图甲所示,根据平衡条件可知,这三个力必构成一个闭合的三角形,如图乙所示,由题意知,OC绳的拉力F3大小和方向都不变,OA绳的拉力F1方向不变,只有OB绳的拉力F2大小和方向都在变化,变化情况如图丙所示,则只有当OA⊥OB时,OB绳的拉力F2最小,故C选项正确.2.【答案】A【解析】木板静止,所受合力为零,所以F1不变,将两轻绳各减去一小段,木板再次静止,两绳之间的夹角变大,木板重力沿绳方向的分力变大,故F2变大,正确选项A.3.【答案】B【解析】以两个小球组成的整体为研究对象,分析受力,作出F在三个方向时整体的受力图,根据平衡条件得知:F与F T的合力与重力总是大小相等、方向相反,由力的合成图可知,当F与绳子oa垂直时,F有最小值,即图中2位置,F的最小值根据平衡条件得:F=2mg sin 60°=mg;故选B.4.【答案】B【解析】以结点O为研究对象进行受力分析如图(a).由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a).由图可知水平拉力增大.以环,绳和小球构成的整体作为研究对象,作受力分析图如图(b).由整个系统平衡可知:F N=(mA+mB)g;F f=F.即F f增大,F N不变,故B正确.5.【答案】C【解析】如图所示,小球受三个力而处于平衡状态,重力mg的大小和方向都不变,绳子拉力F T方向不变,因为绳子拉力F T和外力F 的合力等于重力,通过作图法知,当F的方向与绳子方向垂直时,由于垂线段最短,所以F最小,则由几何知识得θ=30°.故C正确,A、B、D错误.6.【答案】B【解析】法一(正交分解法):对小球受力分析如图甲所示,小球静止,处于平衡状态,沿水平和竖直方向建立坐标系,将F N2正交分解,列平衡方程为F N1=F N2sinα,mg=F N2cosα可得:球对挡板的压力F N1′=F N1=mg tanα,所以B正确.法二(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg平衡,即等大反向.解三角形可得:F N1=mg tanα,所以,球对挡板的压力F N1′=F N1=mg tanα.所以B正确.法三(三角形法则):如图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mg tanα,故挡板受压力F N1′=FN1=mg tanα.所以B正确.7.【答案】C【解析】先以小球为研究对象,分析受力情况,当柱状物体向左移动时,F N2与竖直方向的夹角减小,由图甲看出,柱状物体对球的弹力F N2与挡板对球的弹力F N1均减小.则由牛顿第三定律得知,球对挡板的弹力F1减小.再对整体受力分析如图乙所示,由平衡条件得知,F=F N1,推力F变小.地面对整体的支持力F N=G总,保持不变.则甲对地面的压力不变.故C正确.A、B、D错误.8.【答案】D【解析】将重物的重力进行分解,当人的拉力方向不变,缓慢向左移动一小段距离,则OA与竖直方向夹角变大,OA的拉力由图中1位置变到2位置,可见OA绳子拉力变大,OB绳拉力逐渐变大;OA拉力变大,则绳拉力水平方向分力变大,根据平衡条件知地面给人的摩擦力逐渐增大;人对地面的压力始终等于人的重力,保持不变.9.【答案】D【解析】对小球受力分析如图(重力mg、支持力F N,绳的拉力F T)画出一簇平行四边形如图所示,当F T方向与斜面平行时,F T最小,所以F T先减小后增大,F N一直增大,只有选项D正确.10.【答案】D【解析】物体在3个力的作用下处于平衡状态,根据矢量三角形法,画出力的矢量三角形,如图所示.其中,重力的大小和方向不变,力F的方向不变,绳子的拉力F T与竖直方向的夹角θ减小,由图可以看出,F随之减小,F f 也随之减小,D正确.11.【答案】B【解析】小球受力如图甲所示,因挡板是缓慢移动,所以小球处于动态平衡状态,在移动过程中,此三力(重力G、斜面的支持力F N、挡板的弹力F)组合成一矢量三角形的变化情况如图乙所示(重力大小方向均不变,斜面对其支持力方向始终不变),由图可知此过程中斜面对小球的支持力不断减小,挡板对小球弹力先减小后增大,再由牛顿第三定律知B对.12.【答案】B【解析】作出球在某位置时的受力分析图,如图所示,在小球运动的过程中,F1的方向不变,F2与竖直方向的夹角逐渐变大,画力的动态平行四边形,由图可知F1、F2均增大,选项B正确.13.【答案】B【解析】对小球受力分析,如图所示,根据物体在三个共点力作用下的平衡条件,可将三个力构建成矢量三角形,随着木板顺时针缓慢转到水平位置,球对木板的压力F N2逐渐减小,墙面对球的压力F N1逐渐减小,故B对.14.【答案】B【解析】对圆柱体Q受力分析如图所示,P对Q的弹力为F,MN对Q的弹力为F N,挡板MN向右运动时,F和竖直方向的夹角逐渐增大,如图所示,而圆柱体所受重力大小不变,所以F和F N的合力大小不变,故D选项错误;由图可知,F和F N都在不断增大,故A、C两项都错;对P、Q整体受力分析知,地面对P的摩擦力大小就等于F N,所以地面对P的摩擦力也逐渐增大.故选B.15.【答案】B【解析】以O点为研究对象,进行受力分析,其中OA绳拉力方向不变,OA绳、OB绳拉力的合力方向竖直向上,大小等于物体的重力,始终不变,根据力的矢量三角形定则可知,FOA逐渐减小,FOB先减小后增大,如图所示,选项B正确,A、C、D错误.。

高一 动态平衡与牛顿运动定律

高一 动态平衡与牛顿运动定律

高一物理讲义动态平衡与牛顿运动定律【知识点】1. 动态平衡物体在几个力的共同作用下处于平衡状态,如果其中的某个力(或某几个力)的大小或方向发生变化时,物体受到的其它力也会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,我们就可以依据平衡条件,分析出物体受到的各力的变化情况。

分析方法:(1)矢量三角形法如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个大小、方向可能变化发生变化的情况。

(2)正交分解法如果物体受到多个作用力处于平衡状态,则先对物体做受力分析,利用正交分解法列平衡方程。

然后再求解各力的变化状态。

【经典例题】1. 如图所示,小球用细绳系住放在倾角为 的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将: A .逐渐变大B .逐渐变小C .先增大后减小D .先减小后增大【经典例题】2. 如图所示,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点并保持位置不变,OB 与竖直方向夹角为θ,悬挂物质量为m 。

求:(1)OA 、OB 、OC 三根绳子拉力的大小 。

(2)A 点向上移动少许,重新平衡后,绳中张力如何变化?【经典例题】3. 如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是:A .地面对人的摩擦力减小B .地面对人的摩擦力增加C .人对地面压力增大D .绳对人的拉力变小【新课讲解】O Aθ(1)一切物体在没有受到力的作用时,总保持或状态,除非作用在它上面的力迫使它改变这种运动状态。

(2)牛顿第一定律实质:惯性定律——惯性大小的唯一量度标准:(3)惯性:是物体保持原来运动状态不变的性质牛顿第一定律揭示了:1.一切物体都具有2.静止状态与匀速运动状态的等价性(仅仅是参考系不同)3.力是物体运动状态的原因。

【经典例题】1. 关于惯性,以下说法正确的是()A.静止的物体没有惯性,运动的物体才有惯性B.物体运动速度越大,其惯性越大C.物体惯性的大小与运动状态有关D.任何物体在任何情况下都有惯性【经典例题】2. 下列现象中,不属于惯性现象应用的是()A.用手用力甩走衣服上的灰尘B.锤头松了,将锤柄在地上撞几下C.运动员采用助跑跳远D.骑自行车时为了减速捏车闸【经典例题】3. 在光滑的水平面上,有一个全封闭的玻璃容器,里面装满水,其底端有一个铅块,当容器突然加速时,铅块相对于容器将()A. 静止不动B. 向前运动C. 向后运动D. 都有可能【经典例题】4. 关于一辆汽车的惯性,下列说法正确的是( )A.汽车的运动速度越来越大,其惯性也越来越大B.汽车静止或做匀速直线运动时才有惯性C.汽车受到的牵引力大小改变时,其惯性大小也改变D.汽车装货的过程,其惯性增大(1) 定义:两个物体之间的作用力和反作用力,总是同时在同一直线上,大小相等,方向相反。

专题03破解矢量三角形在静态平衡和动态平衡中的应用- 冲刺2023年高考物理小题限时集训(解析版)

专题03破解矢量三角形在静态平衡和动态平衡中的应用- 冲刺2023年高考物理小题限时集训(解析版)

03破解矢量三角形在静态平衡和动态平衡中的应用难度:★★★★☆建议用时:30分钟正确率:/121.(2023·武汉模拟)半圆柱体P 放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN 。

在半圆柱体P 和MN 之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图。

现使MN 保持竖直并且缓慢地向右平移,在Q 滑落到地面之前,发现P 始终保持静止,则在此过程中,下列说法正确的是()A.Q 对P 的弹力逐渐增大B.Q 所受的合力逐渐增大C.MN 对Q 的弹力逐渐减小D.地面对P 的摩擦力逐渐减小【答案】A【解析】ABC.对圆柱体Q 受力分析,受到重力、板MN 的支持力N 1和半圆柱体P 对Q 的支持力N 2,如图所示由图可知,随着MN 缓慢向右平移,N 2与竖直方向的夹角不断增大,MN 对Q 的弹力N 1逐渐增大,P 对Q 的弹力N 2逐渐增大,但其所受合力一直为零,故A 正确,BC 错误;D.对PQ 整体受力分析,受到总重力、MN 板的支持力N 1,地面的支持力N 3,地面的静摩擦力f ,如图所示根据共点力平衡条件可知,地面对P 的摩擦力始终等于N 1,所以地面对P 的摩擦力逐渐增大,故D 错误。

故选A。

2.(2022·河北)如图,用两根等长的细绳将一匀质圆柱体悬挂在竖直木板的P 点,将木板以底边MN 为轴向后方缓慢转动直至水平,绳与木板之间的夹角保持不变,忽略圆柱体与木板之间的摩擦,在转动过程中()A.圆柱体对木板的压力逐渐增大B.圆柱体对木板的压力先增大后减小C.两根细绳上的拉力均先增大后减小D.两根细绳对圆柱体拉力的合力保持不变【答案】B【解析】设两绳子对圆柱体的拉力的合力为T ,木板对圆柱体的支持力为N ,绳子与木板夹角为α,从右向左看如图所示在矢量三角形中,根据正弦定理sin sin sin mg N Tαβγ==在木板以直线MN 为轴向后方缓慢转动直至水平过程中,α不变,γ从90︒逐渐减小到0,又180γβα++=︒且90α<︒可知90180γβ︒<+<︒则0180β<<︒可知β从锐角逐渐增大到钝角,根据sin sin sin mg N Tαβγ==由于sin γ不断减小,可知T 不断减小,sin β先增大后减小,可知N 先增大后减小,结合牛顿第三定律可知,圆柱体对木板的压力先增大后减小,设两绳子之间的夹角为2θ,绳子拉力为'T ,则'2cos T Tθ=可得'2cos T T θ=θ不变,T 逐渐减小,可知绳子拉力不断减小,故B 正确,ACD 错误。

用矢量三角形解三力平衡问题

用矢量三角形解三力平衡问题

相似应用
O
T L H
X
B
T
A
G
对小球进行受力分析:
左图中出现了几何三角形, 且几何三角形三条边分别跟 小球受到的三个力方向一致。
建立与几何三角形明显相
F
似的矢量三角形,如图
由比例关系知:
G T HL
L 不变, 则 T 不变;
G F X 减小, H X 则 F 减小。
F
矢量三角形与圆的知识结合
如图,一个小物块静止的放 在长木板上,现缓慢增大木 板与水平方向的夹角,假设 物块始终相对木板静止。试 利用矢量三角形判断物块所 受支持力 FN 和摩擦力 f 大小 的变化情况。
对小球进行受力分析:
T
H
L
左图中出现了几何三角形, 且几何三角形三条边分别跟 小球受到的三个力方向一致。
FN
建立与几何三角形明显相 似的矢量三角形,如图
R
T
由比例关系知:
G T L 减小, H L 则 T 减小;
G FN R 不变,
G
FN H R 则 FN 不变。
相似应用
O
A
如图,A球固定于空间一点,B 球用不可伸长的绝缘轻线拴住, 悬挂于A球正上方的O点,两球 因带有同种电荷而互相排斥,斥 力方向沿两球连线方向。随着时 间的推移,两球因电量损失而缓 B 慢靠近,试判断在两球缓慢靠近 的过程中,绳对小球的拉力 T 和 A对B的斥力 F 大小变化情况。
FNf Βιβλιοθήκη NG f对物块进行受力分析: 不难看出:随着挡板倾角的增大, FN 和 f 的方向都会随着变化,不 过,FN 和 f 的夹角始终是90º。
构建矢量三角形,如图
可见,FN 一直减小, f 一直增大。

(完整版)力学动态平衡专题

(完整版)力学动态平衡专题

力学动态平衡专题一、矢量三角形法特点:物体受三个力作用,一为恒力,大小、方向均不变(通常为重力,也可能是其它力);一为定力,方向不变,大小变化;一为变力,大小、方向均发生变化。

分析技巧:正确画出物体所受的三个力,先作出恒力F3,通过受力分析确定定力F1的方向,并通过F3作一条直线,与另一变力F2构成一个闭合三角形。

看这个变力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形长短的变化对应力的变化。

1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中()A.N1始终增大,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大3. 质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图1所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B. F逐渐变大,T逐渐变小B.F逐渐变小,T逐渐变大 D. F逐渐变小,T逐渐变小4.如图所示,小球用细绳系住,绳的另一端固定于O点。

现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是()A、FN保持不变,FT不断增大B、FN不断增大,FT不断减小C、FN保持不变,FT先增大后减小D、FN不断增大,FT先减小后增大二、相似三角形法特点:物体所受的三个力中,一为恒力,大小、方向不变(一般是重力),其它两个力的方向均发生变化。

矢量三角形在(动态)平衡问题中的应用(共14张PPT)

矢量三角形在(动态)平衡问题中的应用(共14张PPT)

Thanks!

FN 1

F1

2
F2

G
F1=mgtan;
G
FN=mg/cos
F2=mgsin ;FN=mgcos
案例2.
如图所示,轻绳AO和BO共同吊起质量为m的重 物。AO 与BO垂直,BO与竖直方向的夹角为,OC连 接重物, 则 ( AC ) A. AO所受的拉力大小为mgsin B. AO所受的拉力大小为mg/sin C. BO所受的拉力大小为mgcos D. BO所受的拉力大小为mg/cos
解: 原来每根木棍受到的弹力为N,则摩擦力为f=μN, 圆柱工件P受到推力F作用匀速运动, 所以2f=2μN=F,f= F/2, 当间距稍微减小一些后,每根木棍 受到的弹力N'减小(如图示), 则摩擦力f'=μN' 减小, N' N' N N C A A' mgC'
故AB棍受到的摩擦力一定小于F/2,CD错; 工件P受到的摩擦力2 f' <F,圆形工件P向右做 加速运动,A错B正确。
D
FOB FOA

FOC=G
案例4. 如图所示,保持 不变,将B点向上移,则BO绳的 拉力将( C ) A. 逐渐减小 B. 逐渐增大 C. 先减小后增大 D. 先增大后减小
A

B O C

G 图19
N
G F
案例5、如图5所示,光滑大球固定不动,它的正上方有一个 定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接, 并绕过定滑轮,当人用力F缓慢拉动细绳时,小球所受支持 力为N,则N,F的变化情况是( ) A、都变大; B、N不变,F变小; C、都变小; D、N变小,F不变。

动态平衡—矢量三角形和相似三角形

动态平衡—矢量三角形和相似三角形

动态平衡一、矢量三角形解动态平衡问题操作步骤:1、物体在三力作用下保持平衡;2、找出大小和方向不变的力(常为重力)做为剩余两力合力需抵消的力;3、画出剩余两力以及两力的合力,按题目要求移动物体,发现其中一力 方向肯定不变,另一力在转动,通过矢量三角形观察两力的变化情况。

例一、(2012全国高考)如图,一小球放置在木板与竖直墙面之间。

设墙面对球的压力大小为N 1,球对木板的压力大小为N 2。

以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中( )A. N 1始终减小,N 2始终增大B. N 1始终减小,N 2始终减小C. N 1先增大后减小,N 2始终减小D. N 1先增大后减小,N 2先减小后增大解析:对小球进行受力分析,小球在三力作用下保持平衡;找出大小和方向不变的力即重力,该力为剩余两力合力需抵消的力;画出剩余两力以及两力的合力,其中一力方向肯定不变(N 1力),按题目移动另一力(逆时针移动N 2),通过移动发现N 1和N 2都始终减小,选B 。

N 1 mg N 2 mg N 1 N 2重G 的光滑小球静止在固定斜面和竖直挡板之间,若挡板逆时针缓慢转动到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1,F 2各如何变化?例二、在固定于地面的斜面上垂直安放了一个挡板,截面为四分之一圆的柱状物体甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与斜面接触而处于静止状态,如图所示,现在从球心O 1处对甲施加一平行于斜面向下的力F ,使甲沿斜面方向极其缓慢地移动,直至甲与挡板接触为止。

设乙对挡板的压力为F 1,甲对斜面的压力为F 2,在此过程中F 1、F 2如何变化?解析:对乙球进行受力分析,发现小球在三力作用下受力平衡;找出大小和方向不变的力即重力,那该力需剩余两力的合力来抵消;画出剩余两力以及两力的合力,按题目要求移动一下物体,发现力N 1的方向不变,力N 2做顺时针转动,所以力N 1逐渐减小,N 2先减小后增大。

动态平衡问题

动态平衡问题
A.第一次轻绳的拉力逐渐增大 B.第一次半圆环受到的压力逐渐减小
C.小圆环第一次在 N 点与第二次在 N 点时,轻Байду номын сангаас的拉力相等 D.小圆环第一次在 N 点与第二次在 N 点时,半圆环受到的压力相等
针对训练 1、(2021·安徽合肥高三质检)如图所示,两小球 A、B 固定在一轻质细杆的两端, 其质量分别为 m1 和 m2.将其放入光滑的半圆形碗中,当细杆保持静止时,圆的半径 OA、OB 与竖直方向夹角分别为 30°和 45°,则 m1 和 m2 的比值为( A )
动态平衡问题
一.动态平衡
是指平衡问题中的一部分力是变力,是动 态力,力的大小和方向均要发生变化,所 以叫动态平衡。
基本思路:
化“动”为“静”,“静”中求“动”。
二、解决动态平衡方法
1、图解法:图解法分析物体动态平衡问题时,一般物体只受三个 力作用,且其中一个力大小、方向均不变,另一个力的方向不变, 第三个力大小、方向均变化. (1)用力的矢量三角形分析力的最小值问题的规律:
(1)特点:往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生 变化,则此时用力的矢量三角形与空间几何三角形相似。相似三角形法是解平衡 问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和几何 三角形相似,可利用相似三角形对应边成比例进行计算,注意:构建三角形时可 能需要画辅助线。
程中( C )
A.球对 BC 边的压力一直增大 B.球对 BC 边的压力一直减小 C.球对 BC 边的压力先增大后减小 D.球对 BC 边的压力先减小后增大
针对训练 1.(2021·辽宁模拟)(多选)如图所示,处于竖直平面内的正六边形 ABCDEF,可绕 过 C 点且与平面垂直的水平轴自由转动,该金属框架的边长为 L,中心记为 O,用两根不可 伸长、长度均为 L 的轻质细线将质量为 m 的金属小球悬挂于 A、E 两个顶点并处于静止状 态.现顺时针缓慢转动框架,转过 90°角,重力加速度为 g,在整个转动过程中,下列说法 中正确的是( BD ) A.细线 OA 中拉力的最大值为 mg B.细线 OE 中拉力的最大值为2 3 3mg C.细线 OA 中拉力逐渐增大 D.细线 OE 中拉力逐渐减小

【方法详解】利用矢量三角形解决高中物理动态平衡与矢量极值等问题

【方法详解】利用矢量三角形解决高中物理动态平衡与矢量极值等问题

平衡问题:物体不受力或所受合外力为零,这是物体处于平衡的条件。

解决此类问题的方法很多,包括正交分解法、矢量三角形法、相似三角形法、利用拉密定理……矢量三角形:矢量合成的平行四边形定则可以用矢量三角形法则来等效替代。

把代表两个分矢量的有向线段首尾相连,则合矢量就从第一个矢量的起点到第二个矢量的末端。

以此类推,若一个物体在三个共点力作用下处于平衡状态,则代表三个力的有向线段必定构成封闭三角形。

利用矢量三角形法在处理三力平衡问题和两力的加速(减速)问题时是非常方便的,像摩擦角这样四力动态平衡问题,用起来也很方便!尤其是动态平衡中求极值的问题迅速得到解决,而且非常直观。

解决动态平衡的一般步骤如下:①确定研究对象;②分析对象状态和受力情况,画出示意图;③将各力首尾相连,画出封闭的矢量三角形;④根据题意,画出动态变化的边角关系;⑤确认未知量变化情况。

一、两力作用下的动力学问题例1、如图所示,固定的斜面A和放在斜面上的楔形木块B的倾角均为θ=30°,已知斜面A的上表面和木块B的表面均光滑,木块B 的质量为M,上面放有质量为m的小球C,当用平行于斜面的力F 作用在木块上时,木块B和小球C保持相对静止,求推力F及木块B对小球C的弹力的大小。

解析:解决动力学问题,先对物体进行受力分析。

选择小球为研究对象,小球受到重力和B对小球的支持力(两个力),作加速运动;选择整体为研究对象,小球和木块受到重力,支持力和推力。

根据条件,小球和木块加速度相同,根据牛顿第二定律,解决此题的关键是求出木块B和小球C保持相对静止时的加速度大小。

由于小球与木块相对静止,故小球C受到的合力方向必定和木块B 的加速度的方向相同(平行于斜面),即沿斜面向下。

用三角形法则作出小球受到的合力(N与G的箭头收尾相连,以便画出合力),如图所示。

由于弹力N的方向与木块B的上表面垂直,因此弹力的方向与竖直方向的夹角为60°,不难看出,矢量三角形为等边三角形,即N=ma=mg,小球的加速度大小为g,以球和木块整体为对象,由牛顿第二定律可知解得推力的大小为:二、三力作用下的动态平衡问题例2、如图所示,光滑的小球静止在斜面和竖直放置的木板之间,已知球重为G,斜面的倾角为θ,现使木板沿逆时针方向绕O点缓慢转动,求小球对斜面和挡板的压力怎样变化?解析:选择小球为研究对象,分析小球受力如图所示,小球受重力G、挡板的支持力N1和斜面的支持力N2,小球在这三个力的作用下处于平衡状态,这三个力可构成矢量三角形(如上图)。

高中物理—共点力的平衡(二)

高中物理—共点力的平衡(二)

一、矢量三角形法如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。

反过来,如果物体受到n个共点力而平衡,则n个力可以首尾相接组成一个封闭多边形。

例如物体受三个力的平衡,则力可以构成封闭三角形。

二、三力平衡的解题技巧1、物体仅在非平行的三个力的作用下处于平衡状态,则这三个力的作用线或作用线的延长线必相交于一点,运用这一规律再结合平行四边形法、矢量三角形法等求解.2、对于三力平衡,若给出有关边的长度,通常寻找的是一个矢量三角形与一个几何三角形相似,利用相似比可求解未知力。

考点一:利用矢量三角形法求解动态平衡问题【例1】如图所示,用细绳AB悬吊一质量为m的物体,现在AB中某一点。

处用力F拉细绳,使细绳的AO部分偏离竖直方向的夹角为θ,且保持平衡,适当调节F的方向,可使F最小而θ保持不变,则F的最小值为()A.mg sinθB.mg cosθC.mg tanθD.mg cotθ【难度】★★课堂练习知识点一:矢量三角形法知识点讲解共点力的平衡(二)【答案】A【总结】矢量三角形法的适用题型:①物体受三力平衡;②一个力大小方向均不变;③一个力方向始终不变【例2】如图所示,一半径为R的光滑半球固定在水平面上,在其球心O的正上方固定一个小定滑轮,细线的一端拴一小球,另一端经过定滑轮。

如果缓慢地将小球从A点拉到B点之前的过程中,试分析小球受到半球对它的支持力N和细线拉力T如何变化?【难度】★★【答案】支持力不变;细线拉力变小【解析】由于小球从A点缓慢拉至B点的过程中总是处于三力作用下的动态平衡状态,因此,小球所受力的矢量三角形与几何三角形相似,如图所示可知:G N T OC R AC==得:RN GOC=;ACT GOC=由于只有AC的长度在变小,其他线段的长度不变.故小球受到半球的支持力N不变,细线拉力T变小【总结】相似三角形的适用题型①物体受三力平衡;②一个力大小方向均不变;③其余两力方向均在改变;④图中有明显三角形,且三力方向与图中三角形三边平行【例3】如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变(α>90°),物体保持静止状态,在旋转过程中,设绳OA的拉力为F1,绳OB的拉力为F2,则()(多选)A.F1先减小后增大B.F1先增大后减小C.F2逐渐减小D.F2最终变为零【难度】★★【答案】BCD【解析】取绳子结点O为研究对象,受到三根绳的拉力,如图所示分别为F1、F2、F3,将三力构成α矢量三角形(如图所示的实线三角形CDE ),需满足力F 3大小、方向不变,∠CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关系可以从以DE 边为直径的圆中找,则动态矢量三角形如图中一画出的一系列虚线表示的三角形。

高一高三物理-动态平衡之矢量三角形

高一高三物理-动态平衡之矢量三角形
A
B C
精题讲解
(多选)半圆柱体P放在粗糙的水平地面上,质量为M的光滑小物块在水平力
F的作用下,缓慢地沿P的上表面向上滑的过程中, 如图所示是这个装置的
纵横截面图.在此过程中, P始终保持静止,下列说法正确的是 ( BC )
A.F逐渐增大
B.P对M的弹力逐渐减小
C.地面对P的弹力不变 D.地面对P的摩擦力不变
精题讲解
(2016·全国丙卷·17)如图所示,两个轻环a和b套在位于竖直面内的一段固
定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间
的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计
所有摩擦.小物块的质量为( C )
m
3
A. 2
B. 2 m
C.m
D.2m
精题讲解
表述正确的是( B )
A.FA一定小于运动员的重力G B.FA与FB的合力始终大小不变 C.FA的大小保持不变 D.FB的大小保持不变
精题讲解
如图所示,在一根水平直杆上套着两个轻环,在环下用两根等长的轻绳拴 着一个重物.把两环分开放置,静止时杆对a环的摩擦力大小为Ff,支持力
为FN.若把两环距离稍微约缩短一些,系统仍处于静止状态,则( C )
动态平衡之矢量三角形
本节学习内容
动态平衡:物体处于一系列的平衡状态中,此过程中外力在发生变化, 但合力始终为零。变化的外力一般是被动力(微变弹力、静摩擦力)。 力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力 的作用线必在同一平面上,而且必有共点力。 解决问题的关键:在变中找到不变。 1.基本思路:化“动”为“静”,“静”中求“动”。 2.哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。 3.正确判断力的变化方向及方向变化的范围。 4.力的方向在变化的过程中,力的大小是否存在极值问题。

共点力的动态平衡应用矢量三角形法 物理人教版(2019)必修第一册

共点力的动态平衡应用矢量三角形法 物理人教版(2019)必修第一册

分别系于固定圆环上的A、B两点,O点下面悬挂一物体M,
F2
绳OA水平,拉力大小为F1,绳OB与OA的夹角α=120°,拉
力大小为F2,将两绳同时缓慢顺时针转过75°,并保持两绳
F1
之间的夹角α始终不变,且物体始终保持静止状态。则在旋转
过程中,下列说法正确B是(C )
A.F1逐渐增大
B.F1先增大后减小
F1
G F2
【练3】如图所示,粗糙水平面上放有截面为1/4圆周的柱状物 体A,A与墙面之间放一光滑的圆柱形物体B,对A施加一个水平 向左的力F,使A缓慢地向左移动少许,在这一过程中 ( C ) A.B受到的合力减小 B.A对B的弹力增大 C.墙壁对B的弹力减小 D.墙壁对B的弹力先增大后减小
【练4】竖直放置的“ ”形支架上,一根不可伸长的轻绳通过
适用题型:有一恒力,另外两个力方向在变
【练1】如图所示,光滑的圆形轨道传过小
球,小球在绳子的拉力作用下沿轨道滑动,
F
C
B
分析小球从A到B滑动过程中小球受到的拉力
F和轨道对小球的弹力N变化情况。
A、F增大,N增大
O
A
B、F减小,N增大 C、F减小,N不变
Fபைடு நூலகம்
N
D、F先减小后增大,N一直减小
G
S
几何三角形OAC 力三角形GNF 根据相似三角形对应边成比例关系
C.F2逐渐减小
D.F2先增大后减小
G
课堂小结
解决动态平衡问题常用的几种方法: 1.图解法--矢量三角形法 2.相似三角形法
适用于:有一恒力,另外两个力方向在变
方法二:相似三角形
[例1]半径为 R 的球形物体固定在水平地面上,球心正上方

矢量三角形法 物理

矢量三角形法 物理

矢量三角形法物理矢量三角形法是物理学中用于解决力的平衡和合成的方法之一。

在物理学中,力可以用矢量来表示,具有大小和方向。

矢量三角形法通常用于分析多个力的合成或分解,以便求解物体的平衡或运动问题。

首先,让我们来看看如何使用矢量三角形法来解决力的合成问题。

假设有两个力F1和F2,它们的大小和方向分别为A和B。

要求这两个力的合力,可以使用矢量三角形法。

首先将F1和F2的起点放在同一个点上,然后按照力的大小和方向在起点处画出F1和F2的向量,然后将它们的终点连接起来,得到一个三角形。

这个三角形的对角线就是F1和F2的合力的大小和方向。

其次,矢量三角形法也可以用于解决力的分解问题。

假设有一个力F,我们需要将它分解为两个分力F1和F2,使得它们的合力等于F。

可以使用矢量三角形法来进行分解。

首先,在F的起点处画出F的向量,然后在这个向量上选择一个合适的点作为分解方向,画出F1的向量,然后用平行四边形法则来求解F2的向量,使得F1和F2的合力等于F。

除了上述两种情况,矢量三角形法还可以用于求解力的平衡问题。

当多个力作用在物体上时,如果它们的合力为零,则物体处于力的平衡状态。

可以使用矢量三角形法来判断力的平衡情况,将所有的力按照大小和方向画在同一个点上,然后通过矢量三角形法来求解它们的合力,如果合力为零,则物体处于力的平衡状态。

总的来说,矢量三角形法在物理学中有着广泛的应用,可以用于解决力的合成、分解和平衡等问题。

通过合理运用矢量三角形法,可以更好地理解和分析力的作用,为解决物体的平衡和运动问题提供了重要的方法和手段。

矢量三角形解决动态平衡问题

矢量三角形解决动态平衡问题

矢量三角形解决动态平衡问题
在工程力学中,矢量三角形是一种常用的图解法,用于解决动态平衡问题。


态平衡是指物体处于平衡状态,但是受到外部作用力时,物体仍然可以保持平衡。

矢量三角形法可以帮助我们计算物体所需的平衡力。

矢量三角形法的基本原理是根据平衡条件,在力的作用线上绘制三个力的矢量,并按照矢量的几何关系进行合成。

这个过程可以通过将矢量按照规定的比例放置在一个平面上,并按照三角形法则相加得到平衡力。

具体地说,我们可以按照以下步骤进行操作:
1. 绘制力的作用线:根据题目中给出的力的作用线,我们可以在一个力的作用
线上标记出力的方向和大小。

2. 绘制矢量三角形:沿着力的作用线,将已知的力的矢量图形按照比例绘制在
一个平面上。

确保力的起点和终点都位于同一直线上。

这样我们就得到了一个矢量三角形。

3. 求解平衡力:根据矢量三角形法则,将矢量三角形中的各个矢量相加。

通过
计算所有力的矢量之和,我们可以得到所需的平衡力。

该平衡力具有合力和方向,使物体能够保持平衡。

总的来说,矢量三角形法通过图解的方式,将给定的力按比例放置在一个平面上,并通过矢量相加得出平衡力。

这种方法适用于解决动态平衡问题,如悬挂物体、力的合成等。

在解决实际问题时,我们需要根据具体的题目要求和提供的数据,使用矢量三角形法进行计算,以解决动态平衡问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档