标量场函数的梯度
1.4标量场的梯度
el = ex cos α + e y cos β + ez cos γ
cos α , cos β , cos γ 是 el 的方向余弦: 的方向余弦:
dx dy dz cos α = , cos β = , cos γ = dl dl dl
3、方向导数的性质 方向导数是标量场在点P处沿方向 对距离的变化率。 方向导数是标量场在点 处沿方向 el 对距离的变化率。 标量场中,在给定点 处沿不同方向 的方向导数不相同。 标量场中,在给定点P处沿不同方向 el 的方向导数不相同。 二、梯度 1、梯度的定义 是一个矢量, 标量场 u (r ) 的梯度 gradu :是一个矢量,其方向为标量场 变化率最大的方向、大小则等于其最大变化率, u (r ) 变化率最大的方向、大小则等于其最大变化率,即
§1.4 标量场的梯度
用一个标量函数来表示,在直角坐标系中表示为: 标量场: 标量场 u (r ) 用一个标量函数来表示,在直角坐标系中表示为: 一、等值面 1、等值面 标量场中量值相等的点构成的面,称为标量场的等值面。 标量场中量值相等的点构成的面,称为标量场的等值面。 例如,在温度场中,由温度相同的点构成等温面;在电位场中, 例如,在温度场中,由温度相同的点构成等温面;在电位场中, 由电位相同的点构成等位面。 由电位相同的点构成等位面。 2、等值面方程
3、梯度的性质 标量场的梯度是一个矢量场。 标量场的梯度是一个矢量场。
标量场在给定点处沿某方向的方向导数等于梯度在该方向上的投影。 标量场在给定点处沿某方向的方向导数等于梯度在该方向上的投影。
标量场中某点处的梯度,垂直于过该点的等值面, 标量场中某点处的梯度,垂直于过该点的等值面,且指向
u (r ) 增加的方向。 增加的方向。
2.2数量场的方向导数和梯度.
3)在球面坐标系中:
3、 梯度的性质
1) 标量场的梯度是矢量场,它在空间某点
的 方向表示该点场变化最大(增大)的 方向,其数值表示变化最大方向上场的空 间变化率。
2) 标量场在某个方向上的方向导数,是梯
度在该方向上的投影。
3)标量场的梯度垂直
于通过该点的等值 面(或切平面)
4、梯度运算的基本公式
5.
梯度的重要性质
0
证:
ˆ x x x ˆ y y y
标量场梯度的旋度恒等于零。
ˆ z z z
2 2 2 2 2 ˆ( ˆ( ˆ( x F F) y F F) z F F) yz zy zx xz xy yx
2.2 标量场的方向导数和梯度
一、方向导数 1、定义:在实际应用中不仅需要宏观上了解场在空间 的数值,还需要知道场在不同方向上场变化的情况。应 用方向性导数可以描述标量场在空间某个方向上变化的 情况。
方向性导数表示场沿 l 方向的空间变化率。
u u lim | l M l 0 l
l
3、梯度的运算
1)在直角坐标系中:
u u u u ex ey ez x y z u 1 u u u er e ez r r z u 1 u 1 u u er e e r r r sin
2)在柱面坐标系中:
=0
例题:
若 R r r ' ,R R
在处理相对坐标的函数的 梯度运算时,算子 与算 子 ' 可以互换,但改变 其前的正负号。
证明:
1 1 ( ) '( ) R R
ex ey ez 说明: x y z ' ex ey ez x ' y ' z '
圆柱坐标系的梯度散度旋度公式
圆柱坐标系的梯度散度旋度公式在数学和物理学中,圆柱坐标系是一种常用的坐标系,特别适用于具有圆柱对称性的问题。
在三维空间中,圆柱坐标系由径向、方位角和高度三个坐标轴组成。
在圆柱坐标系下,梯度、散度和旋度是描述矢量场性质的重要概念。
下面我们将探讨在圆柱坐标系下梯度、散度和旋度的计算公式。
圆柱坐标系下的梯度在圆柱坐标系下,一个标量函数$$ f(\\rho, \\phi, z) $$的梯度可以用下式表示:$$ \ abla f = \\frac{\\partial f}{\\partial \\rho} \\hat{\\rho} + \\frac{1}{\\rho} \\frac{\\partial f}{\\partial \\phi} \\hat{\\phi} + \\frac{\\partial f}{\\partial z}\\hat{z} $$其中$$ \\hat{\\rho} $$、$$ \\hat{\\phi} $$和$$ \\hat{z} $$分别是径向、方位角和高度方向的单位矢量。
圆柱坐标系下的散度对于一个矢量场$$ \\mathbf{F}(\\rho, \\phi, z) = F_\\rho \\hat{\\rho} + F_\\phi \\hat{\\phi} + F_z \\hat{z} $$,在圆柱坐标系下的散度计算公式为:$$ \ abla \\cdot \\mathbf{F} = \\frac{1}{\\rho} \\frac{\\partial}{\\partial\\rho}(\\rho F_\\rho) + \\frac{1}{\\rho} \\frac{\\partial F_\\phi}{\\partial \\phi} + \\frac{\\partial F_z}{\\partial z} $$圆柱坐标系下的旋度对于一个矢量场$$ \\mathbf{F}(\\rho, \\phi, z) $$,在圆柱坐标系下的旋度计算公式为:$$ \ abla \\times \\mathbf{F} = \\left( \\frac{1}{\\rho} \\frac{\\partialF_z}{\\partial \\phi} - \\frac{\\partial F_\\phi}{\\partial z} \\right) \\hat{\\rho} + \\left( \\frac{\\partial F_\\rho}{\\partial z} - \\frac{\\partial F_z}{\\partial \\rho} \\right) \\hat{\\phi} + \\frac{1}{\\rho} \\left( \\frac{\\partial}{\\partial\\rho}(\\rho F_\\phi) - \\frac{\\partial F_\\rho}{\\partial \\phi} \\right) \\hat{z} $$这三个公式是描述在圆柱坐标系下梯度、散度和旋度的基本公式,它们在解决圆柱对称性问题时具有重要的应用价值。
标量场梯度的定义与计算
弟为最大的方向导数。
思考:什么情况下,方向导数为零呢?
sd 为零,即等值面上任意线段上
的方向导数为零。
b・梯度定义
定义:标量场中某点梯度的大小为该
点最大的方向导数,其方向为该点所
在等值面的法线方向。
d。
数学表达式:
grad^
=
八a dn n
C.梯度的计算:
挪 d,dn d, 八
梯度
al
u —=---- cos
解:根据梯度计算公式
疽卵—ax +云 ^^y az ox 8y 8z
=6 xyz & + 3x2 z z(ay + 9 x2
yz 位
, grad I 尹=12% + 3 句 + 18ciz
在不同的坐标系中,梯度的计算公式:
在直角坐标系中: 在柱坐标系中:
海八 海八 海八
v^=—a +—a y +—a ox Sy
W牛r or
Hale Waihona Puke Sz也"淨z在球坐标系中:
w=迎晶+
SR R
海a+
sin先 a
+普 +寿 在任意正交曲线坐标系中:坐标变量("i,"2,"3),拉梅系数(如h2,h3) ou2 a 2 h ou3 a 3 h h Ou
小结:
1.标量场的等值面
2.标量场梯度的定义grad^ =翌% dn
3. 标量场梯度的计算w=普&
+ + h % a 2 h m a 3
学a
, d l d n d / d n
在直d 角坐= 标gr系ad中,:- d挪l =g皿斜+灯
第3讲 矢量分析(2)
P 穿出该六面体的净通量为
Fx Fy Fz S F dS x xyz y xyz z xyz
根据定义,则得到直角坐标系中的散度 表达式为
F lim
S
F dS V
V 0
Fx Fy Fz x y z
u • 0 —— u(M)沿l 方向无变化。 l
方向导数的概念
问题:在什么方向上变化率最大、其最大的变化率为多少?
3. 标量场的梯度
标量场的场函数为 ( x, y, z, t ) a.方向导数:
d 空间变化率,称为方向导数。 dl
P1
dn
P
P2
dl
d 为最大的方向导数。 dn
0
0 d
b.梯度 定义:标量场中某点梯度的大小为该点最大的方向导数, 其方向为该点所在等值面的法线方向。 d ˆ an 数学表达式: grad dn
计算
d d d n d cos d a a ˆn ˆl dn dl d n dl d n d grad d l
l1 l2 l3 l4
Fy1y Fz 2 z Fy 3 y Fz 4 z
Fy1 Fy M
Fy z
M
z 2
z
3
4 z M
C 2
Fz y Fz 2 Fz M y M 2 Fy z Fy 3 Fy M z M 2 F y Fz 4 Fz M z y M 2
Si
散度定理是闭合曲面积分
与体积分之间的一个变换关系。
散度体积分=闭合面通量
三. 矢量场的环流和旋度
1. 矢量场的环流与旋涡源
1.5标量场梯度的定义与计算
a.方向Байду номын сангаас数:
d 空间变化率,称为方向导数。
dl
d
dn
为最大的方向导数。
P1
P2
dn
dl
P
0 d 0
思考:什么情况下,方向导数为零呢?
d 为零,即等值面上任意线段上的方向导数为零。
b.梯度定义
定义:标量场中某点梯度的大小为该 点最大的方向导数,其方向为该点所 在等值面的法线方向。
au3 ˆ
小结:
1. 标量场的等值面
2.
标量场梯度的定义
grad
d
dn
aˆ n
3.
标量场梯度的计算
h1u1
aˆu1
h2u2
aˆu 2
h3u3
aˆu3
r
aˆr
r
aˆ
z
aˆz
在球坐标系中:
R
aˆ R
R
aˆ
R sin
aˆ
在任意正交曲线坐标系中:坐标变量 (u1,u2,u3) ,拉梅系数 (h1,h2, h3)
h1u1
aˆu1
h2u2
aˆu 2
h3u3
数学表达式:
grad
d
dn
aˆ n
P1
P2
dn dl
P
0 d 0
c.梯度的计算:
梯度
d d
dl dn
dn dl
1.3标量函数的梯度
en
gradu gradu
记忆!!
(三)哈密顿(Hamilton)算子
➢ 引入一个算子
ex x ey y ez z 称为哈密顿算子。 读作“del(德尔)”或
“nabla(那勃拉)”
直角坐标下的具体实例
u
(ex
x
ey
y
ez
)u z
u x
ex
u y
ey
u z
ez
gradu u
(四) 梯度运算基本公式
函数u(x,y,z) 沿其中哪 个方向的 变化率最 大?
G
u x
ex
u y
ey
u z
ez
u l
G el
G
cos G, el
u G l max
u(x,y,z)沿G方向变化率最大 矢量G的模也正好就是该最大变化率。
(二)梯度的性质 ➢ 一个标量函数(标量场)的梯度是一个矢量函数。
在给定点,梯度的方向就是函数变化率最大的方 向,它的模恰好等于函数在该点的最大变化率的 数值。又因函数沿梯度方向的方向导数
22
cos
1
1
12 22 22 3
cos 2 cos 23
3
u (u , u , u )(cos, cos , cos )
l x y z = 1 1 0 2 1 2 1 23 3 23 2
三、梯度(Gradient)
(一)梯度的定义:大小?方向?
el
l l
cos ex cos ey cos ez
1.3 标量函数的梯度
一、标量场?的等值面
➢ 在直角坐标系中,某一物理标量函数u可表示为
u ux, y, z
u u r, r = (x, y,z)
梯度、散度、旋度表达式推导
r r a • dr ∫
所以
lim
s →0
L
S
i r ∂ = ∇× a = ∂x ax
i r ∂ = ∇×a = ∂x ax
j ∂ ∂y ay
j ∂ ∂y ay
k ∂ ∂z az
k ∂ ∂z az
即
rotn a = lim
s →0
r r a • dr ∫
L
S
4. 曲线坐标系
a. 曲线坐标的引进,柱坐标系球坐标系 曲线坐标的引进, 空间中任一点 M 在直角坐标系中是由 (x, y, z) 三个数唯一决定的。此时矢经 r 的表达式是:
H 1 , H 2 , H 3 称为拉梅系数
4. 曲线坐标系
b .拉梅系数以及弧元素在曲线坐标坐标系中的表达式 拉梅系数以及弧元素在曲线坐标坐标系中的表达式
∂r 考虑到 ∂qi 的大小和方向后,可得下式:
r r r dr = H 1dq1e1 + H 2 dq2 e2 + H 3 dq3e3
这就是弧元素矢量在曲线坐标系中的表达式,它们 在坐标轴上的投影分别是:
L
S
i r ∂ = ∇×a = ∂x ax
j ∂ ∂y ay
k ∂ ∂z az
证明如下: 因为: L
r r ∫ a • dr =
∫ (a dx + a dy + a dz)
x y z L
3.旋度 .
b. 旋度 2) 表示形式 再由线积分转化为面积分可得: 上式=
∫ [(
L
∂a y ∂ax ∂a ∂a ∂az ∂a y − ) nx + ( x − z ) n y + ( − )n y ]dS ∂y ∂z ∂z ∂x ∂x ∂y
电动力学0.2-0.5 标量场的方向导数和梯度
个标量场来表示一个矢量场。 个标量场来表示一个矢量场。
v 在矢量场 F中,如果一条曲线在空间各点都始终与矢 v v 相切, 的方向, 量 F 相切,而曲线切线方向总取为矢量 F 的方向,则 v r 这条曲线称为矢量场 F 的矢量线
矢量线的密度与矢量场的模成正比, 矢量线的密度与矢量场的模成正比,即单 位面积上矢量线的根数与矢量场的模对应
§0.3 矢量场的通量和散度
1 矢量线
v v 一般是空间坐标和时间的函数, 矢量场 F 一般是空间坐标和时间的函数, 可表示为 F v v v v v v v v v F = F ( r , t ) = ex Fx ( r , t ) + ey Fy ( r , t ) + ez Fz ( r , t ) ,即可以用三
v v F (M ) < F ( P)
P
M r F ( P)
F(M)
C
矢量场的通量 2 矢量场的通量
v v 在矢量场 F 中,任取一面元矢量dS,定 v v 义矢量F 通过面元矢量dS 的通量为
r r dΦ = F ⋅ dS
r en r dS
θ
r F
通过曲面 S 的通量为 Φ = ∫S
r r F ⋅ dS
r en θ
r l
P2
P0
标量场 ϕ ( P ) 在某一方向上的方向导数等于梯度在该方向上的投
r 影,即 ∂ϕ = ∇ ϕ ⋅ e l . ∂l
证明: 证明: ∂ϕ = ∂ϕ cos α + ∂ϕ cos β + ∂ϕ cos γ
∂l ∂x ∂y ∂z v ∂ϕ v ∂ϕ v ∂ϕ v v v = ex + ey + ez ⋅ e x cos α + e y cos β + ez cos γ ∂x ∂y ∂z r = ∇ ϕ ⋅ el
方向导数及梯度参考资料
标量场和矢量场
确定空间区域上的每一点都有确定物理量与之对应, 称在该区域上定义了一个场。 ? 如果物理量是标量,称该场为标量场。
例如:温度场、电位场、高度场等。
? 如果物理量是矢量,称该场为矢量场。 例如 :流速场、重力场、电场、磁场等。
4/8/2020
26
§1.4 矢量的通量和散度
? 引入哈密顿算符 ? (矢性微分算符)
直角坐标内,
? ?e ? ?e ? ? ? e x ?x y ?y z ?z
则有: div ? ? ?
A
A
4/8/2020
27
§1.4 矢量的通量和散度
b.圆柱坐标
? ?A?
1?
? ??
(?A ? ) ?
1
?A? (
?r ?l
M
?
?r
? e?l
r 的梯度为
grad r
? ? r ? 1 (xe? ? ye? ? ze? )
rx
y
z
点M处的坐标为x=1, y=0, z=1, r ? x2 ? y2 ? z2 ? 2
所以r在M点处的梯度为
gradr ? ? r ?
1 e?x ? 2
1 2
e?z
4/8/2020
14
而 所以
RR
(2) ? ( 1 ) ? ? R ? ? e?R
R
R3
R2
(3) ? f (R) ? ?? ' f (R)
说明:
?? ?e? ?e ??e
?
' ? ?x?
x
e
??y?
y
N0.3-4--第一章 标量场的梯度 矢量场的散度旋度 亥姆定理及矢量场的分类
div A = A
可以证明, 散度运算符合下列规则:
(A ± B ) = A ± B (φ A ) = φ A ± A φ
20
1.2通量 散度、 通量、 §1.2通量、散度、散度定理
三、高斯散度定理
矢量场的散度代表其通量的体密度,因此散度的体积分 等于穿过包围该体积封闭面的总通量:
(1)开曲面:沿封闭曲线 n的取法:
l 的绕行方向按右手螺旋的拇指方向
(2)封闭面: 取为封闭面的外法线方向 外法线方向
14
矢量A穿过整个曲面S的通量:
Φ = ∫ A ds = ∫ A nds
s s
如果S是一个封闭面, 则
Φ = ∫ A ds
S
15
1.2通量 散度、 通量、 §1.2通量、散度、散度定理
22
1.2通量 散度、 通量、 §1.2通量、散度、散度定理
同理
D y
q r 2 3y 2 = y 4π r5
D z q r 2 3z 2 = z 4π r5
故
Dx D y Dz q 3r 2 3( x 2 + y 2 + z 2 ) D = + + = =0 5 x y z 4π r
可见,除了点电荷所在源点 (r = 0)外,空间各点的电通密度散度均为 ,它是管形场 。 空间各点的电通密度散度均为0, 可见,
(C点)
电偶极子的电力线和等位线 17
1.2通量 散度、 通量、 §1.2通量、散度、散度定理
b) 散度的分量表示式
穿过包围点P(x,y,z)的无穷小体积 v = xyz 的通量: 的通量: 计算 A 穿过包围点 的无穷小体积 右边向外流出的通量: A 穿过右边 右边
标量场函数的梯度
。
M0
1 8 /4 / 25
华北电力大学电气与电子工程学
4
工程电磁场
主讲人: 王泽 忠
u lim u(M) u(M0 )
l M0
MMo
l
= lim u MMo l
du dl
M0
方向导数:标量场函数在一点M0 处 沿某一方向 l 对距离的变化率
1 8 /4 / 25
华北电力大学电气与电子工程学
工程电磁场
主讲人: 王泽 忠
工程电磁场
王泽 忠
1 8 /4 / 25
华北电力大学电气与电子工程学
1
工程电磁场
主讲人: 王泽 忠
1.3 标量场的方向导数和梯 度
1 8 /4 / 25
华北电力大学电气与电子工程学
2
工程电磁场
主讲人: 王泽
忠
1.方向导数的定义
要了解u M 沿任意方向的变化情况
需要计算u M 沿任意方向的导数
5
工程电磁场
主讲人: 王泽
忠沿 l 方向是增加的
u 越大,增加得越快
l
u
当
l
Mo 0 ,沿 l 方向是减小的
u 越大,减小得越快 l
1 8 /4 / 25
华北电力大学电气与电子工程学
6
工程电磁场
主讲人: 王泽
忠
u u u u
偏导数 x , y , z 是 l 的特例:
当 l 指向 x 轴正方向时, u u
M0
cos u y
M0
cos u z
M0
1 8 /4 / 25
华北电力大学电气与电子工程学
9
工程电磁场
主讲人: 王泽
标量场梯度的定义与计算
在不同的坐标系中,梯度的计算公式:
在直角坐标系中:
x
aˆx
y
aˆy
z
aˆz
在柱坐标系中:
r
aˆr
r
aˆ
z
aˆz
在球坐标系中:
R
aˆR
R
aˆ
R sin
aˆ
在任意正交曲线坐标系中:坐标变量 (u1, u2, u3) ,拉梅系数 (h1, h2, h3)
h1u1
aˆu1
h2u2
aˆu2
h3u3
aˆu3
小结:
1. 标量场的等值面
2.
标量场梯度的定义
grad
d
dn
aˆn
3.
标量场梯度的计算
h1u1
aˆu1
h2u2
aˆu2
h3u3
aˆu3
y
aˆy
z
aˆz
梯度也可表示: grad
0 d 0
例如:已知 (x, y, z) 3x2 yz3
求:P(1,2,1)点的梯度。
解:根据梯度计算公式
grad
x
aˆx
y
aˆy
z
aˆz
6xyz3aˆx 3x2z3aˆ y 9x2 yz2aˆz
grad P 12aˆx 3aˆy 18aˆz
d
dn
aˆn
P1
P2
dn dl
P
0 d 0
c.梯度的计算:
梯度
d
dl
d dn
dn dl
d cos
dn
d
dn
aˆn
aˆl
P1
P2
dn dl
d grad dl
标量场的方向导数和梯度
y
方向导数 4
4 标量场的梯度
由于从一点出发,有无穷多个方向, 即标量场 (P)在一点处的方向导数有无穷 多个,在这无穷多个方向中方向导数在什 么方向上最大?
4.1 梯度(gradient)的定义
c2 c1
r en
P1 r
l
P2
P0
lim ( p) ( p0 )
l l0 P0
l
标量场 (P)在点P0处的梯度是一个矢量,其方向 为函数 (P)在点P0处方向导数取得最大值的方向,其 模等于这个最大的方向导数,记作
rr
向外通过闭合曲面S 的通量为 ÑS F dS
➢
面元矢量
v dS
evn
dS
➢
v F
cos
dS
,以外法线方向为正
s
9
2 通量的物理意义
矢量场通过闭合曲面的通量的三种可能结果
0 正通量源
通过闭合曲面有 净的矢量线穿出
0 负通量源
通过闭合曲面有 净的矢量线进入
0 无通量源
进入与穿出闭合曲 面的矢量线相等
Vi 0
Vi
12
Ñ 可得:
的矢量线
➢ 矢量线的密度与矢量场的模成正比,即单
位面积上矢量线的根数与矢量场的模对应
v F
M
Fv P
M
F P
P
F M
C
8
2 矢量场的通量
在矢量场
v F
中,任取一面元矢量dSv,定
F
义矢量Fv通过面元矢量dSv的通量为
en
d F dS
垂直通过某一面积的量
dS
rr
通过曲面S 的通量为 S F dS
闭合曲面的通量从的通量源的关系。 10
《电磁场与电磁波》试题1电磁场与...
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为:B = uH 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 拉普拉斯方程。
3.时变电磁场中,数学表达式H E S⨯=称为坡印延矢量 。
4.在理想导体的表面, 电场强度 的切向分量等于零。
5.矢量场)(r A穿过闭合曲面S 的通量的表达式为:fs A(r)dS6.电磁波从一种媒质入射到理想 电离媒质 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 O 。
8.如果两个不等于零的矢量的 叉乘 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 两两垂直 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇,试说明其物理意义,并写出方程的积分形式。
磁场变化率的负值等于电场强度的旋度 12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数yx e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量zy x e e e A ˆ3ˆˆ2-+=,z y x e e e B ˆˆ3ˆ5--=,求(1)BA+(2)BA⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkzy x e E e E e E --=004ˆ3ˆ(1) 试写出其时间表达式;(2) 说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
第二讲:三种常用的正交坐标系、梯度、散度1
§1.2 三种常用的正交坐标系
一、坐标系的概念
1、坐标
确定一个空间点需要三个有序数 q1, q2 , q3 ,称为空间点的坐标。
由于空间点同时可用 x, y, z表示,因此
q1 q1x, y, z q2 q2 x, y, z q3 q3 x, y, z
q3 eˆ3
eˆ1 q1
q2 eˆ2
2、坐标面、坐标线
5、拉梅系数: h1 h3 1 , h2 四、球坐标系
1、坐标变量: r,,
const
2、坐标面: r C1 , C2 , C3
坐标线:一条直线、两条曲线
r const
坐标变换: x r sin cos
x
y r sin sin
z
eˆr
Pr,, •
eˆ
r
θ
eˆ
o
y const
三标量场的梯度1梯度的概念梯度gradient是一个矢量它的方向表示标量场u变化率最大的方向大小等于最大的空间变化率用g等值面等值面p02梯度的计算公式梯度的定义与坐标系无关可以选择任意坐标系来计算
1.2 三种常用的正交坐标系 1.3 标量场的梯度 1.4 矢量场的通量与散度 1、了解三种常用坐标系的特点; 2、熟悉球坐标、柱坐标的基矢,基矢变化及空间微元表示; 3、理解梯度的物理意义,掌握其计算公式。 重点:1、基矢及空间微元表示, 2、梯度的物理意义及计算公式。 难点:基矢的变化。 讲授、练习 学时:2 学时
矢量表示: A eˆx Ax eˆy Ay eˆz Az ,例:位置矢量 r eˆx x eˆy y eˆz z
(x,y,z)
y为常数平面
y
4、空间微元:
线元: dr eˆxdx eˆydy eˆzdz
标量场的方向导数和梯度
l M x
y
z
3
1.2.2 标量场旳梯度
NM n
l
●P
在P点沿哪个方向变化率最快?
由方向导数旳定义可知:沿等值面 法线n旳方向导数最大。故定义梯度
grad
n
en
x
ex
y
ey
z
ez
其中, 称为哈密顿算子。
大小:最大变化率
方向:最大变化率旳方向即过该点旳等值面法线方向
梯度旳计算公式推导如下:
【例】求标量场 u x2 2 y2 3z2 xy 3x 2y 6z在点 O(0, 0, 0) 与点 A(1,1,1)处梯度旳大小和方向余弦。在哪点上旳梯度 为0?
【解】:标量场旳梯度为:
u
u x
ex
u y
ey
u z
ez
(2x y 3)ex (4 y x 2)ey (6z 6)ez
第一章 矢量分析
1.2 标量场旳方向导数和梯度
主要内容
❖ 方向导数 ❖ 梯度
学习目旳
❖ 掌握方向导数、梯度旳物理含义及计算措施 ❖ 掌握方向导数与梯度之间旳区别与联络
1.2.1 标量场旳方向导数
标量函数 在M0处沿l方向旳方向导
●
M0
●
l 数为
M
lim (M ) (M0 )
l M0
M M0
含义:表达标量场 在点M0处沿l方向旳变化规律。
h3u3
eu 3
q 对于距离矢量 R r r 有下列常用结论:
R
q'
r
r' O
总结:
(1)R
R R
Ro
eR
1 R Ro (2)
R R3 R2
球坐标下梯度公式
球坐标下梯度公式梯度是向量函数中的一个重要概念,用于表示标量场的变化率和方向。
对于球坐标系下的标量场,梯度的计算方式有一些特殊之处。
本文将介绍球坐标系下的梯度公式及其推导。
1. 球坐标系简介球坐标系是一种常用的三维坐标系,适用于描述具有球对称性的问题。
球坐标系由径向、极角和方位角三个坐标组成。
其中,径向表示点到原点的距离,极角表示点到正方向 z 轴的倾斜角度,方位角表示点到 x 轴的投影在 xy 平面上的角度。
在球坐标系下,一个点的坐标可以表示为(r, θ, φ),其中 r 为径向距离,θ 为极角,φ 为方位角。
常用的单位是弧度。
2. 球坐标系下的梯度定义在球坐标系下,我们希望求解标量函数φ(r, θ, φ) 的梯度。
梯度表示函数在各个方向上的变化率。
在球坐标系下,梯度的方向由φ 的等值线确定,即等值线的法向量方向即为梯度的方向。
球坐标系下的梯度可以表示为一个矢量:grad φ = (∂φ/∂r) * er + (1/r) * (∂φ/∂θ) * eθ + (1/(r*sinθ)) * (∂φ/∂φ) * eφ其中,er、eθ、eφ分别表示径向、极角和方位角方向的单位矢量。
3. 球坐标系下的梯度公式推导为了推导球坐标系下的梯度公式,我们需要利用链式法则和偏导数的定义。
首先,我们考虑一个函数在球坐标系下的微小变化。
对于函数φ(r, θ, φ),它在微小变化(dr, dθ, dφ) 的情况下,函数值的变化量可以表示为:dφ = (∂φ/∂r) * dr + (∂φ/∂θ) * dθ + (∂φ/∂φ) * dφ其中,∂φ/∂r、∂φ/∂θ、∂φ/∂φ分别表示函数φ 对应的偏导数。
利用微小增量的定义,我们可以将上述等式改写为:dφ = (∂φ/∂r) * dr + (∂φ/∂θ) * (r * dθ) + (∂φ/∂φ) * (r * sinθ * dφ)注意到,r、θ、φ分别代表球坐标系下的坐标变量,它们与直角坐标系下的坐标变量 x、y、z 之间存在关系。