向量的加法及几何意义
向量的加法及几何意义

向量加法运算及其几何意义我们是否可以根据飞机从甲地飞往乙地的方向与距离以及从乙地飞往丙地的方向与距离来确定甲地到丙地的方向与距离呢?1.向量的加法(1)定义:求两个向量__和__的运算,叫做向量的加法.两个向量的和仍然是一个__向量__.(2)三角形法则:如图甲所示,已知非零向量a 、b ,在平面内任取一点,作AB →=a ,BC →=b ,则向量 AC →叫做向量a 与b 的和,记作a +b .这种求__向量和__的方法叫做向量加法的三角形法则.(3)平行四边形法则:已知两个不共线向量a 、b (如图乙所示),作AB →=a ,AD →=b ,则A 、B 、D 三点不共线,以AB →、AD →为邻边作平行四边形ABCD ,则向量 AC →=a +b ,这种作两个向量和的方法叫做向量加法的平行四边形法则.[知识点拨]向量加法的平行四边形法则和三角形法则(1)在使用向量加法的三角形法则时,要注意“首尾相接”,即第一个向量的终点与第二个向量的起点重合,则以第一个向量的起点为起点,并以第二个向量的终点为终点的向量即两向量的和;向量加法的平行四边形法则的应用前提是“共起点”,即两个向量是从同一点出发的不共线向量.(2)三角形法则适用于所有的两个非零向量求和,而平行四边形法则仅适用于不共线的两个向量求和.当向量不共线时,三角形法则和平行四边形法则的实质是一样的,三角形法则作出的图形是平行四边形法则作出的图形的一半.但当两个向量共线时,平行四边形法则便不再适用了.(3)向量求和的多边形法则①已知n 个向量,依次首尾相接,则由起始向量的起点指向末尾向量的终点的向量即为这n 个向量的和,这称为向量求和的多边形法则.即A 0A 1→+A 1A 2→+A 2A 3→+…+A n -2A n -1+A n -1A n =A 0A n →②首尾顺次相接的若干向量求和,若构成一个封闭图形,则它们的和为0. 2.向量加法的交换律已知向量a 、b ,如图所示,作AB →=a ,BC →=b ,如果A 、B 、C 不共线,则AC →=a +b . 作AD →=b ,连接DC ,如果我们能证明DC →=a ,那么也就证明了加法交换律成立. 由作图可知,AD →=BC →=b ,所以四边形ABCD 是平行四边形,这就证明了DC →=a ,即a +b =b +a .向量的加法满足交换律.3.向量加法的结合律如图,作AB →=a ,BC →=b ,CD →=c ,由向量加法的定义,知AC →=AB →+BC →=a +b ,BD →=BC →+CD →=b +c ,所以AD →=AC →+CD →=(a +b )+c ,AD →=AB →+BD →=a +(b +c ). 从而(a +b )+c =a +(b +c ),即向量的加法满足结合律.[知识点拨]1.我们可以从位移的物理意义理解向量加法的交换律: 一质点从点A 出发,①先走过的位移为向量a ,再走过的位移为向量b ,②先走过的位移为向量b ,再走过的位移为向量a ,则方案①②中质点A 一定会到达同一终点.2.多个向量的加法运算可按照任意的次序与任意的组合进行.如(a +b )+(c +d )=(b +d )+(a +c );a +b +c +d +e =[d +(a +c )]+(b +e ).1.在平行四边形ABCD 中,下列结论中错误的是( C )A .AB →=DC →B .AD →+AB →=AC → C .AB →=BD →+AD → D .AD →+CB →=0[解析] 因为AB →=AD →+DB →≠BD →+AD →,所以,C 错误. 2.化简PB →+OP →+BO →= 0 .[解析] PB →+OP →+BO →=(OP →+PB →)+BO →=OB →+BO →=0.3.如图所示,已知向量a 、b 、c 不共线,求作向量a +b +c .[解析] a 、b 、c 不共线中隐含着a ,b ,c 均为非零向量,因为零向量与任一向量都是共线的.利用三角形法则或平行四边形法则作图.解法一:(三角形法则):如图(1)所示,作AB →=a ,BC =b ,则AC →=a +b ,再作CD →=c ,则AD →=AC →+CD →=(a +b )+c ,即AD →=a +b +c .解法二:(平行四边形法则):∵a 、b 、c 不共线,如图(2)所示. 在平面内任取一点O ,作OA →=a ,OB →=b , 以OA →、OB →为邻边作▱OADB , 则对角线OD →=a +b ,再作OC →=c , 以OC →、OD →为邻边作▱OCED . 则OE →=a +b +c .命题方向1 ⇨向量的加法及几何意义 典例1 (1)如图,已知a 、b ,求作a +b .(2)如图所示,已知向量a 、b 、c ,试作出向量a +b +c .[思路分析] (2)本题是求作三个向量的和向量的问题,首先应作出两个向量的和,由于这两个向量的和仍为一个向量,然后再作出这个向量与另一个向量的和,方法是多次使用三角形法则或平行四边形法则.[解析] (1)①AC →=a +b ②AC →=a +b(2)作法1:如图1所示,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=b ,则得向量OB →=a +b ;然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.作法2:如图2所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA 、OB 为邻边作▱OADB ,连接OD ,则OD →=OA →+OB →=a +b .再以OD 、OC 为邻边作▱ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.『规律总结』 (1)当两个不共线向量求和时,三角形法则和平行四边形法则都可以用. (2)多个向量求和时,可先求两个向量的和,再和其他向量求和. 〔跟踪练习1〕如下图中(1)、(2)所示,试作出向量a 与b 的和.[解析] 如下图中(1)、(2)所示,首先作OA →=a ,然后作AB →=b ,则OB →=a +b . 命题方向2 ⇨向量加法运算律的应用 典例2 化简下列各式: (1)AB →+DF →+CD →+BC →+F A →; (2)(AB →+DE →)+CD →+BC →+EA →.[思路分析] 首先根据向量加法的交换律变为各向量首尾相连,然后利用向量加法的结合律求和.[解析] (1)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DA →=0.(2)(AB →+DE →)+CD →+BC →+EA → =(AB →+BC →)+(CD →+DE →)+EA → =AC →+CE →+EA → =AE →+EA →=0.『规律总结』 向量运算中化简的两种方法:(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.有时也需将一个向量拆分成两个或多个向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简.〔跟踪练习2〕如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,F 为线段DE 延长线上一点,DE ∥BC ,AB ∥CF ,连接CD ,那么(在横线上只填上一个向量):(1)AB →+DF →= AC →; (2)AD →+FC →= AB →; (3)AD →+BC →+FC →= AC →.[解析] 由已知可得四边形DFCB 是平行四边形. (1)易知DF →=BC →.由三角形法则得:AB →+DF →=AB →+BC →=AC →. (2)易知FC →=DB →,所以AD →+FC →=AD →+DB →=AB →. (3)AD →+BC →+FC →=AD →+DF →+FC →=AC →. 向量加法的实际应用向量加法的实际应用中,要注意如下应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.典例3 在某地抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.[思路分析] 解答本题首先正确画出方位图,再根据图形借助于向量求解.[解析] 如图所示,设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800km ,从B 地按南偏东55°的方向飞行800km .则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB →+BC →=AC →. 依题意,有|AB →|+|BC →|=800+800=1 600(km). 又α=35°,β=55°,∠ABC =35°+55°=90°. 所以|AC →|=|AB →|2+|BC →|2=8002+8002=8002(km).其中∠BAC =45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是1600km ,两次飞行的位移和的大小为8002km ,方向为北偏东80°.〔跟踪练习3〕如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小(绳子的重量忽略不计).[解析] 如图,设CE →、CF →分别表示A ,B 所受的力,10 N 的重力用CG →表示,则CE →+CF →=CG →.易得∠ECG =180°-150°=30°, ∠FCG =180°-120°=60°, ∴|CE →|=|CG →|cos30°=10×32=53.|CF →|=|CG →|cos60°=10×12=5.∴A 处所受的力的大小为53N ,B 处所受的力的大小为5 N . 用平行四边形法则作平行向量的和 典例4如图,已知平行向量a ,b ,求作a +b . [错解]作OA →=a ,OB →=b ,则AB →=a +b 就是求作的向量.[辨析] 由于a ∥b ,所以不适合用平行四边形法则,应该用三角形法则. [正解]作OA →=a ,AB →=b ,则OB →=a +b 就是求作的向量.[点评] 1.当a 与b 同向共线时,a +b 与a ,b 同向,且|a +b |=|a |+|b |.2.当a 与b 反向共线时,若|a |>|b |,则a +b 与a 的方向相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 与b 的方向相同,且|a +b |=|b |-|a |;若|a |=|b |,则a +b =0.〔跟踪练习4〕已知向量a ∥b ,且|a|>|b|>0,则向量a +b 的方向( A ) A .与向量a 的方向相同B .与向量a 的方向相反C .与向量b 的方向相同D .不确定1.设a 表示“向东走5 km ”,b 表示“向南走5 km ”,则a +b 表示( D ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2km[解析] 如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 2.若O 、E 、F 是不共线的任意三点,则以下各式成立的是( B ) A .EF →=OF →+OE →B .EF →+OE →=OF →C .EF →=FO →+OE →D .EF →=FO →+EO →[解析] 可以画出图形,用三角形法则找出正确答案. 3.向量(AB →+MB →)+(BO →+BC →)+OM →化简结果为( C ) A .BC → B .AB → C .AC →D .AM →[解析] 原式=AB →+BO →+MB →+BC →+OM →=AO →+OM →+MC →=AM →+MC →=AC →. 4.已知P 为△ABC 所在平面内一点,当P A →+PB →=PC →成立时,点P 位于( D ) A .△ABC 的AB 边上 B .△ABC 的BC 边上 C .△ABC 的内部D .△ABC 的外部[解析] 如图P A →+PB →=PC →,则P 在△ABC 的外部.5.在平行四边形ABCD 中,O 是对角线的交点.下列结论正确的是( C ) A .AB →=CD →,BC →=AD → B .AD →+OD →=DA → C .AO →+OD →=AC →+CD →D .AB →+BC →+CD →=DA →[解析] 因为AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.A 级 基础巩固一、选择题1.下列等式中不正确的是( C ) A .a +0=a B .a +b =b +a C .|a +b |=|a |+|b |D .AC →=DC →+AB →+BD →[解析] 当a 与b 方向不同时,|a +b |≠|a |+|b |. 2.在△ABC 中,AB →=a ,BC →=b ,则a +b 等于( D ) A .CA → B .BC → C .AB →D .AC →[解析] AB →+BC →=AC →.3.a 、b 为非零向量,且|a +b |=|a |+|b |,则( A ) A .a ∥b ,且a 与b 方向相同 B .a 、b 是共线向量 C .a =-bD .a 、b 无论什么关系均可[解析] 当两个非零向量a 与b 不共线时,a +b 的方向与a 、b 的方向都不相同,且|a +b |<|a |+|b |;向量a 与b 同向时,a +b 的方向与a 、b 的方向都相同,且|a +b |=|a |+|b |;向量a 与b 反向且|a |<|b |时,a +b 的方向与b 的方向相同(与a 方向相反),且|a +b |=|b |-|a |.4.如图,正六边ABCDEF 中,BA →+CD →+FE →=( B )A .0B .BE →C .AD →D .CF →[解析] 连结CF ,取CF 中点O ,连结OE ,CE . 则BA →+CD →+FE →=(BA →+AF →)+FE →=BE →.5.在△ABC 中,|AB →|=|BC →|=|AB →+BC →|,则△ABC 是( B ) A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形[解析] AB →+BC →=AC →,则|AB →|=|BC →|=|AC →|, 则△ABC 是等边三角形.6.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( C ) A .P A →+PB →=0 B .PB →+PC →=0 C .PC →+P A →=0D .P A →+PB →+PC →=0[解析] ∵BC →+BA →=2BP →,∴由平行四边形法则,点P 为线段AC 的中点, ∴PC →+P A →=0.故选C . 二、填空题 7.化简下列各式: (1)AB →+BC →+CA →= O →; (2)OA →+OC →+BO →+CO →= BA →;(3)化简(AB →+MB →)+(BO →+BC →)+OM →= AC →. [解析] (1)AB →+BC →+CA →=AC →+CA →=0;(2)OA →+OC →+BO →+CO →=(CO →+OA →)+(BO →+OC →)=CA →+BC →=BA →. (3)AC →.8.如图所示,四边形ABCD 是梯形,AD ∥BC ,则OA →+BC →+AB →= OC →.[解析] OA →+BC →+AB →=OA →+AB →+BC →=OC →. 三、解答题 9.如图所示,求:(1)a +d ; (2)c +b ; (3)e +c +b ; (4)c +f +b .[解析] (1)a +d =d +a =DO →+OA →=DA →; (2)c +b =CO →+OB →=CB →;(3)e +c +b =e +(c +b )=e +CB →=DC →+CB →=DB →; (4)c +f +b =CO →+OB →+BA →=CA →.10.如图,点D ,E ,F 分别为△ABC 的三边AB ,BC ,CA 的中点.求证:(1)AB →+BE →=AC →+CE →; (2)EA →+FB →+DC →=0.[证明] (1)由向量加法的三角形法则, ∵AB →+BE →=AE →,AC →+CE →=AE →, ∴AB →+BE →=AC →+CE →.(2)由向量加法的平行四边形法则,∵EA →=EF →+ED →,FB →=FE →+FD →,DC →=DF →+DE →, ∴EA →+FB →+DC →=EF →+ED →+FE →+FD →+DF →+DE → =(EF →+FE →)+(ED →+DE →)+(FD →+DF →) =0+0+0=0.B 级 素养提升一、选择题1.已知|AB →|=10,|AC →|=7,则|BC →|的取值范围是( A ) A .[3,17] B .(3,17) C .(3,10)D .[3,10][解析] 利用三角形两边之和大于第三边,两边之差小于第三边的性质及AB →与AC →共线时的情况求解.即|AB →|-|AC →|≤|BC →|≤|AC →|+|AB →|,故3≤|BC →|≤17.2.向量a 、b 均为非零向量,下列说法中不正确的是( B ) A .向量a 与b 反向,且|a |>|b |,则向量a +b 与a 的方向相同 B .向量a 与b 反向,且|a |<|b |,则向量a +b 与a 的方向相同 C .向量a 与b 同向,则向量a +b 与a 的方向相同 D .向量a 与b 同向,则向量a +b 与b 的方向相同[解析] 当a 与b 反向,且|a |<|b |时,向量a +b 与b 的方向相同.3.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( C ) ①a ∥b ②a +b =a ③a +b =b ④|a +b |<|a |+|b | ⑤|a +b |=|a |+|b | ⑥|a +b |>|a |+|b |A .①②⑥B .①③⑥C .①③⑤D .②③④⑤[解析] ∵a =(AB →+CD →)+(BC →+DA →) =AB →+BC →+CD →+DA →=AC →+CD →+DA → =AD →+DA →=0, ∴①③⑤均正确.4.若M 为△ABC 的重心,则下列各向量中与AB →共线的是( C ) A .AB →+BC →+AC → B .AM →+MB →+BC → C .AM →+BM →+CM →D .3AM →+AC → [解析] 由三角形重心性质得AM →+BM →+CM →=0. 二、填空题5.某人在静水中游泳,速度为4 3 km /h.如要他向垂直于河对岸的方向游向河对岸,水的流速为 4 km/h ,他实际沿__沿与水流方向成60°的(答案不唯一)__方向前进,速度为__8_km/h__.[解析] ∵OB =43,OA =4, ∴OC =8,∴∠COA =60°.6.在菱形ABCD 中,∠DAB =60°,向量|AB →|=1,则|BC →+CD →|=__1__.[解析] 在△ABD 中,AD =AB =1,∠DAB =60°,△ABC 是等边三角形,则BD =1,则|BC →+CD →|=|BD →|=1.三、解答题7.如图所示,∠AOB =∠BOC =120°,|OA →|=|OB →|=|OC →|,求OA →+OB →+OC →.[解析] 如图所示,以OA ,OB 为邻边作平行四这形OADB ,由向量加法的平行四边形法则知OA →+OB →=OD →.由|OA →|=|OB →|,∠AOB =120°, 知∠BOD =60°,|OB →|=|OD →|. 又∠COB =120°,且|OB →|=|OC →|. ∴OD →+OC →=0, 故OA →+OB →+OC →=0.8.如图所示,已知矩形ABCD 中,|AD →|=43,设AB →=a ,BC →=b ,BD →=c ,试求|a +b +c |的大小.[解析] 如图所示,过D 作AC 的平行线,交BC 的延长线于点E .∵DE ∥AC ,AD ∥BE ,∴四边形ADEC 为平行四边形, ∴DE →=AC →,CE →=AD →, 于是a +b +c =AB →+BC →+BD →=AC →+BD →=DE →+BD →=BE →=AD →+AD →, ∴|a +b +c |=|AD →+AD →|=83.C 级 能力拔高如图,已知△ABC 是直角三角形,且∠A =90°,则在下列结论中正确的是__①②③④__.①|AB →+AC →|=|BC →|; ②|AB →+BC →|=|CA →|; ③|AB →+CA →|=|BC →|; ④|AB →|2+|AC →|2=|BC →|2.。
《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义向量是从数学和物理学中引入的概念,具有大小和方向。
向量通常用字母表示,如\(\vec{a}\)、\(\vec{b}\) 等,也可以用箭头表示。
1.2 向量的表示方法向量可以用坐标形式表示,如\(\vec{a} = (a_x, a_y)\)。
向量还可以用图形表示,在坐标系中表示向量的起点和终点。
第二章:向量的加法运算2.1 向量加法的定义向量加法是将两个向量相加得到一个新的向量。
如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的和\(\vec{c}\) 可以表示为\(\vec{c} = \vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)\)。
2.2 向量加法的几何意义向量加法可以直观地理解为在坐标系中将两个向量的终点相连,得到一个新的向量。
几何上,向量加法表示的是两个向量的位移合成。
第三章:平行向量的加法3.1 平行向量的定义平行向量是指方向相同或相反的向量。
如果两个向量平行,它们的坐标成比例。
3.2 平行向量的加法规则平行向量相加时,可以直接将它们的大小相加,方向不变。
如果\(\vec{a}\) 和\(\vec{b}\) 是平行向量,\(\vec{a} + \vec{b} = (a + b, c)\),其中\(a\) 和\(b\) 是向量的大小,\(c\) 是它们的方向。
第四章:向量的减法运算4.1 向量减法的定义向量减法是将一个向量从另一个向量中减去。
如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的差\(\vec{d}\) 可以表示为\(\vec{d} = \vec{a} \vec{b} = (a_x b_x, a_y b_y)\)。
4.2 向量减法的几何意义向量减法可以理解为从起点到终点的位移减去从起点到另一个终点的位移。
向量加法运算及其几何意义

向量模长关系
向量加法满足三角形不等式,即对于 任意三个向量$vec{A}$、$vec{B}$和 $vec{C}$,有$|vec{A} + vec{B}| leq |vec{A}| + |vec{B}|$。
解释
三角形不等式表明,任意三个向量的 和的模长不大于这三个向量模长的和, 这是向量加法的一个重要性质。
03
向量加法的运算律
交换律
总结词
向量加法的交换律是指向量加法满足可 交换性,即交换向量的顺序不影响向量 的和。
VS
详细描述
交换律意味着向量加法不依赖于向量的顺 序,即向量加法满足可交换性。这意味着 向量加法不具有方向性,只关注向量的起 点和终点。在几何上,这意味着无论向量 a和向量b的顺序如何,向量a加向量b的 结果都等于向量b加向量a的结果。
结合律
总结词
向量加法的结合律是指向量的加法满足结合性,即向量的加法运算不改变其结合方式。
详细描述
结合律意味着向量加法满足结合性,即向量的加法运算不改变其结合方式。这意味着无 论向量a、向量b和向量c的组合方式如何,(向量a加向量b)加向量c的结果都等于向量a 加(向量b加向量c)的结果。在几何上,这意味着向量的加法运算不依赖于其组合方式,
向量的表示方法
几何表示法
用有向线段表示向量,箭头指向表示方向,长度表示大小。
代数表示法
用有序实数对表示向量,第一个数表示横坐标,第二个数表 示纵坐标。
向量加法的定义及性质
定义:向量加法是指将两 个向量首尾相接,形成一
个新的向量。
向量加法满足结合律,即 (a+b)+c=a+(b+c)。
向量加法的零元是零向量, 即a+0=0+a=a。
向量的加法及其几何意义

(1)通过物理中位移的合成、力的合成的实例,掌握 向量加法的运算并理解其几何意义;
(2)会用向量加法的三角形法则和平行四边形法则, 培养数形结合解决问题的能力; (3)通过类比实数加法的运算律,掌握向量加法运算 的交换律和结合律,渗透类比的数学思想.
引入新课
C
上海 台北 香港
B 位移和
A
思考:当两个向量是一般的非零共线向量时, 三角形法则还适用吗?
共线向量的加法
(Ⅰ)方向相同
a
(Ⅱ)方向相反
b
b
a+b
a
A
.
B
C
a + b.
C A
B
当两向量共线时,三角形法则仍适用
探究
C
a
a
a+b A
b
a
B
b
a+b
b
a+b
AB BC CD DE JK ? AK 探究:
AB BC AC
F1 G
它们之间有什 么关系
E
O
C
F为F1与F2 的 合 力
G
E
O F1
A
F2 F
G
E
O
F F2
B
C
“位移”和“速度”的求和:
和位移 向量的和 合力
一、向量加法的定义
定义:求两个向量和的运算叫向量的加法,其结果称 为和向量.
二、向量加法的几何意义
D
C
B A
16
思考:要使船的实际航行方向垂直于对岸的 方向行驶,那么船的航行方向如何确定?
17
课堂小结,归纳提炼
1、向量的加法:求两个向量和的运算 2、向量加法法则:(1)三角形法则 (2)平行四边形法则 3、向量加法运算律: 4、向量模长关系: 首尾相连 起点一致
向量的运算与几何意义解析

向量的运算与几何意义解析向量是数学中重要的概念,它可以用来表示方向和大小。
在实际应用中,我们经常需要对向量进行运算,并通过运算来解析向量的几何意义。
本文将探讨向量的四则运算(加法、减法、数量乘法和点乘)以及各种运算在几何上的意义。
1. 向量的加法(Vector Addition)向量的加法是指将两个向量相加得到一个新的向量。
具体而言,给定两个向量A和A,它们的加法可以表示为:A = A + A。
在几何上,这个运算可以理解为将向量A放在向量A的尾部,从而得到一个新的向量A,如下图所示:图1:向量的加法示意图通过向量的加法,我们可以将多个向量连接起来,从而形成更长的向量。
2. 向量的减法(Vector Subtraction)向量的减法是指将一个向量从另一个向量中减去,得到一个新的向量。
具体而言,给定两个向量A和A,它们的减法可以表示为:A = A - A。
在几何上,这个运算可以理解为从向量A的尾部指向向量A 的尾部,从而得到一个新的向量A,如下图所示:图2:向量的减法示意图通过向量的减法,我们可以计算出两点之间的距离,或者确定一个向量相对于另一个向量的位置关系。
3. 向量的数量乘法(Scalar Multiplication)向量的数量乘法是指将一个向量乘以一个标量,得到一个新的向量。
具体而言,给定一个向量A和一个标量A,它们的数量乘法可以表示为:A = AA。
在几何上,这个运算可以理解为将向量A的大小进行缩放或扩大A倍,从而得到一个新的向量A,如下图所示:图3:向量的数量乘法示意图通过向量的数量乘法,我们可以改变向量的大小,同时保持其方向不变。
4. 向量的点乘(Dot Product)向量的点乘是指将两个向量进行运算得到一个标量。
具体而言,给定两个向量A和A,它们的点乘可以表示为:A = A·A。
计算方法是将两个向量对应位置的元素相乘,然后将相乘的结果相加。
在几何上,点乘的结果是两个向量之间的夹角的余弦值乘以向量的模长乘积,如下图所示:图4:向量的点乘示意图通过向量的点乘,我们可以计算出两个向量之间的夹角,以及一个向量在另一个向量方向上的投影长度。
向量加法运算及其几何意义

向量加法运算及其几何意义向量加法是指将两个或多个向量相加的运算。
在数学中,向量加法遵循以下规则:1.向量加法是可交换的。
即,对于任意向量a和b,a+b=b+a。
2.向量加法是可结合的。
即,对于任意向量a、b和c,(a+b)+c=a+(b+c)。
3.零向量是向量加法的单位元素。
即,对于任意向量a,a+0=0+a=a。
几何意义方面,向量加法可以用于描述物体的位移、力的合成以及速度的合成等。
下面以位移和力的合成为例进行解释:1.位移的合成:假设有一辆汽车沿东西方向行驶了100米,然后又沿南北方向行驶了50米。
我们可以将汽车的东西方向的位移表示为向量a=100i,南北方向的位移表示为向量b=50j。
那么,汽车的总位移可以表示为向量c=a+b,即c=100i+50j。
这个向量c表示汽车最终的位置相对于起始位置的位移。
2.力的合成:假设有两个力F1和F2作用在一个物体上,F1的大小为10牛顿,方向为东,F2的大小为5牛顿,方向为北。
我们可以将力F1表示为向量a=10i,力F2表示为向量b=5j。
那么,两个力的合力可以表示为向量c=a+b,即c=10i+5j。
这个向量c表示两个力的合力的大小和方向。
在几何上,向量加法的结果可以通过平行四边形法则进行图示。
以位移为例,我们可以将向量a和向量b的起点放在同一位置,然后将向量a按照其方向和大小绘制出来,再将向量b按照其方向和大小绘制出来。
通过平行四边形法则,我们可以找到一个平行四边形,其两条对角线的交点即为向量a和向量b的和向量c的终点。
总结起来,向量加法是一种将多个向量相加的运算,它遵循可交换和可结合的规则,并且零向量是其单位元素。
在几何上,向量加法可以用于描述位移和力的合成等。
通过平行四边形法则,我们可以找到向量加法的结果的几何意义。
向量加法运算及其几何意义 课件

【核心素养培优区】 【易错案例】向量的加法在向量化简中的应用 【典例】如图,在正六边形ABCDEF中, BA CD EF=( B )
A.0 B.BE C.AD D.CF
【失误案例】BA CD EF (BA AF) EF BF EF BE.
【错解分析】分析解题过程,请找出错误之处. 提示:本题错误的原因是未能结合正六边形边的关系, 得到 EF CB, 在化简的过程中代入.
【点拨】 (1)对向量加法三角形法则的两点说明 ①适用范围:任意向量. ②注意事项:(ⅰ)两个向量一定首尾相连. (ⅱ)和向量的始点是第一个向量的始点,终点是第二个 向量的终点. (ⅲ)当多个向量相加时,可以使用三角形法则.
(2)对向量加法的平行四边形法则的三点说明 ①适用范围:任意两个非零向量,且不共线. ②注意事项:(ⅰ)两个非零向量一定要有相同的始点; (ⅱ)平行四边形中的一个对角线所对应的向量为和向 量.
【变式训练】(荆州高一检测)设正六边形
ABCDEF,AB m,AE n, 则AD =________. 【解析】如图,
ED AB所 m以, 答案:n+m
AD AE ED n m.
类型三 向量加法的实际应用 【典例】长江两岸之间没有大桥的地方,常常通过轮渡 进行运输。现有一艘船从长江南岸A点出发,以5km/h的 速度向垂直于对岸的方向行驶,同时江水的速度为向东 2km/h.
列结论中,正确的是 ( ) ①a∥b;②a+b=a;③a+b=b;④|a+b|<|a|+|b|; ⑤|a+b|=|a|+|b|. A.①② B.①③ C.①③⑤ D.③④⑤
3.如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中 点,化简下列各式:
向量加法运算及其几何意义sha

02
向量加法的几何意
义
向量加法的平行四边形法则
平行四边形法则描述了两个向量相加的几何意义,即以两个 向量为邻边作一个平行四边形,其第四个向量等于原两个向 量的和。
具体来说,设向量$overset{longrightarrow}{a}$和向量 $overset{longrightarrow}{b}$为平行四边形的两个邻边, 则它们的和向量$overset{longrightarrow}{a} + overset{longrightarrow}{b}$等于与这两个邻边不共线的对 角线向量。
向量加法的定义和性质
向量加法是一种二元运算,其定义是将两个向量首尾相接,形成一个新的向量。
向量加法满足结合律和交换律,即(a+b)+c=a+(b+c),a+b=b+a。
向量加法满足单位元和零元性质,即存在零向量,使得任何向量与零向量的加法结果仍为该向量本身, 同时存在单位向量,使得任何向量与单位向量的加法结果仍为该向量本身。
数学中的向量加法
向量空间
在数学中,向量空间是一个由向量构成 的集合,这些向量通过向量加法进行运 算。向量加法是向量空间中一个基本的 运算,它满足结合律、交换律和分配律 等基本性质。
VS
向量模的计算
向量模是向量的长度或大小。通过向量加 法,可以计算两个向量的和,进而计算出 它们的模。
工程中的向量加法
向量加法运算及其几 何意义
目录
CONTENTS
• 向量加法的定义 • 向量加法的几何意义 • 向量加法的应用 • 向量加法的扩展
01
向量加法的定义
向量的表示
向量可以用几何图形表示,如线段、 箭头等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以同一点O为起点的两个已知向量 a、b 为邻边作
OACB,则以O为起点的对角线OC就是a与 b 的和.
B
C
a
同起点的对角线
b
O
b a
A 作法(1)在平面内任取一点O ( 2 ) 作 O A a , O B b
( 3 ) 作 O Cab
o·
A
力的合成可以看作向量加法的
B
C
平行四边形法则的物理模型。
例1 如图2.2-7,已知向量a、b,求作向量a + b.
①两个数相加其结果是一个数,对应数轴上的 一个点。
②在数轴上的两个向量相加,它们的和仍是一个 向量,对应于数轴上的一条有向线段。
P93 课堂练习
1.如图,已知a、b,用向量加法的三角形法则作出a + b.
(1)
(3)
b
a
(2)
b
a
a A
a b a+b (4)
b
a b
a+b
2.如图,已知a、b,用向量加法的平行四边形法则作出a +
改变力F1与F2的大小和方向,重复以 上的实验你能发现F 与F1、F2之间的关系 吗?
力F对橡皮条产生的效果,与力F1与F2共 同产生的效果相同,物理学中把力F叫做 F1与F2的合力.
由图2.2-4发现,力F在以力F1、F2为邻边的 平行四边形的对角线上,并且大小等于平 行四边形的对角线的长。
图2.2-4
b a 图2.2-7
A o
C B
当 向 量 a,b是 共 线 向 量 时 ,a+b又 如 何
作 出 来 ?
(1)向同
(2)反向
a
b
A
B
C
a
b
B
CALeabharlann AC a bAC a b
规定: a00 aa
思考:当在数轴上表示两个共线向量时,它们的
加法与数的加法有什么关系?
答:数轴上两个向量的加法与数的加法是类似的。
解:(1)如图2.2-13所示,AD表示船速,AB表示水速,以
AD、AB为邻边作 ABCD,则AC表示船实际航行的
速度。
D
C
AB
( 2 ) 在 R t A B C 中 , A B 2 , B C 5 ,
所 以 A C
2
2
A BB C
2252 295.4
因为tanCAB5, 2
由 计 算 器 得 C A B 6 8
探究:数的加法满足交换律与结合律,即对任意 a ,
b∈R,有a+b=b+a, (a+b)+c=a+(b+c)
a , b 任意向量
的加法是否也满足交换律与结合律?
即 a b 有 b a 和 (a b ) c a ( b c )
请根据下图进行探索。
3.根据图示填空: (1)a + d =
力的合成
已 知 向 量 a 和 b ,在 平 面 内 任 取 一 点 O ,作 O A a ,A B b ,
则 向 量 O B 叫 做 a 和 b 的 和 ,记 作 a b . 即 a b = O A + A B = O B
求两个向量和的运算叫做向量的加法.
B
a
ab
b
O
b
根据向量加法的定义得出的
例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输, 如图2.2-12所示,一艘船从长江南岸A点出发,以5km/h的速 度向垂直于对岸的方向行驶,同时江水的速度为向东2
km/h. (1)试用向量表示江水速度、船速以及船实际航行的速 度(保留两个有效数字);
(2)求船实际航行的速度的大小与方向(用与江水速度 间的夹角表示,精确到度)。
课本P101 A组 3、4(1)(2)(3)
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
求向量和的方法,称为向量 加法的三角形法则。
a
A
首尾顺次相连
起→终
已 知 向 量 a , b , 求 作 向 量 a b
b a
o·
作法(1)在平面内任取一点O
( 2 ) 作 O A a ,A B b
A
( 3 ) 作 O Bab
B
位移的合成可以看作向量加法 三角形法则的物理模型。
还有没有其他的做法?
答:船实际航行速度的大小约为5.4km/h,方向与
水的流速间的夹角约为 6 8
思考题
1.在 ABCD中C,A _B___
(A)AB AD (B)BA DA D (C)CB AB
(D)CD AD A
P101 A组 1、2
C B
ab ba (a b) c a (b c)
4、 ab a b
作业:
(2) c + b =
4.根据图示填空: (1) a + b = c (2) c + d = f (3) a + b + d = f
(2 )M B A N A C B ________
e
(4) c + d + e = g
5.化简 (1)ABCDBC__A_D _____
(2 )M B A N A C B _ MN __
引入:
数能进行运算,有了运算而使数的作 用得以充分展现。与数的运算类比,向量 能否进行运算呢?
2.2 平面向量的线性运算
思考:由于大陆和台湾没有直航,要从台北乘飞机到上
海,须先从台北飞到香港,再从香港飞到上海,则飞机的 位移是多少?
位移的合成
上海
台北 香港
上海
c
b
香港
台北 a
探究
图2.2-2表示橡皮条在两个力的作用下,沿着 GC的方向伸长了EO;图2.2-3表示撤去F1和F2, 用一个力F作用在橡皮条上,使橡皮条沿着相同 的方向伸长相同的长度。
b.
(1)
(2) b
b
a
a
b
A
a
a b
判断 |ab |与 |a | |b |的大小
1、不共线
b a
o· a
ab
A
b
B
|ab|<|a| |b|
判断 |ab |与 |a | |b |的大小
2、 共线 (1)向同
(2)反向
a
a
b
ab
b
ab
|ab| |a| |b|
|ab| |b| |a|
一般地,我们a有b :a b