超临界二氧化碳萃取

合集下载

超临界co2萃取法的原理

超临界co2萃取法的原理

超临界co2萃取法的原理宝子们,今天咱们来唠唠超临界CO₂萃取法这个超酷的东西。

咱先得知道啥是超临界状态哈。

想象一下,二氧化碳这小气体,平时呢,要么是气态,像咱们呼出的气一样飘来飘去;要么是固态,就像干冰那样冷飕飕的。

但是呢,在特定的温度和压力下,它就进入了一种超级特别的状态,这就是超临界状态啦。

这个时候的二氧化碳啊,它既有气体的扩散性,就像个调皮的小精灵可以到处钻,又有液体的溶解性,就像个小海绵一样能溶解好多东西呢。

那超临界CO₂萃取法就是利用这个处于超临界状态的二氧化碳来干活儿的。

比如说,咱们想从植物里面提取一些有用的东西,像香香的精油之类的。

超临界CO₂就像个超级小特工一样,它被送到装有植物原料的容器里。

这个超临界的二氧化碳啊,它就开始在植物原料的小世界里穿梭,看到那些我们想要的精油分子就一把抱住。

为啥它能抱住呢?因为在这个超临界状态下,它的溶解性可厉害了,那些精油分子就像被它的魅力吸引住一样,纷纷和它混在一起。

而且哦,超临界CO₂萃取法还有个很棒的地方呢。

它对环境可友好啦。

不像有些传统的萃取方法,可能会用到一些有机溶剂,那些有机溶剂有时候就像个小捣蛋鬼,用完了不好处理,还可能对环境有污染。

但是超临界CO₂就不一样啦,二氧化碳本身就是大气里就有的东西,用完了之后呢,只要稍微改变一下温度或者压力,它就又能变回气态或者液态,就可以轻松地和萃取出来的东西分开啦。

再说说这个超临界CO₂萃取法的精准度。

它就像个有超能力的小镊子,可以很精准地把我们想要的东西提取出来。

比如说植物里可能有很多种成分,但是我们只想要其中的一种精油,超临界CO₂就能够在众多的成分里,准确地找到那个精油分子,然后把它们带走。

这就好比在一个大杂烩里,只挑出自己最喜欢吃的那道菜一样厉害呢。

还有哦,超临界CO₂萃取法得到的提取物质量可高啦。

因为它在萃取的过程中不会对那些有用的成分造成太多破坏。

就像我们小心翼翼地从一个宝盒里拿出宝贝一样,不会把宝贝给弄伤了。

二氧化碳超临界萃取原理

二氧化碳超临界萃取原理

二氧化碳超临界萃取原理
超临界萃取是一种高效的二氧化碳 (CO2) 提取方法,广泛应
用于食品、药物、化妆品和生物燃料等领域。

该方法的原理基于二氧化碳在超临界状态下的特殊性质。

超临界状态指的是二氧化碳在高压高温条件下达到了液-气临
界相点以上的状态。

在这种状态下,二氧化碳同时具备气体和液体的性质,具有较高的密度和低的粘度。

这种性质使得二氧化碳可以作为一种理想的溶剂,在超临界条件下用于提取物质。

超临界萃取的过程如下:首先,将待提取物质与二氧化碳进行混合,在高压高温下形成超临界混合物。

然后,通过控制温度和压力,调整二氧化碳的密度和溶解度,使其具有选定溶解度的能力。

接着,将超临界混合物通过特定的萃取器或反应器,使待提取物质溶解到超临界二氧化碳中。

最后,通过降压和调节温度,将溶解的物质从超临界二氧化碳中迅速释放出来,获得所需的提取物质。

超临界萃取的优点在于其操作简单、清洁环保,无需添加大量化学溶剂并能高效提取目标物质。

此外,超临界萃取还能够在较低温度下进行,减少了热敏性物质的降解风险。

此外,CO2是一种非常常见和廉价的物质,易于获取和处理。

综上所述,超临界萃取是一种基于二氧化碳的高效提取方法,利用超临界二氧化碳的特殊性质,能够在较低温度下高效提取目标物质,并且具有操作简单、环保等优点。

超临界二氧化碳萃取在食品工业中的应用

超临界二氧化碳萃取在食品工业中的应用

超临界二氧化碳萃取在食品工业中的应用超临界二氧化碳(Supercritical carbon dioxide, SC-CO2)萃取技术是一种在食品工业中广泛应用的新型技术。

它利用高温高压下的超临界二氧化碳作为溶剂,对食品原料进行提取和分离,以提取出有用的成分。

本文将探讨超临界二氧化碳萃取技术在食品工业中的应用。

超临界二氧化碳萃取技术在食品工业中的一个重要应用是咖啡因的提取。

咖啡因是咖啡和茶中的重要成分,但过多的摄入会对人体健康造成一定的影响。

因此,食品工业需要对咖啡因进行提取和分离。

传统的提取方法通常使用有机溶剂,如乙醇和丙酮,但这些溶剂在提取过程中可能残留在食品中,对人体健康不利。

而超临界二氧化碳萃取技术具有溶剂残留少、操作简便等优点,被广泛应用于咖啡因的提取。

通过调节超临界二氧化碳的温度和压力,可以实现咖啡因的高效提取和分离,同时不会对咖啡因的化学性质造成破坏。

超临界二氧化碳萃取技术还可以应用于天然色素的提取。

天然色素是食品中的一类重要添加剂,可以为食品增添色彩,提升食品的吸引力。

传统的天然色素提取方法通常使用有机溶剂,但这些有机溶剂对环境有一定的污染,并且在提取过程中可能会破坏天然色素的结构和性质。

而超临界二氧化碳萃取技术可以在较低的温度和压力下实现对天然色素的高效提取,而且提取出的天然色素更加纯净,对食品的色泽稳定性较好。

超临界二氧化碳萃取技术还可以应用于植物油的提取。

植物油是食品加工中常用的原料,传统的植物油提取方法通常使用有机溶剂,但这些溶剂在提取过程中容易残留在植物油中,对人体健康不利。

而超临界二氧化碳萃取技术可以在较低的温度和压力下实现对植物油的高效提取,同时不会对植物油的品质和营养成分造成破坏,提取出的植物油更加纯净和健康。

超临界二氧化碳萃取技术还可以应用于食品中有害物质的去除。

食品中可能存在一些有害物质,如农药残留、重金属等。

传统的去除方法通常使用有机溶剂或热处理,但这些方法存在操作复杂、效果不佳等问题。

超临界co2萃取法

超临界co2萃取法

超临界co2萃取法超临界co2萃取法:超临界CO2流体萃取(SFE)是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

技术原理:在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。

技术特点:1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。

因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性;3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本;4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;5、CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;6、压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。

技术应用:超临界CO2萃取的特点决定了其应用范围十分广阔。

如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。

超临界二氧化碳萃取

超临界二氧化碳萃取

超临界二氧化碳萃取在化学工业中,有许多化学物质具有易溶于水、热稳定性高和无毒等优点,因此广泛地用于各种物质的提纯。

目前常用的提纯方法有蒸馏法、分馏法、精馏法和加热蒸发法等,这些提纯方法都存在一定的缺陷:超临界流体萃取在有机合成反应中,当反应物系的总压力大于1帕,并且气液比(反应物与溶剂的体积之比)不小于10 ∶1时,常可采用超临界流体作萃取剂进行反应。

目前,已有很多萃取工艺采用超临界流体,如分段接触逆流色谱法、分子筛吸附色谱法、二氧化碳萃取等,这些超临界流体萃取技术都是以碳酸酯或碳酸酯衍生物为主要基质,经化学处理制备而成的混合物。

由于超临界流体对人体和环境安全,对热敏感性低,传质速度快,以及化学组成与反应体系极其相似等特点,使它成为较理想的反应萃取剂,尤其是近年来超临界二氧化碳萃取技术发展迅速,并被广泛地应用于医药、农药、化妆品、食品和冶金等领域。

原理为当超临界流体通过扩散管进入萃取塔时,超临界二氧化碳的临界温度比液态二氧化碳的临界温度要低得多,在萃取塔内与来自料液的分散相接触后,就形成两相共存的局面。

其中分散相为高度分散的液滴或固态微粒,其组成和性质均与被萃取物相似,它们彼此间相互碰撞,由于与分散相有相同的密度和热力学函数,又不溶于分散相,所以能够进入分散相的小液滴的小范围内形成界面层;而萃取相是由二氧化碳分子形成的非均相物,当二氧化碳分子从扩散管进入超临界二氧化碳后,直接溶解在有机相中。

当二氧化碳分子与萃取相中的化合物接触时,由于这些化合物的不饱和双键与二氧化碳的碳碳双键有相同的键能,所以就像在水溶液中那样,通过C-C键的形成与断裂来完成这些化合物的分离与富集,即利用超临界二氧化碳溶剂中所含有的碳原子与各种化合物中的碳原子能形成稳定的C-C化学键的特点,将萃取相从有机相中分离出来。

这种超临界二氧化碳萃取法在生物制药工业、食品工业、化妆品、香料、生化和轻工等方面都得到了广泛的应用,显示了强大的生命力。

二氧化碳超临界流体萃取技术

二氧化碳超临界流体萃取技术

二氧化碳超临界流体萃取技术1. 什么是二氧化碳超临界流体萃取?想象一下,你在厨房里做一道美味的菜,食材新鲜,调料得当,但有一样东西让你的味道更上一层楼,那就是萃取!二氧化碳超临界流体萃取技术,就是一个在化学和食品领域里发挥魔力的“厨艺秘诀”。

好吧,简单来说,它就是利用超临界状态的二氧化碳来提取植物中的精华,比如油、香味或者其他活性成分。

它听起来复杂,但实际上,它就像是在做一道高级的浓汤,把好东西从食材中提取出来。

1.1 超临界流体是什么?超临界流体,这个名字听上去就像科幻电影里的怪物,但其实它是个很乖的家伙。

我们知道,液体和气体有各自的特点,但当物质在高温和高压的环境下,它们就会变得很奇妙,成为“超临界流体”。

在这个状态下,二氧化碳既可以像气体一样流动,又可以像液体一样溶解东西,简直是“水火不容”的完美结合。

就像在派对上,气氛一高涨,大家都融入了一起,开心得不得了。

1.2 为什么选择二氧化碳?有人可能会问,为什么要用二氧化碳呢?其实,二氧化碳是个环保小天使,它的来源广泛,成本也相对低。

而且,提取出来的成分没有残留,有些就像小孩子的作业,干干净净,放心使用。

再说,它提取的产品往往质量更高,口感更好,香味更浓,谁不喜欢呢?2. 二氧化碳超临界流体萃取的过程接下来,咱们聊聊这个神奇的过程。

首先,我们得准备好要萃取的材料,像是香草、咖啡豆或者草药,这些都是“主角”。

然后,把这些材料放进一个密闭的容器里,就像给他们一个舒适的小窝。

接着,我们就开始给这个小窝加压、加热,让二氧化碳变成超临界状态。

这个过程就像是在给材料做个“深层按摩”,把他们里面的精华一股脑地释放出来。

2.1 这个过程的好处说到好处,那可真是不胜枚举。

首先,这个方法非常高效,能够在短时间内提取出大量的成分,节省了时间和成本。

其次,超临界流体的低毒性,让这个萃取过程更安全,更健康。

谁都不想吃到有害物质吧?而且,由于它不使用溶剂,所以最终的产品味道更加纯正,简直就是“无污染”的代名词。

超临界二氧化碳萃取 相关标准

超临界二氧化碳萃取 相关标准

超临界二氧化碳萃取相关标准超临界二氧化碳萃取相关标准超临界二氧化碳萃取是一种绿色、高效的分离技术,已经在多个领域得到了广泛应用。

在这篇文章中,我们将深入探讨超临界二氧化碳萃取的相关标准,以及这些标准对该技术的应用和发展所起到的重要作用。

一、超临界二氧化碳萃取的基本原理超临界二氧化碳萃取是一种利用超临界状态下的二氧化碳对物质进行提取和分离的技术。

在高压和适当温度下,二氧化碳可以达到超临界状态,此时既具有气体的扩散性,又有液体的溶解力,因此可以高效地萃取目标物质。

与传统的有机溶剂相比,超临界二氧化碳具有无毒、无残留、易回收利用等优点,因此备受关注。

二、超临界二氧化碳萃取的相关标准1. 工艺参数标准:包括工艺温度、压力、流速等参数的要求,这些参数对超临界二氧化碳萃取的效果和成本都有重要影响,是保证萃取效果和生产稳定的关键。

2. 萃取物质标准:不同的物质对超临界二氧化碳的萃取条件要求不同,因此对于不同的萃取物质需要有相应的标准来指导操作。

3. 设备标准:超临界二氧化碳萃取设备的设计和制造需要符合一定的标准,以保证设备的安全性、稳定性和效率。

4. 产品质量标准:对于超临界二氧化碳萃取得到的产品,需要有相应的质量标准来保证产品的品质和安全性。

三、超临界二氧化碳萃取标准的重要性超临界二氧化碳萃取标准的制定和执行对于推动该技术的发展和应用具有重要意义。

标准的存在可以保证超临界二氧化碳萃取的安全性和可行性,避免了因为操作不当而造成的安全事故和环境污染。

标准化可以提高超临界二氧化碳萃取的生产效率和产品质量,促进了技术的推广和产业化应用。

标准的建立可以促进超临界二氧化碳萃取技术的国际交流和合作,为技术的不断创新和进步提供了基础和保障。

四、个人观点和理解作为超临界二氧化碳萃取的写手,我对相关标准的制定和执行十分重视。

在这个快速发展的领域,标准化的严格执行和不断完善可以提高技术的可信度和可持续发展性。

通过与专业的技术团队合作,并结合相关行业的实际需求,我们有信心为超临界二氧化碳萃取相关标准的制定和实施贡献自己的力量。

超临界二氧化碳萃取

超临界二氧化碳萃取

超临界二氧化碳萃取简介超临界二氧化碳萃取是一种常用于分离和提取有机物质的方法。

它利用超临界状态下的二氧化碳的特殊性质,实现了高效、环保的物质分离和提取过程。

本文将介绍超临界二氧化碳萃取的原理、应用领域以及优势。

原理超临界二氧化碳指的是二氧化碳在临界温度(31.1℃)和临界压力(7.38MPa)以上的状态。

在这种状态下,二氧化碳既有液态的密度和溶解力,又具备气态的扩散性和低表面张力。

这使得超临界二氧化碳具有一定的溶解性,能够溶解非极性或低极性溶质。

同时,超临界二氧化碳的温度和压力可调控,这使得它在分离和提取过程中具备很大的灵活性。

超临界二氧化碳萃取的原理是基于溶质在超临界二氧化碳中的溶解度随温度和压力的改变而变化。

通过调节超临界二氧化碳的温度和压力,可以控制溶质的溶解度,实现对溶质的分离和提取。

当温度和压力降低时,溶质会从超临界二氧化碳中析出,实现分离。

而当温度和压力升高时,溶质在超临界二氧化碳中的溶解度增大,实现提取。

应用领域超临界二氧化碳萃取在许多领域都有广泛的应用,包括食品、药物、化妆品、香料等。

在食品工业中,超临界二氧化碳萃取被用于提取天然色素、香料和食用油。

由于超临界二氧化碳具有良好的可控性和温和的条件,使得提取的产品具有较高的纯度和良好的品质。

在药物工业中,超临界二氧化碳萃取被用于提取草药中的有效成分。

相比传统的有机溶剂提取方法,超临界二氧化碳萃取无毒、无残留,不会对药物的活性产生影响,且对环境友好,因此被广泛应用。

在化妆品工业中,超临界二氧化碳萃取被用于提取植物精华和天然香料。

相比传统的提取方法,超临界二氧化碳萃取能够提取更多维生素和抗氧化剂,使得产品具有更好的保湿和护肤效果。

优势与传统的有机溶剂提取方法相比,超临界二氧化碳萃取具有以下优势:1.环保:超临界二氧化碳是一种天然无毒、无污染的溶剂,使用超临界二氧化碳进行萃取不会对环境产生负面影响。

2.节能:超临界二氧化碳是一种可再生的溶剂,可以循环使用,减少能源消耗。

超临界二氧化碳萃取原理

超临界二氧化碳萃取原理

超临界二氧化碳萃取原理
超临界二氧化碳萃取是一种利用超临界态的二氧化碳作为溶剂对原料进行萃取的方法。

超临界态指的是高于临界温度和临界压力的状态,在此状态下,二氧化碳既具备了气态的高扩散性和低粘度,又具备了液态的高密度和溶解能力。

超临界二氧化碳在萃取过程中呈现出较低的表面张力和高度扩散性,因此可以高效地提取目标物质。

萃取过程需要将原料和超临界二氧化碳置于高温高压的条件下,使得原料中的目标物质溶解到超临界二氧化碳中。

超临界二氧化碳萃取的原理主要包括两个方面。

首先是超临界二氧化碳的溶解能力。

由于超临界二氧化碳的溶解度可通过调节温度、压力和浓度等参数来控制,因此可以实现对不同目标物质的选择性提取。

其次是萃取后的分离。

通过调节温度和压力,在超临界二氧化碳中溶解的目标物质可以通过改变条件使其转变为气态或液态,从而实现目标物质的分离和回收。

超临界二氧化碳萃取具有许多优点。

首先,超临界二氧化碳是一种环保、无毒的溶剂,不会对环境造成污染。

其次,超临界二氧化碳可以对目标物质进行有效的选择性提取,不会引入其他杂质。

此外,超临界二氧化碳萃取具有操作简单、工艺条件温和等特点,适用于对热敏感物质的提取。

总之,超临界二氧化碳萃取利用超临界态的二氧化碳作为溶剂,通过调节温度和压力等参数实现对目标物质的高效提取和分离。

该方法具有环保、高效、选择性好等优点,在广泛的领域中得到了广泛应用。

超临界二氧化碳萃取

超临界二氧化碳萃取

超临界二氧化碳萃取技术超临界二氧化碳萃取技术产生于二十世纪五十年代,目前已经广泛应用于食品、能源、医药、化妆品及香料工业。

随着中药、天然药物新药研究的发展和中药现代化的不断深入,超临界二氧化碳萃取技术在中药、天然药物活性成分和有效部位的分离和纯化中的应用研究越来越多。

由于此项技术在我国起步较晚,在中药新药中应用该项技术的品种较少。

为了促进与新药研制单位的沟通和交流,共同探讨超临界二氧化碳萃取技术在中药新药中应用的相关问题,我们对超临界二氧化碳萃取技术在中药新药研究中的应用谈一些个人的看法,抛砖引玉,仅供参考。

一、超临界二氧化碳萃取技术在中药中的应用概况超临界二氧化碳萃取是以超临界状态(温度31.3℃,压力7.15MPa)下的二氧化碳为溶剂,利用其高渗透性和高溶解能力来提取分离混合物的过程。

超临界状态下的二氧化碳,其密度大幅度增大,导致对溶质溶解度的增加,在分离操作中,可通过降低压力或升高温度使溶剂的密度下降,引起其溶解物质能力的下降,可使萃取物与溶剂分离。

与一般液体萃取相比,超临界二氧化碳萃取的速率和范围更为扩大,萃取过程是通过温度和压力的调节来控制与溶质的亲和性而实现分离的。

超临界二氧化碳萃取技术具有环境良好、操作安全、不存在有害物残留、产品品质高且能保持固有气味等特点。

从20世纪50年代起已开始进入实验阶段,70年代以来超临界二氧化碳萃取技术在食品工业中的应用日趋广泛,80年代超临界二氧化碳萃取技术更广泛地用于香料的提取。

进人90年代后,超临界二氧化碳萃取技术开始运用于从药用植物中提取药用有效成分等。

我国对超临界流体技术的研究始于20世纪70年代末80年代初,与国外相比虽起步稍晚,但发展很快,在超临界流体萃取、精馏、沉析、色谱和反应等方面都有研究,涉及了化工、轻工、石油、环保、医药及食品等行业,不仅有基础研究,而且有工艺、工程开发。

早在20世纪70年代后期,德国人就采用超临界二氧化碳萃取技术从黄春菊中萃取出有效活性成分,产率高于传统溶剂法。

二氧化碳超临界流体萃取技术简介

二氧化碳超临界流体萃取技术简介
一般用量:1%~5%(质量)
常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。

超临界二氧化碳萃取

超临界二氧化碳萃取

超临界二氧化碳萃取简介超临界二氧化碳(Supercritical Carbon Dioxide, SC-CO2)萃取是一种以超临界二氧化碳作为溶剂进行的萃取过程。

它利用高压和高温将二氧化碳转化为超临界状态,达到具备液体和气体特性的状态。

超临界二氧化碳具有很高的溶解力和较低的粘度,因此在萃取过程中可以有效地溶解和提取目标物质。

超临界二氧化碳萃取被广泛应用于食品、药品、化妆品等领域,具有高效、环保、无残留等优势。

超临界二氧化碳特性超临界二氧化碳是指二氧化碳在超临界条件下(温度和压力高于其临界点)所处的状态。

在超临界状态下,二氧化碳既具备了液体的高溶解度,又具备了气体的低粘度。

这使得超临界二氧化碳成为一种理想的溶剂,可用于萃取、分离和精炼各种物质。

具体来说,超临界二氧化碳具有以下特性:1.高溶解力:超临界二氧化碳可以溶解多种物质,包括脂类、色素、挥发性有机物等。

由于其溶解力随压力和温度的变化而改变,因此可以通过调控压力和温度来实现有针对性的溶解和提取。

2.可控性:超临界二氧化碳的溶解力可以通过调节压力和温度来控制。

这使得超临界二氧化碳的溶解过程可以精确地控制溶剂的浓度和性质,实现对目标物质的选择性溶解和提取。

3.快速传递速度:由于超临界二氧化碳的低粘度,它能够快速渗透和传递到被提取物质的内部,从而加快了提取过程的速度。

4.安全环保:超临界二氧化碳是一种绿色溶剂,其在超临界条件下不会产生有毒物质,对环境没有污染。

同时,超临界二氧化碳是可再生的,可以循环利用,减少了对资源的消耗。

超临界二氧化碳萃取过程超临界二氧化碳萃取的过程可以分为以下几个步骤:1.设备准备:首先需要准备超临界二氧化碳的萃取设备,该设备通常由高压容器、泵和加热系统组成。

确保设备的密封性和安全性。

2.材料准备:将待提取物质准备好,并根据需要进行预处理,如研磨、过滤、干燥等。

3.加料和加热:将待提取物质放入萃取设备中,并根据需要加入辅助剂。

随后,通过加热系统升温,使二氧化碳逐渐达到超临界状态。

co2超临界萃取法

co2超临界萃取法

CO2超临界萃取法CO2超临界萃取法是一种用于提取天然产物和分离化合物的高效且环保的技术。

它利用二氧化碳(CO2)在超临界状态的特性,结合适当的温度和压力条件,实现对目标物质的选择性提取。

1. 原理CO2超临界萃取法基于CO2的物理性质,当温度和压力超过临界点时,CO2会变成超临界流体,具有密度和溶解能力的特点。

在这种状态下,CO2既具有气体的扩散性和低粘度,又具有液体的溶解能力和高密度,因此可以有效地溶解多种化合物。

2. 过程CO2超临界萃取法的过程通常包括以下几个步骤:(1)预处理:将原料进行干燥、粉碎等预处理步骤,以增加提取效率。

(2)萃取器:将预处理后的原料放入萃取器中,与CO2超临界流体接触。

(3)溶解:CO2超临界流体在与原料接触的同时,通过溶解作用将目标化合物从原料中提取出来。

(4)分离:将溶解了目标化合物的CO2超临界流体转移到分离器中,通过降压或改变温度,使CO2从溶解状态向气体状态转变,从而使提取的目标化合物得以分离。

(5)回收:分离后的目标化合物可通过冷凝或其他方法进行回收,而CO2则可以回收再利用。

3. 优势CO2超临界萃取法相对于传统的有机溶剂萃取方法具有以下优势:(1)环保性:CO2是一种无毒、无害、无残留的天然物质,不会对环境造成污染。

(2)高效性:CO2超临界流体具有较高的溶解度和扩散性,可以快速有效地提取目标物质。

(3)选择性:通过调节温度和压力等条件,可以实现对目标化合物的选择性提取,减少杂质的干扰。

(4)可控性:CO2超临界萃取法的温度和压力可以根据需要进行调节,以适应不同的提取要求。

(5)可回收性:CO2可以回收再利用,降低了成本和资源消耗。

4. 应用领域CO2超临界萃取法在许多领域都有广泛的应用,包括:(1)药物制剂:用于从天然药物中提取有效成分,制备药物制剂。

(2)食品工业:用于提取植物油、香料、咖啡因等天然产物。

(3)香精和化妆品:用于提取香精和化妆品中的活性成分。

超临界co2萃取技术原理

超临界co2萃取技术原理

超临界co2萃取技术原理嗨,朋友!今天咱们来聊聊超临界CO₂萃取技术这个超酷的东西。

你知道吗?超临界CO₂萃取技术就像是一场神奇的魔法表演。

CO₂大家都熟悉吧,就是二氧化碳啦,在平常的状态下,它要么是气体,要么是固体(干冰),但在超临界状态下,那可就完全不一样喽。

当二氧化碳达到超临界状态的时候,它就像是一个超级厉害的小特工。

这个状态下的二氧化碳,它既有气体的高扩散性,就像一阵风似的,可以快速地钻进各种物质的小缝隙里;又有液体的高密度,就好像是一群紧密排列的小士兵,能很好地溶解其他物质。

这就好比一个人既有着风一般的速度,又有着大力士般的力量,是不是很厉害呀?那它是怎么进行萃取的呢?想象一下,我们有一个装着原料的容器,比如说里面有我们想要提取的某种植物的有效成分。

超临界CO₂就像一群饥饿的小蚂蚁,朝着这个原料堆就冲过去了。

它钻进原料的细胞里,把那些我们想要的有效成分,比如香精油啦,或者是一些药用成分之类的,紧紧地抱住。

因为它在超临界状态下的溶解性特别好,就像一个超级有亲和力的小伙伴,那些有效成分都特别乐意跟它走。

然后呢,这个带着有效成分的超临界CO₂就跑到另一个地方去了。

到了这个新的地方,只要稍微改变一下条件,比如说调整一下温度或者压力。

这超临界CO₂就像突然被施了魔法一样,它的状态发生变化了。

它可能就从那种超厉害的超临界状态变回普通的气体或者液体了。

而那些被它带着的有效成分呢,就被留在这个新的地方了,就这么简单地被提取出来了。

超临界CO₂萃取技术还有好多优点呢。

它特别环保,就像一个绿色小卫士。

CO₂本身就是一种很常见的气体,在这个萃取过程中,它可以循环利用。

不像有些传统的萃取方法,会用到一些有毒有害的溶剂,那些溶剂就像调皮捣蛋的小坏蛋,不仅会污染环境,还可能在提取的物质里留下不好的残留。

超临界CO₂萃取就完全没有这个烦恼啦。

而且啊,这个技术提取出来的东西质量特别高。

因为超临界CO₂在萃取的时候,就像一个特别细心的工匠,它能够很精准地把我们想要的成分提取出来,不会把那些杂质也一股脑儿地弄进来。

超临界二氧化碳萃取技术

超临界二氧化碳萃取技术

超临界二氧化碳萃取技术超临界二氧化碳萃取技术(Supercritical Carbon Dioxide Extraction, SCDE)是一种在溶剂萃取中使用的萃取技术。

溶剂萃取技术可以提取出有机或无机物质中有价值的物质。

超临界二氧化碳萃取技术具有显著优点,比如快速萃取速度、极佳的溶剂选择性、温和的萃取条件、易于操作和恢复溶剂etc.因此,它已经成为用于提取食品、药物、食品添加剂、香精香料和化妆品中有用物质的主流技术。

超临界二氧化碳萃取技术包括超临界二氧化碳的固定相萃取(SFE-SCDE)和液相萃取(LPE-SCDE)。

超临界二氧化碳的固定相萃取是使用固定溶剂,如活性炭或吸附剂,将溶剂(二氧化碳)固定在溶剂体系中。

这种萃取技术被认为是最受欢迎的萃取技术,用于提取和分离膳食类成分。

超临界二氧化碳的液相萃取技术则使用液态的溶剂,如乙醇或乙酸乙酯,将被萃取的物质溶解在液体溶剂中。

超临界二氧化碳萃取具有几个显著优点,使其成为最受欢迎的萃取技术。

首先,超临界二氧化碳具有较低的沸点,可以在低温下较快地完成萃取。

其次,它是一种温和的萃取技术,这意味着它可以保留被萃取物质的生物活性。

此外,由于超临界二氧化碳没有毒性,而且可以容易地从被萃取的物质中恢复和回收,因此它可以降低废物和危险废物的产生。

总而言之,超临界二氧化碳萃取技术是一种温和、高效、安全有效的技术,用于从有价值物质中提取和分离出有用物质。

它具有较高的灵敏度,较快的萃取速度,极佳的溶剂选择性,易于操作和恢复溶剂,可以降低废物和危险废物的产生,因此被广泛应用于食物、药物、食品添加剂和化妆品等行业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超臨界二氧化碳萃取實驗ㄧ、目的:了解超臨界二氧化碳萃取原理,並經由實驗探討溫度及壓力對超臨界二氧化碳萃取功效之影響。

二、原理:單一物質通常具有大家所熟悉的氣、固、液三相,當未達臨界點(critical point)前常可藉由溫度與壓力的增減使物質產生液相與氣相之間的轉變,且相與相之間會有明顯的界面存在。

但是一旦壓力到達或超過其臨界壓力(critical pressure, P c)且溫度到達或超過其臨界溫度(critical temperature, T c)時,此液氣兩相的界面不復存在,整個系統呈現一均勻狀態即此物質之超臨界流體(Super Critical Fluid, SCF)狀態(圖一)。

圖一:一般純物質之平衡相圖在超臨界狀態下,物質的一些基本性質與特性會有所改變。

一般而言,超臨界流體的物理性質是介於氣、液相之間的,例如其黏度接近氣體而密度則接近液體。

因密度高,可輸送較氣體更多的超臨界流體,因黏度低,輸送時所需的功率則較液體為低。

又其擴散係數(diffusion coefficient)高於液體10至100倍以上,亦即質量傳遞阻力(mass transfer resistance)遠較液體為小,此外超臨界流體有如氣體幾乎無表面張力,因此很容易滲入多孔性組織中,在質量傳遞上遠較液體為快。

除物理性質外,在化學性質上亦與氣、液態時有所不同。

例如二氧化碳在氣體狀態下不具萃取能力,但當進入超臨界狀態後,二氧化碳變成親有機性因而具有溶解有機物的能力,且因其密度接近液體因而具有很好的媒合能力(solvating power),使得超臨界流體容易進入萃取物中將溶質帶出而成為一個相當優良的溶劑,具有絕佳的萃取效果。

當一溶質分子處於超臨界流體中,若此分子與溶劑間之引力大於溶劑與溶劑間之引力時,該分子會被周圍的溶劑分子所包圍,稱之為群聚效應(clustering effect);群聚現象目前已被認為是超臨界流體增加溶解能力的主要原因之一。

超臨界流體的溶解能力與其密度有直接的關係,而其密度則隨著溫度或壓力的改變一般流體之壓力-密度平衡相圖;其中壓力是以還原壓力P r(P r=P/P c, reduced pressure),溫度是以還原溫度T r(T r=T/T c, reduced temperature),密度則是以還原密度ρr(ρr=ρ/ρc, reduced density)來表示,其中P c、T c及ρc分別代表此物質在其臨界點之臨界壓力、臨界溫度以及臨界密度。

一般超臨界流體萃取的操作溫度約在1~1.4 T r之間,壓力則在1~6 P r之範圍內;亦即圖中的SCF的陰影部份。

由圖中可知在此範圍只要溫度或壓力稍為加以改變,還原密度ρr就會有很明顯的變化亦即超臨界流體的溶解能力也會有很明顯的變化。

因此此陰影部份也是超臨界流體最常使用的操作區域。

表一則為CO2的密度與溫度、壓力的關係數據表。

超臨界流體經常應用在萃取、層析、反應、清洗、染色、分離與造粒等各方面。

較常見的超臨界流體有二氧化碳、二氧化硫、乙烯、已烷、丙烷、丁烷、庚烷、六氟化硫及氨等,他們的臨界壓力、臨界溫度以及臨界密度各不相同。

而其中又以二氧化碳(CO2)為目前最常使用的超臨界流體,因為CO2具有以下的特點:1.臨界溫度(304.4 K)與臨界壓力(72.9 bar)皆不算高,可以在節省操作成本及能源的條件下輕易就可達其超臨界狀態。

2.臨界溫度低使得操作溫度可以維持在相對低溫的範圍,可減少對熱敏感物質的破壞。

3.超臨界二氧化碳對許多較低極性之有機物質具有良好的溶解能力,且其溶解能力可以很方便的經由壓力和溫度的改變,或者添加少量的修飾劑(modifier or co-solvent)來調整。

4.二氧化碳(CO2)無毒性、無腐蝕性、不可燃、化學安定性佳,可降低製程之工安危險性。

5.二氧化碳來源取得容易(一般為合成氨廠和天然氣井副產物的回收或者是液化空氣時之產物之一)且具高度揮發性,在常壓下為氣體,萃取後只須降壓即可有效將CO2與產物分離,可省去一般溶劑萃取後冗長的溶劑分離步驟。

由於上述的優點,超臨界二氧化碳除了被用來作天然物藥物以及食品的萃取及精製之外,在其他領域;如半導體、化學、化工以及材料,均有越來越多的應用且被認為是符合環境保護的綠色製程。

超臨界CO2流體萃取的過程中,雖然可以藉由調整溫度及壓力(亦即調整SCF CO2的密度)來改變它對溶質的溶解能力,但是溶劑對溶質有高溶解度的基本規則是「極性溶於極性,非極性溶於非極性」,由於CO2本身為非極性的分子,因此對低極性(親脂性)溶質會表現出較高的親和力;而對於一些極性較大的分子─帶有極性基團(如–OH、–COOH等)的化合物,它的溶解能力及萃取效率就會降低,此時可藉由添加少量極性有機溶劑當做修飾劑(modifier;又稱共溶劑:co-solvent)來增加對極性溶質的溶解度,以提高極性溶質的萃取效率。

溶解度及萃取效率的改善主要是藉著修飾劑分子群聚於溶劑分子周圍而提高他們在超臨界二氧化碳流體中的溶解度。

此等修飾劑有許多種類,須視萃取之系統及目標溶質來做適當的選取,其中又以甲醇及乙醇最為普遍。

超臨界流體萃取方式主要可區分為三種:1.靜態萃取方式:主要步驟是將超臨界溶劑加壓封入萃取槽後做靜置萃取一段時間,待系統達平衡後再打開閥門將萃取物沖出並同時與溶劑分離。

2.動態萃取方式:主要步驟是於萃取槽的入口加裝一背壓控制器以保持程序中萃取槽的壓力,並控制超臨界流體以一定的流速流經萃取槽,不斷的以新鮮的超臨界流體進行連續萃取。

3.靜態--動態萃取方式:主要步驟為先做一段時間的靜態萃取,而後進行動態萃取。

如此一來,萃取效率會比靜態萃取高且流體的消耗量會比動態萃取的方式少。

本實驗將採取此方式。

一般以超臨界流體進行萃取時,必須清楚知道我們的目標成分是什麼以及其定量方法(如應用HPLC, GC等等),再以少量樣品作萃取條件的篩選,復以篩選得到的條件做大量樣品的萃取操作。

本實驗因無法做特定成分之分析定量檢測,因此只探討溫度與壓力對萃出物總量的關係。

圖二、為一般流體之壓力-密度平衡相圖;其中壓力是以還原壓力P r(P r=P/P c, reduced pressure),溫度是以還原溫度T r(T r=T/T c, reduced temperature),密度則是以還原密度ρr(ρr=ρ/ρc, reduced density)來表示,其中P c、T c及ρc分別代表此物質在其臨界點之臨界壓力、臨界溫度以及臨界密度。

其中的SCF區域為一般超臨界操作的區域,NCL區域則代表近臨界液體狀態(Near Critical Liquid)。

**計算T r時必須以絕對溫度來計算。

表一、為CO2的密度與溫度、壓力的關係數據表。

三、實驗裝置:本實驗所用的設備為美國Applied Separations 公司所製造的超臨界萃取裝置(SFE),使用壓力最高可達10000 psi(680 bar or atm)溫度則可達250℃。

此萃取系統主要可分成以下幾個大部分﹕(1)CO2加壓pump裝置;此為利用壓縮空氣作動之氣動pump,使CO2的壓力達到所需之萃取壓力。

在CO2進入加壓pump之前,須先經過冷卻以確保CO2維持在液態以避免pump運轉不順,因此另外有一套低溫循環水槽與此連結。

壓力設定及顯示均在一壓力調控箱(pump module)上,系統之總電源開關則在此箱的右下角。

(2)Oven 萃取裝置;本實驗將使用兩支50ml之萃取槽分別置於oven內,再利用oven的加溫控溫功能,可使萃取槽內之樣品以及CO2達到萃取所需的溫度。

Oven內有一根thermal couple是用來貼附在萃取槽表面以顯示萃取槽的溫度,此溫度與oven的溫度在加熱階段並不一致。

溫度的設定與調整(包括萃出物收集模組)均在oven下方的溫度調控箱進行。

面向oven其左面下方有兩個入口閥(inlet valves),上方有兩個洩壓閥(vent valves),右面上方則有兩個出口閥(outlet valves)均是用來控制CO2的進出萃取槽。

(3)萃取物收集裝置;此裝置位於oven右面兩個出口閥的下方,具有兩個微調閥(Micro-Metering Valves),用來在萃取完畢後將萃出物與CO2分離收集之用,主要利用微調閥的流量控制將萃取室內的高壓流體降壓排出於一個收集瓶中,由於壓力大幅降低使得CO2由超臨界狀態回復到氣態,萃出物在氣態CO2中的溶解度大幅度下降而析出來達到分離的效果。

由於氣體降壓膨脹會造成冷卻降溫效應,因此微調閥有加熱溫控裝置以避免因降溫效應而造成管路結凍阻塞,此加熱溫控裝置亦位於在oven下方的溫度調控箱。

請注意:微調閥最多只能闗至刻度極限處不可超過紅線處,再往下闗將造成微調閥之損壞!(4)修飾劑pump;在壓力調控箱(pump module)上另有一個修飾劑pump用來將修飾劑加壓打入萃取槽以修飾超臨界CO2的極性,此pump在使用前須先將管線前端及pump內的空氣排出以避免空轉造成損傷,惟本實驗並不會使用到此修飾劑pump。

圖三和圖四為此裝置的示意圖,圖五則為一般超臨界萃取的流程示意圖。

圖三、為此裝置的示意圖。

圖四、為此裝置的萃取槽與烘箱的示意圖。

圖五、為一般超臨界萃取的流程示意圖。

四、實驗步驟本實驗藉由靜態–動態萃取方式在不同溫度(50、70 ℃)與壓力(300、400 bar)下利用SCF CO2萃取市售咖啡粉末,使同學了解超臨界萃取之操作並探討壓力與溫度對萃出物數量的影響。

A組作50℃兩個壓力,B組作70℃兩個壓力,兩組數據共用,結果報告分開各自寫。

實驗步驟如下:1.先確認CO2進氣閥(INLET)、出氣閥(OUTLET)、洩壓閥(VENT)、出氣微調閥(METERING V ALVES)(上述四閥順時針旋轉為關閉,逆時針為開啟)、壓力調控閥(AIR PRESSURE REGULATOR,逆時針旋轉為關閉,順時針為加壓),均處於關閉狀態。

**鋼瓶內必須為液態CO2,故CO2出口閥必須連接一細長管抵達鋼瓶底部。

2.打開系統之總電源開關(MAIN POWER位置),並打開壓力調控箱(AIRPRESSURE REGULATOR所在機組)、烘箱(V ALVE、OVEN-HEATER)、以及循環水槽(COOLER、POWER)的電源開關。

(空壓機電源老師在實驗前應該會先打開)。

**循環水槽之水溫設定5℃以確保加壓前之CO2仍為液態。

3.設定烘箱(50,或70 ℃為萃取溫度)及收集器溫度(150 ℃)。

**收集器溫度約"萃取溫度+100℃"。

4.打開CO2鋼瓶開關,以壓力調控閥(AIR PRESSURE REGULATOR)調整二氧化碳壓力值,建議先設定為實驗壓力的一半(150 bar,或200 bar)[因為當烘箱溫度上升時,壓力會再上升],直到到達設定溫度才調至目標壓力(300bar,或400bar)。

相关文档
最新文档