运筹学图与网络(I)

合集下载

运筹学8图与网络分析

运筹学8图与网络分析

e3 。在剩下的图中,再取一个圈
定理8.7充分性的证明,提供了一个 寻找连通图支撑树的方法叫做“破圈法”。 就是从图中任取一个圈,去掉一条边。再 对剩下的图重复以上步骤,直到不含圈时 为止,这样就得到一个支撑树。
例8.4 用破圈法求出图8-11的一个支
撑树。
v2
e1
e7 e4
v1
e3 v4
e8
v5
e2
e5
v3
e6
图8-11
取一个圈(v1,v2,v3,v1),在一个圈中去掉边
3
4
初等链:链中所含的 点均不相同, 也称通 路;
5
6
为闭链或回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点 均
不相同的圈;
连通图:图中任意两点之间均
至少有一条通路,否则 v1
v4 v5 v8
称为不连通图。
v2
初等链: (v1 , v2 , v3 , v6 ,
图的连通性:
简单链:链中所含的 边均不相同;
圈:若 v0 ≠ vn 则称该链为开链,否 则称
1
2
链:由两两相邻的点及其相 关联的边构成的点边序列。 如:v0 ,e1 ,v1 ,e2 ,v2,e3 ,v3 ,…,vn1 , en , vn ; v0 ,vn 分别为链的起点和终点 。记 作( v0 ,v1 , v2, ,v3 , …, vn-1 , vn )
v5
v7
(v5
,v1v6),(v6
(v4 ,v6),(v5 ,v7)}
,v3),(v5
v6
,v4),
v2
v4
图8.5
下面介绍一些常用的名词:

运筹学(第6章 图与网络分析)

运筹学(第6章 图与网络分析)
a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈

定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H

例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7

第六章-运筹学图与网络优化

第六章-运筹学图与网络优化

9
6 3
3
4
7
2
53
4 31
5
1
7
4
4
第3节 最短路问题
一、最短路的含义
赋权有向图D (V,A),图中各弧(vi,v j )有权wij, vs,vt为图D中任意两点,求一条路P, 使它是从vs到vt的所有路中总权最小的路,
即w(
P
)
min
wij 。
(vi,vj )P
定义:路P的权是P中所有弧的权之和,记为w(P)
习题6-3:用Dijkstra方法求解下图从v1到v9的 最短‘路’。
v2
11
v7
3 6
2
5
5
v5
8
v1
v3
v9
2 4
4
3
7
v4
4
v6
6
v8
第3节 最短路问题
三、最短路问题的应用 ✓ 设备更新问题
第3节 最短路问题
例10:某工厂使用一台设备,每年年初工厂都要作出决定, 如果继续使用旧的,要付维修费;若购买一台新设备, 要付购买费。试制定一个5年的更新计划,使总支出最 少。已知设备在各年的购买费,及不同机器役龄时的 维修费如下表所示:
5
2
5 v6
v4
v7 8
习题6-2
2、
v2
2
v5
5
1
5
1
8
v1
7
5 v4 9
v6
6
v7
2
1
12
v3
第3节 最短路问题
(二)赋权无向图的最短‘路’问题的求解方 法
赋权无向图G=(V,E),边[vi,vj]表示既可以 从vi到达vj,也可以从vj到达vi,所以边[vi, vj]可以看作是两条弧(vi,vj)和(vj,vi),且 它们具有相同的权ωij。

运筹学第八章--图与网络分析-胡运权

运筹学第八章--图与网络分析-胡运权
运筹学
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)

29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法

运筹学图与网络分析-最短路

运筹学图与网络分析-最短路

(P0
)
min P
(P)
路P0的权称为从vs到vt的距离,记为d(vs,vt)。
求网络上的一点到其它点 的最短路
Dinkstra标号法
这是解决网络中某一点到其它点的最 短路问题时目前认为的最好方法。
适用于有向图权值非负的情况
有向图权值非负---- Dijkstra算法
Dijkstra算法的基本步骤(权值非负) 1、给顶点v1标号(0),v1称为已标号点,记标号点集为
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
3
1 (4,4) 3 1
4
6
7
(1,3)
5
④重复上述步骤,直至全部的
点都标完。
(1,2)
2
2
0
1
2
5
7
(2,4)
3 5 55
7
1
3
3
1
4
6
7
(1,3)
5
7
(1,2)
2
2
0
2
7
1
5
(2,4)
35
55
7
1
3
3
1
4
6
7
(1,3)
5
(3,7)
(1,2)
2
2
0
2
7
1
5 3 5 55 7
3
1
3 1
34 5 6
7
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
7
1
5 3 5 55 7

图与网络分析 胡运权 第四版 运筹学PPT课件

图与网络分析 胡运权 第四版 运筹学PPT课件
4
3.关联与相邻
❖关联(边与点的关系):若e是v1、v2两点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(有公共边,称点v1与v2相邻;
边e1与e2 有公共点,称边e1与e2相邻。
e1
V2
V1
e2
V3
5
4. 链、圈与连通图
■链:由图G中的某些点与边相间构成的序列 {V1,e1,V2,e2, ……,Vk,ek},若满足 ei=[Vi, Vi ],则称此
(4)A={v1,v2,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
[3,v1]
v8 8
考虑边(v1,v6),(v2,v3),(v2,v5),(v4,v7)
计算min { 0+3, 2+6, 2+5, 1+2}=min {3,8,7,3}=3
70
费用、容量等),则称这样 1
4
的图为网络图。
20
45
3
4.2 最小支撑树问题
C1 根
C2
C3
C4

❖树:无圈的连通图,记为T。
8
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个结点,则 边的个数为m-1。

运筹学第六章图与网络分析

运筹学第六章图与网络分析

S
2
4
7
2 A
0 5
S
5 45 B
98
14
5
13
D
T
C
E
4
4
4
7
最短路线:S AB E D T
最短距离:Lmin=13
2.求任意两点间最短距离的矩阵算法
⑴ 构造任意两点间直接到达的最短距离矩阵D(0)= dij(0)
S A B D(0)= C D E T
SABCDET 0 25 4 2 02 7 5 20 1 5 3 4 1 0 4 75 0 15 3 41 0 7 5 7 0
e1 v1
e5
v0 e2
e3
v2
e4
e6 e7
v3
v4
(4)简单图:无环、无多重边的图称为简单图。
(5)链:点和边的交替序列,其中点可重复,但边不能 重复。
(6)路:点和边的交替序列,但点和边均不能重复。
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
步骤:
1. 两两连接所有的奇点,使之均成为偶点;
2. 检查重复走的路线长度,是否不超过其所在 回路总长的一半,若超过,则调整连线,改 走另一半。
v1
4
v4
4
1
4
v2
v5
5

运筹学第6章 图与网络

运筹学第6章 图与网络

也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中

运筹学第六章图与网络分析a管理精品资料

运筹学第六章图与网络分析a管理精品资料
min T (v j) T ( v j) ,L ( v i) d ij j
3. 在与固定标号点相邻的临时标号点中选取 具有最小标号的点vi给予固定标号,即:
L(vi)=min{ T(vj) } 返回第2步。 4. 当vn得到固定标号时,计算结束。 注: 固定标号L(vi)表示v1到vi的最短距离, 临时标号T(vj)表示v1到vi距离的上界。
能一笔画的图一定是欧拉圈或含有欧拉链。 定理:连通的多重图G是欧拉图的充要条件是G 中无奇点。 推论:连通的多重图G有欧拉链的充要条件是G 中恰有两个奇点。
第二节 树图和图的最小部分树
树图:无圈的连通图称为树图,记为T(V,E)。 2-1 树的性质 性质1:任何树中必存在至少两个次为1的点(悬 挂点)。
若一个简单图中任意两点之间均有边相连,
则称该图为完全图。
对含有n个顶点的完全图,其边数有
Cn2
1n(n1) 2
条。
如果图的顶点能分成两个互不相交的非空
集合V1和V2 ,使在同一集合中任意两个顶点 都不相邻,则称该图为偶图(或二分图)。
若偶图的顶点集合V1、V2之间的每一对不 同顶点之间都有一条边相连,则称该图为完全 偶图。在完全偶图中, V1若有m个顶点, V2 有n个顶点,则其边数共有m×n条。
临时标号
v2(5) v3(2) v4(∞) v5(∞) v6(∞) v7(∞) v2(5) v4(9) v5(∞) v6(6) v7(∞) v4(7) v5(12) v6(6) v7(∞) v4(7) v5(7) v7(12)
v5(7) v7(12)
v7(10)
❖ Dijkstra 算 法 仅 适 合 于 所 有 的 权
Hale Waihona Puke 3-2 求任意两点间最短距离的矩阵算法(Floyd) 设邻接矩阵为D,计算D1=D+D, D2= D1 +D ,

第六章物流运筹学——图与网络分析.

第六章物流运筹学——图与网络分析.
L( )
( vi ,v j )
l
ij
最小的 。
Dijkstra算法
算法的基本步骤: (1)给 v s 以 P 标号, P(vs ) 0 ,其余各点均给 T 标号, T (vi ) 。 (2)若 vi 点为刚得到 P 标号的点,考虑这样的点 v j: (vi , v j ) E ,且 v j 为 T 标号,对 v j 的 T 标号进行如下的更改:
v2
(4,3)
v4
(3,3)
(5,3) (1,1) (1,1) (3,0)
vs
(5,1)
vt
(2,1)
v1
(2,2)
v3
图 6-14
运输线路图
第四节 最小费用最大流问题
在容量网络 G (V , E, C ) ,每一条边 (vi , v j ) E 上,除了已 给容量 cij 外,还给了一个单位流量的费用 bij 0 ,记此时的容 量网络为 G (V , E, C , B) 。 所谓最小费用最大流问题就是要求一个最大流 f ,使流的 总运输费用 b( f )
定理 6-1 任何图中顶点次数的总和等于边数的 2 倍。 推论 6-1 任何图中,次为奇数的顶点必有偶数个。 图 G (V , E ) 和图 H (V , E ) ,若 V V且E E ,则 称 H 是 G 的子图,记作: H G ;特别的,当 V V 时, 称 H 为 G 的生成子图。
容量网络g若?为网络中从sv到tv的一条链给?定向为从sv到tv?上的边凡与?同向称为前向边凡与?反向称为后向边其集合分别用??和??表示??ijff?是一个可行流如果满足??????0ijijijijiijjffcvv??????????c???0ijijijfvv????则称?为从sv到tv的关于f的可增广链

运筹学第六章图与网络分析(ppt文档)

运筹学第六章图与网络分析(ppt文档)

§6.1 图的基本概念和模型
一、概念
(1)图:点V和边E的集合,用以表示对某种现实事物
的抽象。记作 G={V,E}, V={v1,v2,···,vn}, 点:表示所研究的事物对象; E={e1,e2,···,em}
边:表示事物之间的联系。
e0
(2)若边e的两个端点重 合,则称e为环。
(3)多重边:若某两端点之 间多于一条边,则称为多重边。
D 8 64 5 0 15
E 7 53 4 1 0 6
T 14 11 9 10 5 6 0
i
dir(1)
r
drj(1)
j
⑷ 构造任意两点间最多可经过7个中间点到达的最短距 离矩阵 D(3)= dij(3)
其中
dij(3)=
min
r
{
dir(2)+
drj(2)
}
SABCDET
S 0 2 4 4 8 7 13
dir(0)
r i
drj(0)
j
⑶ 构造任意两点间最多可经过3个中间点到达的最短距 离矩阵 D(2)= dij(2)
其中
dij(2)=
min
r
{
dir(1)+
drj(1)}
SABCDET
S 0 2 4 4 8 7 14
A 2 0 2 3 6 5 11
B 4 20 1 43 9 D(2)= C 4 3 1 0 5 4 10
2. 破圈法:
⑴ 任取一圈,去掉其中一条最长的边, ⑵ 重复,至图中不存在任何的圈为止。
2. 破圈法
A
S
5 × B 5× D 5 T
C
4× E
最小部分树长Lmin=14

运筹学( 图与网络优化)

运筹学( 图与网络优化)

七桥问题
七桥问题图形
原理及方法
七桥问题是图论中的著名问题。1736年,Euler巧妙 地将此问题化为图的不重复一笔画问题,并证明了 该问题不存在肯定回答。原因在于该图形有顶点连 接奇数条边。
§10.1
图的基本概念
一个图(Graph) 定义为三元有序组
(V (G ), E (G ), G )
几何实现图例
在一个图的几何实现中,两条边的交点可能不是图的顶 点。例如下图 中,它共有4个顶点,6条边;而e 3 与e 4 的交点不是这个图的顶点。
v1
e1
v2 e4
e2
v3
e3
e5
v4
e6
e3
v1
v4
e1 e4
v2
e2
v3 e6
e5
v4
平面图
一个图称为平面图,如它有一个平面图形,使得边与边仅在
u 1
f5 u3 f6
f2 f4
u2
u4
同构
给定两个图
G (V (G), E(G), G )
H (V ( H ), E( H ), H )
称G和H是同构的,记为 G H , 如果存在两个一一对应 ( , )
: V (G) V ( H )
: E (G) E ( H )
e7
v2
e3 v3
e6
v4
e4
关联矩阵性质
图G的关联矩阵M=(mij)为m×n矩阵;则每行元
素之和等于相应顶点的度;每列元素之和等于 2。
因此,图G的关联矩阵M所有元素之和既等于所
有顶点的度之和,又等于边数的2倍。 定理 设G是一个图,则
vV ( G )
d (v) 2

运筹学第7章图与网络优化

运筹学第7章图与网络优化
*
1
链,圈,初等链,初等圈,简单链(圈)
2
相邻节点的序列 {v1 ,v2 ,…, vn} 构成一条链(link)p178;
3
在无向图中,节点不重复出现的链称为初等链;
4
首尾相连的链称为圈(loop) ;首尾相连的初等链称为初等圈;
5
边不重复出现的链(圈)称为简单链(圈)
01
02
子图,部分图;连通图,成分
(1).与v3相连的临时标号有v5
第五步:
T(v5)=min{T(v5),P(v3)+d35}=min{9,7+3}=9
(2).P(v5)=9
最短路线:
vs→v1→v4→ v5 vs→v2→v4→ v5
vS
v2
v3
v4
v5
1
2
2
2
3
3
3
4
4
0
4
5
3
7
9
*
也可以用表格的形式求解。p190
斯坦纳树问题
假设我们在北京、上海、西安三城市之间架设电话线,一种办法是分别联通北京--上海和北京--西安。另一种办法是选第四个点,假设郑州。由此分别向三城市架线,可能你不会想到第二种办法所用的电话线只是第一种办法的86.6%,即可取得比第一种办法节约13%的显著经济效益。这就是离散数学界30年代提出的著名的斯坦纳树问题,但一直未能得到证明。
平面图(planar graph),若在平面上可以画出该图而没有任何边相交
*
7基础图,路,回路,欧拉回路
在有向图D(V,A)中去掉箭头,称为D的基础图,G(D)
01
在有向图中,链 路
02
圈 回路
03

运筹学( 图与网络优化)

运筹学( 图与网络优化)

G是一棵树。 无圈且m=n-1。 G连通且m=n-1。 G连通并且每条边都是割边。 G中任意两点都有唯一的路相连。 G无圈,但在任意一对不相邻的顶点之间加连一条 边,则构成唯一的一个圈。
支撑树

图G的支撑树是G的支撑子图,并且是一棵树。
每个连通图都有支撑树
支撑树也称为连通图的极小连通支撑子图。 很显然,一个连通图只要本身不是一棵树,它的支撑 树就不止一个。
则T1 经过k次迭代后可得到T2。
最小树
设G是一个赋权图,T为G的一个支撑树。定义T的权为:
w(T )
eE ( T )
w(e ).
G中权最小的支撑树称为G的最小树。 定理5 设T是G的一个支撑树,则T是G的最小树的充分

d (v) 0(mod 2);
v V1 V1 0(mod 2)
d (v) 1(mod 2),
简单图
一个图称为简单图,如果它既没有环也没有多重边。 下图是简单图。
本书只限于讨论有限简单图,
即顶点集与边集都是有限集的图。 只有一个顶点的图称为平凡图; 边集是空集的图称为空图。 f3 f1
每个顶点用点表示,
每条边用连接端点的线表示。 图的几何实现有助与我们直观的了解图的许多 性质。
说明
一个图的几何实现并不是唯一的;表示顶点的点和表示边 的线的相对位置并不重要,重要的是图形描绘出 边与顶点之间保持的相互关系。 我们常常把一个图的图形当作这个抽象图自身. 并称图形的点为顶点,图形的线为边。 图论中大多数概念是根据图的表示形式提出的,例如:顶 点、边、多重边、环、路、圈、树等。
几何实现图例
在一个图的几何实现中,两条边的交点可能不是图的顶 点。例如下图 中,它共有4个顶点,6条边;而e 3 与e 4 的交点不是这个图的顶点。

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第8章 图与网络分析

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第8章 图与网络分析

(a)
(b)
(c)
图 8-9 图、子图、支撑子图
(4)图的同构 设 G1 与 G2 是两个同阶图,若顶点集合 V1 和 V2 以及边集 E1 和 E2 之间在保持关联性
质条件下的一一对应,则称图 G1 和图 G2 同构。 例如:图 8-10(a)和图 8-10(b)就为同构。
(a)
(b)
图 8-10 同构图
(10)定理 8.1 对于图 G=(V ,E) ,其中 V = n , E = m ,则有:
∑d (v) = 2m
(8-2)
v∈V
证明:每条边都有两个端点,在计算顶点的次时,每个端点都要计算对应边次,故共有
2m 次。
通俗地讲,就是线有两头,共有 2m 个线头的意思。
(11)定理 8.2 奇次顶的总数是偶数。
第八章 图与网络分析
8.1 图与网络的基本知识
8.1.1 图与网络的基本概念 8.1.1.1 图的定义 自然界和人类社会中,大量的事物以及事物之间的关系,常可以用图形来描述。例如: 图 8-4 所示的我国北京、上海等十个城市间的交通图反映了这十个城市间铁路
分布情况。这里用点代表城市,用点和点之间的连线代表这两个城市之间有直通铁路。
图 8-7 一个无向图
G = (V, E) V= {v1, v2 ,v3 , v4} E={e1, e2 ,e3 , e4 ,e5 , e6 , e7}
其中
e1 = [v1 ,v2 ] , e2 = [v1 ,v2 ] , e3 = [v2 ,v3 ] , e4 = [v3 ,v4 ] ,
图 8-8 是一个有向图。该图可以表示为:
图 8-4 十个城市间铁路分布图
又如某单位储存五种化学药品,其中,某些药品是不能放在同一库房里的,为了反映这 种情况,可以用点 v1 、 v2 、 v3 、 v4 、 v5 分别代表这五种药品,若药品 vi 和药品 v j 是不能存 放在同一库房的,则在 vi 和 v j 之间连一条线,如图 8-5 所示。如果问题归结为寻求存放这种 化学药品的最少库房个数,则该问题就是染色问题。事实上,至少需要三个库房来存放这些 药品,即 v1 和 v5 、 v2 和 v4 、 v3 各存放在一个库房里。

运筹学图与网络分析

运筹学图与网络分析
v6
07
含有奇点的连通图中不含欧拉圈,此时,最优的邮递路线是什么呢?
08
求解中国邮路问题的奇偶点图上作业法
奇偶点表上作业法
奇偶点表上作业法 (1)找出奇点(一定为偶数个),在每两个奇点之间找一条链,在这些链经过的所有边上增加一条边,这样所有的奇点变为偶点,一定存在欧拉圈,但是不一定是路线最短的,所以需要检验和调整。 (2)检验增加的边的权值是否是最小的。 定理3 假设M是使得图G中不含奇点的所有增加边,则M是权值总和为最小的增加边的充分必要条件是: 1)图G中每条边上最多增加一条边; 2)在图G的每个圈上,增加的边的总权值不超过该圈总权值的一半。 如果上述两个条件都满足则已经找到权值最小的欧拉圈 否则转入3) 3)调整增加边。如果1)不满足,则从该条边的增加边中去掉偶数条; 如果2)不满足,则将这个圈上的增加边去掉,将该圈的其余边上添加增 加边,转入(2)
v1
v2
v3
v4
v5
v1
v2
v3
v4
v5
图2
图3
如果在比赛中: A胜E, B胜C, A胜D, C胜A, E胜D, A胜B,
v1
v2
v3
v4
v5
注:本章所研究的图与平面几何中的图不 同,这里我们只关心图有几个点,点与点 之间有无连线,两条线有无公共顶点,点 与线是否有关联,至于连线的方式是直线 还是曲线,点与点的相对位置如何都是无 关紧要的。
求从v1到v8的最短路
(0)
(1,1)
(1,3)
(3,5)
(2,6)
(5,10)
(5,9)
(5,12)
注:在给顶点编号时,如果在多个为标号点均取得最小值Llk则对这多个点同时标号,这些点的第二个标号相同,但是第一个标号不一定相同。

运筹学基础及应用(第五版),(第六章图与网络分析)

运筹学基础及应用(第五版),(第六章图与网络分析)
树枝总长最小的部分树,称为该图的最小部分树(也称最小支
撑树)。
定理1. 图中任一个点 i ,若 j 是与 i 相邻点中距离最近的, 则边 [ i , j ] 一定包含在该图的最小部分树中。
给图中的点和边赋以具体的含义和权值,我们称这样的
图为网络图(赋权图)
2020/3/27
6
图中的点用 v 表示,边用 e 表示,对每条边可用它所
联结的点表示,如图,则有:
e1 = [v1 , v1],
e2 = [v1 , v2]或e2= [v2 , v1]
2020/3/27
用点和点之间的线所构成的图,反映实际生产和生 活中的某些特定对象之间的特定关系。通常用点表 示研究对象,用点与点之间的线表示研究对象之间 的特定关系。一般情况下,图中点的相对位置如何 ,点与点之间线的长短曲直,对于反映研究对象之 间的关系,显的并不重要,因此,图论中的图与几 何图,工程图等本质上是不同的。
§2.树图和最小部分树
树图(简称树,记作 T(V, E))是无圈的连通图。(无圈, 无多重边)
一. 树的性质
性质1. 任何树中必存在次为1 的点。
次为1的点称为悬挂点,与之关联的边称为悬挂边。 性质2. 具有 n 个顶点的树恰有(n-1)条边。
性质3. 任何具有n 个点、(n - 1)条边连通图是树。
A D
C B
2020/3/27
3
为了寻找答案 ,1736年欧拉 把陆地缩为一点,把桥作为连接点 的边,将这个问题抽象成图形的一 笔画问题。即能否从某一点开始不 重复地一笔画出这个图形,最终回 到原点。欧拉在他的论文中证明了 这是不可能的,因为这个图形中每 一个顶点都与奇数条边相连接,不 可能将它一笔画出,这就是古典图 论中的第一个著名问题。

运筹学—第八章 图与网络分析

运筹学—第八章 图与网络分析

v5 1 v6 7 1 v7 -5 -3
e1 {v1 , v2 }
e3 {v2 , v3 }
e2 {v1 , v2 }
e4 {v3 , v4 } e6 {v3 , v5 } e8 {v5 , v6 } e10 {v1 , v6 }
e5 {v1 , v3 }
e7 {v3 , v5 } e9 {v6 , v6 }
v1
第二节 树 一、 树的概念和性质 例8.3 已知有六个城市,它们之间 要架设电话线,要求 任意两个城市均可以互相通话,并且电话线的总长度最短。
v1 v6 v5 v2
v3
v4
定义9 一个连通的无圈的无向图叫做树。
作为树T的定义,下列定义是等价的: (1)T是一个树。(设其顶点数为n ,边数为 m ) (2)T无圈,且m=n-1。 (3)T连通,且m=n-1 。 (4)T无圈,但在树中不相邻的两个点之间加上一条边, 那么恰好得到一个圈。 (5)T中任意两个顶点之间有且仅有一条链。 (6)T连通,但去掉T的任一条边,T就不连通。
( vi , v j )
一、 狄克斯屈拉(Dijkstra)算法 适用于wij≥0,给出了从vs到任意一个点vj的最短路。
算法步骤: 1.给始点vs以P标号 P(vs ) 0 ,这表示从vs到 vs的最短距离 T 为0,其余节点均给T标号, (vi ) (i 2 , 3,, n) 。 2.设节点 vi 为刚得到P标号的点,考虑点vj,其中 (vi , v j ) E ,且vj为T标号。对vj的T标号进行如下修改:
e1 v1
e2 e5
e8 v5
v2
d(v1)= 4,d(v6)= 4
e10 v6 e9
e3 e v4 4 e6 e7 v3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节欧拉图和哈密尔顿回路
一、欧拉图
欧拉(Euler)在1736年发表的关于图论方面的第一篇论文,解决了一个著名问题,称为哥尼斯堡七桥问题,从而使他成为图论的创始人。

问题是这样的:十八世纪的德国有座哥尼斯堡城,在流贯全城的普格尔河两岩和河中两个岛之间架设了七座桥,如图6.10(a)所示。

当时那里的居民热衷于这样一个游戏,即一个散步者能否从任一陆地出发,走过每座桥一次且仅走过一次,最后回到原地。

问题乍看起来很简单,但当时谁也不明白为什么没有人能够成功。

为了弄清这个问题,欧拉将每一块陆地用一顶点表示,每一座桥用连接相应的两个顶点的连线(即边)来代替,从而得到一个“图”(图 6.10(b))。

这个“图”使问题变得简洁明了。

直观上不难发现,为了能回到原来的陆地,要求与每个顶点(陆地)相关联的边数是偶数,这样才能保证从一条边出去,从另一条边回来。

由于在图6.10(b)中,与四个顶点相连的边数都是奇数,因而不可能
自任一顶点出发过每条边一次且仅一次而回到原地。

(a)图6.10(b)欧拉并不限于处理这个特殊事例,他推广了这个问题,提出并证明了下述定理。

定义1 在连通无向图G中,若存在经过每条边恰好一次的一个圈或一条链,就称此圈或链为欧拉圈或欧拉链。

或图G含一条欧拉圈,则称它为欧拉图。

显然,欧拉圈或欧拉链都可“一笔画出”;反之,若一个图能一笔画出,则它必然是欧拉圈或欧拉链。

定理1连通无向图G为欧拉图的充要条件是它的全部顶点都是偶次顶点。

事实上,若G是欧拉图,C是其欧拉圈,则由定义,C包含G的所有边,由于图连通,故亦包含所有顶点。

C是任一中间顶点每出现一次,必与两条不同的边相关联,另因C的起点也是终点,故所有顶点都是偶次顶点。

定理2 连通无向图G为欧拉链的充要条件是它恰含两个奇次顶点。

上述定理提供了判断一笔画问题的准则:若连通无向图G无奇次顶点,则可由任一点起一笔画成并回到起点;若有两个奇次顶点,则由一奇次顶点起到另一奇次顶点终可一笔画成。

为能将一个图一笔画下去,当去掉已画出部分时,乘下的部分不应成为不连通图。

二、哈密尔顿回路
1859年英国数学家哈密尔顿(Hamilton)提出了一种名为周游世界的游戏。

他用一个正十二面体的二十个顶点(参见图6.11),代表二十个大城市,要求沿着棱,从一个城市出发,经过每个城市恰好一次,然后回到出发点。

为了解答这个问题,现绘制一个如图6.12所示的平面图,它与图6.11所示的十二面体图同构。

由图6.12中粗线边组成的圈,符合哈密尔顿提出的要求,所以它是这个问题的一个解,需指出的是这个问题的解还不止一个。

如果不要求最后回到出发点,那么,解就更多了。

在一个图中,如果有一条链(圈)经过每个顶点恰好一次,那么这条链(圈)就称为哈密尔顿链(圈)。

表面上,哈密尔顿问题与欧拉问题很相似,但实际上,两者迥不同。

前者指的是过每个顶点恰好一次的回路,而后者说的是过每边恰好一次的圈。

用定理1很容易判断一个图是否为欧拉图,而求解哈密尔顿回路,迄今还没有比较简单的通用方法。

图6.11 图6.12
哈密尔顿回路是图论的重要课题之一,它具有重要的实际意义。

著名的旅行推销员问题(或称货郎担问题),就是要求出总路程最短的哈密尔顿回路。

三、中国邮路问题
某邮递员从邮局出发,走过每条街道至少一次去投递邮件,最后回到邮局,他应走什么样的路线才能使所走的总路程最短?这个问题是我国管梅谷教授于1962年首先研究的,国际上通称为中国邮路问题。

在邮递员服务范围的街道图上标明各条街的路长,就构成了一连通赋权图G。

若G无奇次顶点,根据定理1,G就是欧拉图,因每边仅过一次,故总权是最小的。

若G有奇次顶点,则它就不是欧拉图,然而题设条件是要求过每边至少一次,并未限制只许一次,故总可以在这些奇次顶点上添加一些与原图的边相重复的边,使这些奇次顶点成为偶次顶点,从而得到一个将重复边看成是另一条新边的欧拉图。

现在的问题是这些重复边如何添加,才能得到一个总权(总路长)最小的欧拉图。

定理3使图G成为总权最小的欧拉图的充要条件是:
(1)在有奇次顶点的图G中,通过加重复边的方法使图不再包含奇次顶点,但原图的每条边最多只能加一条重复边。

(2)在图G 的每个回路上,重复边之总权不超过该回路非重复边之总权。

根据以前的分析,本定理是显然的。

例1 试为图6.13(a )构成总权最小的欧拉图,图中线旁的数字为相应边的权。

(a ) (b )
图6.13
解 因顶点①和③为奇次,要使成欧拉图,需用加重复边的方法使这两个顶点变为偶次。

最易想到的作法是在边)3,1(e (即在顶点①与③之间)上加重复边,将其变为欧拉图。

但由于在回路(1,3,4)中)3,1(e 的权大于该回路总权(等于
7)的一半,故这样得到的欧拉图不是总权最小的欧拉图。

如在边)4,1(e 和)4,3(e 上加重复边(图6.13(b )),则可满足定理3的要求,从而得总权最小的欧拉图(总权等于15)。

通过难于一次找到总权最小的欧拉图,这时可通过对欧拉图的逐步调整达到总权极小化,即对每一回路进行检查,不满足定理3时就调整重复边,但在该过程中始终保持各顶点的次数为偶数。

例2 试为图6.14(a )所示的街道规划最优投递路线。

解 可按以上所述步骤进行,最终结果示于图6.14(b ),总权等于52,重复边的长度等于10。

(a ) (b )
图6.14
四、旅行售货员问题
一个旅行售货员想去某些城镇售货,然后再回到他的出发地。

各城镇之间的路程是已知的,问应如何安排他的旅行路线,才能使他经过每个城镇恰好一次,且总路程最短。

用图论的术语来说,就是在一个加权图中,找出一条总权最小的哈密尔顿回路。

到目前为止,旅行售货员问题还没有有效的通用算法。

假如采用枚举法,售货员从城市i v 出发,去1v ,2v ,…,n v 城市售货,则有)!1(-n 种可能方案。

随着n 的增加,)!1(-n 的值迅速增加,例如当n =20时,)!1(-n =1.216×1710。

对这么多个方案逐个计算并比较,显然是不可能的。

下面介绍一种近似解法。

首先任取一条哈密尔顿回路,不失一般性,它经过的顶点序列为1v ,2v ,…,i v ,1+i v …,j v ,1+j v ,…,n v ,若对某一对顶点i v 和j v ,相应边权有如下关系:
),(),(11+++j i j i v v w v v w <),(),(11+++j j i i v v w v v w 则用边),(j i v v 和边),(11++j i v v
替换边),(1+i i v v 和边),(1+j j v v (参见图6.15),可
得另一哈密尔顿回路,其权更小。

用这种方法对
哈密尔顿回路进行若干次改进,即可获得比较好
的回路。

例3 用上述近似法对图6.16(a )中的回 图6.15
路(1v ,2v ,3v ,4v ,5v ,6v ,1v )进行改进。

图6.16
解 其各次改进方案示于图6.16(b )、6.16(c )和图6.16(d )中。

图中各边旁的数字为该边的权,双线表示相应方案的哈密尔顿回路,图右下角括号内的数字为该回路的总权。

相关文档
最新文档