图与网络分析 胡运权 第四版 运筹学PPT课件
合集下载
运筹学-7、图与网络分析PPT课件
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
终止条件
所有节点都在同一连通分量中, 即生成树形成。
算法思想
从边开始,每次选择权值最小的 边加入,若形成回路则舍去,直 到生成树形成。
算法特点
适用于稀疏图,时间复杂度为 O(eloge),其中e为边数。
最小生成树问题的应用
通信网络设计
在构建通信网络时,需要在保证所有节点连通的前提下,使得建设 成本最低。最小生成树算法可以用于求解此类问题。
活动时间的估计
对每个活动进行时间估计,包括乐观时间(a)、最 可能时间(m)和悲观时间(b),并计算期望时间 (t=(a+4m+b)/6)。
项目工期的计算
根据活动的逻辑关系和网络结构,计算项目 的期望工期,并确定项目的关键路径。
网络计划技术的应用
项目进度管理
网络计划技术可用于制定详细 的项目进度计划,确保项目按
图与网络的应用背景
图与网络分析的方法
介绍图与网络分析中常用的最短路径 算法、最小生成树算法、最大流算法 等。
阐述图与网络在交通运输、电路设计、 社交网络等领域的应用。
学习目标与要求
学习目标
掌握图与网络分析的基本概念和 常用算法,能够运用所学知识解 决实际问题。
学习要求
熟悉图与网络分析的基本概念和 常用算法,了解相关应用领域, 具备一定的编程能力和数学基础。
算法步骤
初始化距离数组和访问标记数组;从起点开始,选择距离起点最近的未访问节点进行访问 ,并更新其邻居节点的距离;重复上述步骤,直到所有节点都被访问。
运筹学PPT完整版胡运权
C
m n
基可行解:满足变量非负约束条件的基本解,简称基可
行解。
可行基:对应于基可行解的基称为可行基。
可 行 解
非可行解
基解
基可行解
线性规划问题的数学模型
例1.4 求线性规划问题的所有基矩阵。
Page 30
解: 约束方程的系数矩阵为2×5矩阵 r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显x然j 0
Page 23
用 x3 x3 替换 x3 ,且 x3 , x3 0
线性规划问题的数学模型
Page 25
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0
运筹学课件 第八章 图与网络分析
运筹学教程
例:哥尼斯堡七桥问题 哥尼斯堡(现名加里宁格勒)是欧洲一
个城市,Pregei河把该城分成两部分,河中 有两个小岛,十八世纪时,河两边及小岛之 间共有七座桥,当时人们提出这样的问题: 有没有办法从某处(如A)出发,经过各桥 一次且仅一次最后回到原地呢?
A C
B
运筹学教程
D
运筹学教程
最后,数学家Euler在1736年巧妙地给出 了这个问题的答案,并因此奠定了图论的基 础,Euler把A、B、C、D四块陆地分别收缩 成四个顶点,把桥表示成连接对应顶点之间 的边,问题转化为从任意一点出发,能不能 经过各边一次且仅一次,最后返回该点。这 就是著名的Euler问题。
第二阶段是从十九世纪中叶到二十世纪 中叶,这时,图论问题大量出现,如 Hamilton问题,地图染色的四色问题以 及可平面性问题等,这时,也出现用图 解 决 实 际 问 题 , 如 Cayley 把 树 应 用 于 化 学领域,Kirchhoff用树去研究电网络等.
运筹学教程
第三阶段是二十世纪中叶以后,由生产管 理、军事、交通、运输、计算机网络等方 面提出实际问题,以及大型计算机使大规 模问题的求解成为可能,特别是以Ford和 Fulkerson建立的网络流理论,与线性规划、 动态规划等优化理论和方法相互渗透,促 进了图论对实际问题的应用。
e5
运筹学教程
v2
v3
e2
e6
v4
v5
e8
运筹学教程
二、连通图
定义8:如果图中的某些点、边可以排列成点和边的交错序列 (v0 ,e1 ,v1 ,e2 ,v2,e3 ,v3 ,…,vn-1 , en , vn ) ,ei=(vi-1,vi),则称 此为一条链。 由两两相邻的点及其相关联边构成的点边序列。 初等链:链中无重复的点和边; 定义9:无向图中,如一条链中起点和终点重合,则称此链为 圈。 初等圈:圈中无重复的点和边; 有向图中,当链(圈)上的边方向相同时,为道路(回路)。
运筹学第八章--图与网络分析-胡运权PPT课件
定理1 顶点次数总和等于边数的两倍。n d(vi) 2m i 1
定理2 次为奇数的顶点必为偶数个。
2020/5/29
.--线性规划
10
G (V , E), G' (V ', E' )
◦ 若 V ' V , E' E ,则G’是G的子图,G是G’的母图 G' G ◦ 若 V ' V , E' E ,则G’是G的真子图,G' G ◦ 若 V ' V , E' E ,则G’是G的支撑(生成)图。
2020/5/29
.--线性规划
9
次(d):结点的关联边数目
◦ d(v3)=4,偶点
◦ d(v2)=3,奇点
◦ d(v1)=4 ◦ d(v4)=1,悬挂点 ◦ e6, 悬挂边 ◦ d(v5)=0,孤立点
出次:d+(vi) 入次:d-(vi)
d (vi ) d (vi )
d (vi) = d+(vi) + d-(vi)
17
生成(支撑)树 若 V ' V , E' E ,则G’是G的支撑(生成)树。
(a)
(b)
(c)
18
最小生成树问题就是指在一个赋权的连通的无向图G中找出一 个生成树,并使得这个生成树的所有边的权数之和为最小。
1、破圈算法 步骤: (1)在给定的赋权的连通图上任找一个圈。 (2)在所找的圈中去掉一个权数最大的边(如果有两条或两 条以上的边都是权数最大的边,则任意去掉其中一条)。 (3)如果所余下的图已不包含圈,则计算结束,所余下的图 即为最小树,否则返回第1步。
19
例8.1
20
2、避圈算法 步骤:
运筹学-6(图与网络分析)PPT课件
4
3
验证:第一圈内总长:3+4+5+4+7=23 第一圈逆时针内配送路长:3+4+5=12>11.5,则不是最优方案 第二圈内配送路长:4+2+3+4=13 第二圈逆时针内配送路长:2<6.5,则是最优方案。 第二圈顺时针内配送路长:3<6.5,则是最优方案。
修正第一圈内方案,取逆时针方向最小值1,然后逆时针方向配送路线减去 1,顺时针方向配送及未走路线加上1,则得到第一圈内配送路长:5<总长 一半,则是最优方案。如图所示:
相关 成本
A 4C
E
A 5C
E F
A 6C
F I
D D, F F, I
D D I H, G
D D H, G H, J
348 291, 228 294, 258
348 291 258 288, 360
348 291 288, 360 390, 384
第n个 最近
节点
最小 成本
最新 连接
A到各 N节点 最短 路径
6.2.2 网络图的绘制原则
只能有一个始点事项和一个终点事项 不允许出现编号相同的箭线 不允许出现循环线路 作业要始于结点终于结点
网 络 规 则(2)
1、避免循环、不留缺口
2、一一对应:一道工序用两个事项表示
F 228 CF A→C→F
I
258 EI A→B→E
→I
H 288 FH A→C→F →H
步 已解点 候选点 骤
相关 成本
A C 7F I H
F 8I
H D
D D G J G, J
G J J G
348 291 360 384 336, 414 360 384 414 396
《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件
13
2
y3
2 3
题
y1符号不限, y 2 0, y3 0
非 对 偶 形 式 旳 原对 偶 问 题
例2-4 写出下列问题旳对偶问题
max z c1x1 c2 x2 c3x3
a11x a12 x a13x3 b1
s.t.
a21x1 a31x1
a22 x2 a32 x2
a23 x3 a33 x3
出让自己旳资源?
问 题 旳 导 出
例2-1
条件:出让代价应不低于用同等数量资源由自己组织生 产活动时获取旳获利。
y1,y2,y3分别代表单位时间(h)设备A、设备B和调试工 序旳出让代价。 y1,y2,y3旳取值应满足:
6y 2
y 3
2
5y 1
2y 2
y 3
1
美佳企业用6h设备B和1h调试可 生产一件家电I,获利2元
y1, y2 , y3 0
LP1和LP2两个线性规划问题,一般称LP1为原问题, LP2为前者旳对偶问题。
max Z c1x1 c2 x2 cn xn
对 偶 问 题
s.t.
a11 a21
am1
a12 a22
am2
a1n x1 b1
a2n
x2
b2
amn xn bm
规 划 问
minW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym (, )c1
a12y1
a22 y2
am2
ym
(,
)c2
题 旳 对 偶 问
a1n y1 a2n y2 amn ym (, )cn
题
y j 0(符号不限,或 0)i 1 ~ m
第5章图与网络分析163页PPT
bi j 0wi j
(vi ,vj)E (vi ,vj)E
例6.4 下图所表示的图可以构造权矩阵B如下:
v1 4
v2
36
72
v6 4
3
3
v3
5
2
v5
v4
v1 0 4 0 6 4 3
v
2
4
0
2
7
0
0
B
v3
0
2
0
5
0
3
v4 6 7 5 0 2 0
v
5
4
17
v4
树与图的最小树
v1 23 v6
20
v2
1
4
v7
9
15 v3
28 25
16 3
v5
17
v4
v1
v2
23 v6
1
4
v7
9
15 v3
28
25
16 3
v5
17
v4
v1
v2
23 v6
1
4
v7 9
15 v3
28
25
16 3
v5
17
v4
v1
v2
23
1
4
v7
v6
9
v3
28
25
16 3
v5
17
v4
v1
②
15
9
7 ④ 14
⑤
①
10
19
20
6 ⑥
③
25
图的矩阵描述: 邻接矩阵、关联矩阵、权矩阵等。
1. 邻接矩阵 对于图G=(V,E),| V |=n, | E |=m,有nn阶方矩阵
运筹学课件-第六章图与网络分析
运筹学课件-第六章 图与网络分析
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。
运筹学第六章图与网络分析(ppt文档)
§6.1 图的基本概念和模型
一、概念
(1)图:点V和边E的集合,用以表示对某种现实事物
的抽象。记作 G={V,E}, V={v1,v2,···,vn}, 点:表示所研究的事物对象; E={e1,e2,···,em}
边:表示事物之间的联系。
e0
(2)若边e的两个端点重 合,则称e为环。
(3)多重边:若某两端点之 间多于一条边,则称为多重边。
D 8 64 5 0 15
E 7 53 4 1 0 6
T 14 11 9 10 5 6 0
i
dir(1)
r
drj(1)
j
⑷ 构造任意两点间最多可经过7个中间点到达的最短距 离矩阵 D(3)= dij(3)
其中
dij(3)=
min
r
{
dir(2)+
drj(2)
}
SABCDET
S 0 2 4 4 8 7 13
dir(0)
r i
drj(0)
j
⑶ 构造任意两点间最多可经过3个中间点到达的最短距 离矩阵 D(2)= dij(2)
其中
dij(2)=
min
r
{
dir(1)+
drj(1)}
SABCDET
S 0 2 4 4 8 7 14
A 2 0 2 3 6 5 11
B 4 20 1 43 9 D(2)= C 4 3 1 0 5 4 10
2. 破圈法:
⑴ 任取一圈,去掉其中一条最长的边, ⑵ 重复,至图中不存在任何的圈为止。
2. 破圈法
A
S
5 × B 5× D 5 T
C
4× E
最小部分树长Lmin=14
运筹学图与网络分析.pptx
{a12,a14,a34}
{a26,a46 } φ
min{ li Wij | Vj J } lh Whk
iI
min{l1+W12, l1+W13, l1+W14}= min{0+3,0+2,0+5}=2= l1+W13 min{l1+W12, l1+W13, l3+W34}= min{0+3,0+5,2+1}=3= l1+W12, l3+W34 min{l2+W26, l4+W46}= min{3+7,3+5}=8= l4+W46
{ a57,a68 }
min{ li Wij | Vj J } lh Whk
iI
min{l1+W12, l1+W13, l1+W14}= min{0+2,0+6,0+3}=2= l1+W12 min{l1+W13, l1+W14, l2+W23, l2+W26}= min{0+6,0+3,2+3, 2+7}=3= l1+W14 min{l1+W13,l2+W23, l2+W26, l4+W45}= min{0+6,2+3,2+7,3+6}=5= l2+W23 min{l2+W26, l3+W35, l3+W36, l4+W45}= min{2+7,5+3,5+7,3+6}=8= l3+W35 min{l2+W26, l3+W36, l5+W56, l5+W57}= min{2+7,5+7,8+1,8+6}=9= l2+W26, l5+W56 min{ l5+W57, l6+W68}= min{8+6,9+4}=13= l6+W68
{a26,a46 } φ
min{ li Wij | Vj J } lh Whk
iI
min{l1+W12, l1+W13, l1+W14}= min{0+3,0+2,0+5}=2= l1+W13 min{l1+W12, l1+W13, l3+W34}= min{0+3,0+5,2+1}=3= l1+W12, l3+W34 min{l2+W26, l4+W46}= min{3+7,3+5}=8= l4+W46
{ a57,a68 }
min{ li Wij | Vj J } lh Whk
iI
min{l1+W12, l1+W13, l1+W14}= min{0+2,0+6,0+3}=2= l1+W12 min{l1+W13, l1+W14, l2+W23, l2+W26}= min{0+6,0+3,2+3, 2+7}=3= l1+W14 min{l1+W13,l2+W23, l2+W26, l4+W45}= min{0+6,2+3,2+7,3+6}=5= l2+W23 min{l2+W26, l3+W35, l3+W36, l4+W45}= min{2+7,5+3,5+7,3+6}=8= l3+W35 min{l2+W26, l3+W36, l5+W56, l5+W57}= min{2+7,5+7,8+1,8+6}=9= l2+W26, l5+W56 min{ l5+W57, l6+W68}= min{8+6,9+4}=13= l6+W68
运筹学8图与网络分析PPT课件
v2
[v3 ,v4],[v1 ,v4],
[v2 ,v4], [v3 ,v3]}
v3 v4
图8.4
第12页/共166页
图8.5 是一个有向图D=(V,A)
其中V={v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7}
A={(v1,v2),(v1,v3),(v3 ,v2)(v3 ,v4),(v2 ,v4),(v4 ,v5),
定理8.1 所有顶点度数之和等于所有边数
的2倍。
证明:因为在计算各个点的度时,每条边
被它的两个端点个用了一次。
第18页/共166页
定理8.2 在任一图中,奇点的个数必为偶数。 证明:设 V1,V2 分别是图G中奇点和偶点的
集合,由定理8.1 ,有
d(v) d(v) d(v) 2q
vV1
随着科学技术的进步,特别是电子计算 机技术的发展,图论的理论获得了更进一步 的发展,应用更加广泛。如果将复杂的工程 系统和管理问题用图的理论加以描述,可以 解决许多工程项目和管理决策的最优问题。 因此,图论越来越受到工程技术人员和经营 管理人员的重视。
关于图的第一篇论文是瑞士数学家欧拉 (E. Euler)在1736年发表的解决“哥尼
(v4 ,v6),(v5 ,v3),(v5 ,v4), (v5 ,v6),(v6 ,v7)}
v3
v5
v7
v1 v6
v2
v4
图8.5
第13页/共166页
下面介绍一些常用的名词:
一 个 图 G 或 有 向 图 D 中 的 点 数 , 记 作 P(G) 或 P(D),简记作P,边数或者弧数,记作q(G)或者q(D), 简记作q 。
简单链:链中所含的边均不相同;
初等链:链中所含的点均不相同, 也称通路; 圈:若 v0 ≠ vn 则称该链为开链,否则称 为闭链或回路或圈;
运筹学PPT完整版胡运权
另外,还应用于设备维修、更新和可靠性分析,项目的选择 与评价,工程优化设计等。
运筹学在工商管理中的应用
Page 10
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
5x110x1x2
x3 x4 3 6x2 2x3 x5
2
x
j
0,
j
1,,5
解: 约束方程的系数矩阵为2×5矩阵
5 A 10
1 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1
5 0
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
线性规划问题的数学模型
Page 13
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
运筹学在工商管理中的应用
Page 10
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
5x110x1x2
x3 x4 3 6x2 2x3 x5
2
x
j
0,
j
1,,5
解: 约束方程的系数矩阵为2×5矩阵
5 A 10
1 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1
5 0
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
线性规划问题的数学模型
Page 13
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
3.关联与相邻
❖关联(边与点的关系):若e是v1、v2两点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(有公共边,称点v1与v2相邻;
边e1与e2 有公共点,称边e1与e2相邻。
e1
V2
V1
e2
V3
5
4. 链、圈与连通图
■链:由图G中的某些点与边相间构成的序列 {V1,e1,V2,e2, ……,Vk,ek},若满足 ei=[Vi, Vi ],则称此
(4)A={v1,v2,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
[3,v1]
v8 8
考虑边(v1,v6),(v2,v3),(v2,v5),(v4,v7)
计算min { 0+3, 2+6, 2+5, 1+2}=min {3,8,7,3}=3
70
费用、容量等),则称这样 1
4
的图为网络图。
20
45
3
4.2 最小支撑树问题
C1 根
C2
C3
C4
叶
❖树:无圈的连通图,记为T。
8
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个结点,则 边的个数为m-1。
2 1
3 5
算结束,余下的图即为最小支撑 树,否则返回 1)。
❖例:用破圈法求右图 的最小支撑树。
总权数=3+4+1=8
2 //
2
1
4
1
4
//
3
3
3 27
14
4
4
55
83
6
1
2
1
4
3
生成树1
生成树2
生成树3
12
网络的生成树和线性规划的关系
■网络的一个生成树对应于线性规划的一个基 ■生成树上的边对应于线性规划的基变量 ■生成树的弦对应于线性规划的非基变量 ■生成树的变换对应于线性规划单纯形法的进 基和离基变换
10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
v8 8
(1) v1:[0,v1]
[0,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
(2)A={v1}
v8 8
检查边(v1,v2),(v1,v4),(v1,v3)
计算min {0+2, v4:[1.v1]
0+1, 0+3}= min {2,1,3}=1
❖子图
E= e1,e2,……,en
G1=(V1,E1),其中: V1,V ,E1 E
e22
v1
v2
e12
e'13 e13 e34
v3
e24
v5
e45
v4
❖多重边:两点之间有多于一条边。 ❖环:首尾相接的边 ❖简单图:无环、无多重边的图。 2.有向图与无向图 ❖有向图:有方向的图。 ❖无向图:无方向的图。
(6)A={V1,V2,V4,V6,V7}
[0,v1]
[2,v1]
2
6
V1
V2
V3
1 [1,v1]10
5 [6,v7] 9
3
V4
7
V5
6
5
2
3
4
V6
V7
V8
4
8
[3,v1]
[3,v4]
考虑边(v2,v3),(v2,v5),(v7,v5),(v7,v8)
计算min {2+6, 2+5, v5:[6,v7]
第四章 图与网络分析
4.1 基本概念 4.2网络最小费用流问题 4.3网络最大流问题 4.4最短路径问题
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
4.1 基本概念
1.图与子图
❖图G=(V,E),其中:V= v1,v2,……,vn
2
点边序列为G中的一条链。
如:μ ={(1,2),(3,2),(3,4)}
1
4
■圈(Circuit) 封闭的链称为圈
3
2
1
4
如:μ={(1,2),(2,4),(3,4),(1,3}
3
■连通图
任意两个节点之间至
2
少有一条链的图称为连
1
4
通图
3
5.网络
给图中的点和边赋以具
体的含义和权数(如距离、
2
50
计算min { 2+6, 6+9, 6+4, 3+8}=min {8,15,10,11}=8 v3:[8,v2]
4
❖图的支撑树
2
若图G=(V,E)的子图 1
4
T=(V,E’)是树,则称T为
G的支撑树。
3
2
1
4
3
2
1
4
3
2
1
4
3
2
1
4
3
2
1
4
3
2
1
4
3
4.2.1 求解最小支撑树问题的破圈法
❖方法:去边破圈的过程。 ❖步骤:1)在给定的赋权的连通图上任找
一 个圈。 2)在所找的圈中去掉一条权数最
大的边。 3)若所余下的图已不含圈,则计
(3)考虑所有这样的边[vi, vj],
其中vi ∈A,vj ∈ Ā
挑选其中与vs距离最短的点vj标号
[min{wi+cij},vi]
15
(4) 重复(3),直至终点vt标上号[wt,vk] ,则wt即为vs至vt的最短距。 反向追踪可求得最短路。
16
例:求v1至v8的最短路。
2
6
v1
v2
v3
1
(3)A={v1,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1
10
[1,v1]
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
v8 8
考虑边(v1,v2),(v1,v6),(v4,v2),(v4,v7)
计算 min{0+2, 0+3, 1+10, 1+2}=min {2,3,11,3}=2 v2:[2,v1]
v6:[3,v1]
(5)A={V1,V2,V4,V6}
[0,V1]
[2,V1]
2
6
v1
v2
v3
1 [1,V110]
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
v8
4
8
[3,V1]
[3,v4]
考虑边(v2,v3),(v2,v5),(v4,v7),(v6,v7)
计算 min { 2+6, 2+5, 1+2, 3+4}=min {8,7,3,7}=3 v7:[3,v4]
3+3, 3+8}=min {8,7,6,11}=6
(7)A={V1,V2,V4,V6,V7}
[0,V1]
[2,V1]
2
6
v1
v2
1
10
[1,V1]
5
9
[6,V7]
3
v4
7
v5
[8,v2] v3
6
5
2
3
4
v6
v7
v8
4
8
[3,V1]
[3,V4]
考虑边(v2,v3),(v5,v3),(v5,v8),(v7,v8)
4.3 最短路问题
问题:求网络中一定点到其它点的最短路。
4.3.1 最短路问题的Dijstra解法 方法:给vi点标号[wi,vk] 其中:wi:vi点到起点vs的最短距离
vk: vi的前接点
14
方法:(1) 给起点vs标号[0,vs]。 (2)把顶点集v分为互补的两部分A和Ā
其中:A:已标号点集 Ā:未标号点集
3.关联与相邻
❖关联(边与点的关系):若e是v1、v2两点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(有公共边,称点v1与v2相邻;
边e1与e2 有公共点,称边e1与e2相邻。
e1
V2
V1
e2
V3
5
4. 链、圈与连通图
■链:由图G中的某些点与边相间构成的序列 {V1,e1,V2,e2, ……,Vk,ek},若满足 ei=[Vi, Vi ],则称此
(4)A={v1,v2,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
[3,v1]
v8 8
考虑边(v1,v6),(v2,v3),(v2,v5),(v4,v7)
计算min { 0+3, 2+6, 2+5, 1+2}=min {3,8,7,3}=3
70
费用、容量等),则称这样 1
4
的图为网络图。
20
45
3
4.2 最小支撑树问题
C1 根
C2
C3
C4
叶
❖树:无圈的连通图,记为T。
8
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个结点,则 边的个数为m-1。
2 1
3 5
算结束,余下的图即为最小支撑 树,否则返回 1)。
❖例:用破圈法求右图 的最小支撑树。
总权数=3+4+1=8
2 //
2
1
4
1
4
//
3
3
3 27
14
4
4
55
83
6
1
2
1
4
3
生成树1
生成树2
生成树3
12
网络的生成树和线性规划的关系
■网络的一个生成树对应于线性规划的一个基 ■生成树上的边对应于线性规划的基变量 ■生成树的弦对应于线性规划的非基变量 ■生成树的变换对应于线性规划单纯形法的进 基和离基变换
10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
v8 8
(1) v1:[0,v1]
[0,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
(2)A={v1}
v8 8
检查边(v1,v2),(v1,v4),(v1,v3)
计算min {0+2, v4:[1.v1]
0+1, 0+3}= min {2,1,3}=1
❖子图
E= e1,e2,……,en
G1=(V1,E1),其中: V1,V ,E1 E
e22
v1
v2
e12
e'13 e13 e34
v3
e24
v5
e45
v4
❖多重边:两点之间有多于一条边。 ❖环:首尾相接的边 ❖简单图:无环、无多重边的图。 2.有向图与无向图 ❖有向图:有方向的图。 ❖无向图:无方向的图。
(6)A={V1,V2,V4,V6,V7}
[0,v1]
[2,v1]
2
6
V1
V2
V3
1 [1,v1]10
5 [6,v7] 9
3
V4
7
V5
6
5
2
3
4
V6
V7
V8
4
8
[3,v1]
[3,v4]
考虑边(v2,v3),(v2,v5),(v7,v5),(v7,v8)
计算min {2+6, 2+5, v5:[6,v7]
第四章 图与网络分析
4.1 基本概念 4.2网络最小费用流问题 4.3网络最大流问题 4.4最短路径问题
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
4.1 基本概念
1.图与子图
❖图G=(V,E),其中:V= v1,v2,……,vn
2
点边序列为G中的一条链。
如:μ ={(1,2),(3,2),(3,4)}
1
4
■圈(Circuit) 封闭的链称为圈
3
2
1
4
如:μ={(1,2),(2,4),(3,4),(1,3}
3
■连通图
任意两个节点之间至
2
少有一条链的图称为连
1
4
通图
3
5.网络
给图中的点和边赋以具
体的含义和权数(如距离、
2
50
计算min { 2+6, 6+9, 6+4, 3+8}=min {8,15,10,11}=8 v3:[8,v2]
4
❖图的支撑树
2
若图G=(V,E)的子图 1
4
T=(V,E’)是树,则称T为
G的支撑树。
3
2
1
4
3
2
1
4
3
2
1
4
3
2
1
4
3
2
1
4
3
2
1
4
3
4.2.1 求解最小支撑树问题的破圈法
❖方法:去边破圈的过程。 ❖步骤:1)在给定的赋权的连通图上任找
一 个圈。 2)在所找的圈中去掉一条权数最
大的边。 3)若所余下的图已不含圈,则计
(3)考虑所有这样的边[vi, vj],
其中vi ∈A,vj ∈ Ā
挑选其中与vs距离最短的点vj标号
[min{wi+cij},vi]
15
(4) 重复(3),直至终点vt标上号[wt,vk] ,则wt即为vs至vt的最短距。 反向追踪可求得最短路。
16
例:求v1至v8的最短路。
2
6
v1
v2
v3
1
(3)A={v1,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1
10
[1,v1]
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
v8 8
考虑边(v1,v2),(v1,v6),(v4,v2),(v4,v7)
计算 min{0+2, 0+3, 1+10, 1+2}=min {2,3,11,3}=2 v2:[2,v1]
v6:[3,v1]
(5)A={V1,V2,V4,V6}
[0,V1]
[2,V1]
2
6
v1
v2
v3
1 [1,V110]
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
v8
4
8
[3,V1]
[3,v4]
考虑边(v2,v3),(v2,v5),(v4,v7),(v6,v7)
计算 min { 2+6, 2+5, 1+2, 3+4}=min {8,7,3,7}=3 v7:[3,v4]
3+3, 3+8}=min {8,7,6,11}=6
(7)A={V1,V2,V4,V6,V7}
[0,V1]
[2,V1]
2
6
v1
v2
1
10
[1,V1]
5
9
[6,V7]
3
v4
7
v5
[8,v2] v3
6
5
2
3
4
v6
v7
v8
4
8
[3,V1]
[3,V4]
考虑边(v2,v3),(v5,v3),(v5,v8),(v7,v8)
4.3 最短路问题
问题:求网络中一定点到其它点的最短路。
4.3.1 最短路问题的Dijstra解法 方法:给vi点标号[wi,vk] 其中:wi:vi点到起点vs的最短距离
vk: vi的前接点
14
方法:(1) 给起点vs标号[0,vs]。 (2)把顶点集v分为互补的两部分A和Ā
其中:A:已标号点集 Ā:未标号点集