高思学校竞赛数学导引(四年级)

合集下载

高思导引-四年级-竖式问题教师版汇编

高思导引-四年级-竖式问题教师版汇编

学习-----好资料第5讲竖式问题内容概述以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题。

典型问题兴趣篇1.如图5-1所示,每个英文字母代表一个数字,不同的字母代表不同的数字,其中“G”代表“5”,“A”代表“9”,“D”代表“0”,“H”代表“6”.问:“I”代表的数字是多少?分析:也一定有A+E=HC=4,A+D=D,所以,它们的和一定有进位,所以,、2、F分别是1没有用,所以1、2、3、8B,现在还剩进位,所以E=7I=3.的加法竖式中,不同的汉字代表不同的数字,相同的汉字代)在图5-22. (1 表相同的数字,那么每个汉字各代表什么数字?的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相在图5-3(2)同的数字,那么每个汉字各代表什么数字?分析:,卒=1(1)观察可得:车,马=卒,所以兵=5=0,兵+兵马,所炮=,+1=5,所以马=4炮+=2以炮5240+5210=10450=2=马,所以:兵,=12)观察可得:炮,兵—兵=马,一定有借位,所以马=9,炮—兵(292=929—1221的竖式中,相同的汉字代表相同的3. 在图5-4+如果23+解数字,不同的汉字代表不同的数字,”所代表的三,那么“字++谜=30 数数字谜位数是多少?更多精品文档.学习-----好资料不同的汉字代表不同的数字,每个汉字代表一个数字,图5-5所示的竖式中,4. ”代表的四位数是多少?那么“北京奥运分析:奥++京,北+奥=0,所以可得要进位,所以;京=8 观察可得:北=1,北+京=9 ,运位,所以:奥=0+运=8,所以要进2=1809 北京奥运ABCDE所示的乘法竖式成立,那么5. 已知图5-6是多少?相同的符号代5-7的竖式中,6. (1) 在图表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?的竖式中,相同的符号代表5-8(2) 在图不同的符号代表不同的数字,相同的数字,那么☆、△、○分别代表什么数字?分析:三种可能,因为是三位数5、9,×△=△,所以△=1、)(1△,○=1,☆乘一位数等于四位数,所以1排除,经分析:△=5=2=2 ,○,当△=5时,☆=4、)△=15、6三种可能,排除12 (=3○=5时,△当=6☆,更多精品文档.学习-----好资料7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立.分析:,所以除数9=783(1)除数×=6003 ,所以被除数×6=522=87,8787=69÷6003=2465 5=145,所以被除数8=232,所以除数=29,29×(2)除数×29=85÷2465所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商5-129.在图是多少?分析:三= 除数×7=两位数,除数×另一个一位数,所以除数只能是位数,且三位数的十位上是2 ,9=12614,14×7=98,14×=79所以除数更多精品文档.好资料学习-----后所得乘积恰好是将原来的四位数各位数字顺序910. 有一个四位数,它乘以.颠倒而得的新四位数,求原来的四位数拓展篇不同的汉字代表不同的数字,相同的汉字代表相同的数字,和5-14中,1. 在图5-13. 求出它们使竖式成立的值分析:,四个语、语=5 (1)观察得:巧=1,所以三个英相加得数,进2相加得20,所,向前进2的个位是8,所以英得6 以学=4 以学+学得数个位也是8,所1465+林=7,奥++=6,奥林+匹进2,所以林2 ()观察的奥+林有进1,所以奥6789=83,所以匹,克=9 匹+克进,在这个算式中,相2. 如图5-15不同的同的字母代表相同的数字,、A字母代表不同的数字,那么数字分别是多少?B、C分析:有借位,没有借位,C—BCA=A,—B=B,所以C—AC观察—A=4A=A,所以B=9,所以有借位且,C=8,已知C—B—B=B8、4、9不同的字母表示不同的数在图5-16的竖式中,相同的字母表示相同的数字,3. 字,并且A<B<C<D. 问:竖式中的和是多少?分析:D=5 C=4,,,观察得A=2B=3 2233+3344+4455=10032更多精品文档.学习-----好资料4. 在图5-17的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么“”所代表的七位数是多少?携手上海世博会分析:,个=9,手=0,上观察得,黄金三角:携=1,所=7位数的和肯定要进位,要使进1为,则博,=6位,办海=4,假设百位向前进2以会只能是2,,位,办=5,成立,1094382 ;假设百位向前进3=8当世=3时,在;,成立,1094872=8时,在=3当世小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,5. 阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,小悦原来写的四位数是多少?结果刚好是7826.分析:利用位值原理ABCD+ABC+AB=78261000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826D=1 56-55=1 则当则B=0 C=5时-时当A=778267770=56 7051即一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,6. 再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来. 求原来的三位数的三位数.更多精品文档.学习-----好资料移到左边首位数字前面,所构成44,将这个7. (1) 一个自然数的个位数字是 4倍,那么原数最小是多少?的新数恰好是原数的一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且(2)/4倍,那么原来的五位数是多少这个新的五位数恰好是原数的)(1219782)(中的一个数字,不同的字母2,……908. 如图5-18,每一个英文字母代表,1 、RF分别代表什么数字?、、、代表不同的数字,则字母AQT更多精品文档.学习-----好资料分析:不QAQ×T=1符合题意,当Q=6时为5或6 当Q=5时A=2 .........QTAQ等于T=1 则........AQ×T=AQF=3R=7,Q=5,T=1,A=2,所以“美”三个汉字分别代表三个各不相同的“峡”、中的竖式里,“江”、9. 图5-19. 数字,请把这个竖式写出来分析:=6 ,所以美0,1,5,6中的一个,通过实验排除0,1,5先确定美是□□江,则=×江4或8之一,又因为江峡美或美通过确定江是2 排除,所以江=24或8=8=□□□峡,则峡由于江峡美×峡所示的除法5-2010. 请把如图竖式中空缺的数字补上,其中的商是多少?分析:1 7 则除数个位是7,商的十位数字是=6.........6□□×□□除数的十位数3=×□□□61 则商的个位数字是,7.........6□8 字是更多精品文档.学习-----好资料11. 请把图5-21中的除法竖式补充完整。

高思导引 四年级第五讲 竖式问题教师版教程文件

高思导引 四年级第五讲 竖式问题教师版教程文件

精品文档竖式问题第5讲内容概述并以字母或汉字表示数字的竖式问题,学会选择适当的突破口,便于逐步解决问题;能够将文字叙述的题目转化为数字谜形式,直观地解决问题。

典型问题兴趣篇所示,每个英文字母代表一个数字,不同的字母代表不同的数字,5-11.如图”I问:“.“H”代表“6”A“”代表“9”,“D”代表“0”,其中“G”代表“5”,代表的数字是多少?分析:也一定有,A+E=HA+D=D,所以,它们的和一定有进位,所以C=4,2F分别是1、没有用,所以、2、3、8B、,现在还剩进位,所以E=71I=3.的加法竖式中,不同的汉字代表不同的数字,相同的汉字代5-22. (1)在图表相同的数字,那么每个汉字各代表什么数字?的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相5-3(2) 在图同的数字,那么每个汉字各代表什么数字?分析:,卒1)观察可得:车=1(,马卒,所以兵=5=0,兵+兵=马,所=,,所以马=4炮+炮+1=5=2以炮5240+5210=10450马,所以:兵=2,=1)观察可得:炮,兵—兵=马,一定有借位,所以马=9,炮—兵= (2292=929 1221—的竖式中,相同的汉字代表相同的5-43. 在图+23+解数字,不同的汉字代表不同的数字,如果”所代表的三+谜=30 ,那么“字数+数字谜位数是多少?精品文档.精品文档不同的汉字代表不同的数字,4. 图所示的竖式中,每个汉字代表一个数字,5-5”代表的四位数是多少?那么“北京奥运分析:奥++京,所以可得要进位,所以;京+奥=0=8,北观察可得:北=1,北+京=9 ,运位,所以:奥=0+运=8,所以要进2=1809 北京奥运ABCDE所示的乘法竖式成立,那么是多少?5. 已知图5-6相同的符号代5-7的竖式中,6. (1) 在图表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?的竖式中,相同的符号代表5-8(2) 在图不同的符号代表不同的数字,相同的数字,那么☆、△、○分别代表什么数字?分析:三种可能,因为是三位数5、9,×△=△,所以△=1、)(1△,○=1,☆乘一位数等于四位数,所以1排除,经分析:△=5=2=2 ,○,当△=5时,☆=4、)△=15、6三种可能,排除12 (=3○=5时,△当=6☆,精品文档.精品文档7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立.分析:,所以除数9=783(1)除数×=6003 ,所以被除数×6=522=87,8787=69÷ 6003=2465 5=145,所以被除数8=232,所以除数=29,29×(2)除数×29=85÷ 2465所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商5-129.在图是多少?分析:三= 除数×7=两位数,除数×另一个一位数,所以除数只能是位数,且三位数的十位上是2 ,9=12614,14×7=98,14×=79所以除数精品文档.精品文档后所得乘积恰好是将原来的四位数各位数字顺序910. 有一个四位数,它乘以.颠倒而得的新四位数,求原来的四位数拓展篇不同的汉字代表不同的数字,相同的汉字代表相同的数字,和5-14中,1. 在图5-13. 求出它们使竖式成立的值分析:,四个语、语=5 (1)观察得:巧=1,所以三个英相加得数,进2相加得20,所,向前进2的个位是8,所以英得6 以学=4 以学+学得数个位也是8,所1465+林=7,奥++=6,奥林+匹进2,所以林2 ()观察的奥+林有进1,所以奥6789=83,所以匹,克=9 匹+克进,在这个算式中,相2. 如图5-15不同的同的字母代表相同的数字,、A字母代表不同的数字,那么数字分别是多少?B、C分析:有借位,没有借位,C—BCA=A,—B=B,所以C—AC观察—A=4A=A,所以B=9,所以有借位且,C=8,已知C—B—B=B8、4、9不同的字母表示不同的数在图5-16的竖式中,相同的字母表示相同的数字,3. 字,并且A<B<C<D. 问:竖式中的和是多少?分析:D=5 C=4,,,观察得A=2B=3 2233+3344+4455=10032精品文档.精品文档的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的在图5-174.”所代表的七位数是多少?数字,那么“携手上海世博会分析:,个=9,手=0,上观察得,黄金三角:携=1,所=7位数的和肯定要进位,要使进1为,则博,=6位,办海=4,假设百位向前进2以会只能是2,,位,办=5,成立,1094382 ;假设百位向前进3=8当世=3时,在;,成立,1094872=8时,在=3当世小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,5. 阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,小悦原来写的四位数是多少?结果刚好是7826.分析:利用位值原理 ABCD+ABC+AB=78261000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826D=1 56-55=1 则当则B=0 C=5时-时当A=778267770=56 7051即一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,6. 再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来. 求原来的三位数的三位数.精品文档.精品文档移到左边首位数字前面,所构成44,将这个7. (1) 一个自然数的个位数字是 4倍,那么原数最小是多少?的新数恰好是原数的一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且(2)/4倍,那么原来的五位数是多少这个新的五位数恰好是原数的)(1219782)(中的一个数字,不同的字母2,……908. 如图5-18,每一个英文字母代表,1 、RF分别代表什么数字?、、、代表不同的数字,则字母AQT精品文档.精品文档分析:不QAQ×T=1符合题意,当Q=6时为5或6 当Q=5时A=2 .........QTAQ等于T=1 则........AQ×T=AQF=3R=7,Q=5,T=1,A=2,所以“美”三个汉字分别代表三个各不相同的“峡”、中的竖式里,“江”、9. 图5-19. 数字,请把这个竖式写出来分析:=6 ,所以美0,1,5,6中的一个,通过实验排除0,1,5先确定美是□□江,则=×江4或8之一,又因为江峡美或美通过确定江是2 排除,所以江=24或8=8=□□□峡,则峡由于江峡美×峡所示的除法5-2010. 请把如图竖式中空缺的数字补上,其中的商是多少?分析:1 7 则除数个位是7,商的十位数字是=6.........6□□×□□除数的十位数3=×□□□61 则商的个位数字是,7.........6□8 字是精品文档.精品文档中的除法竖式补充完整。

高思导引-四年级第五讲-竖式问题教师版教程文件

高思导引-四年级第五讲-竖式问题教师版教程文件

第5讲竖式问题内容概述以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题。

典型问题兴趣篇1.如图5-1所示,每个英文字母代表一个数字,不同的字母代表不同的数字,其中“G”代表“5”,“A”代表“9”,“D”代表“0”,“H”代表“6”.问:“I”代表的数字是多少?分析:A+D=D,所以,它们的和一定有进位,所以C=4,A+E=H也一定有进位,所以E=7,现在还剩1、2、3、8没有用,所以B、F分别是1、2,I=3.2. (1)在图5-2的加法竖式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,那么每个汉字各代表什么数字?(2) 在图5-3的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,那么每个汉字各代表什么数字?分析:(1)观察可得:车=1,卒=0,兵+兵=卒,所以兵=5,马+1=5,所以马=4,炮+炮=马,所以炮=25240+5210=10450(2)观察可得:炮=1,兵—兵=马,一定有借位,所以马=9,炮—兵=马,所以:兵=2,1221—292=9293. 在图5-4的竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,如果23+解+数+字+谜=30,那么“”所代表的三数字谜位数是多少?4. 图5-5所示的竖式中,每个汉字代表一个数字,不同的汉字代表不同的数字,那么“”代表的四位数是多少?分析:观察可得:北=1,北+京+奥=0,所以可得要进位,所以;京=8,北+京+奥+运=8,所以要进2位,所以:奥=0,运=9北京奥运=18095. 已知图5-6所示的乘法竖式成立,那么ABCDE是多少?6. (1) 在图5-7的竖式中,相同的符号代表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?(2) 在图5-8的竖式中,相同的符号代表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?分析:(1)△×△=△,所以△=1、5、9,三种可能,因为是三位数乘一位数等于四位数,所以1排除,经分析:△=5,☆=2,○=1(2)△=1、5、6三种可能,排除1,当△=5时,☆=4,○=2当△=6时,☆=5,○=3北京奥运7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立. 分析:(1)除数×9=783,所以除数=87,87×6=522,所以被除数=60036003÷87=69(2)除数×8=232,所以除数=29,29×5=145,所以被除数=2465 2465÷29=859.在图5-12所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商是多少?分析:除数×7=两位数,除数×另一个一位数=三位数,且三位数的十位上是2,所以除数只能是14,14×7=98,14×9=126,所以除数=7910. 有一个四位数,它乘以9后所得乘积恰好是将原来的四位数各位数字顺序颠倒而得的新四位数,求原来的四位数.拓展篇1. 在图5-13和5-14中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出它们使竖式成立的值.分析:(1)观察得:巧=1、语=5,四个语相加得20,进2,所以三个英相加得数的个位是8,所以英得6,向前进2,所以学+学得数个位也是8,所以学=41465(2)观察的奥+林有进1,所以奥=6,奥+林+匹进2,所以林=7,奥+林+匹+克进3,所以匹=8,克=9 67892. 如图5-15,在这个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么数字A、B、C分别是多少?分析:观察C—A=A,C—B=B,所以C—A没有借位,C—B有借位,B—B=B,所以有借位且B=9,C=8,已知C—A=A,所以A=44、9、83.在图5-16的竖式中,相同的字母表示相同的数字,不同的字母表示不同的数字,并且A<B<C<D. 问:竖式中的和是多少?分析:观察得A=2,B=3,C=4,D=52233+3344+4455=100324. 在图5-17的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么“”所代表的七位数是多少?携手上海世博会分析:观察得,黄金三角:携=1,手=0,上=9,个位数的和肯定要进位,要使进1为,则博=7,所以会只能是2,海=4,假设百位向前进2位,办=6,当世=3时,在=8,成立,1094382 ;假设百位向前进3位,办=5,当世=8时,在=3,成立,1094872;5. 小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,结果刚好是7826. 小悦原来写的四位数是多少?分析:ABCD+ABC+AB=7826 利用位值原理1000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826当A=7时7826-7770=56 则B=0 当C=5时56-55=1 则D=1 即70516. 一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来的三位数. 求原来的三位数.7. (1) 一个自然数的个位数字是4,将这个4移到左边首位数字前面,所构成的新数恰好是原数的4倍,那么原数最小是多少?(2) 一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且这个新的五位数恰好是原数的4倍,那么原来的五位数是多少/(1)(2)219788. 如图5-18,每一个英文字母代表0,1,2……9中的一个数字,不同的字母代表不同的数字,则字母A、Q、T、R、F分别代表什么数字?分析:.........Q为5或6 当Q=5时A=2 T=1符合题意,当Q=6时AQ×Q不等于TAQ........AQ×T=AQ 则T=1所以A=2,Q=5,T=1,R=7,F=39. 图5-19中的竖式里,“江”、“峡”、“美”三个汉字分别代表三个各不相同的数字,请把这个竖式写出来.分析:先确定"美"是0,1,5,6中的一个,通过实验排除0,1,5,所以美=6 通过"美"确定"江"是2或4或8之一,又因为江峡美×江=□□江,则4或8排除,所以江=2由于江峡美×峡=□□□峡,则峡=810. 请把如图5-20所示的除法竖式中空缺的数字补上,其中的商是多少?分析:.........6□□×□=6□7 则除数个位是7,商的十位数字是1.........6□7×□=□□61 则商的个位数字是3,除数的十位数字是811. 请把图5-21中的除法竖式补充完整。

四年级下册数学竞赛试题-思维训练导引:第2讲和差倍问题三(无答案)全国通用

四年级下册数学竞赛试题-思维训练导引:第2讲和差倍问题三(无答案)全国通用

第2讲和差倍问题三内容概述数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用比较或分组的方法进行分析的问题。

典型问题兴趣篇1. 有长、短两根竹竿,长竹竿的长度是短竹竿长度的3倍. 将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米. 请问:短竹竿露在外面的长度是多少厘米?2. 李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆中拿出15个放到乙堆中,则两堆零件的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆零件的个数是乙堆的3倍. 问:甲堆原来有零件多少个?李师傅这一天共生产零件多少个?3. 一个六边形广场的边界上插有336面红旗和黄旗. 六边形的每个顶点处都插有红旗,每条边上的红旗数目一样多,并且每两面红旗间插有相同数目的黄旗. 已知每条边上黄旗比红旗的2倍还多12面,那么每两面红旗间插有几面共旗?4. 爸爸和冬冬一起搬砖,爸爸所搬的砖头数是冬冬的3倍. 冬冬觉得自己搬的砖头太少了,又搬了24块砖头,于是爸爸所搬的砖头数是科科的2倍. 请问:最后爸爸和冬冬各搬了多少块砖?5. 四年级三班买来单价为5角的练习本若干. 如果将这些练习本只分给女生,平均每人可得15本;如果将这些练习本只分给男生,平均每人可得10本. 请问:将这些练习本平均分给全班同学,每人可以得到多少本?此时每人应付多少钱?6. 有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人. 如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛?7. 有三个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克. 问:其中最轻的箱子重多少千克?8. 小悦和妈妈一起去家具城挑选客厅的桌椅. 她们看中了两款,这两款桌椅都包含一张桌子和若干把椅子.其中桌子的价钱一样,每把椅子的价钱也一样. 第一款桌椅中有6把椅子,总价为700元;第二款桌椅中有9把椅子,总价为970元. 请问:一张桌子的价钱是多少元?9. 小白兔与小黑兔一块去森林里采摘了一些胡萝卜,回家后它们就把胡萝卜平分了. 小白兔当天吃了4个胡萝卜,小黑兔则一口气吃了12个胡萝卜. 小白免往后每天都吃4个胡萝卜;小黑兔因为第一天吃得太多,往后每天只吃2个胡萝卜,最后它俩同时把自己的胡萝卜吃完. 小白兔与小黑兔一共采摘了多少个胡萝卜?10. 一家汔车销售店有若干部福特汽车和丰田汽车等待销售. 福特汽车的数量是丰田汽车的3倍.如果每周销售2辆丰田汽车和4辆福特汽车,丰田汽车销售完时还剩下30辆福特汽车. 请问:原有丰田汽车和福特汽车各多少辆?拓展篇1. 李师傅将甲、乙两种零件加工成产品,开始时甲零件的数量乙零件的2倍,每件产品需要5个甲零件和2个乙零件,生产30件产品后,剩下的甲、乙零件数量相等,请问:李师傅还可以生产几件产品?2. 学校门口放有红、黄、蓝三种颜色的花. 其中黄花的盆数最多,既是红花盆数的4倍,也是蓝花盆数的3倍,如果蓝花比红花多20盆,请问:学校门口一共有多少盆花?3. 动物园的饲养员给三群猴子分花生. 如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20 粒,试问:现在将这些花生平均分给三群猴子,每只可得多少粒?4. 养鸡场有东、西两院,西院鸡的只数是东院的3倍. 一天有10只鸡从西院跑到东院,这时西院鸡的数是是东院的2倍,那么现在东、西两个院子各有多少只鸡?5. 爸爸和冬冬一起搬砖,原计划爸爸搬其中的一些,冬冬搬剩余的砖头,父子二人发现,如果爸爸帮冬冬搬10块,那么爸爸所搬的砖头数是冬冬的5倍;如果冬冬帮爸爸搬10 块,那么爸爸所搬的砖头数是冬冬的2倍. 请问:原计划爸爸搬多少块砖,冬冬搬多少块砖?6. 甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人. 问:甲班和丁班共多少人?7. 小悦、冬冬、阿奇三人去称体重,由于秤出了点问题,只能准确称出60千克与90千克之间的重量,因此他们三人只能两个两个称重. 如果小悦和冬冬一起称,总重量是73千克;冬冬和阿奇一起称,总重量是80千克;阿奇和小悦一起称,总重量是75千克,三人的体重分别是多少千克?8. 四年级有甲、乙、丙、丁四个班,不算甲班,其余三个数的总人数是131人;不算丁班,其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人. 问:这四个班共有多少人?9. 某学生到工厂勤工俭学,按合同规定,干满30天,工厂将给他一套工作服和70玩钱,但由于学校另有安排,他工作了20天后便中止了合同,工厂只给他一套工作服和20元钱. 请问:这套工作服值多少元?10. 小悦和冬冬看同一本小说,小悦打算第一天看50页,接着每天看15页;冬冬则打算每天看22页,最后两人正好在同一天看完,这本小说一共多少页?11. 某食堂买来的大米的袋数是面粉的4倍,该食堂每天消耗面粉20袋,大米60袋,几天后面粉全部用完,大米还剩下200袋,这个食堂买来大米多少袋?12. 超市运来一批水果糖和巧克力糖,其中水果糖的颗数比巧克力糖的3倍还多10颗,售货员将这些糖包装成相同的小袋,每袋内装了3颗巧克力糖和7颗水果糖,最后巧克力糖全部装完,水里糖还剩下170颗. 请问:这批糖果共有几颗水果糖,几颗巧克力糖?超越篇1. 在一次速算比赛中,每道题的分数是一样的. 前20道题中,小时做对了15道;余下的题中,他做对的题仅是做错的一半,最后一共得了50分. 如果满分是100分,那么小明做对了多少道题?2. 有四个数,其中每三个数的和分别是45、46、49、52,那么这四个数中最小的一个数是多少?3. 小伟和小杰两人玩游戏牌,第一轮过后,小伟赢了小杰13张牌,这时小伟的牌数是小杰的2倍少10张;由于得意忘形,小伟在第二、三轮惨败,输了29张牌,结果小杰的牌数反而是小伟的7倍少10张. 求小伟和小杰原来各有多少张牌?4. 费叔叔买了一台电视机,购买时可以按以下两种方式付款:第一个月付款750元,以后每月付150元;或前一半时间每月付300元,后一半时间每月付100元. 两种付款方式的付款总数及时间都相同.问:这台电视机的价格是多少元?5. 甲、乙、丙三人乘坐飞机,三人所带行李的重量都超过了免费重量,超出部分必须另付行李费. 甲付20元,乙付40元,丙付60元. 三人的行李共重150千克,如果是一个人带这些行李出行,就需要支付240元的超重费用. 请问:每人可以免费携带多少千克的行李?6. 小楠的妈妈买回了若干个桔子和梨,其中桔子的个数是梨的3倍. 如果全家每天吃5个桔子和2个梨,那么一星期后,桔子的个数是梨的4倍少5个. 原来桔子和梨分别有多少个?7. 小真、小想和小看在讨论买《变形金刚》电影票的事,小真现有的钱数是小想的3倍,是小看的2倍.小真说:“如果小想给我15元钱,我就可以买3张电影票小想说:“如果我给小真15元钱,剩下的钱恰好能买3个一样的汉堡。

高思导引四年级第二讲和差倍讲义教师版

高思导引四年级第二讲和差倍讲义教师版

高思导引四年级第二讲和差倍讲义教师版第二讲和差倍问题三1、有长短两根竹竿,长竹竿的长度是短竹竿长度的3倍。

将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米。

请问:短竹竿露在外面的长度是对少厘米?解析:160+40+40=240(厘米)240÷(3+1)=60 60-40=20(厘米)1、李师傅某天生产了一批零件,他把它们分成了甲、乙两堆。

如果从甲堆中拿出15个放入乙堆中,则两堆的零件个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆零件的个数是乙堆的3倍。

问甲堆原来有多少个零件?李师傅这一天共生产零件多少个?解析:15×2=30 30+15×2=60 60÷(3-1)=30 30+15=45(甲)45+30=75(乙)45+75=1202、一个六边形的广场边界上有336面红旗和黄旗。

六边形的每个顶点出都插有红旗,每个边上的数目一样多,并且每两面红旗间插有相同数目的黄旗。

已知每条边上黄旗比红旗的2倍还多12面,那么每两面红旗间插有几面黄旗?解析:336÷6=56 56+1=57 57-12=45 45÷3=15(红)(57-15)÷14=33、爸爸和东东一起搬砖,爸爸所搬的砖头数是冬冬的3倍。

冬冬觉得自己搬的砖头太少了,又搬了24块砖头,于是爸爸所搬的砖头数是冬冬的2倍。

请问:最后爸爸和冬冬各搬了多少块砖?解析:24×2=48(冬冬)48×3=144(爸爸)4、四年级三班买来单价为5角的练习本若干。

如果将这些练习本只分给女生,平均每人可分得15本;如果将这些练习本只分给男生,平均每人可得10本。

请问:将这些练习本平均分给全班同学,每人可以得到多少本?此时每人应付多少钱?解析:赋值法,有30个本30÷(30÷15+30÷10)=6 6×5=30角5、有甲、乙丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人。

高思导引--四年级第二十四-逻辑推理教师版

高思导引--四年级第二十四-逻辑推理教师版

教师版第24讲逻辑推理一兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?答;甲是牧师,乙是赌棍,丙是骗子。

分析;因为牧师不说谎,所有甲是牧师,同理骗子总说谎所有丙是骗子,赌棍有时说真话有时说谎话所以乙是赌棍。

2.有三只盒子一只盒子里装有两个黑球,另一只盒子装有两个白球,还有一只盒子里装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从其中一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?答;先那贴有一黑一白的盒子。

分析;因为三只盒子上的标签全贴错了,所以贴有一黑一白的盒子里一定是两黑或两白,如果从盒子里拿出黑的球,那么盒子里就是两个黑球,贴有两黑的就两白,贴有两白的就是一黑一白,如果从盒子里拿出白球同理如上。

3.费叔叔手里握有两个硬币,他让小悦、冬冬和阿奇猜哪只手握有硬币.小悦说:“左手没有,右手有.”冬冬说:“右手没有,左手有.”阿奇说:“不会两手都没有,我猜左手没有.”结果三个人的话都说对一句,说错一句.请问:费叔叔是怎么握住硬币的?答;两个手都有,分析:小悦说左手没有是对的,那么,冬冬说左手有就是错误的,那么,冬冬说右手没有也就是对了,这样两个手都没有,不符合题意,所以小悦说的右手有是对,冬冬说的左手有为对,阿奇说的不会两手都没有为对,所以费叔叔两个手都有。

4. 甲、乙、丙、丁四位同学的运动衫上印上了不同的号码:赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是1号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.请问:丙的号码是几号?答:丙是4号。

分析;我们知道赵、钱、孙、李每人都只说对了一半.假如赵说甲是2号为对,那么钱说丙是四号就是对的,孙说的3号也为对啦,那么孙说的就和钱说的就互相矛盾啦,所以说的乙为3号为对,那么丙就是四号。

高思导引-四年级十六讲-统筹与对策教师版知识讲解

高思导引-四年级十六讲-统筹与对策教师版知识讲解

精品文档 精品文档 第16 讲 统筹与对策 整理人:张肖 内容概述 生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法. 各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析对一般从简单情形出发进行逆推. 典型问题 1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟. 为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?

答案:16分钟 解析:在试题中,烧开水之前一定要洗开水壶,但是在烧开水的同时,可以把洗茶壶、洗茶杯、拿茶叶三件事都做完。所以根据先洗水壶,然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶,共需要1+15=16分钟。

2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,B理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?

答案:A先理发,然后B,最后C;81分钟 解析:因为理发时间固定,为使所花时间总和最短,则只需三人等待时间最短,因此按照理发时间从短到长的顺序理发,这样A只理板寸,花费7分钟,B等待A并理光头,共花费7+10=17分钟,C等待A、B并烫卷发,共花费7+10+40=57分钟,三人共花费7+17+57=81分钟。

3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱? 精品文档 精品文档 答案:76元

解析:5个一袋的面包单价为8÷5=1.6元,3个一袋的面包单价为5÷3=1.67元,1.6<1.67,所以要尽量多购买5个一袋的面包,同时不要让面包有剩余。47÷5=9……2,2不能被3整除,将两袋5个的与剩余的两个凑成12个,可正好换成4袋3个的,因此需购买7袋5个的和4袋3个的,共花8×7+5×4=76元。

高思导引-四年级第十五讲-加法原理与乘法原理教师版doc资料

高思导引-四年级第十五讲-加法原理与乘法原理教师版doc资料

第15讲加法原理与乘法原理内容概述理解加法原理和乘法原理,体会分类计数与分步计数的区别;能够根据题目条件,对问题进行合理的分类与分步;学习用标数法解决各类路径问题.1.阿奇去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个.他准备找一家餐厅吃饭,一共有多少种不同的选择?【分析】9+3+2=142.阿奇进人一家中餐厅后,发现主食有3种,热菜有20种.他打算主食和热菜各买1种,一共有多少种不同的买法?【分析】3×20=603.老师要求冬冬在黑板上写出一个减法算式,而且被减数必须是两位数,减数必须是一位数,冬冬共有多少种不同的写法?【分析】9×10×10=9004.传说地球上有7颗不同的龙珠,如果找齐这7颗龙珠,并且按照特定顺序排成一行就会有神龙出现.邪恶的沙鲁找到了这7颗龙珠,但是他不知道排列的特定顺序.请问:运气不好的沙鲁最坏要试几次才能遇见神龙?【分析】7×6×5×4×3×2×1=50405.用红、黄、蓝三种颜色给图15-1的三个圆圈染色,一个圆圈只能染一种颜色,并且相连的两个圆圈不能同色,一共有多少种不同的染色方法?【分析】3×2×1=66.在图15—2中,从“北”字开始,每次向下移动到一个相邻的字可以读出“北京奥运会”.那么一共有多少种不同的读法?【分析】2×2×2×2=167.运动会中有四个跑步比赛项目,分别为50米、100米、200米、400米,规定每个参赛者只能参加其中的一项.甲、乙、丙、丁四名同学报名参加这四个项目,请问:(1)如果每名同学都可以任意报这四个项目,一共有多少种报名方法?(2)如果这四名同学所报的项目各不相同,一共有多少种报名方法?【分析】(1)4×4×4×4=256(2)4×3×2×1=248.冬冬的书包里有5本不同的语文书、6本不同的数学书、3本不同的英语书.请问:(1)如果从中任取1本书,共有多少种不同的取法?(2)如果从中取出语文书、数学书、英语书各1本,共有多少种不同的取法?【分析】(1)5+6+3=14(2)5×6×3=909.如图15-3,甲、乙两地之间有4条路,乙、丙两地之间有2条路,甲、丙两地之间有3条路,那么从甲地去丙地一共有多少条不同的路线?【分析】4×2+3=1110.图15-4中有一个从A到B的公路网络,一辆汽车从A行驶到B,可以选择的最短路线一共有多少条?【分析】56拓展篇1.阿奇一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机.经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班.他们乘坐这些交通工具,一共可以有多少种不同的选择?【分析】4+3+2=92.“IMO”是“国际数学奥林匹克”的缩写,要求把这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色.现有五种不同颜色的笔,按上述要求能有多少种不同颜色搭配的“IMO”?【分析】5×4×3=603.书架上有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书各不相同.请问:(1)如果从所有的书中任取1本,共有多少种不同的取法?(2)如果从每一层中各取l本,共有多少种不同的取法?(3)如果从中取出2本不同类别的书,共有多少种不同的取法?【分析】(1)15+10+5=30(2)15×10×5=750(3)15×10+10×5+15×5=2754.如图15-5,从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路.如果要求所走路线不能重复,那么从甲地到丙地共有多少条不同的路线?【分析】3×3+2×4=175.如图15-6,四张卡片上写有数字2、4、7、8.从中任取三张卡片,排成一行,就可以组成一个三位数.请问:一共可以组成多少个不同的三位数?其中有多少个不同的三位奇数?【分析】(1)4×3×2=24(2)3×2=66.奥运场馆实行垃圾分类处理.每个地方放置五个垃圾桶,从左向右依次标明:电池、塑料、废纸、易拉罐、不可再造,如图15-7. 现在准备把五个垃圾桶染成红、绿、蓝这3种颜色之一,要求相邻两个垃圾筒颜色不同,且回收废纸的垃圾桶不能染成红色,一共有多少种染色方法?【分析】2×2×2×2×2=327.如图15-8,把A、B、C、D、E这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?【分析】4×3×2×2×2=968.如图15-9,用红、蓝两种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色.请问:(1)如果每个小圆圈可以随意染色,一共有多少种不同的染法?(2)如果要求关于中间那条竖线左右对称,一共有多少种不同的染法?【分析】(1)92=512(2)72=1289.甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E这五辆不同型号的汽车.会驾驶汽车A的只有甲和乙,汽车E必须由甲、乙、丙三人中的某一人驾驶,则一共有多少种不同的安排方案?【分析】2×2×3×2×1=2410.如图15-10,4枚相同的棋子放人4×4的方格内,每个方格只能放1枚,且要求每行每列最多只能放1枚,一共有多少种不同的放法?【分析】4×3×2×1=2411.图15-11是一个阶梯形方格表,在方格中放入5枚相同的棋子,使得每行、每列中都只有1枚棋子,这样的放法共有多少种?【分析】2×2×2×2×1=1612.如图15-12和图15-13,蚂蚁在线段上爬行,只能按照箭头的方向行走,请问:(1)按图15-12所示,从A点走到B点的不同路线有多少条?(2)按图15-13所示,从A点走到B点的不同路线有多少条?【分析】(1)5种(2)108超越篇1.爸爸、妈妈带阿奇去吃西餐.餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点.如果阿奇想要点1种主食1种主菜,汤和甜点可点可不点,而且种类不限.请问:阿奇一共有多少种点菜方法?【分析】2×3×(1+1+2+1+2+1)=482.如图15-14,在一个3×4的方格表内放人4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放人4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?【分析】(1)3×3×3×3=81(2)3×3×3×3×4×3×2×1=19443.如图15-15,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?【分析】4×3×2×2×2×2×2×2=7684.用4种不同的颜色给图15-16中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?【分析】4×3×2×1+4×3×2+4×3×2+4×3=845.一只甲虫沿着图15-17中的方格线从A爬到曰,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?【分析】66种6.王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工.要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?【分析】3×3+3×3+3×3=277.如图15-18所示,一只小甲虫要从A点出发沿着线段爬到B点,不能重复经过任何点.试问:这只甲虫有多少种不同的走法?【分析】分类枚举法:从A走3段到B ,从A走4段到B从A走5段到B,从A走6段到B,从A走7段到B,共69种8.如图15-19所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?【分析】188。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第!$讲!!平均数问题
$应用题第#*讲% !!!!!!!!!! &)
第!%讲!!复杂竖式
$数字谜问题第(讲%!!!!!!!!! &$
第!&讲!!横式问题
$数字谜问题第%讲%!!!!!!!!! $(
第!’讲!!格点与割补
$几何问题第’讲% !!!!!!!!! #"#
第!(讲!!行程问题二
$应用题第#)讲%!!!!!!!!!! #"&
)!012"’#(3!" ##/""+!##"#.!#!4!"! "!#&#!)$!!!!!!!!!!!!""#!)#&!
!*!012"’ (3!" #/"##.""+##!4!"! "!#( &$!!!""#& ($!!!"$#"* (# ’$!!!"’#* "( ’#!
$%#
!!!"!"!#-"#"-#&&%",#!!#!"#$!!""#$!#!"!.&&#!"(%"!)))%!"!#!
目 录
!目!录
第 ! 讲!!整数计算综合
$计算问题第(讲% !!!!!!!!!! #
第 " 讲!!数阵图初步
$数字谜问题第)讲% !!!!!!!!! %
第 # 讲!!竖式问题
$数字谜问题第’讲%!!!!!!!!! #’
第 $ 讲!!几何图形剪拼
$几何问题第*讲%!!!!!!!!!! !!
第 % 讲!!行程问题一
&!!"!!))#,,.,,#,&+,&#,-.,-#,*+%+’#$.$#"+"#!!
’!5678!)))&9:+;)$ 3<=’>+?3&&+@,)% 3<=’>+?3$ &+@,!$ A% &B-./&
(!CD! !;<=+&,!
! # % ' !#% " $ & "$& ! # % ' !#%' " $ & "$& # % ' !#%'
第"$讲!!逻辑推理一
$组合问题第(讲% !!!!!!!!! #)!
难度星级与答案 !!!!!!!!!! +.+
!
!
"
! ! "#$%&’()
! # $
%
&

!"#$
(
!"#$%&’()*+,-./’0123 #456!&78$9:;<"=>?4@*+AB ()1C’?456!&7AB#DEF#4$’5 6%GHI7$JKLM1!
KLd+’*(,((lm’&%-%&%-%&%&()!qr w&*’+&,./&
Δ
!$!01!’"(3+;7&+&2")’ (3+;&+&2"! K!$"(/()$ (/$!4!"!!"""$ ’"("* -"% !))!"2"&-##
$应用题第#"讲% !!!!!!!!!! !$
第 & 讲!!抽屉原理一
$组合问题第*讲%!!!!!!!!!! *’
第 ’ 讲!!直线形计算一
$几何问题第)讲%!!!!!!!!!! )"
第 ( 讲!!和差倍问题三
$应用题第##讲% !!!!!!!!!! )%
第 ) 讲!!还原问题与年龄问题
$应用题第#!讲% !!!!!!!!!! ’*
N! !
)!EFGHBIJ!"".#"/""+###"".##!!"! ")" &!," ’!&" &!-" ’!*" &!(" ’ % ’""&!"!
!*!!"!,(!#,’,.("#’&!
" #
)
!!!012"’!(3!"!#/"+"#."!!"!
* +
"!#"&!-#!*$
""#&!"-!*#!
"!!"!"!#(((#’’(.((*#’’’$
""#’"#!$-.&)%!(+(&#!$&.-)%!(!
" "
#!!"!")),")),#")),.")),"))&#"))&.")),"))&!
!
! "
! #
$
$!!"!"!#$-#’-+$*#($$
""#!"$#-*.!"’#-(!
% &

(
%!!"!!+".$+’+(.*+-+&.,+%+,-+,&.,,!
第!*讲!!数列与数表
$计算问题第%讲%!!!!!!!!!! ’&
第!!讲!!加法原理与乘法原理
$计数问题第*讲%!!!!!!!!!! ((
" !
高 思 学 校 竞 赛 数 学 导 引 ! 四 年 级
" "
第!"讲!!统筹与对策
$组合问题第)讲%!!!!!!!!!! %*
第!#讲!!多位数与小数
$计算问题第&讲%!!!!!!!!!! &"
第!)讲!!ห้องสมุดไป่ตู้程问题三
$应用题第#’讲%!!!!!!!!!! ##)
第"*讲!!幻方与数阵图扩展
$数字谜问题第&讲% !!!!!!!! #!"
第"!讲!!排列组合
$计数问题第)讲% !!!!!!!!! #!%
第""讲!!计数综合一
$计数问题第’讲% !!!!!!!!! #*!
第"#讲!!最值问题一
$组合问题第’讲% !!!!!!!!! #*%
!"#
"%"&"’"(
!!!"!"!#!"!#$"%&$!!!""#’#""()%&#$!!!"$#"(#&$#$"#!"(!
"!!"!"!#(*#""+(*#$$+(*#’’$!!!""#"""#$$+&&,#**!
#!!"!""(#$+-(+(#!(#%$!
$!!"!!)).,,+,&.,-+,*.,(+%+!".!!+!)!
,
-
.
$
+
/ 0
!"!012"’(3!" #/""+!##"#."#!KL* "$ (#/,!)MN$OPQRST
! N+&
1
2
3
!#!UVWXYZ[’\]^U(&+?_‘)_‘0a-!bc’d1&+)efghi ’-,&jk&lmnoc(p&qr!lm’-(-s5t’+;uSc’+?)vwxyk &+z{7$lm’&(-s|t’+;&c’+?}~)vxyk&+z{7!K!d &+-!,,()lm-’&%-()5 c ’ l m ’&( q k ,,()5 ’ l m ’-( q k,,,(!
" !
)
%!!"!()+’,.’&.’-+’*+’(.’’.’$+%.’.$+"+!!
*
+
,
-
.
$ +
&!!"!"!+$+(+-+%+!,,+")!#.""+’+*+&+%+!,&+"))#!
/
0
!
1
2
3
’!#!$%&!))’()*+&,-./&
(!!"!!+"+$+’+%+’&+’,+()+’,+’&+%+’+$+"+!!
相关文档
最新文档