空间角与距离

合集下载

空间向量的应用求空间角与距离

空间向量的应用求空间角与距离

空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。

坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。

可以预测到,今后的高考中,还会继续表达法向量的应用价值。

2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。

特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。

计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。

计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。

其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。

用空间向量解决空间角和距离问题

用空间向量解决空间角和距离问题

0,π2
二面角
设二面角α-l-β为θ,平面α,β的法向量分别为n1,
n2,则|cos
θ|=
|cos〈n1,n2〉|

|n1·n2| |n1||n2|
[0,π]
知识点二 利用空间向量求距离(※) 点到平面的距离:用空间向量法求点到平面的距离具体步骤如下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的 法 向 量 上 的 射 影 长 . 如 图 , 设 n = (a , b , c) 是 平 面 α 的 一 个 法 向 量 , P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到 平面 α 的距离 d=|P→P|n0|·n|=|ax0-x+ab2+y0-b2+y+c2 cz0-z|.
证明
②若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角 的正弦值.
解答
类型二 求二面角问题 例2 如图所示,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点, 求二面角A-A1D-B的余弦值.
解答
反思与感悟 求角二面角时,可以用方向向量法,也可以采用法向量 法求解.
2.向量法求距离(※) (1)求 P,Q 两点间的距离,可转化为求P→Q的模. (2)点到平面距离的求法:设 n 是平面 α 的法向量,B 是平面 α 外一点,A 是平面 α 内一点,AB 是平面 α 的一条斜线,则点 B 到平面 α 的距离为
→ d=|A|Bn·|n|.
(3)线面距离、面面距离均可转化为点面距离,利用(2)中的方法求解.
4 2×2
2=12,
且〈P→B,D→B〉∈[0,π],∴〈P→B,D→B〉=π3, ∴BD 与平面 ADMN 所成的角为π6.

高三数学空间角与空间距离的计算通用版知识精讲

高三数学空间角与空间距离的计算通用版知识精讲

高三数学空间角与空间距离的计算通用版【本讲主要内容】空间角与空间距离的计算 空间直线与直线、直线与平面、平面与平面所成角的大小,直线与直线、直线与平面、平面与平面间的距离的求解【知识掌握】 【知识点精析】空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 1. 空间的角的概念及计算方法(1)空间角概念——空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值X 围,如①两异面直线所成的角θ∈(0,2π) ②直线与平面所成的角θ∈[0,2π] ③二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π).说明:对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步提高运算能力、逻辑推理能力及空间想象能力.(2)空间的角的计算方法①求异面直线所成的角常用平移法(转化为相交直线);②求直线与平面所成的角常利用射影转化为相交直线所成的角; ③求二面角α-l -β的平面角(记作θ)通常有以下几种方法: (ⅰ)根据定义; (ⅱ)过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);(ⅲ)利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB =θ或∠ACB =π-θ(图2);(ⅳ)设A 为平面α外任一点,AB ⊥α,垂足为B ,AC ⊥β,垂足为C ,则∠BAC =θ或∠BAC =π-θ(图3);(ⅴ)利用面积射影定理,设平面α内的平面图形F 的面积为S ,F 在平面β内的射影图形的面积为S ‘,则cos θ=SS '.2. 空间的距离问题 (1)空间各种距离是对点、线、面组成的空间图形位置关系进行定量分析的重要概念.空间距离是指两点间距离、点线距离、点面距离、线线距离、线面距离以及面面距离等,距离都要转化为两点间距离即线段长来计算,在实际题型中,这六种距离的重点和难点是求点到平面的距离,因线线距离、线面距离和面面距离除用定义能直接计算出结果的外,都要转化为求点到平面的距离进行计算.(2)空间的距离问题主要是:求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.(3)求距离的一般方法和步骤是: 一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值. 此外,我们还常用体积法或向量法求点到平面的距离.【解题方法指导】例1. 三棱锥P-ABC 中,∠ABC =90,PA =1,AB =3,AC =2,PA ⊥平面ABC.(1)求直线AB 与直线PC 所成的角; (2)求PC 和面ABC 所成的角; (3)求二面角A-PC-B 的大小.PA BC解:(1)作矩形ABCD.∴AB 和PC 所成角即为CD 和PC 所成角,且CD ⊥PD .CD =3,AD =1,PD =2,tanPCD =3632=.故AB 和PC 所成角为arctan 36(2)∵PA ⊥面ABC ,PC 和面ABC 所成角即为∠ACP ,求得tanACP =21, ∴∠ACP =arctan21 (3)∵PA ⊥面ABC ,∴面PAC ⊥面ABC ,过B 作BG ⊥AC 于G ,则BG ⊥面PAC.过G 作GH ⊥PC 于H ,连接BH ,则BH ⊥PC . ∴∠BHG 为二面角A-PC-B 的平面角. 在Rt △ABC 与Rt △PBC 中,PB =2,BC =1,AC =2,AB =3∴PC =5∴BH =52,BG =23. ∴sinBHG =4155223==BH BG ∴∠BHG =arcsin 45.故二面角A-PC-B 的大小为arcsin 45.例2. 在正三棱柱111C B A ABC -中,各棱长都等于a ,D 、E 分别是1AC 、1BB 的中点, (1)求证:DE 是异面直线1AC 与1BB 的公垂线段,并求其长度;(2)求二面角C AC E --1的大小; (3)求点1C 到平面AEC 的距离.解:(1)取AC 中点F ,连接DF .∵ D 是1AC 的中点,F∴DF ∥1CC ,且121CC DF =.又11//CC BB ,E 是1BB 的中点, ∴DF ∥BE ,DF =BE ,∴四边形BEDF 是平行四边形, ∴DE ∥BF ,DE =BF .∵1BB ⊥面ABC ,⊂BF 面ABC ,∴1BB ⊥BF .又∵F 是AC 的中点,△ABC 是正三角形,∴BF ⊥AC ,a BF 23=. ∵1BB ⊥BF ,1BB ∥1CC ,∴BF ⊥1CC ,∴BF ⊥面11A ACC , 又∵⊂1AC 面11A ACC ,∴BF ⊥1AC , ∵DE ∥BF ,∴DE ⊥1AC ,DE ⊥1BB ,∴DE 是异面直线1AC 与1BB 的公垂线段,且a DE 23=. (2)∵11//CC BB ,DE ⊥1BB , ∴DE ⊥1CC , 又∵为DE ⊥1AC ,∴DE ⊥面11A ACC . 又⊂DE 面1AEC ,∴面1AEC ⊥面1ACC , ∴二面角C AC E --1的大小为90°.(3)连接CE ,则三棱锥1CEC A -的底面面积为221a S CEC =∆,高a h 23=.所以32123232311a a a V CEC A ==⋅⋅-.在三棱锥AEC C -1中,底面△AEC 中,a CE AE 25==,则其高为a ,所以22a S AEC =∆.设点1C 到平面AEC 的距离为d ,由AEC C CEC A V V --=11得32123231a a d =⋅, 所以a d 23=,即点1C 到平面AEC 的距离为a 23【考点突破】【考点指要】空间角是立体几何中的一个重要概念.它是空间图形中的一个突出的量化指标,是空间图形位置关系的具体体现,故它以高频率的姿态出现在历届高考试题中,可以在填空题或选择题中出现,更多的在解答题中出现.空间中各种距离都是高考中的重点内容,可以和多种知识相结合,是诸多知识的交汇点,考查题型多以选择题、填空题为主,有时渗透于解答题中,所以复习时应引起重视.【典型例题分析】例1. (2003全国卷文)如图,已知正四棱柱2,1,11111==-AA AB D C B A ABCD ,点E 为1CC 中点,点F 为1BD 中点.(1)证明EF 为BD 1与CC 1的公垂线;(2)求点1D 到平面BDE 的距离.解法1:(1)连结AC 交BD 于点O ,则点O 为BD 中点,连OF ,则可证OCEF 为矩形, 故EF ⊥CC 1 ,EF ∥AC .又可证AC ⊥平面BD 1 ∴AC ⊥BD 1,∴EF ⊥BD 1, 故 EF 为BD 1与CC 1的公垂线.O(2)连结D 1E ,则有三棱锥D1-DBE 的高d 即为点1D 到平面BDE 的距离. 由已知可证三角形DBE 为边长为2的正三角形,故2331311⋅⋅=⋅⋅=∆-d S d V DBE DBE D ; 又31311111=⋅===∆---DBD DBD C DBD E DBE D S CO V V V∴3123=d ∴332=d , 即1D 到平面BDE 的距离为332解法2:解(1)以D 为原点,建立如图所示的直角坐标系,则 )0,0,0(D ,)2,0,0(1D)0,1,1(B ,)0,1,0(C ,)2,1,0(1C ,)1,1,0(E ,)1,21,21(F ,∴)0,21,21(-=EF ,)2,1,1(1--=BD ,)2,0,0(1=CC∴01=⋅BD EF ,01=⋅CC EF ;∴1BD EF ⊥,1BD EF ⊥ 又EF 与CC 1、BD 1分别交于E 、F ,故EF 为BD 1与CC 1的公垂线. (2)由(1))0,1,1(--=BD ,)1,0,1(-=BE ,)2,1,1(1--BD , 设 平面BDE 的法向量为 ),,(z y x n =,则BD n ⊥,BE n ⊥,∴⎪⎩⎪⎨⎧=⋅=⋅00BE n BD n , ∴⎩⎨⎧=+-=--00z x y x , 即 ⎩⎨⎧=-=z x y x ,∴ 不妨设 )1,1,1(-=n ,则点1D 到平面BDE 的距离为33232||1===n n BD d , 即为所求.例2. (2006全国卷Ⅲ文20)如图,12l l ,是互相垂直的异面直线,MN 是它们的公垂线段.点A B ,在1l 上,C 在2l 上,AM MB MN ==.(Ⅰ)证明AC NB ⊥;(Ⅱ)若60ACB ∠=,求NB 与平面ABC 所成角的余弦值.C1l2解法一:(Ⅰ)由已知221l MN l l ⊥⊥,,1MNl M =,可得2l ⊥平面ABN .由已知1MN l AM MB MN ⊥==,,可知AN NB =且AN NB ⊥. 又AN 为AC 在平面ABN 内的射影, AC NB ∴⊥.(Ⅱ)Rt Rt CNA CNB △≌△,AC BC ∴=,又已知60ACB ∠=︒,因此ABC △为正三角形. Rt Rt ANB CNB △≌△,NC NA NB ∴==,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心, 连结BH ,NBH ∠为NB 与平面ABC 所成的角.在Rt NHB △中,cos 3ABHB NBH NB ∠===.N1l l解法二:如图,建立空间直角坐标系M xyz -.1l令1MN =,则有(100)(100)(010)A B N -,,,,,,,,.(Ⅰ)MN 是12l l ,的公垂线,21l l ⊥, 2l ∴⊥平面ABN .2l ∴平行于z 轴.故可设(01)C m ,,.于是(11)(110)AC m NB ==-,,,,,, ∵0011=+-=⋅NB AC AC NB ∴⊥. (Ⅱ)(11)AC m =,,,(11)BC m =-,,,AC BC ∴=.又已知60ACB ∠=︒,ABC ∴△为正三角形,2AC BC AB ===. 在Rt CNB △中,NB =NC =(0C . 连结MC ,作NH MC ⊥于H ,设(0)(0)H λλ>,.(012)(01HN MC λλ∴=--=,,,,,.∵021=--=⋅λλMC HN ,∴31=λ1033H ⎛⎫∴ ⎪ ⎪⎝⎭,,,可得2033HN ⎛⎫=- ⎪ ⎪⎝⎭,,, 连结BH ,则1133BH ⎛⎫=- ⎪ ⎪⎝⎭,,,∵092920=-+=⋅BH HN ,HN BH ∴⊥,又MC BH H =, HN ∴⊥平面ABC ,NBH ∠为NB 与平面ABC 所成的角.又(110)BN =-,,, ∴3623234cos =⨯=⋅=∠BN BH BN BH NBH【综合测试】一、选择题1、已知AB 是异面直线a 、b 的公垂线段,AB =2,a 与b 成30°,在直线a 上取AP =4,则点P 到直线b 的距离是( )A 、22B 、25C 、142D 、5 2、将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A 、a 43B 、a 43C 、a 23 D 、64a 3、正方体ABCD-A 1B 1C 1D 1中,M 是DD 1的中点,O 为正方形A 1B 1C 1D 1的中心,P 是棱AB 上的垂足,则直线A 1M 与OP 所成的角( ).A 、30oB 、45oC 、60oD 、90o 4、二面角α-AB-β大小为θ(0°≤θ≤90°),AC ⊂α,∠CAB =45o ,AC 与平面β所成角为30o ,则θ角等于( ).A 、30oB 、45oC 、60oD 、90o 5、(2005某某卷文4)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( )A 、23 B 、22C 、21 D 、336、已知直线a 及平面α,a 与α间的距离为d .a 在平面α内的射影为a ',l 为平面α内与a '相交的任一直线,则a 与l 间的距离的取值X 围为( )A 、[),d +∞B 、(),d +∞C 、(]0,dD 、{}d二、填空题 7、(2005某某卷理12)如图,PA ⊥平面ABC ,∠ACB =90°且PA =AC =BC =a ,则异面直线PB 与AC 所成角的正切值等于____________.8、已知∠60o ,则以OC三、解答题:9. C 点到AB 1ABC DA 1E B 1C10.(2006理17)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证:PB ∥平面AEC ; (Ⅲ)求二面角E AC B --的大小.B[参考答案]一、选择题1. 选A 提示:过P 做直线b 的垂线2. 选A 提示:用异面直线距离公式求解3. 选D 提示:过A 1做OP 的平行线4. 选B 提示:过C 做平面β的垂线5. 选B. 提示:转化为求B 1到平面AB C 1D 1的距离6. 选D 提示:转化为a 与α间的距离 二、填空题7.2. 提示:将三角形ABC 补成正方形ACBD. 8. 33- 提示:利用直线与直线所成角的大小求出边长,再求二面角平面角的大小三、解答题:9. 解:由CD ⊥平面A 1B 1BA ∴CD ⊥DE ∵AB 1⊥平面CDE ∴DE ⊥AB 1,∴DE 是异面直线AB 1与CD 的公垂线段∵CE =23,AC =1 ,∴CD =.22∴21)()(22=-=CD CE DEABC DA 1E B 1C 110. 解法一:(Ⅰ)(Ⅱ)(略 解见第45讲【达标测试】第9题)(Ⅲ)过O 作FG AB ∥,交AD 于F ,交BC 于G ,则F 为AD 的中点.CDAB AC ⊥,OG AC ∴⊥. 又由(Ⅰ),(Ⅱ)知,AC PB EO PB ,⊥∥,AC EO ∴⊥. EOG ∴∠是二面角E AC B --的平面角.连接EF ,在EFO △中,1122EF PA FO AB ==,,word11 / 11 又PA AB EF FO =,⊥,45135EOF EOG ∴∠=∠=,,∴二面角E AC B --的大小为135.解法二:(Ⅰ)建立空间直角坐标系A xyz -,如图.y 设AC a PA b ==,,则有(000)(00)(00)(00)A B b C a P b ,,,,,,,,,,,,(00)(0)AC a PB b b ∴==-,,,,,,从而0=⋅PB AC ,AC PB ∴⊥.(Ⅱ)连接BD ,与AC 相交于O ,连接EO .由已知得(0)D a b -,,,002222ab b a E O ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,,, 022b b EO ⎛⎫∴=- ⎪⎝⎭,,,又(0)PB b b =-,,, 2PB EO ∴=,PB EO ∴∥,又PB ⊄平面AEC EO ,⊂平面AEC , PB ∴∥平面AEC .(Ⅲ)取BC 中点G .连接OG ,则点G 的坐标为000222a b b OG ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,,,,,, 又0(00)22b b OE AC a ⎛⎫=-= ⎪⎝⎭,,,,,,00=⋅=⋅∴AC OG AC OE ,.OE AC OG AC ∴,⊥⊥.EOG ∴∠是二面角E AC B --的平面角.22cos -=⋅<OGOE OG OE .135EOG ∴∠=. ∴二面角E AC B --的大小为135.。

空间几何中的角和距离的计算

空间几何中的角和距离的计算

空间角和距离的计算(1)一线线角1. 直三棱柱A i B i C i-ABC , / BCA=90 0,点D〔,F i 分别是A i B i 和A i C i 的中点,若BC=CA=CC 1, 求BD i与AF i所成角的余弦值.2. 在四棱锥P-ABCD 中,底面ABCD 是直角梯形,/ BAD=90 °, AD // BC, AB=BC=a , AD=2a , 且PAL面ABCD , PD与底面成30°角.(1) 若AE ± PD , E为垂足,求证:BE ± PD;(2) 若AE ±PD,求异面直线AE与CD所成角的大小.二.线面角i .正方体ABCD-A i B i C i D i中,E, F分别为BB i、CD的中点,且正方体的棱长为2.(1) 求直线DiF和AB和所成的角;(2) 求D i F与平面AED所成的角.2. 在三棱柱A i B1C1-ABC中,四边形AA侣侣是菱形,四边形BCC i B i是矩形,C i Bi± AB , AB=4 , C i B i=3, ZABB i=600,求AC i与平面BCC i B i所成角的大小.三.二面角i .已知A i B i C i-ABC是正三棱柱,D是AC中点.(1) 证明AB i //平面DBC i;(2) 设AB i±BC i,求以BC i为棱,DBC i与CBC i为面的二面角的大小.2. ABCD 是直角梯形,Z ABC=90°, SAX面ABCD , SA=AB=BC=i , AD=0.5 .(1) 求面SCD与面SBA所成的二面角的大小;(2) 求SC与面ABCD所成的角.3. 已知A i B i C i-ABC是三棱柱,底面是正三角形, —C 的大小. ZA i AC=60°, / A i AB=45°,求二面角B— AA iB iC iB・A i空间角和距离的计算⑵四空间距离计算(点到点、异面直线间距离)1. 在棱长为a的正方体ABCD-A 1B1C1D1中,P是BC的中点,DP 交AC 于M, B1P 交BC1 于N.(1) 求证:MN上异面直线AC和BC1的公垂线;(2) 求异面直线AC和BC1间的距离.(点U线,点到面的距离)2. 点P为矩形ABCD所在平面外一点,PAL面ABCD , Q为线段AP的中点,AB=3 , CB=4 ,PA=2,求:(1) 点Q到直线BD的距离;(2) 点P到平面BDQ的距离.3. 边长为a的菱形ABCD中,/ ABC=60 0, PCX平面ABCD , E是PA的中点,求E到平面PBC 的距离.(线到面、面到面的距离)4, 已知斜三棱柱A i B1C1-ABC 的侧面A i ACC 1 与底面ABC 垂直,/ ABC=90 0, BC=2 , AC=2 J3 ,且AA i±A i C, AA i=A i C.(1) 求侧棱AA i与底面ABC所成角的大小;(2) 求侧面A i ABB 1与底面ABC所成二面角的大小;(3) 求侧棱B i B和侧面A i ACC i距离.5. 正方形ABCD和正方形ABEF的边长都是1,且平面ABCD、ABFE互相垂直,点M在AC 上移动,点N在BF上移动,若CM=NB=a ( 0 a ^2 ).(1) 求MN的长;(2) 当a为何值时,MN的长最小.。

空间角和空间距离

空间角和空间距离

空间角和空间距离一、空间角:(1)异面直线所成的角:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角(或直角)叫做两异面直线所成的角.异面直线所成角的范围 .(2)直线与平面所成的角:①当α//l 或α⊂l 时,l 与α所成的角为 0;②当α⊥l 时, l 与α所成的角为 90;③当l 与α斜交时,l 与α所成的角是指l 与l 在面α上的射影'l 所成的锐角.线面角的范围: .(3)二面角的平面角须具有以下三个特点:①顶点在棱上;②角的两边分别在两个半平面内; ③角的两边与棱都垂直.二面角的范围: .方法总结:1、求异面直线所成角的方法:主要通过平移转化法来作出异面直线所成的角,然后利用三角形的边角关系(正、余弦定理)求角的大小,要注意角的范围.2、求线面角的一般过程是:(1)在斜线上找到一个合适的点P ,过P 作面α的垂线(注意垂足/P 的确定),垂足/P 和斜足A 的连线即为斜线PA 在平面α上的射影,则/PAP ∠即为所求;(2)将/PAP ∠放到/PAP ∆或其它包含此角的三角形中去求. 说明:关于线线角和线面角,下面的结论经常用到:①“爪角定理”:如图9-4-1,已知,AB AO 分别是面α在面α内过斜足O 任意引一直线OC ,设12,AOB BOC θθ∠=∠=,AOC θ∠=,则:21cos cos cos θθθ⋅=;② 经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.说明:在解题过程中,我们会发现求角问题难在作角,其中又难在过平面外一点,作平面的垂线后,垂足位置的确定.复习过程中应注意对常用的找垂足的方法进行归纳总结. 上面的②及下面的几个结论是找垂足的有力工具:(ⅰ)若P 为ABC ∆所在平面 外一点, O 是点P 在 内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心;②若P 到ABC ∆的三边的距离相等, 则O 为ABC ∆△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(ⅱ)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面;(ⅲ)三垂线定理及其逆定理.3、求二面角的平面角的一般方法:如何作出(或找出)二面角的平面角是解题的关键,常用以下方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,用定义法时应认真观察图形的特性;②三垂线法(比较常用):已知二面角其中一个面内一点P 到另一个面的垂线(垂足为/P ),则只需过P (或/P )作棱的垂线(垂足为O ),由三垂线定理或其逆定理知/POP ∠即为所求(关键是从题中找到适当的点P );③垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角(由此知,二面角的平面角所在的平面与棱垂直);④面积投影法:此法最大的优点在于不用作出平面角θ,常用于“无棱二面角”(即在图中没有画出棱);如果α上某一平面图形的面积为斜S ,它在β上的射影的面积为射S ,则射斜S S =θcos 。

向量法求空间距离和角

向量法求空间距离和角

—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。

必修2空间角和空间距离

必修2空间角和空间距离

空间角和空间距离空间角(1)两条异面直线所成的角:两条异面直线a、b,经过空间任意一点O作直线c∥a,d∥b,我们把直线c和d所成的锐角(或直角)叫做异面直线a与b所成的角。

注意:①两条异面直线a,b所成的角的范围是(0°,90°].②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:(i)在空间任取一点,这个点通常是线段的中点或端点.(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.(iii)指出哪一个角为两条异面直线所成的角(锐角或直角),这时我们要注意两条异面直线所成的角的范围.(2)直线与平面所成的角1)直线与平面斜交时,直线与平面所成的角是指这条直线和它在平面上的射影所成的锐角.2)直线与平面垂直时,直线与平面所成的角为.3)直线与平面平行或在平面内时,直线与平面所成的角为.显然,直线与平面所成的角的范围为.4)求一条斜线和平面所成的角:做出这条斜线在平面内的射影,再确定斜线和射影所成角的大小即可。

斜线在平面内的射影:从斜线上除斜足外的任意一点向平面引垂线,过斜足和垂足的直线叫做斜线在这个平面内的射影,斜线上任意一点在平面内的射影一定在斜线的射影上。

(3)二面角(1)二面角的定义一条直线出发的二个半平面所形成的图形称为二面角,这条直线称为二面角的棱,二个半平面称为二面角的面.(2)二面角的平面角的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做二面角的平面角.注意:①二面角的平面角两边必须都与棱垂直.②二面角的平面角的大小是由二面角的两个面的位置关系所确定的,与定义中棱上任一点的选择无关,也就是二面角的平面角不只一个,但这些平面角的大小是相等的.③二面角的平面角的范围是,当两个半平面重合时,;相交时;共面时.平面角是直角的二面角叫做直二面角.(3)二面角的平面角的确定与求法①直接法:这种方法的思路是:先作出二面角的平面角,然后通过解三角形,求出平面角的大小,即为所求的二面角的大小.②公式法:射影面积公式,如果平面多边形的面积为S,它在平面内的射影面积为,平面多边形与平面所夹的锐二面角为,那么.空间距离(1)两条异面直线间的距离:两条异面直线a、b,设A是a上面某点、B是b上面某点,连接AB,使得a⊥AB,b⊥AB,则直线AB叫做异面直线a和b的公垂线,公垂线段AB的长度叫做异面直线a与b之间的距离。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

空间角与空间距离

空间角与空间距离


n
O
a
A

n
a
B
(3)二面角
(0, ]
设m、分别是平面 n a、b的法向量,二面角a l b的大 m n mn 小为,则cos = 或cos = . | m|| n| | m|| n|
n
a
A
O
m

n
l
B
P
m
b
2.用空间向量求空间距离:
(1)点到直线的距离
P
b
d
N
M
a
l
d PM sin PMN | b | 1 cos 2 a, b
(2)点到平面的距离
P
d
a
n
H
Q
d PH PQ cos PQ, n
PQ n n
(3)异面直线间的距离
n
A1
D1
b
B1
C1
d
A
D
C
a
B
d AA1 AC1 cos AC1 , n
(1)异面直线所成的角 (0, ] 2
设a、分别是直线 b a、b的方向向量, 是直线a、b所成 ab 的角,则cos cos a, b . | a||b|

(2)直线与平面所成的角 [0, ] 2
设a是直线a的方向向量, n是平面a的法向量, 为直线 an a与平面a 所成的角,则sin cos a,n . | a|| n|
AC1 n |n|
《空间角、空间距离》
复相关的重要定理:
等角定理:如果一个角的两边和另一个角的两
边分别平行并且方向相同,那么这两个角相等. a Q c
a

空间角与空间距离

空间角与空间距离

高三数学第二轮复习教学案第一课时 空间角与空间距离班级 学号 姓名【考纲解读】1.掌握两条直线所成的角、直线和平面所成的角及二面角的平面角的概念,并会求 这些角.2.掌握两条异面直线间的距离(只要求会计算已给出公垂线时的距离)直线和平面间的距离及两个平面间的距离的概念,并会求直线和平面间的距离,两个平面间的距离. 【教学目标】1.能够运用转化的思想化空间角为平面角;化线面间距离,面面间距离等为点到线或 线到面的距离.2.培养学生空间想象能力,并能把空间想象能力与运算能力,逻辑思维能力相结合. 【例题讲解】 例题1(1) 如图:⊥PA 平面ο90,=∠ACB ABC 且a BC AC PA ===, 则异面直线PB 与 AC 所成角的正切值等于________;(2) 下面是关于三棱锥的四个命题: ①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥; ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥; ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥;④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥,其中,真命题的编号是___________.(写出的所有真命题的编号). (3)四棱锥ABCD P -中,PD ⊥底面ABCD ABCD ,为正方形,且1==AB PD ,G 为ABC ∆的重心,则PG 与底面ABCD 所成的角为 ( )A43B 34172arccosC 232arctanD 33arcsin(4)已知球的表面积为20π,球面上有C B A ,,三点,如果32,2===BC AC AB ,则球心到平面ABC 的距离为 ( )A 1 B2C3D 2(5)DP 垂直于正六边形ABCDEF 所在平面,若正六边形边长为,a 且PD=,a 则点P 到BC 的距离为 ( ) Aa 3B a 2Ca 27D a 例2在棱长为a 的正方体1111D C B A ABCD -中,FE ,分别是BC ,11D A 的中点 (1)求证:四边形EDF B 1是菱形; (2)求直线C A 1与DE 所成的角; (3)求直线AD 与平面EDF B 1所成的角; (4)求面EDF B 1与面ABCD 所成的角.E C C 1A BD D 1A 1B 1F A BCP例3若斜三棱柱111C B A ABC -的侧面⊥11ACC A 底面,90,ο=∠ABC ABC32,2==AC BC ,且C A A A C A AA 1111,=⊥(1)求侧棱1BB 到侧面C C AA 11的距离; (2)求B A 1与平面ABC 所成的角; (3)求侧棱1CC 到侧面11ABB A 的距离;例4 在三棱锥ABC P -中,ABC ∆是正三角形,ο90=∠PCA ,D 为PA 的中点,二面角B AC P --为ο120,32,2==AB PC .(1)求证:;BD AC ⊥(2)求BD 与底面ABC 所成的角; (3)求三棱锥ABC P -的体积.A BC A 1B 1C 1ABCDP高三数学第二轮复习教学案第二课时 空间角与空间距离班级 学号 姓名【考纲解读】考查学生归纳、判断等各方面的能力,培养学生的创新意识. 【教学目标】1.能够运用归纳、猜想、分析、化归等方法探索出命题条件,然后给予证明;2.能够综合运用条件探索出要求的结论,或判断结论是否存在. 【例题讲解】 例题11.正方体1111D C B A ABCD -棱长为1,点M 在棱AB 上,且31=AM ,点P 是平面ABCD 上的动点,且点P 到直线11D A 的距离与点到点M 的距离的平方差为1,则点P 的轨迹是 ( )A 抛物线B 双曲线C 直线D 椭圆2.在侧棱长为a 的正四棱锥中,棱锥的体积最大时,底面边长为 ( )Aa 332Ba 3Ca 33Da3.在三棱柱111C B A ABC -中,P 为1AA 上一点,求c c BB p V 11-:111C B A ABC V -=( )A32B31 C 61 D 3 4.正四棱锥ABCD P -的底面ABCD 在球O 的大圆面上,顶点P 在球面上,已知球的体积为π332,则正四棱锥ABCD P -的体积的最大值为_______. 5.在直三棱柱111C B A ABC -中,点N M ,分别在11,BC AB 上,且λ==11BC BNAB AM ()10<<λ,那么以下四个结论中正确的有_________.(1)MN AA ⊥1 (2)MN AC // (3)//MN 平面ABC (4)MN 与AC 是异面直线6.在正三棱柱111C B A ABC -中,P 为B A 1上的点,当PBPA 1=______时,使得AB PC ⊥.例2正方形ABCD 的四边CB CD AD AB ,,,上分别取H G F E ,,,四点,便得2:1::::====HB CH GD CG FD AF EB AE ,把正方形沿对角线BD 折起,如图:(1)求证:EFGH 是矩形;(2)当二面角C BD A --为多大的,EFGH 为正方形.例3 在直三棱柱111C B A ABC -中,AC AB =,F 为棱BB 1上一点,1:2:1=FB BF ,a BC BF 2==,D 为BC 的中点.(1) 若E 为线段AD 上(不同于D A ,)的任意一点,求证:1FC EF ⊥.(2) 试问:若a AB 2=,在线段AD 上的点E 能否使EF 与平面1BB C C 1成ο60角?证明你的结论。

第7讲 利用空间向量求空间角、空间距离

第7讲 利用空间向量求空间角、空间距离

[注意] 直线与平面所成角的范围为[0,π2],而向量之间的夹角的范围为 [0,π],所以公式中要加绝对值.
6
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
3.二面角
(1)若 AB,CD 分别是二面角α­l-β 的两个平面内与棱 l 垂直的异面直线,
则二面角(或其补角)的大小就是向量A→B与C→D的夹角,如图①.
逻辑推理
的距离问题和简单夹角问题.
2.平面与平面的夹 数学运算
2.了解向量方法在研究立体几何问题中 角(二面角)
直观想象
的作用
3.距离问题
2
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
01 02
知识特训 能力特训
3
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
01
知识特训
范围为(0,π),所以公式中要加绝对值.
5
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
2.直线与平面所成角 如图所示,设 l 为平面α的斜线,l∩α=A,a 为 l 的方向向量,n 为平面α 的法向量,θ为 l 与α所成的角,则 sin θ=|cos 〈a,n〉|=||aa|·|nn||.
(3)点到平面的距离
《高考特训营》 ·数学 返 回
如 B 到图平所面示,α 已的知距离AB为为|B→平O|面=_α_|A的→_B_|n一_·_| 条_n_| 斜__线__段.,n 为平面 α 的法向量,则点
11
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
[记结论·提速能] 【记结论】
9
利用空间向量求空间角、空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

空间几何中的角度与距离计算

空间几何中的角度与距离计算

空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。

通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。

本文将介绍空间几何中常用的角度计算方法和距离计算方法。

一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。

常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。

在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。

余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。

2. 矢量法矢量法是一种基于向量运算的角度计算方法。

通过将空间中的两个向量进行运算,可以得到它们之间的夹角。

常见的向量法角度计算包括点乘法和叉乘法。

(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。

可以通过点乘法计算向量之间的夹角。

(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。

可以通过叉乘法计算向量之间的夹角。

3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。

通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。

三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。

二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。

常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。

对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。

欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。

空间角与距离的计算

空间角与距离的计算

由△PAD 为等腰直角三角形得 PN⊥AD. 由 DC⊥AD,BC∥AD,BC=12AD,N 是 AD 的中点得 BN⊥AD.所以 AD⊥平面 PBN. 由 BC∥AD 得 BC⊥平面 PBN, 则平面 PBC⊥平面 PBN. 过点 Q 作 PB 的垂线, 垂足为 H,连接 MH,易知 QH⊥平面 PBC, 所以 MH 是 MQ 在平面 PBC 上的射影, 所以∠QMH 是直线 CE 与平面 PBC 所成的角.
令 y=1,则 n=(0,1,-1),
BF=1,EPPF=2,所以 EP=233,设 D 到面 PEA 的距离为 d,
因为 VA-EDP=VD-AEP,即13·AD·S△EDP=13·d·S△AEP,所以 d=
AD·S△EDP= S△AEP

3 3

33× 2
2 2.
【通法指导】 诚如上文所说,求点面距问题可以采用等积转换和向量 法求解,除此之外个别问题也可采用垂面法(利用面面垂直性 质定理)和等价转移法(利用线面平行)求解.当然,一些求几 何体体积问题,也是对点面距问题的相应考查.
因为A→P=-1,2
3
3,1,A→E=(-1,0,1)

所以xy==z0,, 令 z=1,则 n=(1,0,1). 因为D→A=(1,0,0),
所以
D
到面
APE
的距离为
d=|D→|An·|n|=
|1| = 2
2 2.
解法二:由(1)知,AD⊥平面 BFED,所以 AD⊥EP,
AD⊥ED.又因为 EP⊥ED,所以 EP⊥平面 ADE.BD= 3,
【题型分析】 如图,在梯形 ABCD 中,AB∥CD,AD=DC=CB=1, ∠BCD=120°,四边形 BFED 为矩形,平面 BFED⊥平面 ABCD,BF=1.

空间角距离

空间角距离

空间角与距离难点突破分析:不管是点面距离还是线面距离还是面面距离还是线面角还是二面角其核心是找到合适的垂线,如果找不到垂线就找垂面,然后做垂线。

如上图,已知在侧棱垂直于底面的三棱柱ABC-111C B A 中,AC=BC=2,且AC ⊥BC,点D 是11B A 的中点.(1)求证:平面D AC 1⊥平面11ABB A(2)若直线AC 1与平面11ABB A 所成的角的正弦值为1010,求三棱锥D AC A 11 的体积如上图,在直三棱柱ABC-111C B A 中,AB=BC=2AA 1,∠ABC=90°,D 是BC 的中点,(1)求证 A 1B ∥平面ADC 1(2)求二面角C 1-AD-C 的余弦值例1、如上图:在四棱锥p-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD,∠ABC=60°,PA=AB=BC,E 是PC 的中点。

(1)证明CD ⊥AE(2)证明PD ⊥平面ABE(3)求二面角A-PD-C 的大小例2四棱锥S-ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD,已知∠ABC=45°,AB=2,BC=22,SA=SB=3(1)证明SA ⊥BC(2)求直线SD 与平面SAB 所成角的正弦值。

1、在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD,E 、F 分别为AB 、SC 的中点。

(1)证明EF ∥平面SAD(2)设SD=2DC ,求二面角A-EF-D 的正切值2、 在直四棱柱 ABCD-1111D C B A 中,已知DC=DD 1=2AD=2AB ,AD ⊥DC,AB ∥DC ,(1)求证 C D 1⊥AC 1(2)设E 是DC 上一点,试确定E 的位置,使E D 1∥平面1A BD,并说明理由。

3、如图,在三棱锥S —ABC 中,侧面SAC ,SAB 均为等边三角形,∠BAC=90°,O 为BC 的中点。

向量法求解空间距离与空间角

向量法求解空间距离与空间角

向量法求解空间距离与空间角要求能掌握用向量法解决空间距离与空间角问题。

一、 空间向量与空间距离由向量的数量积||||cos AB b AB b θ⋅=⋅可知,向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是||cos ||AB b AB b θ⋅=,也就是说向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是线段AB 在直线l 上射影线段的长。

1、 点面距离公式:平面α的法向量为n ,P 是平面α外一点,点M 为平面α内任一点,则P 到平面α的距离d 就是MP在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。

2、 线面距离公式: 平面α∥直线l ,平面α的法向量为n ,P ∈直线l ,点M 为平面α内一点,则直线l 与平面α的距离d 就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。

3、 面面距离公式:平面α∥平面β,平面α的法向量为n,点M 为平面α内一点,点P 为β平面β内一点,则平面α与平面β的距离d就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。

4、向量法求解距离问题的步骤: ① 建立适当的空间直角坐标系;② 将相应线段及平面的法线等用向量或坐标表示出来; ③ 利用向量的相应距离公式求解。

5、典例评析: 例1、(03广东)已知四棱柱ABCD -A 1B 1C 1D 1中,AB=1,AA 1=2,点E 是CC 1的中点,F 是BD 1中点。

(1)证明:EF 是BD 1与CC 1的公垂线; (2)求点D 1到面BDE 的距离。

二、 空间向量与空间的角 1、 异面直线所成的角:异面直线a 、b 的方向向量分别为m 、n,其向量的夹角为θ,直线a 、b 的所成的角为α,(0,]2πα∈,则||cos |cos |||||m n m n αθ⋅== ,即||cos ||||m n arc m n α⋅=。

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

用向量方法求空间角和距离

用向量方法求空间角和距离

用向量方法求空间角和距离向量方法是利用向量的性质和运算,来求解空间角和距离的方法。

在几何学中,向量可以用来表示位置、方向和大小,因此可以通过向量的定义和运算来求解空间角和距离。

一、空间角的求解空间角是指两个平面或者两个直线之间的夹角。

我们可以通过向量的点积来求解空间角。

对于两个平面,可以先求出它们的法向量,然后计算法向量的夹角即可得到空间角。

设两个平面的法向量分别为n1和n2,则它们的夹角θ为:θ = arccos((n1·n2) / (,n1,n2,))其中,·表示向量的点积,n1,和,n2,分别表示向量n1和n2的模。

对于两个直线,可以先求出它们的方向向量,然后计算方向向量的夹角即可得到空间角。

设两个直线的方向向量分别为u和v,则它们的夹角θ为:θ = arccos((u·v) / (,u,v,))其中,·表示向量的点积,u,和,v,分别表示向量u和v的模。

二、距离的求解距离是指空间中两个点之间的长度。

我们可以通过向量的运算来求解空间中两点之间的距离。

设空间中两个点A(x1,y1,z1)和B(x2,y2,z2),则点A到点B的距离d为:d=,AB,=√((x2-x1)²+(y2-y1)²+(z2-z1)²)其中,AB,表示向量AB的模,即两点之间的距离。

通过向量方法求解空间角和距离的步骤如下:1.对于求解空间角,先计算出两个平面或者两个直线的法向量或方向向量。

2.根据向量的点积定义,计算法向量或方向向量的点积。

3.根据向量的模定义,计算法向量或方向向量的模。

4.将点积和模代入空间角的计算公式,求解空间角。

5.对于求解距离,先计算出两个点的坐标。

6.根据向量的运算规则,计算两个坐标点之间的差向量。

7.根据向量的模定义,计算差向量的模,即两个点之间的距离。

通过向量方法求解空间角和距离的优点是简单、直观,并且适用于各种空间问题。

第7节 综合法求空间角与距离

第7节 综合法求空间角与距离

第7节 综合法求空间角与距离知识梳理1.设a ,b 是两条异面直线,经过空间任一点o 作直线'a ∥a ,'b ∥b ,把'a 与'b 所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角);]90,0︒︒(2.(1)直线平行于平面或直线在平面内则直线与平面所成角为︒0;(2)直线垂直于平面时直线与平面所成角为︒90(3)平面的一条斜线和它在平面上的射影所成角,叫做这条直线与这个平面所成角;)(︒︒90,0.3.在二面角βα-l -的棱上任取一点o ,以o 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角,]180,0[︒︒4. 过一点作垂直于已知平面的直线,则该点与垂足间的线段,叫做这个点到该平面的垂线段,垂线段的长度叫做这个点到该平面的距离.5.一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离5. 如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离相等,我们把它叫做两平行平面的距离. 基础自测 1. (1)× (2)× (3)√ (4)×,2.C ;3.A ;4.D ;5.38考点聚焦突破[例题1-1]解(1)过点A 作直线平行与l ,过点C 作直线垂直于l 设两直线交于'C 点,连接'BC ,'l CC ⊥l BC ⊥,'BCC ∠∴为二面角的平面角 ,l AD ⊥,'l CC ⊥ββ⊂⊂AD CC ,'AD CC //'∴又CD AC //''ADCC ∴为平行四边形''//,CC CD AD CC AD CD ⊥∴⊥ ⊥∴''//AC AC CD BC ,''CC AC ⊥∴C CC CB =' ⊥∴'AC 平面'BCC ,''BC AC ⊥∴'ADCC 为平行四边形∴1'==CD AC 12'=∴=BC AB BC CC ==1' 'BCC ∆∴为正三角形,'BCC ∠∴为︒60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间角与距离
考点1 求异面直线所成的角
1.如图所示,在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是________,AE 和BG 所成角的大小是________.
2空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,求EF 与AB 所成角的大小.
3(2018·全国卷Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )
A.
22 B.32 C.52 D.72
4.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为(C)
A.32
B.155
C.105
D.33
5.四棱锥P -ABCD 中,底面是边长为2的正方形,若四条侧棱相等,且该四棱锥的体积V =46
3
,则直线PA
与底面ABCD 所成角的大小为( )
A .30°
B .45°
C .60°
D .90°
6棱长都为2的直平行六面体ABCD -A 1B 1C 1D 1中,∠BAD =60°,则对角线A 1C 与侧面DCC 1D 1所成的角的正弦值为 .
7已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为9
4
,底面是边长为3的正三角形.若P 为底面A 1B 1C 1
的中心,则PA 与平面ABC 所成角的大小为( )
A.5π12
B.π3
C.π4
D.π6
8已知四棱锥P -ABCD ,底面ABCD 是菱形,PD ⊥平面ABCD ,∠DAB =60°,E 为AB 中点,F 为PD 中点,PD =AD.
(1)证明:平面PED ⊥平面PAB ;
(2)求二面角P -AB -F 的平面角的余弦值.
9如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.
(1)证明:AP ⊥BC ;
(2)已知BC =8,PO =4,AO =3,OD =2.求二面角B -AP -C 的大小.
10.如图,AD⊥平面BCD,∠BCD=90°,AD=BC=CD=a,求二面角C-AB-D的大小.
11如图,四边形ABCD是边长为2的正方形,△ABE为等腰三角形,AE=BE,平面ABCD⊥平面ABE,点F在CE上,且BF⊥平面ACE.
(1)证明:平面ADE⊥平面BCE;
(2)求点D到平面ACE的距离
12.(2018·天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.
(1)求证:AD⊥BC;
(2)求异面直线BC与MD所成角的余弦值;
(3)求直线CD与平面ABD所成角的正弦值.
13.如图,直三棱柱中,侧棱平面,若,则异面直线与
所成的角为
A. B. C. D.
14如图,在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面
所成角的大小是()
A. B. C. D.
15.已知三棱锥中,平面,
(1)求直线与平面所成的角的大小;(2)求二面角的正弦值.。

相关文档
最新文档