疲劳裂纹扩展与寿命计算

合集下载

疲劳裂纹扩展速率的实验数据处理

疲劳裂纹扩展速率的实验数据处理
da/dN
A (1-R)Kc
da/dN B
(1-R)Kc
da/dN C
(1-R)Kc
KthCF D K
(1-R)K1scc D K
(1-R)K1scc D K
A类 ; B类:Kmax<K1scc, (DK)thCF<<DKth 主要是疲劳过程; 腐蚀使(da/dN)CF Kmax>K1scc, 腐蚀 使da/dN)CF。 普遍加快,如铝 合金在淡水中。 马氏体镍在干氢中.
DKth Mpa.m1/2
8 7 6 5 4 3 2 1

低碳钢 低合金钢 不锈钢 A517-F
9301 A508C A533B
R 不同钢材的R-DKth 关系 lgda/dN
R=0.8 0 -1
0 .2
.4
.6
.8 1.0
R<0的情况:负应力存在, 对da/dN三区域的影响不同。 情况比R>0时复杂得多。
lgda/dN
8.4 疲劳裂纹扩展速率试验
0
a (mm)
D =const. R=0
Dai DK 曲线 目的:测定材料的 da/dNa DNi
一、试验原理:
Paris公式: 实验 a =a 0 R=0 D
N
lg(DK)
da/dN=C(DK)m (DK)i=f (D,ai,)
记录ai、Ni
ai=(ai+1+ai)/2
12
In general, at low frequencies, crack growth rate 在空气中,一般观察不到波形对疲劳裂纹扩展速 increase as more time is allowed for environmental 率的影响。但在腐蚀环境中,若载荷循环的拉伸 attack during the fatigue process. 部分作用慢, da/dN 一般较高。

断裂力学 疲劳裂纹的扩展

断裂力学 疲劳裂纹的扩展
疲劳寿命定义:从某一裂纹尺寸扩展至临界尺寸的裂纹 循环数。
5.2 疲劳裂纹的扩展速率
a
疲劳裂纹扩展的定量表示用 N
或 da
dN
, N 是交变应力循环
次数增量, a 是相应的裂纹长度的增量。
疲劳裂纹扩展速率:
a N
(或
da dN
),表示交变应力每循环
一次裂纹长度的平均增量(mm/次),它是裂纹长度a、应
KK1m axK1m in
其中 K1max、K1min 分别是交变应力最大值和最小值所计算的应 力强度因子。
Paris公式为最基本的公式,许多学者提出了对其的修正方案。主 要有Donahue、Priddle、Walker等。
Paris应力强度因子理论与实验结果符合较好的一种 理论.
第 I 阶段 KI Kth 门槛值
(疲劳裂纹扩展寿命)
其中 Kf(a)为应力强度因子幅度,f ( a ) 是裂纹长
度的函数,c、m为常数。
三. 影响疲劳裂纹扩展速率的因素
虽然Paris公式中只有几个参数,但实际还有其它的影响因素:
1)平均应力 m 的影响:平均应力升高,da/dN升高, 故常在表面做喷丸处理,产生压应力,减小 m 。 2)超载的影响:大载荷时能产生塑性区,然后相当 于卸载,但塑性变形不能恢复,而弹性必须要恢复, 产生压应力,相当于减小 m ,故降低 da/ dN。 3)加载频率的影响。 4)其他因素的影响
dN
式中: 为裂纹尖端张开位移幅度。
2.J积分表达式
da C(J )r dN
C与r是材料常数,J积分写成: J2Y2 de
其中Y为裂纹的几何形状因子。
扩展速率为 1 0 3 mm/每循环.
4)断裂阶段 扩展到 a c 时,失稳导致快速断裂。

疲劳强度理论分析

疲劳强度理论分析
(三):疲劳寿命计算:名义应力法,局部应力—应变法,断裂力学法。
1. 名义应立法:计算全寿命,主要用于高周疲劳; 2. 局部应力—应变法:计算裂纹形成寿命; 3. 断裂力学法:计算裂纹扩展寿命。
(四):疲劳试验 材料试验,实物结构试验,高周疲劳试验,低周疲劳试验,裂纹扩展寿命试验
(五):常规疲劳强度设计:
),可
4.P-S-N 曲线 不同可靠度下的应力——寿命曲线
(1) S-N曲线中S,N的概率密度函数
大量实验表明:疲劳强度符合正态分布
(同寿命下的应力分布)。疲劳寿命符合对数
正态或威布尔分布(同应力水平下的寿命)
正态分布
——均值,也叫数学期望。
——标准差,数学上叫均方根值。
对数正态分布,将随机变量的对数函数进行分析。威布尔分布(寿命)
随机载荷下疲劳寿命研究实测载荷谱当量成对称循环下的载荷谱ii根据材料的sn曲线实物试验值和实测载荷谱代入计算模型638可计算不同可靠度下的疲劳寿命图612表621表622这里进行了两种构件侧架和摇枕的疲劳寿命计算iii与实际统计数据比较讲实际统计数据进行整理表627采用常规定时截尾试验发最后论证摇枕的实际平均寿命为328年计算值为3537年两值接近说明计算公式可以
疲劳试验在疲劳试验机上进行,有弯曲疲劳试验机和拉—压疲劳 试验机等。
2 疲劳分析的有关参数
应力幅
平均应力 最大应力 最小应力 应力范围
应力比
对称循环, 脉动循环 静应力
3 材料的S—N曲线 根据不同应力水平分组进行疲劳试验,
根据实验数据进行拟合,一般采用最小二乘 法。 曲线为指数曲线,即: 对上式两边去对数 :
也就是许用应力法: 存在问题:
a. 设计的机械零件特别笨重(为了安全,只有加大整个截面尺寸); b. 尽管笨重,但仍有疲劳裂纹产生。 原因: a. 疲劳裂纹发生在构件的危险点的局部区域,通过裂纹不断扩展,

第09讲:裂纹扩展分析和裂纹扩展寿命计算

第09讲:裂纹扩展分析和裂纹扩展寿命计算

{
}
n
= C (1 − R ) K max
M
{
}
n
M = M2

式中 C , M , n 为实验确定的常数,Walker公式也是 一个幂函数式,对描述裂纹速率特性的中间区域是 很适合的。 Walker公式考虑了负应力比影响,适用面较广。
6
Forman公式 公式
C ( ∆K ) da = dN (1 − R ) K C − ∆K
9
注意事项
上述公式中材料常数C、n不能完全互换 不能完全互换; 不能完全互换 材料常数必须与公式适用范围相匹配 匹配; 匹配 许多材料常数是有量纲的,注意量纲的换算 量纲的换算; 量纲的换算 应用时要考虑环境的影响;
10
本讲内容
1 2 3 4
恒幅载荷下裂纹扩展速率表达式
变幅载荷下裂纹扩展特性
变幅载荷下裂纹扩展计算模型 疲劳裂纹扩展寿命计算
28
改进的Willenberg模型 改进的 模型
为了考虑裂纹扩展中的应力松弛效应以及负载加 速效应,张振邦提出了改进的Willenberg模型。 有效超载塑性区 式中: (Ry )OL
(R )
y
OL
eff
= (1 + λ R eff
2
)(R y )OL
1 K OLmax = απ σ ys
3030恒幅载荷下裂纹扩展速率表达式变幅载荷下裂纹扩展计算模型变幅载荷下裂纹扩展特性疲劳裂纹扩展寿命计算3131裂纹扩展寿命的计算疲劳裂纹扩展寿命是指裂纹在交变载荷的作用下由某一长度扩展到另外一长度的加载次数
第9讲 裂纹扩展分析和裂纹扩展寿命计算
作业 1、等幅载荷下描述裂纹扩展速率的公式有哪些, 、等幅载荷下描述裂纹扩展速率的公式有哪些, 简述这些公式的特点和适用范围。 简述这些公式的特点和适用范围。 2、无限大钢板含有2a=42mm的穿透裂纹;承受 、无限大钢板含有 的穿透裂纹; 的穿透裂纹 ∆σ=100MPa的载荷,材料的临界裂纹尺寸 的载荷, 的载荷 ac=225mm,试验测得裂纹扩展速率表达式 试验测得裂纹扩展速率表达式 da/dN=2×10-7(∆K)3mm/周,试估算该钢板的疲劳 × 周 寿命和经5000次循环后的裂纹尺寸。 次循环后的裂纹尺寸。 寿命和经 次循环后的裂纹尺寸

断裂与疲劳

断裂与疲劳

总分: 100分考试时间:分钟判断题1. 断裂力学的研究对象是含裂纹体。

(6分)正确错误参考答案:正确解题思路:2. 脆性材料不发生或很小塑性变形,没有屈服极限,在经历很小的变形情况下就会发生断裂。

(6分)正确错误参考答案:正确解题思路:3. 第二强度理论代表最大切应力理论。

(6分)正确错误参考答案:错误解题思路:4. 穿晶断裂是韧性的,而不可以是脆性的。

(6分)正确错误参考答案:错误解题思路:5. 约束力是一种主动力。

(6分)正确错误参考答案:错误解题思路:6. 低应力脆断多与结构件中存在宏观缺陷(主要是裂纹)有关,且与材料的韧性有关。

(6分)正确错误参考答案:正确解题思路:7. 材料的理论断裂强度与实际断裂强度相差很大。

(6分)正确错误参考答案:正确解题思路:8. 使构件发生变形的外部物体作用统称为外力,它只表示构件承受的载荷。

(6分)正确错误参考答案:错误解题思路:9. 根据材料断裂的载荷性质,断裂力学分为静态断裂力学和动态断裂力学,断裂动力学是断裂静力学的基础。

(6分)正确错误参考答案:错误解题思路:10. 材料的断裂是一个很复杂的过程,是材料性质、载荷类型、复役环境、构件尺寸等多种因素共同作用的结果,并且可能造成灾难性事故,因此断裂控制是无规律可循的。

(6分)正确错误参考答案:错误解题思路:填空题11. 载荷按性质分类有拉伸载荷、压缩载荷和___(1)___ 载荷。

(5分)(1).参考答案:剪切12. 由于作用循环载荷而性能变劣造成的断裂称为___(2)___ 。

(5分)(1).参考答案:疲劳断裂13. 材料(或构件)断裂前有明显的塑性变形,即断裂应变较大的断裂方式为___(3)___ 。

(5分) (1).参考答案:韧性断裂单选题14. 断裂化学则是研究各种对材料断裂过程的作用及影响的一门学科。

由此可见,断裂学是一门综合性的边缘学科,本书将以断裂力学为主,而为了更好理解断裂机理和裂纹扩展,断裂物理的知识也有所涉及。

疲劳裂纹扩展规律Paris公式的一般修正及应用_倪向贵

疲劳裂纹扩展规律Paris公式的一般修正及应用_倪向贵
NI Xiang -gui , LI Xin -liang , WANG Xiu -xi ( CAS Key Laboratory of Mechanical Behavior and Design of Materials , University of Science &Technology of China , Hefei 230026 , China) Abstract : The paper has reviewed the Paris law for fatigue crack propagation , the relationship between the Paris equation and the traditional stress fatigue S -N curve of material , and the common process of calculating the lifetime for fatigue crack propagation . The general modification and application of the Paris law in engineering is discussed , and the different forms and characteristics of modification are analyzed and explicated . The modification and application in the elastoplastic fracture mechanics and the continuum damage mechanics is briefly introduced . It has been shown that , the appropriate modification forms should be adopted for different problems in engineering . Key words : fatigue crack ; propagation rate ; the Paris law

基于结构应力法的车体结构疲劳裂纹扩展与剩余寿命评估

基于结构应力法的车体结构疲劳裂纹扩展与剩余寿命评估

基于结构应力法的车体结构疲劳裂纹扩展与剩余寿命评估杨海宾;朱涛;肖守讷;阳光武;杨冰【摘要】为了弥补名义应力法不能针对具有初始裂纹的焊接结构进行评估的不足,采用结构应力法,在断裂力学的基础上推导了考虑裂纹扩展增量的焊缝裂纹扩展计算方法.以复铰式100%0低地板有轨电车为研究对象,采用名义应力法确定了典型工况下车体疲劳强度薄弱焊缝的位置,并基于结构应力法提取了该位置的膜应力和弯曲应力,并应用焊缝裂纹扩展计算方法对车体薄弱位置的焊缝进行了剩余寿命评估.研究结果表明:初始裂纹的存在导致车体寿命远低于设计寿命(1E7),但仍然具有一定的服役空间,可以利用焊缝裂纹扩展计算方法对含有缺陷的结构进行剩余寿命评估,并根据计算结果制定相应的维修策略.【期刊名称】《铁道机车车辆》【年(卷),期】2019(039)001【总页数】7页(P15-20,77)【关键词】名义应力;结构应力;裂纹扩展计算;车体结构;剩余寿命【作者】杨海宾;朱涛;肖守讷;阳光武;杨冰【作者单位】西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031【正文语种】中文【中图分类】U270.1+2目前,针对轨道交通车辆车体焊接结构疲劳评估,普遍采用基于疲劳强度值和P-S-N曲线的名义应力法,这种方法往往依赖于接头类型和载荷形式,当面对复杂结构时,精确度便会降低[1]。

密西根大学的董平沙教授提出了基于结构应力的主S-N曲线法,很好的解决了这个问题[2-3]。

对于焊接结构,不可避免的会存在缺陷,这些缺陷很可能成为裂纹的源头,导致结构的使用寿命和承载能力降低,对于服役多年的结构往往也会出现许多疲劳裂纹[4]。

如果能模拟这些裂纹的扩展行为,便能对具有裂纹缺陷的焊接结构的服役能力进行计算并指导车辆的阶段性维修。

工程材料力学性能答案

工程材料力学性能答案

11决定金属屈服强度的因素有哪些12内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

外在因素:温度、应变速率和应力状态。

试举出几种能显着强化金属而又不降低其塑性的方法。

固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。

上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化断裂强度与抗拉强度有何区别抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,由于出现颈缩两者并不相等。

裂纹扩展受哪些因素支配答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。

试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。

答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形抗力与切断强度较低得所谓塑性材料试验。

压缩试验的特点及应用:(1)单向压缩的应力状态软性系数a=2,因此,压缩试验主要用于脆性材料,以显示其在静拉伸时缩不能反映的材料在韧性状态下的力学行为。

(2)压缩与拉伸受力方向不仅相反,且两种试验所得的载荷变形曲线、塑性及断裂形态也存在较大的差别,特别是压缩不能使塑性材料断裂,故塑性材料一般不采用压缩方法试验。

(3)多向不等压缩试验的应力软性系数a>2,故此方法适用于脆性更大的材料,它可以反映此类材料的微小塑性差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 应力比与平均应力的影响
应力比的影响 随应力比R↑而↑
• 第Ⅰ区域
➢ R↑,门槛值↓
• 第KⅡth 区域K*th (1 R)n
➢ 影响稍小
• 第Ⅲ区域
➢ 影响显著
上午10时50分53秒
4.1 应力比与平均应力的影响
平均应力的影响
m max min 1 R a max min 1 R
上午10时50分52秒
2 疲劳失效过程与机制
疲劳裂纹的萌生
疲劳裂纹的亚稳扩展
失稳扩展断裂 疲劳失效过程示意图
上午10时50分53秒
2.1 疲劳裂纹萌生过程及机理
宏观疲劳裂纹是由微观裂纹的形成、长大及 联接而成的。 将0.05~0.1mm的裂纹确定为疲劳裂纹核,以 此确定疲劳裂纹萌生期
疲劳裂纹萌生机理的三种可能: ➢表面滑移带开裂 ➢夹杂物与基体相界面分离或夹杂物本身断裂 ➢晶界开裂
பைடு நூலகம்
➢ 材料的力学性能
郑修麟编
西北工业大学出版社
上午10时50分52秒
1 含裂纹结构的安全性
疲劳裂纹研究的目的—— ➢定寿:精确地估算机械结构的零构件的疲劳寿
命,保证在服役期内零构件不会发生疲劳 失效。 ➢延寿:采用经济而有效的技术和管理措施延长 疲劳寿命
上午10时50分52秒
1 含裂纹结构的安全性
上午10时50分52秒
本讲内容
1 含裂纹结构的安全性 2 疲劳失效过程与机制 3 疲劳裂纹的亚临界扩展 4 影响疲劳裂纹扩展的因素 5 疲劳裂纹扩展寿命计算 6 延缓裂纹形成寿命的技术
上午10时50分52秒
参考资料
➢ 飞机结构疲劳强度与断裂分析
杜洪增编 中国民航出版社
➢ 断裂力学及其工程应用
李庆芬主编 哈尔滨工程大学出版社
上午10时50分53秒
2 疲劳失效过程与机制
1 • 长期循环应力 2 • 循环滑移带 3 • 集中分布局部薄弱
4 • 滑移带宽度随循环次数增加
5 • 位错的塞积和交割 6 • 微裂纹形成
滑移带开裂产生裂纹
上午10时50分53秒
2 疲劳失效过程与机制
晶界处 产生应 力集中
位错的 运动受

晶界的 存在
控制的: da c(K )n dN
式中c、n是与试验条件(环境、加载频率、温度和应力 比R等)有关的材料常数,对于绝大多数金属材料,n = 2 ~ 4。KI为应力强度因子幅度,其定义为
KI KI,max KI,min (I,max I,min ) a
Paris公式表明:疲劳裂纹扩展是由裂纹尖端弹性应力强 度因子的变化幅度所控制的。
在da/dN的II区。晶界的阻碍作 用,使扩展方向逐渐垂直于主应 力方向;扩展速率μm级;可以穿 晶扩展。形成疲劳条纹
上午10时50分53秒
2 疲劳失效过程与机制
塑性钝化模型
上午10时50分53秒
3 疲劳裂纹的亚临界扩展
对于一个含有表面初始裂纹(长度为a0)的构件: 静载荷情况
c K1 K1c (或Kc ) c K1 K1c (或Kc )
飞机结构的使用寿命
➢疲劳裂纹形成寿命 • 由微观缺陷发展到宏观可检裂纹所对应的寿命 • 由疲劳理论的方法给以确定
➢疲劳裂纹扩展寿命 • 宏观可检裂纹扩展到临界裂纹而发生破坏这段 区间的寿命 • 用断裂力学方法确定
计算结构裂纹扩展寿命的意义
➢即使循环应力水平远低于材料的疲劳极限,裂纹 也可能扩展,并最终导致灾难性的破坏
上午10时50分53秒
Values of C and m for Crack Growth Eqn.
Material
c
m
上午10时50分53秒
4 影响疲劳裂纹扩展的因素
影响疲劳裂纹扩展的因素
➢应力强度因子变程 • 最重要、最基本
➢应力比 ➢平均应力 ➢高载峰值 ➢加载频率 ➢温度 ➢环境介质
上午10时50分53秒
m
1 1
R R
a
1 R 1 R
2
1 R 2
当应力变程一定时,平均应力 随应力比的增加而增加
平均应力的影响可通过R来体现
晶粒的 不同取 向性
预防——从晶界萌
生裂纹来看,凡使 晶界强化、净化和 细化晶粒的因素, 均能抑制晶界裂纹 形成,提高疲劳抗 力。
相界面开裂产生裂纹
上午10时50分53秒
2 疲劳失效过程与机制
裂纹扩展的两个阶段 ➢第一阶段
沿主滑移系,以纯剪切方式向内 扩展;扩展速率仅0.1μm数量级。 ➢第二阶段
环数N的增加而加大 裂纹扩展速率是裂纹扩展的一个量度
➢预测疲劳裂纹扩展寿命 ➢估算裂纹检查间隔
上午10时50分53秒
3.1 疲劳裂纹扩展速率 CCT试件的测试结果
上午10时50分53秒
3.1 疲劳裂纹扩展速率的计算
裂纹增长,KI增大
上午10时50分53秒
3.2 Paris公式
疲劳裂纹扩展是受裂纹尖端弹性应力强度因子变程 K
上午10时50分53秒
3.3 疲劳裂纹亚临界扩展规律 高周疲劳的裂纹亚临界扩展规律:三个分区
上午10时50分53秒
3.3 疲劳裂纹亚临界扩展规律
Where a = crack length N = no. of cycles △KI = range of stress intensity at root of crack, calculated from max stress minus minimum stress. C and m are material constants
不会破坏 脆性断裂
交变载荷情况
a ac 裂纹缓慢扩展
a ac 裂纹失稳扩展,构件破坏
上午10时50分53秒
疲劳裂纹的亚临界扩展 疲劳裂纹的亚临界扩展
➢裂纹在交变应力作用下,由初始长度a0扩展到 临界长度ac的这一段扩展过程
上午10时50分53秒
3.1 疲劳裂纹扩展速率 在交变载荷作用下,裂纹长度a随交变载荷循
金属结构材料 TD1
疲劳裂纹扩展与寿命计算
航空工程学院 郭巧荣
qiaorongguo@
上午10时50分52秒
绪论
自第二次世界大战以来,随着高强度材料和大型结 构的广泛应用,一些按传统强度和常规设计方法设 计、制造并经严格检验合格的产品,先后发生了不 少灾难性断裂事故。 ➢ 二战期间,1943~1947年美国5000余艘焊接船连续 发生了一千多起断裂事故。其中238艘完全毁坏; ➢ 英国“de Haviland”公司在1952年研制的旅客机 “彗星”号连续发生失事。
相关文档
最新文档