高思竞赛数学导引 五年级第二十二讲 牛吃草问题与钟表问题学生版
五年级高斯奥数之牛吃草问题与钟表问题含答案

第18讲牛吃草问题与钟表问题内容概述牛吃草问题是一类特殊的工程问题,钟表问题是一类特殊的行程问题.牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取.掌握钟表问题的相关知识,学会将掐针成角度问题转化为指针闻的环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.典型问题兴趣篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.请问:(1)要使得草永远吃不完,最多可以放养多少头牛?(2)如果放养36头牛,多少天可以把草吃完?2.学校有一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量.请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?3.一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?4.有一座时钟现在显示上午10点整,问:(1)多少分钟后,分针与时针第一次重合?(2)再经过多少分钟,分针与时针第二次重合?5.小悦早上6点半起床,赶到学校时发现手表上的时针和分针恰好第一次张开成一条直线,那么小悦到达学校的时间是几点几分?6.阿奇在9点与10点之间开始解一道数学题,当时手表的时针和分针正好成一条直线.当阿奇解完这道题时,时针和分针刚好第一次重合.请问:阿奇解这道题用了多少分钟?7.下午6点多时冬冬吃完晚饭开始看动画片,动画片开始时他看手表,发现时针和分针的夹角为110°.在新闻联播前动画片放完了,冬冬又看手表,发现时针和分针的夹角仍是110°.那么动画片一共放了多少分钟?8.在早晨6点到7点之间有一时刻,钟面上的“6”字恰好在时针与分针的正中央.请问:这一时刻是6点多少分?9.小悦的手表比家里的闹钟走得要快一些.这天中午12点时,小悦把手表和闹钟校准,但当闹钟走到下午1点时,手表显示的时间是1点5分.请问:(1)当闹钟显示当天下午5点的时候,手表显示的时间是几点几分?(2)当手表显示当天下午6点半的时候,闹钟显示的时间是几点几分?10.一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟,现在将两个钟同时调到标准时间,结果在24小时内,快钟显示9点整时,慢钟恰好显示8点整.请问:这个时候的标准时间是多少?拓展篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了,请问:(1)如果放养32头牛,多少天可以把草吃完?(2)要放养多少头牛,才能恰好14天把草吃完?2.进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果有38只羊,把草吃完需要25天;如果有30只羊,把草吃完需要30天.如果有20只羊,这片牧场可以吃多少天?3.一个露天水池底部有若干同样大小的进水管,这天蓄水时恰好赶上下雨,每分钟注入水池的雨水量相同.如果打开24根进水管,5分钟能注满水池;如果打开12根进水管,8分钟能注满水池;如果打开8根进水管,多少分钟能将水池注满?4.把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和24公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃80天?5.一个时钟现在显示的时间是3点整,请问:(1)多少分钟后,时针与分针第一次重合?(2)再经过多少分钟后,时针与分针第一次张开成一条直线?6.在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?7.小悦晚上去超市买东西,到的时候是7点24分,买完出来的时候仍然是7点多,且分针和时针所夹的角度与到超市时相同,请问:小悦出来的时候是7点几分?买东西一共花了多少分钟?8.图22-1中是一个特殊的钟,分针每80分钟走一圈,分针走8圈时针就走一圈,从分针与时针重合开始,到分针与时针第三次成直角需要多少分钟?9.小明上了一节课,时间不到l小时,他发现下课时与上课时手表上时针与分针的位置刚好对调.请问:这一堂课上了多少分钟?10.在早晨6点到7点之间有一个时刻,钟面上的数字“5”恰好在时针与分针的正中央,请问:这时是6点几分?11.(1)小悦的闹钟比标准时间每小时快3分钟.一天晚上11点,小悦把钟校准,并把闹铃定在第二天早上6点.试问:当闹铃响起时,标准时间是几点几分?(2)阿奇的手表比标准时间每小时慢4分钟.一天早上8点,阿奇将表校准,试问:当这只表指向下午3点的时候,标准时间是几点几分?12.如图22.2所示,某科学家设计了一只怪钟,这只怪钟每昼夜10小时,每小时100分钟.当这只钟显示5点时,实际上是中午12点.问:当这只钟第一次显示6点75分时,实际上是什么时间?超越篇1.第一、二、三号牧场的面积依次为3公顷、5公顷、7公顷,三个牧场上的草长得一样密,且生长得一样快.有两群牛,第一群牛2天将一号牧场的草吃完,又用5天将二号牧场的草吃完.在这7天里,第二群牛刚好将三号牧场的草吃完.如果第一群牛有15头,那么第二群牛有多少头?2.钟面上会出现时针与分针重合的情况,也会出现时针与分针关于钟面左右对称的情况.请问:(1)距5点最近的“时针与分针重合”的时刻是几点几分?(2)距5点最近的“时针与分针左右对称”的时刻是几点几分?3.现在的时间在10点与11点之间,如果在6分钟后表的分针的位置恰好与3分钟前时针的位置方向相反,那么现在的时间是几点几分?4.某工厂的一只不准的时钟需要69分钟(标准时间)时针与分针才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作一小时付给工资4元,如果超出规定时间就算加班,加班每小时付给工资6元.如果一个工人照此钟工作8小时,他实际上应得到工资多少元?5.有两只旧钟,分别对它们进行观测,发现一只钟的分针与时针重合一次用64分钟,另一只钟的分针与时针重合一次用66分钟,现在把两只钟都在标准时间0:00校准.试问:当它们再次出现在钟面上同一位置,且分针与时针重合(不一定都指向12点),是几天几小时几分钟之后?6.费叔叔有一只手表和一个闹钟,他发现闹钟每走一个小时,他的手表会多走30秒,但闹钟却比标准时间每小时慢30秒.在今天中午12点费叔叔把手表和标准时间校准,那么明天中午12点时,费叔叔的手表显示的时间是几点几分几秒?7.如图22—3所示,一块正方形草地被分为完全相同的四块以及中间的阴影部分.已知草一开始是均匀分布,且以恒定的速度均匀生长.但如果某块地上的草被吃光,就不再生长(因为草根也被吃掉了).老农先带着一群牛在1号草地上吃草,两天后把1号草地上的草全部吃完(这期间其他草地的草正常生长).之后他让一半牛在2号草地上吃草,另一半在3号草地上吃草,结果又过了6天,这两个草地上的草也全部吃完.最后,老农把31的牛放在阴影草地上吃草,而剩下的牛放在4号草地上,最后发现两块草地上的草同时吃完,如果一开始就让这群牛在整块草地上吃草,那么吃完这些草需要多少天?8.有一只表没有秒针,而且时针和分针无法辨别,在多数情况下可根据两针所指的位置判断出正确的时间,但有时也会出现两种可能,使你判断不出正确的时间,请问:从中午12时到夜里12时这段时间会遇到多少次无法判断的情况?第22讲牛吃草问题与钟表问题内容概述牛吃草问题是一类特殊的工程问题,钟表问题是一类特殊的行程问题.牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取.掌握钟表问题的相关知识,学会将掐针成角度问题转化为指针闻的环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.典型问题兴趣篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.请问:(1)要使得草永远吃不完,最多可以放养多少头牛?(2)如果放养36头牛,多少天可以把草吃完?答案:(1)12头(2)3天分析:设一头牛一天吃1份草,24头牛6天一共吃草:24×6=144份;21头牛8天吃草:21×8=168份。
五年级数学奥数:牛吃草问题练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《五年级数学奥数:⽜吃草问题练习及答案【三篇】》供您查阅。
【第⼀篇】牧场上⼀⽚青草,每天牧草都匀速⽣长.这⽚牧草可供10头⽜吃20天,或者可供15头⽜吃10天.问:可供25头⽜吃⼏天? 分析:这类题难就难在牧场上草的数量每天都在发⽣变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新⽣长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速⽣长,所以这⽚草地每天新长出的草的数量相同,即每天新长出的草是不变的.即: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的. (2)在已知的两种情况中,任选⼀种,假定其中⼏头⽜专吃新长出的草,由剩下的⽜吃原有的草,根据吃的天数可以计算出原有的草量. (3)在所求的问题中,让⼏头⽜专吃新长出的草,其余的⽜吃原有的草,根据原有的草量可以计算出能吃⼏天. 解答:解:设1头⽜1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50. 为什么会多出这50呢?这是第⼆次⽐第⼀次多的那(20-10)=10天⽣长出来的,所以每天⽣长的青草为50÷10=5. 现从另⼀个⾓度去理解,这个牧场每天⽣长的青草正好可以满⾜5头⽜吃.由此,我们可以把每次来吃草的⽜分为两组,⼀组是抽出的15头⽜来吃当天长出的青草,另⼀组来吃是原来牧场上的青草,那么在这批⽜开始吃草之前,牧场上有多少青草呢?(10-5)×20=100. 那么:第⼀次吃草量20×10=200,第⼆次吃草量,15×10=150; 每天⽣长草量50÷10=5. 原有草量(10-5)×20=100或200-5×20=100. 25头⽜分两组,5头去吃⽣长的草,其余20头去吃原有的草那么100÷20=5(天). 答:可供25头⽜吃5天. 点评:解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题中所求的问题. 这类问题的基本数量关系是: 1、(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量. 2、⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草.【第⼆篇】由于天⽓逐渐冷起来,牧场上的草不仅不长⼤,反⽽以固定的速度在减少.已知某块草地上的草可供20头⽜吃5天,或可供15头⽜吃6天.照此计算,可供多少头⽜吃10天? 分析:20头⽜5天吃草:20×5=100(份):15头⽜6天吃草:15×6=90(份);青草每天减少:(100-90)÷(6-5)=10(份);⽜吃草前牧场有草:100+10×5=150(份); 150份草吃10天本可供:150÷10=15(头);但因每天减少10份草,相当于10头⽜吃掉;所以只能供⽜15-10=5(头). 解:①青草每天减少:(20×5-90)÷(6-5)=10(份); ②⽜吃草前牧场有草 10×5+20×5 =50+100, =150(份). ③150÷10-10, =5(头). 答:可供5头⽜吃10天. 点评:此题属于⽜吃草问题,这类题⽬有⼀定难度.对于本题⽽⾔,关键的是要求出青草每天减少的数量.【第三篇】有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管.进⽔管以均匀的速度不停地向这个蓄⽔池注⽔.后来有⼈想打开出⽔管,使池内的⽔全部排光(这时池内已注⼊了⼀些⽔).如果把8根出⽔管全部打开,需3⼩时把池内的⽔全部排光;如果仅打开5根出⽔管,需6⼩时把池内的⽔全部排光.问要想在4.5⼩时内把池内的⽔全部排光,需同时打开⼏个出⽔管? 分析:假设打开⼀根出⽔管每⼩时可排⽔“1份”,那么8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份);两种情况⽐较,可知3⼩时内进⽔管放进的⽔是30-24=6(份);进⽔管每⼩时放进的⽔是6÷3=2(份);在4.5⼩时内,池内原有的⽔加上进⽔管放进的⽔,共有8×3+(4.5-3)×2=27(份).由此解答即可. 解:设打开⼀根出⽔管每⼩时可排出⽔“1份”,8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份). 30-24=6(份),这6份是“6-3=3”⼩时内进⽔管放进的⽔. (30-24)÷(6-3)=6÷3=2(份),这“2份”就是进⽔管每⼩时进的⽔. [8×3+(4.5-3)×2]÷4.5 =[24+1.5×2]÷4.5 =27÷4.5 =6(根) 答:需同时打开6根出⽔管. 点评:此题属于⽜吃草问题,解答关键是把打开⼀根出⽔管每⼩时可排⽔“1份”,进⼀步分析推理求解.。
高思课本对应导引目录

三年级上(二升三暑假&三年级秋季)第1讲乘除法巧算三年级导引第1讲第2讲枚举法中的字典排列三年级导引第3讲第3讲移多补少与等量代换三年级导引第8讲第4讲寻找隐藏周期三年级导引第7讲第5讲植树问题三年级导引第19讲第6讲复杂间隔问题三年级导引第19讲第7讲和倍与和差三年级导引第5讲第8讲归一问题三年级导引第2讲第9讲假设法解鸡兔同笼三年级导引第8讲第10讲分组法解鸡兔同笼三年级导引第8讲第11讲乘法分配律三年级导引第13讲第12讲差倍三年级导引第5讲第13讲多个对象和差倍三年级导引第5讲第14讲树形图三年级导引第14讲第15讲多重周期问题三年级导引第7讲第16讲复杂周期问题三年级导引第7讲第17讲数字趣题三年级导引第23讲第18讲假设法进阶三年级导引第17讲第19讲分组法进阶三年级导引第17讲第20讲等差数列初步三年级导引第9讲第21讲等差数列求和三年级导引第9讲第22讲等差数列应用三年级导引第9讲第23讲基本盈亏问题三年级导引第11讲三年级下(三年级寒假&三年级春季)第1讲和差倍中的隐藏条件三年级导引第15讲第2讲复杂和差倍三年级导引第15讲第3讲假设分组综合提高三年级导引第17讲第4讲数字计数三年级导引第14讲第5讲巧填算符进阶三年级导引第20讲第6讲算符与数字三年级导引第20讲第7讲数阵图初步四年级导引第2讲第8讲盈亏条件的转化三年级导引第21讲第9讲复杂盈亏问题三年级导引第21讲第10讲四则混合运算三年级导引第13讲第11讲简单乘法竖式三年级导引第16讲第12讲简单除法竖式三年级导引第16讲第13讲简单抽屉原理四年级导引第6讲第14讲还原问题四年级导引第9讲第15讲长度计算三年级导引第22讲第16讲角度计算三年级导引第22讲第17讲找位置四年级导引第10讲第18讲阵列问题三年级导引第19讲第19讲几何图形剪拼四年级导引第4讲第20讲思维游戏四年级导引第23讲第1讲整数计算综合四年级导引第01讲第2讲和差倍中的分组比较四年级导引第08讲第3讲基本直线形面积公式四年级导引第07讲第4讲字母竖式四年级导引第03讲第5讲加法原理与乘法原理四年级导引第11讲第6讲相遇问题四年级导引第05讲第7讲追及问题四年级导引第05讲第8讲数列规律计算四年级导引第10讲第9讲统筹规划四年级导引第12讲第10讲游戏策略四年级导引第12讲第11讲整数数列计算四年级导引第01讲第12讲乘法原理进阶四年级导引第11讲第13讲变倍问题四年级导引第08讲第14讲年龄问题四年级导引第09讲第15讲逻辑推理一四年级导引第24讲第16讲多位数巧算四年级导引第13讲第17讲复杂竖式四年级导引第15讲第18讲火车行程初步四年级导引第18讲第19讲火车行程进阶四年级导引第18讲第20讲底高的选取与组合四年级导引第07讲第21讲等积变形四年级导引第07讲第22讲数表规律计算四年级导引第10讲第23讲最值问题一四年级导引第23讲第1讲从洛书到幻方四年级导引第20讲第2讲小数巧算四年级导引第13讲第3讲多人多次相遇与追及四年级导引第18讲第4讲格点图形面积计算四年级导引第17讲第5讲割补法巧算面积四年级导引第17讲第6讲横式问题四年级导引第16讲第7讲平均数问题四年级导引第14讲第8讲复杂数阵图四年级导引第20讲第9讲排列组合公式四年级导引第21讲第10讲排列组合应用四年级导引第21讲第11讲分段计算的行程问题四年级导引第19讲第12讲直线形面积计算综合提高五年级导引第14讲第13讲多次往返相遇与追及四年级导引第19讲第14讲有特殊要求的挑选四年级导引第22讲第15讲捆绑法与插空法四年级导引第22讲第16讲奇偶性分析五年级导引第23讲第17讲牛吃草问题五年级导引第18讲第18讲整数裂项五年级导引第13讲第19讲容斥原理五年级导引第04讲第20讲复杂抽屉原理五年级导引第24讲第1讲整除问题初步五年级导引第2讲第2讲整除问题进阶五年级导引第2讲第3讲质数与合数五年级导引第3讲第4讲环形路线五年级导引第5讲第5讲分数基本计算五年级导引第1讲第6讲直线形计算中的倍数关系五年级导引第14讲第7讲解方程与方程组六年级导引第4讲第8讲分数计算与比较大小五年级导引第1讲第9讲流水行船问题五年级导引第5讲第10讲约数与倍数五年级导引第7讲第11讲分数与循环小数五年级导引第8讲第12讲几何计数五年级导引第6讲第13讲逻辑推理二无对应讲次第14讲公约数与公倍数初步五年级导引第7讲第15讲公约数与公倍数进阶五年级导引第7讲第16讲分数应用题五年级导引第11讲第17讲比例应用题五年级导引第12讲第18讲直线形计算中的比例关系五年级导引第19讲第19讲分数裂项六年级导引第1讲第20讲数字谜综合一五年级导引第10讲第21讲余数的性质与计算五年级导引第16讲第22讲物不知数与同余五年级导引第16讲第23讲工程问题五年级导引第17讲第24讲列方程解应用题六年级导引第4讲第25讲燕尾模型六年级导引第10讲第26讲比较与估算五年级导引第9讲第1讲圆与扇形初步五年级导引第15讲第2讲圆与扇形进阶五年级导引第15讲第3讲行程问题综合一无对应讲次第4讲计算综合一五年级导引第13讲第5讲计数综合一无对应讲次第6讲钟表问题五年级导引第18讲第7讲位值原理五年级导引第21讲第8讲水管问题五年级导引第17讲第9讲立体几何六年级导引第9讲第10讲比例计算与列表分析六年级导引第3讲第11讲正反比例的概念与应用六年级导引第3讲第12讲行程问题中的比例关系六年级导引第14讲第13讲沙漏与金字塔五年级导引第19讲六年级导引第10讲第14讲数论相关的计数五年级导引第22讲第15讲数字谜中的计数五年级导引第22讲第16讲不确定性问题五年级导引第12讲第17讲浓度问题六年级导引第5讲第18讲经济问题六年级导引第5讲第19讲变速行程问题一五年级导引第20讲第20讲行程问题中的分段与比较五年级导引第20讲第1讲比赛中的推理六年级导引第6讲第2讲计算综合二六年级导引第2讲第3讲递推计数六年级导引第12讲第4讲对应计数六年级导引第13讲第5讲进位制六年级导引第19讲第6讲取整问题六年级导引第19讲第7讲不定方程六年级导引第8讲第8讲复杂直线形计算六年级导引第10讲第9讲几何综合六年级导引第11讲第10讲复杂应用题串讲六年级导引第17讲第11讲间隔发车问题六年级导引第14讲第12讲复杂行程问题六年级导引第14讲第13讲概率初步六年级导引第23讲第14讲工程问题综合无对应讲次第15讲整除问题综合无对应讲次第16讲约数与倍数综合无对应讲次第17讲整数型计算综合无对应讲次第18讲最值问题二六年级导引第7讲第19讲计数综合二无对应讲次第20讲计数综合三无对应讲次第21讲数字谜综合二六年级导引第16讲第22讲分数、百分数应用题综合无对应讲次第23讲行程问题综合二无对应讲次第24讲构造论证二六年级导引第22讲第25讲直线形计算综合无对应讲次第26讲应用题综合六年级导引第18讲第1讲浓度与经济问题综合无对应讲次第2讲余数问题综合无对应讲次第3讲分数计算综合无对应讲次第4讲曲线形计算综合无对应讲次第5讲抽屉原理综合六年级导引第24讲第6讲变速行程问题二无对应讲次第7讲计算综合练习第8讲几何综合练习第9讲应用题综合练习第10讲数字谜综合练习第11讲数论综合练习第12讲计数综合练习第13讲组合综合练习第14讲小升初综合模拟测试一第15讲小升初综合模拟测试二第16讲小升初综合模拟测试三第17讲小升初综合模拟测试四第18讲小升初综合模拟测试五第19讲小升初综合模拟测试六第20讲小升初综合模拟测试七第21讲小升初综合模拟测试八第22讲小升初综合模拟测试九。
高思竞赛数学导引-五年级第十二讲-余数学生版资料讲解

第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1. 72除以一个数,余数是7.商可能是多少?2. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4. 4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1) 220除以7的余数是多少?(2) 1414除以11的余数是多少?(3) 28121除以13的余数是多少?7.810888888个⨯⨯⨯++⨯+ΛΛ除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?9.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?10.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.2.(1)4434421Λ42121421421421个除以4和125的余数分别是多少?(2)4434421Λ80821808808808个除以9和11的余数分别是多少?3.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?4.自然数12222267-⨯⨯⨯⨯4434421Λ个的个位数字是多少?5.算式20072007200720072006321++++Λ计算结果的个位数是多少?6.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?7.一个自然数除以19余9,除以23余7.这个自然数最小是多少?8.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?9.4434421Λ123123123123123个除以99的余数是多少?10.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于l 的整数,用它除300、262、205得到相同的余数,求这个数.12.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?超越篇1.从l 依次写到99,可以组成一个多位数12345…979899.这个多位数除以11的余数是多少?2.算式43421ΛΛ72008777777个⨯⨯⨯++⨯+计算结果的末两位数字是多少?3.算式20077531⨯⨯⨯⨯⨯Λ计算结果的末两位数字是多少?4.有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知.0000940909421717!21CD AB 那么四位数ABCD 是多少?8.有一些自然数n ,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n 是2的倍数,请问:这样的,n 中最小的是多少?。
五年级奥数专题 牛吃草问题(学生版)

学科培优数学“牛吃草问题”学生姓名授课日期教师姓名授课时长知识定位牛吃草问题的概念:英国伟大的科学家牛顿,曾经写过一本数学书。
书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”,也就是我们今天要学的牛吃草问题。
牛吃草问题实际上是在教我们一种分析题的思想,这种题的类型和解题思想是小升初的考试热点知识梳理“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
”分析本题就给了牛的头数,和吃草的时间。
设想如果题目给我们操场原有的草量和草的生长速度那么题目就变得简单多了,所以需要我们通过设每头牛每天的吃草速度为“1”来求这两个量。
解决牛吃草问题常用到四个基本公式:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=(牛头数-草的生长速度)×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度【授课批注】关于牛吃草这样的题有很多的变例,像抽水问题,超市开口人等待问题,扶梯行走,行程中的追及问题等等,所以不提倡大家生搬这个公来做题,要理解解题的思路和解题的目的,用画图或列表法来解题。
才能做到举一反三。
本讲主要解决纯牛吃草问题,关于牛吃草变型题我们留下以后解决。
解决“牛吃草”问题的步骤可以概括为三步:1、设定1头牛1天吃草量为“1”;2、列出表格,分别表示牛的数量、时间总量、草的总量(原有总量+一定时间内变化的量),根据表格求出草的生长速度和草的总量;也可以画图来解题。
3、根据每头牛单位时间吃草数量和草的生长速度不变这一关系根据题目要求解题。
【重点难点解析】1.牛吃草关键是要求两个量:(1)草的生长速度(2)原有草量2.牛吃草问题的关键是求出工作总量的变化率【竞赛考点挖掘】1.多种动物参与的牛吃草问题2.多块草地上的牛吃草问题例题精讲【试题来源】【题目】牧场上长满牧草,每天牧草都匀速生长。
五年级第二十二讲-牛吃草问题与钟表问题学生版

第22讲牛吃草问题与钟表问题内容概述牛吃草问题是一类特殊的工程问题,钟表问题是一类特殊的行程问题.牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取.掌握钟表问题的相关知识,学会将掐针成角度问题转化为指针闻的环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.典型问题兴趣篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.请问:(1)要使得草永远吃不完,最多可以放养多少头牛?(2)如果放养36头牛,多少天可以把草吃完?2.学校有一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量.请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?3.一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?4.有一座时钟现在显示上午10点整,问:(1)多少分钟后,分针与时针第一次重合?(2)再经过多少分钟,分针与时针第二次重合?5.小悦早上6点半起床,赶到学校时发现手表上的时针和分针恰好第一次张开成一条直线,那么小悦到达学校的时间是几点几分?6.阿奇在9点与10点之间开始解一道数学题,当时手表的时针和分针正好成一条直线.当阿奇解完这道题时,时针和分针刚好第一次重合.请问:阿奇解这道题用了多少分钟? 答案:11832分7.下午6点多时冬冬吃完晚饭开始看动画片,动画片开始时他看手表,发现时针和分针的夹角为110°.在新闻联播前动画片放完了,冬冬又看手表,发现时针和分针的夹角仍是110°.那么动画片一共放了多少分钟?8.在早晨6点到7点之间有一时刻,钟面上的“6”字恰好在时针与分针的正中央.请问:这一时刻是6点多少分?9.小悦的手表比家里的闹钟走得要快一些.这天中午12点时,小悦把手表和闹钟校准,但当闹钟走到下午1点时,手表显示的时间是1点5分.请问:(1)当闹钟显示当天下午5点的时候,手表显示的时间是几点几分?(2)当手表显示当天下午6点半的时候,闹钟显示的时间是几点几分?10.一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟,现在将两个钟同时调到标准时间,结果在24小时内,快钟显示9点整时,慢钟恰好显示8点整.请问:这个时候的标准时间是多少?拓展篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了,请问:(1)如果放养32头牛,多少天可以把草吃完?(2)要放养多少头牛,才能恰好14天把草吃完?2.进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果有38只羊,把草吃完需要25天;如果有30只羊,把草吃完需要30天.如果有20只羊,这片牧场可以吃多少天?3.一个露天水池底部有若干同样大小的进水管,这天蓄水时恰好赶上下雨,每分钟注入水池的雨水量相同.如果打开24根进水管,5分钟能注满水池;如果打开12根进水管,8分钟能注满水池;如果打开8根进水管,多少分钟能将水池注满?4.把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和25公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃50天?5.一个时钟现在显示的时间是3点整,请问:(1)多少分钟后,时针与分针第一次重合?(2)再经过多少分钟后,时针与分针第一次张开成一条直线?6.在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?7.小悦晚上去超市买东西,到的时候是7点24分,买完出来的时候仍然是7点多,且分针和时针所夹的角度与到超市时相同,请问:小悦出来的时候是7点几分?买东西一共花了多少分钟?8.图22-1中是一个特殊的钟,分针每80分钟走一圈,分针走8圈时针就走一圈,从分针与时针重合开始,到分针与时针第三次成直角需要多少分钟?9.小明上了一节课,时间不到l小时,他发现下课时与上课时手表上时针与分针的位置刚好对调.请问:这一堂课上了多少分钟?10.在早晨6点到7点之间有一个时刻,钟面上的数字“5”恰好在时针与分针的正中央,请问:这时是6点几分?11.(1)小悦的闹钟比标准时间每小时快3分钟.一天晚上11点,小悦把钟校准,并把闹铃定在第二天早上6点.试问:当闹铃响起时,标准时间是几点几分?(2)阿奇的手表比标准时间每小时慢4分钟.一天早上8点,阿奇将表校准,试问:当这只表指向下午3点的时候,标准时间是几点几分?12.如图22.2所示,某科学家设计了一只怪钟,这只怪钟每昼夜10小时,每小时100分钟.当这只钟显示5点时,实际上是中午12点.问:当这只钟第一次显示6点75分时,实际上是什么时间?超越篇1.第一、二、三号牧场的面积依次为3公顷、5公顷、7公顷,三个牧场上的草长得一样密,且生长得一样快.有两群牛,第一群牛2天将一号牧场的草吃完,又用5天将二号牧场的草吃完.在这7天里,第二群牛刚好将三号牧场的草吃完.如果第一群牛有15头,那么第二群牛有多少头?2.钟面上会出现时针与分针重合的情况,也会出现时针与分针关于钟面左右对称的情况.请问:(1)距5点最近的“时针与分针重合”的时刻是几点几分?(2)距5点最近的“时针与分针左右对称”的时刻是几点几分?3.现在的时间在10点与11点之间,如果在6分钟后表的分针的位置恰好与3分钟前时针的位置方向相反,那么现在的时间是几点几分?4.某工厂的一只不准的时钟需要69分钟(标准时间)时针与分针才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作一小时付给工资4元,如果超出规定时间就算加班,加班每小时付给工资6元.如果一个工人照此钟工作8小时,他实际上应得到工资多少元?5.有两只旧钟,分别对它们进行观测,发现一只钟的分针与时针重合一次用64分钟,另一只钟的分针与时针重合一次用66分钟,现在把两只钟都在标准时间0:00校准.试问:当它们再次出现在钟面上同一位置,且分针与时针重合(不一定都指向12点),是几天几小时几分钟之后?6.费叔叔有一只手表和一个闹钟,他发现闹钟每走一个小时,他的手表会多走30秒,但闹钟却比标准时间每小时慢30秒.在今天中午12点费叔叔把手表和标准时间校准,那么明天中午12点时,费叔叔的手表显示的时间是几点几分几秒?7.如图22—3所示,一块正方形草地被分为完全相同的四块以及中间的阴影部分.已知草一开始是均匀分布,且以恒定的速度均匀生长.但如果某块地上的草被吃光,就不再生长(因为草根也被吃掉了).老农先带着一群牛在1号草地上吃草,两天后把1号草地上的草全部吃完(这期间其他草地的草正常生长).之后他让一半牛在2号草地上吃草,另一半在3号草地上吃草,结果又过了6天,这两个草地上的草也全部吃完.最后,老农把31的牛放在阴影草地上吃草,而剩下的牛放在4号草地上,最后发现两块草地上的草同时吃完,如果一开始就让这群牛在整块草地上吃草,那么吃完这些草需要多少天?8.有一只表没有秒针,而且时针和分针无法辨别,在多数情况下可根据两针所指的位置判断出正确的时间,但有时也会出现两种可能,使你判断不出正确的时间,请问:从中午12时到夜里12时这段时间会遇到多少次无法判断的情况?。
高思竞赛数学导引-五年级第二十二讲-牛吃草问题与钟表问题学生版汇编

学习-----好资料第22讲牛吃草问题与钟表问题内容概述牛吃草问题是一类特殊的工程问题,钟表问题是一类特殊的行程问题.牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取.掌握钟表问题的相关知识,学会将掐针成角度问题转化为指针闻的环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.典型问题兴趣篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.请问:(1)要使得草永远吃不完,最多可以放养多少头牛?(2)如果放养36头牛,多少天可以把草吃完?2.学校有一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量.请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?3.一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?4.有一座时钟现在显示上午10点整,问:(1)多少分钟后,分针与时针第一次重合?(2)再经过多少分钟,分针与时针第二次重合?更多精品文档.学习-----好资料5.小悦早上6点半起床,赶到学校时发现手表上的时针和分针恰好第一次张开成一条直线,那么小悦到达学校的时间是几点几分?6.阿奇在9点与10点之间开始解一道数学题,当时手表的时针和分针正好成一条直线.当阿奇解完这道题时,时针和分针刚好第一次重合.请问:阿奇解这道题用了多少分钟?832分答案:117.下午6点多时冬冬吃完晚饭开始看动画片,动画片开始时他看手表,发现时针和分针的夹角为110°.在新闻联播前动画片放完了,冬冬又看手表,发现时针和分针的夹角仍是110°.那么动画片一共放了多少分钟?8.在早晨6点到7点之间有一时刻,钟面上的“6”字恰好在时针与分针的正中央.请问:这一时刻是6点多少分?9.小悦的手表比家里的闹钟走得要快一些.这天中午12点时,小悦把手表和闹钟校准,但当闹钟走到下午1点时,手表显示的时间是1点5分.请问:(1)当闹钟显示当天下午5点的时候,手表显示的时间是几点几分?(2)当手表显示当天下午6点半的时候,闹钟显示的时间是几点几分?10.一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟,现在将两个钟同时调到标准时间,结果在24小时内,快钟显示9点整时,慢钟恰好显示8点整.请问:这个时候的标准时间是多少?更多精品文档.学习-----好资料拓展篇1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了,请问:(1)如果放养32头牛,多少天可以把草吃完?(2)要放养多少头牛,才能恰好14天把草吃完?2.进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果有38只羊,把草吃完需要25天;如果有30只羊,把草吃完需要30天.如果有20只羊,这片牧场可以吃多少天?3.一个露天水池底部有若干同样大小的进水管,这天蓄水时恰好赶上下雨,每分钟注入水池的雨水量相同.如果打开24根进水管,5分钟能注满水池;如果打开12根进水管,8分钟能注满水池;如果打开8根进水管,多少分钟能将水池注满?4.把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和25公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃50天?5.一个时钟现在显示的时间是3点整,请问:(1)多少分钟后,时针与分针第一次重合?(2)再经过多少分钟后,时针与分针第一次张开成一条直线?6.在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?更多精品文档.学习-----好资料7.小悦晚上去超市买东西,到的时候是7点24分,买完出来的时候仍然是7点多,且分针和时针所夹的角度与到超市时相同,请问:小悦出来的时候是7点几分?买东西一共花了多少分钟?8.图22-1中是一个特殊的钟,分针每80分钟走一圈,分针走8圈时针就走一圈,从分针与时针重合开始,到分针与时针第三次成直角需要多少分钟?小时,他发现下课时与上课时手表上时针与分针的位置刚l9.小明上了一节课,时间不到好对调.请问:这一堂课上了多少分钟?恰好在时针与分针的正中央,请“5”7点之间有一个时刻,钟面上的数字10.在早晨6点到点几分?问:这时是6点,小悦把钟校准,并把闹铃分钟.一天晚上11.(1)小悦的闹钟比标准时间每小时快311 6点.试问:当闹铃响起时,标准时间是几点几分?定在第二天早上点,阿奇将表校准,试问:当这只8阿奇的手表比标准时间每小时慢4分钟.一天早上(2) 点的时候,标准时间是几点几分?表指向下午3当分钟.小时,10每小时100所示,12.如图22.2某科学家设计了一只怪钟,这只怪钟每昼夜分时,实际上是75当这只钟第一次显示问:6点点.实际上是中午5这只钟显示点时,12 什么时间?更多精品文档.学习-----好资料超越篇1.第一、二、三号牧场的面积依次为3公顷、5公顷、7公顷,三个牧场上的草长得一样密,且生长得一样快.有两群牛,第一群牛2天将一号牧场的草吃完,又用5天将二号牧场的草吃完.在这7天里,第二群牛刚好将三号牧场的草吃完.如果第一群牛有15头,那么第二群牛有多少头?2.钟面上会出现时针与分针重合的情况,也会出现时针与分针关于钟面左右对称的情况.请问:(1)距5点最近的“时针与分针重合”的时刻是几点几分?(2)距5点最近的“时针与分针左右对称”的时刻是几点几分?3.现在的时间在10点与11点之间,如果在6分钟后表的分针的位置恰好与3分钟前时针的位置方向相反,那么现在的时间是几点几分?4.某工厂的一只不准的时钟需要69分钟(标准时间)时针与分针才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作一小时付给工资4元,如果超出规定时间就算加班,加班每小时付给工资6元.如果一个工人照此钟工作8小时,他实际上应得到工资多少元?5.有两只旧钟,分别对它们进行观测,发现一只钟的分针与时针重合一次用64分钟,另一只钟的分针与时针重合一次用66分钟,现在把两只钟都在标准时间0:00校准.试问:当它们再次出现在钟面上同一位置,且分针与时针重合(不一定都指向12点),是几天几小时几更多精品文档.学习-----好资料分钟之后?6.费叔叔有一只手表和一个闹钟,他发现闹钟每走一个小时,他的手表会多走30秒,但闹钟却比标准时间每小时慢30秒.在今天中午12点费叔叔把手表和标准时间校准,那么明天中午12点时,费叔叔的手表显示的时间是几点几分几秒?7.如图22—3所示,一块正方形草地被分为完全相同的四块以及中间的阴影部分.已知草一开始是均匀分布,且以恒定的速度均匀生长.但如果某块地上的草被吃光,就不再生长(因为草根也被吃掉了).老农先带着一群牛在1号草地上吃草,两天后把1号草地上的草全部吃完(这期间其他草地的草正常生长).之后他让一半牛在2号草地上吃草,另一半在3号1的牛放在阴老农把这两个草地上的草也全部吃完.最后,结果又过了草地上吃草,6天,3影草地上吃草,而剩下的牛放在4号草地上,最后发现两块草地上的草同时吃完,如果一开始就让这群牛在整块草地上吃草,那么吃完这些草需要多少天?8.有一只表没有秒针,而且时针和分针无法辨别,在多数情况下可根据两针所指的位置判断出正确的时间,但有时也会出现两种可能,使你判断不出正确的时间,请问:从中午12时到夜里12时这段时间会遇到多少次无法判断的情况?更多精品文档.。
高思学校竞赛数学导引五年级答案

高思学校竞赛数学导引五年级答案高思学校竞赛数学导引五年级答案一、基础知识(每题2分,共20分)1.若94^2=百位数字,则百位数字是____。
答:88162.设全班有20名同学,则一分钟之内可改变座次的方法有____种。
答:2^20种,即1048576种3.(12-5)×3÷5=____。
答:34.在比赛中,共有100支队伍参加,各自获得535分,那么所有参赛队伍的总分数是____。
答:53500分5.已知25:36=m:n,则m:n=_____。
答:5:76.正方形的四个顶点坐标分别为(2,1)、(2,3)、(4,3)、(4,1),则正方形的面积是____。
答:4平方单位7.若b=-3,c=-4,则a=b-4c=____。
答:-128.若坐标轴上的点A(2,1)与点B(-2,-3)在同一半轴上,则AB的垂直平分线的坐标方程是____。
答:x=0二、应用题(每题4分,共20分)1.表示甲班25名同学的算式是____。
答:25×12.杨洋两篇文章的要点等价,说明它们的差异性可以用____表示。
答:相减法3.将这些数排列成一列,从小到大排序:4、-4、2、-2,则排列之后的数列是____。
答:-4、-2、2、44.给出数字3、5、7、9,这四个数中能被3整除的有____个。
答:2个5.友谊花园小学去年共有140名学生参加数学竞赛,其中甲班有20名学生,则甲班学生在参加数学竞赛的人数占受训学生的比是____。
答:1/76.在三角形ABC中,A(1,4),B(4,1),C(2,2),则该三角形的面积是____。
答:3平方单位7.正方形ABCD的边长为a,则该正方形的面积是____。
答:a^2平方单位8.若n是大于0的偶数,且n+2也是偶数,则n的值可以是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22讲牛吃草问题与钟表问题
内容概述
牛吃草问题是一类特殊的工程问题,钟表问题是一类特殊的行程问题.牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取.掌握钟表问题的相关知识,学会将掐针成角度问题转化为指针闻的环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.
典型问题
兴趣篇
1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.请问:
(1)要使得草永远吃不完,最多可以放养多少头牛?(2)如果放养36头牛,多少天可以把草吃完?
2.学校有一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量.请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?
3.一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?
4.有一座时钟现在显示上午10点整,问:
(1)多少分钟后,分针与时针第一次重合?(2)再经过多少分钟,分针与时针第二次重合?
5.小悦早上6点半起床,赶到学校时发现手表上的时针和分针恰好第一次张开成一条直线,那么小悦到达学校的时间是几点几分?
6.阿奇在9点与10点之间开始解一道数学题,当时手表的时针和分针正好成一条直线.当阿奇解完这道题时,时针和分针刚好第一次重合.请问:阿奇解这道题用了多少分钟? 答案:11
832分
7.下午6点多时冬冬吃完晚饭开始看动画片,动画片开始时他看手表,发现时针和分针的夹角为110°.在新闻联播前动画片放完了,冬冬又看手表,发现时针和分针的夹角仍是110°.那么动画片一共放了多少分钟?
8.在早晨6点到7点之间有一时刻,钟面上的“6”字恰好在时针与分针的正中央.请问:这一时刻是6点多少分?
9.小悦的手表比家里的闹钟走得要快一些.这天中午12点时,小悦把手表和闹钟校准,但当闹钟走到下午1点时,手表显示的时间是1点5分.请问:
(1)当闹钟显示当天下午5点的时候,手表显示的时间是几点几分?
(2)当手表显示当天下午6点半的时候,闹钟显示的时间是几点几分?
10.一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟,现在将两个钟同时调到标准时间,结果在24小时内,快钟显示9点整时,慢钟恰好显示8点整.请问:这个时候的标准时间是多少?
拓展篇
1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了,请问:
(1)如果放养32头牛,多少天可以把草吃完?(2)要放养多少头牛,才能恰好14天把草吃完?
2.进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果有38只羊,把草吃完需要25天;如果有30只羊,把草吃完需要30天.如果有20只羊,这片牧场可以吃多少天?
3.一个露天水池底部有若干同样大小的进水管,这天蓄水时恰好赶上下雨,每分钟注入水池的雨水量相同.如果打开24根进水管,5分钟能注满水池;如果打开12根进水管,8分钟能注满水池;如果打开8根进水管,多少分钟能将水池注满?
4.把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和25公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃50天?
5.一个时钟现在显示的时间是3点整,请问:(1)多少分钟后,时针与分针第一次重合?
(2)再经过多少分钟后,时针与分针第一次张开成一条直线?
6.在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?
7.小悦晚上去超市买东西,到的时候是7点24分,买完出来的时候仍然是7点多,且分针和时针所夹的角度与到超市时相同,请问:小悦出来的时候是7点几分?买东西一共花了多少分钟?
8.图22-1中是一个特殊的钟,分针每80分钟走一圈,分针走8圈时针就走一圈,从分针与时针重合开始,到分针与时针第三次成直角需要多少分钟?
9.小明上了一节课,时间不到l小时,他发现下课时与上课时手表上时针与分针的位置刚好对调.请问:这一堂课上了多少分钟?
10.在早晨6点到7点之间有一个时刻,钟面上的数字“5”恰好在时针与分针的正中央,请问:这时是6点几分?
11.(1)小悦的闹钟比标准时间每小时快3分钟.一天晚上11点,小悦把钟校准,并把闹铃定在第二天早上6点.试问:当闹铃响起时,标准时间是几点几分?
(2)阿奇的手表比标准时间每小时慢4分钟.一天早上8点,阿奇将表校准,试问:当这只表指向下午3点的时候,标准时间是几点几分?
12.如图22.2所示,某科学家设计了一只怪钟,这只怪钟每昼夜10小时,每小时100分钟.当这只钟显示5点时,实际上是中午12点.问:当这只钟第一次显示6点75分时,实际上是什么时间?
超越篇
1.第一、二、三号牧场的面积依次为3公顷、5公顷、7公顷,三个牧场上的草长得一样密,且生长得一样快.有两群牛,第一群牛2天将一号牧场的草吃完,又用5天将二号牧场的草吃完.在这7天里,第二群牛刚好将三号牧场的草吃完.如果第一群牛有15头,那么第二群牛有多少头?
2.钟面上会出现时针与分针重合的情况,也会出现时针与分针关于钟面左右对称的情况.请问:
(1)距5点最近的“时针与分针重合”的时刻是几点几分?
(2)距5点最近的“时针与分针左右对称”的时刻是几点几分?
3.现在的时间在10点与11点之间,如果在6分钟后表的分针的位置恰好与3分钟前时针的位置方向相反,那么现在的时间是几点几分?
4.某工厂的一只不准的时钟需要69分钟(标准时间)时针与分针才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作一小时付给工资4元,如果超出规定时间就算加班,加班每小时付给工资6元.如果一个工人照此钟工作8小时,他实际上应得到工资多少元?
5.有两只旧钟,分别对它们进行观测,发现一只钟的分针与时针重合一次用64分钟,另一只钟的分针与时针重合一次用66分钟,现在把两只钟都在标准时间0:00校准.试问:当它们再次出现在钟面上同一位置,且分针与时针重合(不一定都指向12点),是几天几小时几分钟之后?
6.费叔叔有一只手表和一个闹钟,他发现闹钟每走一个小时,他的手表会多走30秒,但闹钟却比标准时间每小时慢30秒.在今天中午12点费叔叔把手表和标准时间校准,那么明天中午12点时,费叔叔的手表显示的时间是几点几分几秒?
7.如图22—3所示,一块正方形草地被分为完全相同的四块以及中间的阴影部分.已知草一开始是均匀分布,且以恒定的速度均匀生长.但如果某块地上的草被吃光,就不再生长(因为草根也被吃掉了).老农先带着一群牛在1号草地上吃草,两天后把1号草地上的草全部吃完(这期间其他草地的草正常生长).之后他让一半牛在2号草地上吃草,另一半在3号草地上吃草,结果又过了6天,这两个草地上的草也全部吃完.最后,老农把3
1的牛放在阴影草地上吃草,而剩下的牛放在4号草地上,最后发现两块草地上的草同时吃完,如果一开始就让这群牛在整块草地上吃草,那么吃完这些草需要多少天?
8.有一只表没有秒针,而且时针和分针无法辨别,在多数情况下可根据两针所指的位置判断出正确的时间,但有时也会出现两种可能,使你判断不出正确的时间,请问:从中午12时到夜里12时这段时间会遇到多少次无法判断的情况?。