高思导引-四年级第十四讲-行程问题二教师版知识讲解

合集下载

高思学校竞赛数学导引(四年级)

高思学校竞赛数学导引(四年级)
第!$讲!!平均数问题
$应用题第#*讲% !!!!!!!!!! &)
第!%讲!!复杂竖式
$数字谜问题第(讲%!!!!!!!!! &$
第!&讲!!横式问题
$数字谜问题第%讲%!!!!!!!!! $(
第!’讲!!格点与割补
$几何问题第’讲% !!!!!!!!! #"#
第!(讲!!行程问题二
$应用题第#)讲%!!!!!!!!!! #"&
)!012"’#(3!" ##/""+!##"#.!#!4!"! "!#&#!)$!!!!!!!!!!!!""#!)#&!
!*!012"’ (3!" #/"##.""+##!4!"! "!#( &$!!!""#& ($!!!"$#"* (# ’$!!!"’#* "( ’#!
$%#
!!!"!"!#-"#"-#&&%",#!!#!"#$!!""#$!#!"!.&&#!"(%"!)))%!"!#!
目 录
!目!录
第 ! 讲!!整数计算综合
$计算问题第(讲% !!!!!!!!!! #
第 " 讲!!数阵图初步
$数字谜问题第)讲% !!!!!!!!! %
第 # 讲!!竖式问题
$数字谜问题第’讲%!!!!!!!!! #’
第 $ 讲!!几何图形剪拼
$几何问题第*讲%!!!!!!!!!! !!

华数思维训练导引 四年级下 行程问题

华数思维训练导引 四年级下 行程问题

华数思维训练导引四年级下行程问题(一)四年级下行程问题(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟答:他走后一半路程用了42.5分钟。

2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。

3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

小学四年级行程问题

小学四年级行程问题

小学四年级行程问题“希望杯”数学竞赛辅导讲义已有1121 次阅读2009-09-11 15:01 标签: 希望杯数学讲义行程小学【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?分析与解:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇.本题是一个典型的相遇问题..例2、如右下图有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米分析与解:这是一道环形路上追及问题。

在追及问题问题中有一个基本关系式:追击路程=速度差×追及时间。

追及路程:10+6=16(米)速度差:5-4.5=0.5(米)追击时间:16÷0.5=32(秒)甲跑了5×32÷[(10+6)×2]=5(圈)答:甲跑了5圈。

例3、一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?分析与解:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时(45+15)千米;中午12点两车相遇时,货车已行了(12—6)小时,而客车已行(12—6-2)小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离.解:①甲、乙两地之间的距离是:45×(12—6)+(45+15)×(12—6—2)=45×6+60×4=510(千米).②客车行完全程所需的时间是:510÷(45+15)=510÷60=8.5(小时).③客车到甲地时,货车离乙地的距离:510—45×(8.5+2)=510-472.5=37.5(千米).答:客车到甲地时,货车离乙地还有37.5千米.例4、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长?分析与解:首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟10米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大(10+15)米,因此,14秒结束时,车头与乘客之间的距离为(10+15)×14=350(米).又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14秒内所走的路程之和.解:(10+15)×14=350(米)答:乙车的车长为350米.例5、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?分析与解:解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止.因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和.因此,错车时间就等于车长之和除以速度之和。

北师大版 2024-2025学年四年级数学上册典型例题系列第六单元除法特别篇行程问题【十四大考点】(

北师大版 2024-2025学年四年级数学上册典型例题系列第六单元除法特别篇行程问题【十四大考点】(

篇首寄语我们每位老师都希望把最好的教学资料留给学生,但面对琳琅满目的资料时,总是费时费力才能找到自己心仪的那份,编者也常常为此苦恼。

于是,编者就常想,如果是自己来创作一份资料又该怎样?再结合自身教学经验和学生实际情况后,最终创作出了一个既适宜课堂教学讲解,又适宜课后作业练习,还适宜阶段复习的大综合系列。

《2024-2025学年四年级数学上册典型例题系列》是基于教材知识点和常年考点真题总结与编辑而成的,该系列主要分为典型例题篇、专项练习篇、单元复习篇、分层试卷篇等四个部分。

1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。

3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精炼高效,实用性强。

4.分层试卷篇,根据试题难度和不同水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。

黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我改进,欢迎您的使用,谢谢!2023年11月1日2024-2025学年四年级数学上册典型例题系列第六单元除法·特别篇·行程问题【十四大考点】专题解读本专题是第六单元除法·特别篇·行程问题。

本部分内容是行程问题,包括普通行程问题、相遇问题、追及问题、火车过桥问题等等,考点和题型偏于应用,题目综合性稍强,建议作为核心内容进行讲解,一共划分为十四个考点,欢迎使用。

目录导航目录【考点一】速度的认识与意义 (3)【考点二】求速度 (4)【考点三】求路程 (5)【考点四】求时间 (6)【考点五】相遇问题:求路程和 (7)【考点六】相遇问题:求相遇时间 (10)【考点七】相遇问题:求速度 (11)【考点八】二次相遇问题 (12)【考点九】中点相遇问题 (13)【考点十】复杂的相遇问题 (14)【考点十一】追及问题:求追及路程 (16)【考点十二】追及问题:求追及时间 (17)【考点十三】追及问题:求追及速度 (18)【考点十四】火车过桥问题 (19)典型例题【知识总览】1.行程问题是小学数学中非常常见的类型题,一般包含三个基本量:(1)路程:一共行了多长的路,一般用米或千米作单位;(2)速度:每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,例如:千米/时、米/分、米/秒等等;(3)时间:行了几小时(分钟)。

学而思奥数模块之行程问题

学而思奥数模块之行程问题

学而思奥数模块之行程问题1、基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是多次返回:按倍数关系走。

⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。

⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。

甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。

已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。

高思奥数导引小学五年级含详解答案第14讲:行程问题五

高思奥数导引小学五年级含详解答案第14讲:行程问题五

第14讲行程问题五内容概述运动过程中,速度的大小或方向有变化的行程问题。

掌握分段计算和估算的方法,注意两个不同运动过程之间的对比与计算。

典型问题兴趣篇1.邮递员早晨7点出发送一份邮件到对面的村里,从邮局开始先走12千米的上坡路,再走6千米的下坡路。

上坡的速度是3千米/时,下坡的速度是6千米/时,请问:(1)邮递员去村里的平均速度是多少?(2)邮递员返回时的平均速度是多少?(3)邮递员往返的平均速度是多少?2.刘老师开车回家,原计算按照40千米/时的速度行驶。

行驶到路程的一半时发现之前的速度只有30千米/时,那么在后一半路程中,速度必须达到多少才能准时到家?3.一辆汽车原计算6小时从A城到B城。

汽车行驶了一半路程后,因故在途中停留了30分钟。

如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么、两城相距多少千米?A B4.甲、乙两人在400米圆形跑道上进行10000米比赛。

两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米。

当甲每次从后面追上乙时,甲的速度就减少1米/秒,而乙的速度增加0.5米/秒,直到乙比甲快。

请问:领先者到达终点时,另一人距终点是多少米?5.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米,在运动过程中它们不断地调头。

如果把出发算作第零次调头,那么相邻两次调头的时间间隔依次是1秒,3秒,5秒,…,即是一个由连续奇数组成的数列。

问:两只蚂蚁爬行了多长时间才能第一次相遇?6.龟兔赛跑,全程1.04千米。

兔子每小时跑4千米,乌龟每小时爬0.6千米。

乌龟不停地爬,但兔子却边跑边玩,兔子先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟……请问:先到达终点的比后到达终点的快多少分钟?7.如图14-1所示,甲、乙两人绕着一个正方形的房子玩捉迷藏。

正方形ABCD的边长为24米,甲、乙都从A点出发逆时针行进。

高思导引的超越篇行程问题算术方法

高思导引的超越篇行程问题算术方法

高思导引的超越篇行程问题算术方法:太平洋号和北冰洋号两艘潜艇在海上沿直线同向潜航,北冰洋号在前,太平洋号在后.在潜航的某个时刻,太平洋号发出声波,间隔两秒后,再次发出声波.当声波传到北冰洋号时,北冰洋号会反射声波.已知太平洋号的航行速度是每小时54千米,第一次和第二次探测到北冰洋号反射的回波的间隔时间是 2.01秒.声波传播的速度是每秒1185米.问北冰洋号潜艇的速度是每小时多少千米?
解析:如图,设太平洋号在A点第一次发出声波,在B点第二次发出声波,随后在C点第一次探测到反射声波,在D点第二次探测到反射声波,M点为第一声波由北冰洋号反射,N点为第二声波由北冰洋号反射。

图中黑色折线表示第一声波的往返,红色折线表示第二声波的往返。

E点为太平洋号在C点第一次探测到反射声波后行驶2秒到达的位置,F点表示太平洋号到达E点时第二声波所到位置。

这样,第一声波从A到M再至B的时间就与第二声波从B到N再至F的时间相同了,即AM+MC=BN+NF。

又因太平洋号由E至D还需行驶2.01-2=0.01秒,第二声波由F至D也需0.01秒,故EF=(15+1185)×0.01=12米。

由上述可知,MN=AB+12÷2=15×2+6=36米,而第二声波应在第一声波到M点2秒后到达M点前方30米处(离N点6米处),这说明北冰洋号从M点行驶至N点的时间为2+6÷1185=2又2/395秒,那么北冰洋号的速度就是36÷2又2/395=17又21/22米/秒=64又7/11千米/小时。

华数思维训练导引四年级下行程问题(二)

华数思维训练导引四年级下行程问题(二)

华数思维训练导引四年级下行程问题(二)1、某解放车队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?分析:从排尾到排头用的时间是450/(3-1.5)=300秒,从排头回排尾用的时间是450/(3+1.5)=100秒,一共用了300+100=400秒答:需要400秒。

2、铁路旁的一条平行小路上,有一行人与一骑车人同进向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米。

这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟。

这列火车的车身总长是多少米?分析:设火车速度是每秒X米。

行人速度是每秒3.6*1000/60*60=1(米),骑车人速度是每秒1.8*1000/60*60=3(米)根据已知条件列方程:(X-1)*22=(X-3)*26,解得:X=14(米),车长=(14-1)*22=286(米)分析2,骑车人速度是行人速度的10。

8/3。

6=3倍,22秒时火车通过行人(设行人这22秒所走的路程为1),车尾距骑车人还有2倍行人22秒所走的路程,即距离2;26秒(即又过4秒)时,火车通过骑车人,骑车人行=4*(3/22)=6/11,火车行2+6/11=28/11,火车与骑车人的速度比为28/11:6/11=14:3;火车速度=14*10.8/3=504千米/小时;火车车长=(50400-3600)*22/3600=286米。

答:这列火车的车身总长是286米。

3、一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与华车从相遇到离开所用的时间。

分析:客车速度是每秒(250-210)/(25-23)=20米,车身长=20*23-210=250米客车与火车从相遇到离开的时间是(250+320)/(20-17)=190(秒)答:客车与火车从相遇到离开的时间是190秒。

小学四年级奥数行程问题之相遇与追及

小学四年级奥数行程问题之相遇与追及

一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识框架相遇与追及三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

例题精讲【例 1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例 2】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

四年级数学行程问题经典辅导

四年级数学行程问题经典辅导

四年级数学行程问题经典辅导行程问题是指匀速运动中有关路程、速度、时间三个数量之间,两个量,求另一个数量的应用题。

行程问题的内容相当广泛,主要包括追及问题、相遇问题、流水问题、火车行程、钟表问题。

小学数学四年级教材中行程问题主要是相遇问题和追及问题。

相遇问题和追及问题是行程问题中的两种根本类型。

在解答行程问题时,要注意所走的方向、是否同时行驶、是否相遇等问题,一般要采用直观画图法帮助理解题意、分析题目中的数量关系,最终找到解题思路.解行程问题必备的根本公式是:路程=速度×时间;路程÷时间=速度;路程÷速度=时间行程问题按运动方向可以分为三类:⑴相向运动问题(或称相遇问题)⑵同向运动问题(或称追及问题)⑶背向运动问题(或称相离问题)【相遇问题】相向运动问题(或称相遇问题):是指两个运动物体〔人或车辆、船只等〕,从两个不同的方向,沿着同一条路线(直道或环形跑道)相对运动,最终相遇的问题。

它的特点是两个运动物体共同走完整个路程。

解答相遇问题的关键在于先求出两个运动物体的“速度和〞,就是两个运动物体在单位时间里共行的路程之和。

即:速度和 = 甲的速度 + 乙的速度相遇问题的关系式是:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和例1:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷〔28+21〕=8〔小时〕答:经过8小时两船相遇。

例2:小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇〞可以理解为二人跑了两圈。

因此总路程为400×2相遇时间=〔400×2〕÷〔5+3〕=100〔秒〕答:二人从出发到第二次相遇需100秒时间。

小学四年级逻辑思维学习—行程基础

小学四年级逻辑思维学习—行程基础

小学四年级逻辑思维学习—行程基础知识定位行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。

行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。

行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度X时间,时间=距离+速度,速度=距离+时间。

在这三个量中,已知两个量,即可求出第三个量。

掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

知识梳理一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(V)和路程(s)这三个基本量,它们之间的关系如下:(1)速度x时间=路程可简记为:s=Vt(2)路程♦速度二时间可简记为:t=s4-v(3)路程♦时间二速度可简记为:v=s+t显然,知道其中的两个量就可以求出第三个量.二平均速度平均速度的基本关系式为:平均速度总路程总时间;总时间总路程平均速度;总路程平均速度总时间。

【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量例题精讲【题目】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【题目】甲、乙两地相距100千米。

下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【题目】小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

(完整版)四年级数学行程问题

(完整版)四年级数学行程问题

行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。

7、小欣家离学校1000米,平时他步行25 分钟后准时到校。

有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。

小学四年级-奥数--行程问题

小学四年级-奥数--行程问题

第二十四讲行程问题—--相遇问题专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果.例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米.如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间.根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟.所以狗共行了500×10=5000米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14讲行程问题二内容概述参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.1.(1)费叔叔沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车.从火车头与费叔叔相遇到火车尾离开他共用了20秒.求火车的速度.(2)小悦沿着一条与铁路平行的公路散步,她散步的速度是每秒2米.这时从小悦背后开来一列火车,从车头追上她到车尾离开她共用了18秒.已知火车速度是每秒17米,求火车的长度.答案:14米/秒270米解析:(1)相遇问题,60米/分=1米/秒300−20=15 15-1=14(2)追击问题,(17-2)⨯18=270米2.(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?答案:25秒220米解析:(1)火车过桥(320+180)−20=25秒(2)20⨯21-200=220米3.一列火车长180米,每秒行20米;另一列火车长200米,每秒行18米.两车相向而行,它们从车头相遇到车尾相离要经过多长时间?答案:10秒解析:火车相遇,路程为两车路程之和(180+200)÷(20+18)=10秒4. 甲火车长370米,每秒行15米;乙火车长350米,每秒行21米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?答案:120秒解析:火车追击,路程为两车路程之和(370+350)÷(21-15)=120秒5.许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进.许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队尾,又需要多长时间?答案:300秒100秒解析:队尾到对头是追击问题450÷(3-1.5)=300秒对头到队尾是相遇问题450÷(3+1.5)=100秒6.甲、乙两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米.坐在甲车上的小坤从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13秒, 问:乙车全长多少米?答案:390米解析:相遇问题,从相遇到离开单位不统一60+48=108千米每时=30千米每秒30⨯13=390米7.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两列火车车尾对齐,同时同方向行进,则9秒后快车超过慢车.请问:快车和慢车的车长分别是多少米?答案:快96米慢72米解析:齐头并进多走的是一个快车的车长(18-10)⨯12=96米车尾对齐多走的是一个慢车的车长(18-10)⨯9=72米8.有甲、乙、丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米. A、B两地相距2700米.甲、乙两人从A、B两地同时出发相向而行,他们出发15分钟后,丙从B 地出发去追赶乙.请问:甲在与乙相遇之后多少分钟又与丙相遇?又过了多少分钟丙才追上乙?答案:6分钟54分钟解析:甲乙相遇时2700÷(40+50)=30分钟这时丙走了15分钟走了15⨯60=900米乙走了50⨯30=1500米,甲丙相距1500-900=600米600÷(40+60)=6分钟(600+50⨯6-60⨯6)÷(60-50)=54分钟9.有甲、乙、丙三人,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米. 如果甲从A地,乙和丙从B地,三人同时出发相向而行.甲和乙相遇后,过了15分钟又与丙相遇.求A、B两地的距离.答案:16500米解析:甲丙相遇的路程是乙比丙多走的路程(60+40)⨯15=1500米1500÷(50-40)=150分钟150⨯(60+50)=16500米10.东、西两城相距75千米.小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西走,每小时行15千米.三人同时动身,途中小辉遇见小强即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑,……这样往返,直到三人在途中相遇为止.请问:小辉共骑了多少千米?答案:90千米解析:小辉行走的时间和两人从出发到相遇的时间是一样的75÷(6.5+6)=6小时6⨯15=90千米拓展篇1.(1)一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?(2)一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒.这个山洞长多少米?答案:4分钟240米解析:(1)火车过桥(2800+400)÷800=4分钟(2)15⨯64-720=240米2.一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.你知道火车有多长吗?它的速度是多少?答案:200米10米/秒解析:从火车车头上桥,到车尾离开桥所走路程是:车长+桥长火车完全在桥上所走路程是:桥长-2个车长所以行走一个车长的距离用(120-80)÷2=20秒行走桥长用的时间是120-20=100秒1000÷100=10米/秒车长为200米3.有一列客车和一列货车,客车长400米,每秒行驶20米;货车长800米,每秒行驶10米.试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?答案:40秒120秒解析:(800+400)÷(20+10)=40秒(800+400)÷(20-10)=120秒4.一列客车和一列货车同向而行,货车在前,客车在后.已知客车通过460米长的隧道用30秒,通过410米长的隧道用28秒.又已知货车长160米,每小时行驶54千米.请问:客车从追上到离开这列货车需要多少秒?答案:45秒解析:通过隧道走的路程都是:车长+桥长460-410=50 30-28=2 速度为50÷2=25米每秒车长为:25⨯30-460=290米54千米每时=15米每秒(290+160)÷(25-15)=45秒5.与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米.这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.请问:这列火车的车身总长是多少米?答案:286米解析:3.6千米每时=1米每秒10.8千米每时=3米每秒(26⨯3-22)÷(26-22)=14 22⨯(14-1)=286米6.人大附小组织学生去春游,队伍行进的速度是每秒2米,宋老师以每秒4米的速度从队尾跑到队头,再回到队尾,共用6分钟.请问:队伍的总长是多少米?答案:540米解析:两次跑的路程是一样的,两次速度分别为2米每秒6米每秒所以去的时候的时间是回来时的三倍6分钟=360秒360÷4⨯6=540米7.阿奇在一条与铁路平行的小路上行走,有一列客车迎面开来,40秒后经过阿奇. 如果这列客车从阿奇的背后开来,60秒后经过阿奇.试问:如果阿奇站着不动,客车多长时间可以经过阿奇?答案:48秒解析:迎面开来是路程和速度和背后开来是路程差速度差40(车速+人速)=60(车速-人速)车速=5人速路程为240人速240÷5=488.一列货车和一列客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小明在客车内沿着客车前进的方向向前走,小明发现货车用140秒就超过了他.已知小明在客车内行走的速度为每秒l米,客车的速度为每秒20米,客车长350米,货车长280米.求货车从追上客车到完全超过客车所需要的时间.答案:210秒解析:小明发现货车用140秒就超过了他,所走路程为货车车长280÷140=2米每秒货车速度为2+20+1=23米每秒(350+280)÷(23-20)=210秒9.甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?答案:32千米每时解析:从甲车和卡车相遇开始计时,乙车和卡车相遇用了一个小时路程和为甲乙两车行走6小时的路程差(52-40)6=72千米72÷1=72千米每时72-40=32千米每时10.甲、乙两人同时从A地出发向B地前进,甲骑车,乙步行.与此同时,丙从B地出发向A地前进.甲骑9千米后与丙相遇,而乙走6千米后就与丙相遇.如果甲骑车的速度是乙步行速度的3倍,求A、B两地的距离.答案:12千米解析:从甲丙相遇时开始计时,再过一段时间乙丙相遇甲的速度是乙速度的三倍所以相同时间内甲走的路程是乙路程的三倍当甲走9千米时乙走3千米所以乙丙速度相同所以甲走9千米时丙走3千米路程为12千米11.甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍.现在甲从A地向B地行进,乙、丙两人从B地向A地行进.三人同时出发,出发时,甲、乙步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新改为步行,三人仍按原来的方向继续前进.试问:三人之中谁最先到达目的地?谁最后到达目的地?答案:丙最先到达,甲最后到达解析:画线段图总路程为四份,丙两份时间到达,甲四份时间到达乙不到四份时间12.A、B两城相距56千米,甲、乙、丙三人分别以每小时6千米、5千米、4千米的速度前进.甲、乙两人从A城,丙从B城同时出发,相向而行.请问:出发多长时间后,乙正好在甲和丙的中点?答案:7小时解析:由分析知乙正好在甲丙中点上时一定是甲丙相遇后的时间,相同时间内,甲走6份路程,乙走5份路程,丙走4份路程甲乙相差1份所以乙丙也相差一份根据容斥原理知道这一份为9份-56=1份所以一份路程为7 时间为7小时超越篇1.米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒,货车超过了它;’另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它.如果客车的长度是货车的2倍,客车的速度是货车的3倍.请问:客车和货车什么时间相遇?两车错车需要多长时间?答案:9:15 15秒米代表米老鼠客代表客车货代表货车解析:在速度上:30(货-米)=12(客+米)÷2 客=3货客=9米货=3米货车长度30(货-米)=30(3米-米)=60米客车车上12(客+米)=120米9:30相遇时米老鼠走了一份路程客车走了9份路程两人共走了10份路程走1:30时米老鼠路程为90米客车路程为810米货车路程为270米全程为900米900÷(270÷90+810÷90)=75分钟8:00+00:75=9:15分(60+120)÷(9+3)=15秒2.货车和客车相向而行,两车在A点迎面相遇,在B点错开,A点和B两点之间的距离为150米.已知客车的长度为450米,速度为每小时108公里,货车的速度为每小时72公里.如果货车比客车长,那么货车的长度是多少?答案:550米解析:108公里每时=30米每秒 72公里每时=20米每秒从相遇到错开客车走的路程为 150+450=600 600÷30=20秒20(30+20)-450=550米3.铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去.14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生.请问:工人与学生将在何时相遇?答案:14时40分解析:碰到工人是追击问题 30÷3.6-110÷15=1米每秒=60米每分碰到学生是相遇问题 110÷12-30÷3.6=65米每秒=50米每分 火车速度为30千米每时=500米每分工人与学生的时间为6(500-60)÷(50+60)=24分钟14时16份+24分=14时40分4.A 、B 两地相距120千米,甲、乙两人分别骑车从A 、B 两地同时相向出发,甲速度为每小时50千米,出发后1小时30分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在c 地追上乙.若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从A 、B 出发相向而行,则甲、乙二人在C 点相遇,问丙的车速是多少?答案:70千米每时解析:第一次相遇可以求出乙的速度为 30千米每时 再过6分钟甲共走了80千米 第二次甲乙两人相遇时间为 120÷(44+36)=1.5时C 距离A 地66千米 追上乙,丙走了80-66=14千米 乙走了14-8=6千米 14÷(6÷30)=70千米每时5.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用6分钟、12分钟、20分钟追上,已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米. 答案:18.4千米每时解析:每次都是速度差,路程差都一样是开始时距离骑车人的距离求出骑车人速度为16千米每时,路程差为0.8千米 慢车速度为18.4千米每时6.快、中、慢三辆车同时从甲地出发开往乙地,与此同时冬冬以每分钟100米的速度沿公路走向甲地.已知快车出发30分钟后在途中遇上冬冬,中车出发35分钟后遇上冬冬.三辆车到达乙地的时候分别用了100分钟、120分钟、150分钟.请问:慢车出发多长时间后可以遇上冬冬?答案:42分钟解析:与上题类似,求出刚开始距离东东的距离即可。

相关文档
最新文档