积分与微分电路实验

合集下载

积分电路和微分电路实验报告

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告篇一:实验6积分与微分电路实验6积分与微分电路1.实验目的学习使用运放组成积分和微分电路。

2.实验仪器双踪示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)阅读op07的“数据手册”,了解op07的性能。

2)复习关于积分和微分电路的理论知识。

3)阅读本次实验的教材。

4.实验内容1)积分电路如图5.1。

在理想条件下,为零时,则dV(t)Vi(t)??co,当c两端的初始电压RdtVo(t)??1tVi(t)dtRc?o因此而得名为积分电路。

(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。

若输入为幅值Vi=-1V阶跃电压时,输出为Vo(t)??Vi1tVdt??t,(1)iRc?oRc这时输出电压将随时间增长而线性上升。

通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。

在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。

据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。

电路实际输出接近直流偏置电压,已无法正常工作。

建议用以下方法。

按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。

保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。

等待至电容上的电荷放尽。

当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。

积分与微分电路

积分与微分电路

积分与微分电路一、实验目的1、熟悉Multisim 软件的使用方法。

2、掌握积分运算与微分运算关系及基本测量方法。

二、实验原理1. 积分运算电路反相积分电路如图3.3.2-1所示。

图3.3.2-1 反相积分电路在理想化条件下,输出电压u0(t)等于)0(1)(010c ti u dt u CR t u +-=⎰式中 UC(o)是t =0时刻电容C 两端的电压值,即初始值。

如果ui(t)是幅值为E 的阶跃电压,并设Uc(o)=0,则⎰-=-=t t CR EEdt C R t u 01101)( 即输出电压 uo(t)随时间增长而线性下降。

显然RC 的数值越大,达到给定的uo 值所需的时间就越长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限值。

实用积分实验电路如图3.3.2-2所示。

图3.3.2-2 实用积分实验电路在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K1闭合,即通过电阻R2(R2)的负反馈作用帮助实现调零。

但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。

K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压UC(o)=0,另一方面,可控制积分起始点,即在加入信号ui 后,只要K2一打开,电容就将被恒流充电,电路也就开始进行积分运算。

2. 微分电路微分是积分的逆运算。

将积分电路中R 和c 的位置互换,可组成基本微分电路。

在理想化条件下,输出电压u O 等于:dtdu RCu i-=0 可见输出电压正比于输入电压对时间的微分。

微分电路可以实现波形变换,例如将矩形波变换为尖脉冲,此外,微分电路也可以移相作用。

基本微分电路的主要缺点是,当输入信号频率升高时,电容的容抗减小,则放大倍数增大,造成电路对输入信号中的高频噪声非常敏感,因而输出信号中的噪声成分严重增加,信噪比大大下降。

另一个缺点是微分电路中的RC 元件形成一个滞后的移相环节,它和集成运放中原有的滞后环节共同作用,很容易产生自激振荡,使电路的稳定性变差。

比例、求和、积分、微分电路.

比例、求和、积分、微分电路.

深圳大学实验报告课程名称:实验项目名称:学院:计算机与软件学院班级:实验时间:实验报告提交时间:一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能;2、掌握用运算放大器组成积分微分电路;3、学会上述电路的测试和分析方法。

二、实验仪器1、数字万用表2、双踪示波器3、信号发生器三、实验内容1. 电压跟随电路实验电路图 4-1如下,按表 4-1内容实验并测量记录。

2. 反相比例放大器实验电路如图 4-2所示, U0=-RF*Ui/R1,按表 4-2内容实验并测量记录。

3. 同相比例放大电路实验电路如图 4-3所示, U0=(1+RF/R1Ui,按表 4-3实验测量并记录。

4. 反相求和放大电路实验电路如图 4-4所示, U0=-RF(Ui1/R1+Ui2/R2,按表 4-4内容进行实验测量。

四、数据分析1. 电压跟随电路R L =∞:(误差如下-2V :(2.005-2 /2*100%=0.25% -0.5V :(0.502-0.5 /0.5*100%=0.4% 0 V: 0% -2V :(0.5-0.499 /0.5*100%=0.2% -2V :(1.002-1 /1*100%=0.2%RL=5K1:(误差如下-2V :(2.003-2 /2*100%=0.15%-0.5V :(0.502-0.5 /0.5*100%=0.4%0 V: 0%-2V :(0.5-0.499 /0.5*100%=0.2%-2V :(1.002-1 /1*100%=0.2%2. 反相比例放大器误差分析:30.05mV :17.3/0.3005/1000*100%=5.757%100mV : 21.1/1/1000*100%=2.11%300mV : 30.0/3/1000*100%=1%1000mV : 84/10/1000*100%=0.84%3000mV : 20030/30/1000*100%=66.767% 这个误差之所以这么大, 是因为电源是 12V ,所以输出电压不可能达到 30V ,最多是 12V 。

微分电路与积分电路的实验研究

微分电路与积分电路的实验研究
机械工业出版社印制
*6.3
二阶电路动态响应的实验研究 (设计性实训)
6.3.1 实训目的
1)加深对二阶电路动态响应的理解。 2)了解二阶电路动态响应的实验研究方法。 3)初步掌握设计性实训的思路和方法。
6.3.2 实训原理
1 ) RLC 串联电路,无论是零输入响应,或是零状态响 应,二阶电路动态过程的性质, 完全由特征方程
3)示波器的探头与电路连接时,接地点不能接错,否 则信号将被短路。
4)信号发生器、示波器和实验电路的地端应连在一起, 即共地,以防止干扰。
6.3.7
设计报告要求
主要内容:
1)实训目的、基本原理和实训设计方案。 2)电路图、所需仪表、元器件和电路参数。 3)实验内容和操作步骤。 4)数据测量与分析。
积分实验电路
图6-6
积分实验电路
6.1.6
注意事项
1)用示波器观察信号发生器产生的方波,防止失真。 2)示波器的探头与电路连接时,接地点不能接错,否则 信号将被短路。 3)信号发生器、示波器和电路的地端应连接在一起,即 共地,以防止干扰。 4)用示波器观察UC和IC波形时,由于信号幅值相差较大, 要缓慢调节Y轴的灵敏度,使波形清晰可测。
L为电感线圈, C为可变电容, R 为可变电阻。改变电 容或电阻的参数可获得各种响应状态。信号发生器接地端 与示波器的接地端并联接地。 振荡电路中电流I,在电阻R上产生电压作为取样信号 电压加到示波器的 Y 输入端,即能观察到测量值的波形与 数值。
实验电路
图6-11
RLC串联的二阶电路
操作步骤
调节信号发生器的方波输出频率为50~100HZ,输出电 压2V固定不变,L为电感线圈,C选用0.2μf电容,R为可变 电阻4.7KΩ ,在0~500Ω ~2KΩ 范围可调。用示波器观察分 析R<2 、R=2 L/C L/C 以及 R>2

积分电路和微分电路实验报告

积分电路和微分电路实验报告

积分电路和微分电路实验报告篇一:积分电路与微分电路实验报告四、积分电路与微分电路目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。

(2)学会用运算放大器组成积分微分电路。

(3)设计一个RC微分电路,将方波变换成尖脉冲波。

(4)设计一个RC积分电路,将方波变换成三角波。

(5)进一步学习和熟悉Multisim软件的使用。

(6)得出结论进行分析并写出仿真体会。

一.积分电路与微分电路1. 积分电路及其产生波形1.1运算放大器组成的积分电路及其波形设计电路图如图所示:图 1.1积分电路其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即?U0?t??UinR1C式中,R1C积分时间常数,Uin为输入阶跃电压。

反馈电阻Rf的主要作用是防止运算放大器LM741饱和。

C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。

输出的是一个上升速度与下降速度相等的三角波形。

图1.2积分电路产生的波形1.2微分电路及其产生波形2. 运算放大器组成的微分电路及其波形设计的微分电路图:图2.1微分电路其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的时间常数RC,便得到了微分电路。

微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以RinU0??RfC?U?tin的主要作用是防止运放LM741产生自激振荡。

v0??RCdV/dt,输出电压正比与输入电压对时间的微商,符号表示相位相反,当输入电压为方波时,当t?o时输出电压为一个有限制。

随着C的充电,输出电压v0将逐渐衰减,最后趋于零,就回形成尖顶脉冲波。

微分电路中用信号发生器输入方波信号,经过微分电路就会产生输出脉冲波信号。

结论与体会:通过此设计学会了用运算放大器组成的积分电路和微分电路,还学会了Multisim 软件的应用和使用方法。

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告一、实验目的本实验旨在通过设计积分电路和微分电路,掌握基本的积分和微分电路的原理、设计方法和实验技能,加深对模拟电子技术的理解。

二、实验器材1.双踪示波器2.函数信号发生器3.直流稳压电源4.万用表5.集成运放(LM741)三、积分电路设计实验1.原理简介:积分电路是一种能够将输入信号进行积分运算的电路,通常由一个运放、一个电容和一个反馈电阻组成。

在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间增加而增大。

2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。

(2)确定反馈电阻Rf:根据公式Rf=1/(2πfC),其中f为输入信号频率,C为选定的电容值。

本次实验选用C=0.01μF,当输入频率为1kHz时,计算得到Rf=15.92kΩ。

(3)确定输入阻抗Rin:为了保证输入信号不被积分电路影响,需要满足Rin>>Rf。

本次实验选用Rin=1MΩ。

(4)确定电源电压:根据运放数据手册,LM741的最大工作电压为±18V。

本次实验选用±15V的直流稳压电源。

3.实验步骤:(1)按照上述设计步骤连接电路图,并接通电源。

(2)调节函数信号发生器输出正弦波信号,频率为1kHz,幅度为2V。

(3)使用双踪示波器观察输入和输出信号波形,并记录数据。

(4)更改输入信号频率和幅度,重复步骤(2)和(3),记录数据。

4.实验结果分析:根据实验记录的数据,可以得到输入和输出信号的波形图。

当输入为正弦波时,输出为余弦波,并且幅度随时间增加而增大。

当输入频率增加时,输出幅度也相应增加;当输入幅度增加时,输出幅度也相应增加。

五、微分电路设计实验1.原理简介:微分电路是一种能够将输入信号进行微分运算的电路,通常由一个运放、一个电阻和一个反馈电容组成。

在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间减小而减小。

2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。

积分与微分电路实验报告

积分与微分电路实验报告

积分与微分电路实验报告这次的实验其实说起来也不复杂,就是做一个积分电路和微分电路,听起来很高大上对吧?不过,做起来其实没那么神秘,反而有点像做菜,材料准备好,步骤走一遍,最后成果就出来了。

先说说积分电路吧,这玩意儿简单得很,就是通过运算放大器来实现输入信号的积分。

其实就是把电压信号“积”在电容上,输出一个跟输入信号积分相关的结果。

你可以想象成,输入信号就像下雨,电容就像一个大水桶,输入信号越大,积累的水越多,输出的电压就越高。

真有点像这小雨变大雨的感觉!做这个电路的时候,最重要的就是把电容和电阻选对了,不然信号一来,电路就“崩了”,啥也没有。

然后说微分电路,哎,这个就有点儿像是小汽车的刹车系统了,输入信号一来,它立马做出反应,把信号的变化量放大输出。

微分电路的关键就是把输入信号变化的速度抓住,简而言之就是“快、狠、准”!只要一有信号的突变,输出信号就会像火箭一样飞出去,这就有点像看到路口红灯时,车子猛地刹车的感觉。

如果把积分电路比作“慢慢积累”,那微分电路就是“迅速反应”。

不过,微分电路也有点难搞,稍微电路设计得不对,输出信号就容易出现“尖刺”——噼里啪啦乱响的那种,简直是让人抓狂。

实验做的时候,我一开始有点儿紧张,毕竟这些电路在书本上看着简单,可一旦自己动手弄,事情就复杂了。

记得第一次接好电路后,开机的时候,心里那是忐忑不安的,简直像是在做某个高难度的挑战。

输入信号一开始就不对,整个人都傻眼了。

那个波形一看,心想:哎呀妈呀,咋回事啊?完全不像书上的样子嘛!不过,再一看,发现是电容接错了,真是晕了。

于是,我又赶紧换了下接线,结果,哇塞,居然成功了!看到输出信号渐渐符合预期,心里那个小激动,简直快要跳起来。

做电路嘛,最终的目的就是“问题解决”!当你看到那个波形对上了,真是像突然得到了人生的答案,所有的辛苦和焦虑都值了。

说到这里,你可能会想,积分电路和微分电路做起来有啥不一样?其实不瞒你说,差别还真不小。

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告实验报告:在本次实验中,我们将对积分电路和微分电路进行设计和测试。

积分电路和微分电路是电子电路中常见的两种基本电路,分别具有将输入信号进行积分和微分运算的功能。

首先我们设计了一个积分电路。

积分电路的基本原理是将输入信号进行积分运算,输出信号为输入信号的积分。

我们选择了一个运算放大器和一个电容器来构建积分电路。

通过适当选择电阻和电容的数值,我们成功设计出一个稳定的积分电路。

在实验中,我们输入了一个方波信号,观察到输出信号为方波信号的积分波形,验证了积分电路的功能。

接着,我们设计了一个微分电路。

微分电路的基本原理是将输入信号进行微分运算,输出信号为输入信号的微分。

我们同样选择了一个运算放大器和一组电阻来构建微分电路。

通过适当选择电阻的数值,我们成功设计出一个稳定的微分电路。

在实验中,我们输入了一个正弦信号,观察到输出信号为正弦信号的微分波形,验证了微分电路的功能。

在实验过程中,我们遇到了一些问题和挑战。

首先是在选择电阻和电容数值时,需要考虑电路的稳定性和频率响应。

另外,在电路的搭建和测试过程中,需要保证电路连接正确,避免引入干扰和误差。

通过仔细分析和调试,我们最终成功设计并测试出了积分电路和微分电路,实现了实验的预期目标。

总的来说,本次实验对积分电路和微分电路的设计和测试提供了宝贵的经验和实践机会。

通过动手实验,我们更深入地理解了电子电路的基本原理和工作原理,提升了我们的实验技能和电路设计能力。

希望在未来的学习和研究中,我们能够更加熟练地应用电子电路知识,为解决实际问题和创新设计电路做出贡献。

感谢老师和同学们的帮助和支持,让我们共同完成了这次有意义的实验。

模拟电子技术实验 运放组成积分、微分实验

模拟电子技术实验 运放组成积分、微分实验

实验五 集成运放积分、微分运算电路一、实验目的1、进一步理解运算放大器的基本性质和特点。

2、熟悉集成运放构成的几种运算电路的结构及特点,测定其运算关系。

3、学习区别运算放大器的非线性电路和线性电路,掌握非线性电路的应用。

二、实验原理在自动控制系统中广泛使用比例—积分—微分电路,本实验所涉及的积分运算电路、微分运算电路即是这种电路的基础。

⒈ 积分运算电路基本积分运算电路是以电阻作为输入回路,反馈回路以电容作为积分元件,电路如图5-1所示。

当运算放大器的开环电压增益足够大时,可认为:i C R i =1R v i IR =()td t v d Ci o C −=其中 图5-1 积分运算电路()()()∫+⋅−=01Oio V t d t v RCt v 输入与输出间的关系为:在初始时电容上的电压为零,则 ;当输入信号 是幅度为V 的阶跃电压,则有:()0()t V V i 0=O即:输出电压 是随时间线性减小,见图5-2积分电路的应用时,应注意运算放大器的输入电压和输出电流不允许超过它的额定工作电压U SCM 和工作电流I SCM 。

为了减小输出的直流漂移,若将电容C上并联 一个反馈 图5-2 积分状态图()()t V CR t d V C R t d t V C R t v tti o ⋅−=−=⋅−=∫∫10101111()V t o电阻R F ,电路如图5-4所示。

输入与输出间的关系为:()()∫⋅−≈td t v RCt v io 1由于R F 的加入将对电容产生分流作用,从而导致积分误差。

在考虑克服误差时,一般满足 。

C太小,会加剧积分漂移,C太大,电容漏电也随着增大。

通常取 , 。

CR C R f 11R R f ≥F C 〉〉μ1≥⒉ 微分运算电路微分运算放大电路是对输入信号实现微分运算,它是积分运算的逆运算。

如图5-3所示为基本微分运算电路;其输出电压为:()图5-3 基本微分运算电路()t d t v d t F o ≈CR v i −从上式可以看出:当输入信号 是三角波时,其输出 既是矩形波。

8.4 积分与微分运算电路

8.4 积分与微分运算电路
根据理想运放“虚断”和 “虚短” 列出 3 个方程:
实现了输出电压与输入电压的反相微分运算。
2020/6/4
9
积分与微分运算电路
若输入电压为方波,且RC<<T/2(T为方波周期), 则输出为尖顶脉冲波。
在实际电路中,常采用如图所示的改进电路。其中 R1用于限制输入电流的大小,C1起相位补偿作用,稳压 管用以限制输出电压的幅值,C'也起相位补偿作用。
2020/6/4
6
积分与微分运算电路
例8.4.2 试求如图所示电路的输出电压与输入电压 之间的运算关系。
解:A1组成反相求和运算电路。
2020/6/4
7
积分与微分运算电路 A2组成反相积分运算电路。
A3组成反相比例运算电路。
2020/6/4
8
积分与微分运算电路
2. 微分运算电路 (1)电路组成 (2)运算关系
2020/6/4
10
积分与微分运算电路 3. 混合运算电路
在拉氏域中,电容的复阻 抗为1/ sC ,则电路的传递函数:
整理得:
经拉氏反变换得:
2020/6/4
11
4
积分与微分运算电路 解:(1)据理想运放“虚断”和“虚地”, 有

(2)采用分段分析法。 ① 在t=00.5s期间,uI1=1V,uI2=0V,则有
当t=0.5s时,uO(0.5)= -2.5V
2算电路 ② 在t0.5s后,uI1=1V,uI2=-1V,则有
当t=1s时,uO(1)= 51-5=0V
模拟电子技术基础
8.4 积分与微分运算电路
2020/6/4
1
积分与微分运算电路
1. 积分运算电路 (1)电路组成 (2)运算关系

积分微分电路实验报告

积分微分电路实验报告

积分微分电路实验报告积分微分电路实验报告引言:积分微分电路是电子工程中常见的一种电路,它具有对输入信号进行积分或微分运算的功能。

在本次实验中,我们将通过搭建积分和微分电路,探索它们的工作原理和应用。

实验目的:1. 了解积分和微分电路的基本原理;2. 掌握积分和微分电路的搭建方法;3. 分析积分和微分电路对不同输入信号的响应特性。

实验材料:1. 电源供应器;2. 电阻、电容元件;3. 示波器;4. 函数发生器。

实验步骤:1. 搭建积分电路a. 将一个电阻和一个电容连接成串联电路;b. 将该串联电路与一个函数发生器相连;c. 将函数发生器的正负极分别与示波器的输入端相连;d. 调节函数发生器的频率和幅度,观察示波器上电压波形的变化。

2. 搭建微分电路a. 将一个电阻和一个电容连接成并联电路;b. 将该并联电路与一个函数发生器相连;c. 将函数发生器的正负极分别与示波器的输入端相连;d. 调节函数发生器的频率和幅度,观察示波器上电压波形的变化。

实验结果与分析:1. 积分电路实验结果在积分电路中,当输入信号为正弦波时,输出信号将呈现出相位滞后的特性。

随着输入信号频率的增加,输出信号的幅度逐渐减小,且相位滞后的程度增加。

这是因为电容器对输入信号的积分作用,导致输出信号的幅度和相位发生变化。

2. 微分电路实验结果在微分电路中,当输入信号为正弦波时,输出信号将呈现出相位超前的特性。

随着输入信号频率的增加,输出信号的幅度逐渐增大,且相位超前的程度增加。

这是因为电容器对输入信号的微分作用,导致输出信号的幅度和相位发生变化。

实验总结:通过本次实验,我们深入了解了积分和微分电路的工作原理和特性。

积分电路在信号处理中常用于对输入信号进行积分运算,以实现对信号的累加效果;而微分电路则常用于对输入信号进行微分运算,以实现对信号的变化率检测。

这两种电路在电子工程中有着广泛的应用,如滤波器、控制系统等。

然而,需要注意的是,在实际应用中,我们需要根据具体的信号特性和要求来选择合适的电路。

实验积分——微分电路

实验积分——微分电路

暨南大学本科实验报告专用纸课程名称电子电路实验成绩评定实验项目名称积分与微分电路指导教师实验项目编号0806115607实验项目类型验证型实验地点实B406 学生姓名学号学院电气信息学院系专业电子信息科学与技术实验时间2012 年10 月26 日下午温度℃湿度实验七积分与微分电路一、实验目的1.学会用运算放大器组成积分微分电路。

2.学会积分微分电路的特点及性能。

二、实验仪器1.数字万用表2.信号发生器3.双踪示波器三、预习要求1.分析图7.1电路,若输入正弦波,V0与V i相位差是多少?当输入信号为100Hz有效值为2V时,Vo=?答:相位差为-900,V o==。

则Vo=0.0318V。

2.分析图7.2电路,若输入方波,V o与V i相位差多少?当输入信号为160Hz幅值为1V 时,输出Vo=?答:相位差是00,V o=-RC=2.21cos(320t)=-2.21sin(320t)。

则Vo=2.21V。

3.拟定实验步骤、做好记录表格。

四、实验内容1.积分电路实验电路如图7.1(1)取Vi = -1V,断开开关K(开关K用一连线代替,拔出连线一端作为断开)用示波器观察V o变化。

(2)使图7.1中积分电容改为0.1μF,在积分电容两端并接100K电阻,断开K,Vi分别输入频率为100Hz幅值为±1V(Vp-p=2V)的正弦波和方波信号,观察和比较Vi与V o的幅值大小及相位关系,并记图7.1积分电路录波形。

(3)改变信号频率(20Hz~400Hz),观察Vi与V o的相位、幅值及波形的变化。

(1)输入方波,取Vi=-1V时,断开开关K,输出波形Vo是三角波。

(2)输入为正弦波时Vo与Vi的波形输入为方波时Vo与Vi的波形从图片上看,当输入为正弦波时,V o和Vi的幅值大小差不多,没有相移或者相移为1800,然而通过V o==计算,我们可得到Vi的幅值应比V o小很多,Vi的有效值只有0.0318V,而相位关系则是:Vi和V o的相位差为-900。

积分电路和微分电路实验报告

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告篇一:实验6积分与微分电路实验6积分与微分电路1.实验目的学习使用运放组成积分和微分电路。

2.实验仪器双踪示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)阅读op07的“数据手册”,了解op07的性能。

2)复习关于积分和微分电路的理论知识。

3)阅读本次实验的教材。

4.实验内容1)积分电路如图5.1。

在理想条件下,为零时,则dV(t)Vi(t)??co,当c两端的初始电压RdtVo(t)??1tVi(t)dtRc?o因此而得名为积分电路。

(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。

若输入为幅值Vi=-1V阶跃电压时,输出为Vo(t)??Vi1tVdt??t,(1)iRc?oRc这时输出电压将随时间增长而线性上升。

通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。

在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。

据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。

电路实际输出接近直流偏置电压,已无法正常工作。

建议用以下方法。

按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。

保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。

等待至电容上的电荷放尽。

当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告摘要:本文是一份关于积分电路和微分电路设计实验的报告。

首先介绍了积分电路和微分电路的定义和原理。

接着分别描述了积分电路和微分电路的设计步骤,并给出了具体的设计实例。

最后进行了实验结果的分析和讨论。

一、引言积分电路和微分电路是电子电路中非常重要的两种基本电路。

积分电路可以将输入信号进行积分运算,微分电路可以将输入信号进行微分运算。

它们在信号处理、滤波器设计、控制系统中起着重要作用。

本实验旨在研究和实现积分电路和微分电路的设计与应用。

二、积分电路的设计1. 原理介绍积分电路是将输入信号进行积分运算的电路,它由电容器和电阻器组成。

当输入信号为正弦波时,经过积分电路后输出为余弦波。

积分电路的输入电压与输出电压之间存在一个相位差90度。

2. 设计步骤(1)选择合适的电容和电阻值,根据输入信号频率和幅值来确定。

(2)计算电容器的充电时间常数τ,可以通过以下公式计算:τ = RC。

(3)根据所要求的积分运算时间,计算所需的电容器充放电时间,根据时间和电导率来确定电容值。

(4)根据计算结果,选取合适的电容和电阻器。

3. 设计实例以RC积分电路为例,假设输入信号为5V峰峰值的正弦波,频率为1kHz,要求积分时间为2s。

根据电容器的充电时间常数τ = RC,可以计算出为τ = 2s/RC。

根据所需积分时间为2s,电阻值选取为10kΩ,可以求得电容器的充放电时间为RC = 0.2s,电容值为1μF。

三、微分电路的设计1. 原理介绍微分电路是将输入信号进行微分运算的电路,它由电阻器和电容器组成。

当输入信号为正弦波时,经过微分电路后输出为正弦波的导数波形。

2. 设计步骤(1)选择合适的电容和电阻值,根据输入信号频率和幅值来确定。

(2)计算电容器的放电时间常数τ,可以通过以下公式计算:τ = RC。

(3)根据所要求的微分运算时间,计算所需的电容器放电时间,根据时间和电导率来确定电容值。

(4)根据计算结果,选取合适的电容和电阻器。

实验三 积分电路和微分电路的设计

实验三 积分电路和微分电路的设计

实验三 积分电路和微分电路的设计一、实验目的1. 研究RC 一阶电路的零输入响应、零状态响应、全响应的基本规律和特点。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测RC 电路的矩形脉冲响应。

二、预习要求1. 了解示波器和信号发生器的使用方法。

2. 熟悉微分或积分电路的条件。

3. 预习要求:熟读仪器使用说明,回答上述问题,准备方格纸。

三、实验原理1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2. 图3-1(b )所示的 RC 一阶电路的零输入响应(a )和零状态响应(c)分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图3-1(a)所示。

根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。

当t =τ时,Uc(τ)=0.368U m 。

此时所对应的时间就等于τ,如图3-1(a )所示。

亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图3-1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应图 3-14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<<2T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。

实验7 积分与微分电路

实验7 积分与微分电路

实验七积分与微分电路一、实验目的1.学会用运算放大器组成积分微分电路。

2.学会积分微分电路的特点及性能。

二、实验仪器数字万用表、信号发生器、双踪示波器三、实验内容1.积分电路电路图如下:∫Vidt积分电路的传输函数为:Vo=−1R1C1(1)取Vi=-1V,断开开关K1,用示波器观察Vo变化。

Vo由基准线开始上升,最终到达最高点。

(2)测量饱和输出电压及有效积分时间。

饱和输出电压为:11.5V,有效积分时间为:1.25s。

(3)使图中积分电容改为0.1uF,断开开关K1,Vi分别输入100hz幅值为2V的方波和正弦波信号,观察Vi和Vo大小及相位关系,并记录波形。

输入方波时:根据实验,在频率为100hz时,为了使输出波形不失真,则输入Vi=1.2V (幅值),此时输出为:Vo=2.9V。

输入为正弦波时:根据实验,为了使输出波形不失真,则频率调为300hz,且Vi=0.12V,输出为Vo=55mv。

相位后置90°。

(4)改变电路的频率,观察Vi与Vo的相位和幅值的关系。

由仿真交流分析得积分电路的相移特性和幅频特性曲线如下:根据实验可知,频率增大,输出Vo的幅值减小。

产生一定的相移。

2.微分电路实验电路如下:微分电路的传输函数为:Vo=−R4C2dVidt(1)输入正弦波信号,f=200hz,有效值为1V,用示波器观察Vi与Vo波形并测量输出电压。

根据实验,输出电压Vo=1.8V(幅值)。

相位前置90°。

(2)改变正弦波频率(20hz至400hz),观察Vi与Vo的相位、幅值变化情况并记录。

由仿真交流分析得幅频和相频特性曲线:根据实验,频率从20hz至400hz,输出Vo增大。

除90度相移外额外附加一定的相移。

(3)输入方波,f=200hz,Vi=±5V,用示波器观察Vo波形,按上述步骤重复实验。

示波器的输出波形如下:输入方波输出为尖顶脉冲。

a、此时的输入频率为20hz。

积分电路和微分电路

积分电路和微分电路

什么是积分电路输出信号与输入信号的积分成正比的电路,称为积分电路。

基本积分电路:积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。

电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。

原理:从图得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C 充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)∫icdt=(1/RC)∫Uidt这就是输出Uo正比于输入Ui的积分(∫Uidt)RC电路的积分条件:RC≥Tk积分电路的作用:积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。

积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。

此外,积分电路还可用于延时和定时。

在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。

微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。

而对恒定部分则没有输出。

输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。

此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。

积分电路这里介绍积分电路的一些常识。

下面给出了积分电路的基本形式和波形图。

当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。

而其充电电流则随着电压的上升而减小。

电流通过电阻(R)、电容(C)的特性可有下面的公式表达:i = (V/R)e-(t/CR)i--充电电流(A);V--输入信号电压(V);C--电阻值(欧姆);e--自然对数常数();t--信号电压作用时间(秒);CR--R、C常数(R*C);由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图):Vc = V[1-e-(t/CR)]微分电路微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。

《模拟电子技术基础》实验指导书07积分与微分电路

《模拟电子技术基础》实验指导书07积分与微分电路

实验七 积分与微分电路一、 实验目的1. 进一步了解集成运算放大器的性质和特点2. 用集成运算放大器组成积分、微分电路二、 实验原理本实验采用通用型集成运算放大器。

1. 积分运算电路用集成运算放大器组成的积分运算电路如图7-1所示。

该电路输出与输入之间的关系为: ⎰-=dt t u RCu i o )(1 。

当输入电压信号为阶跃信号时该电路的输出电压为: 图7-1 积分电路如图7-2所示。

输出为一个线性变化的电压,其幅度受集成运放饱和输出电压的限制。

方波信号可以看成是多个阶跃信号的组合,因此,当输入信号为方波信号时,积分运算电路输出三角波。

如图7-3所示。

当然,实际积分电路的特性不可能与理想的完全一致,其误差来源很多。

图7-2 输入阶跃信号 7-3 输入方波信号2. 微分运算电路微分运算是积分运算的逆运算,基本微分电路如图7-4所示。

电路输出为:dtt du RC u i o )(-= 但是,图7-4所示电路在频率较高时不稳定,容易产生自激。

因此,实验中一般采用图7-5所示电路,该电路可以消除自激并抑制电路的高频噪声。

当微分运算电路输入方波信号时,输出尖脉冲波,如图7-6所示。

输入三角波时,输出为方波。

t V RC dt t u RC u I i o 1)(1-=-=⎰图7-4 基本微分电路图7-5实验用微分电路三、实验仪器模拟电路实验箱,示波器,晶体管毫伏表等。

四、实验内容与步骤1.积分运算电路(1)按图7-1接电路,检查无误后通电。

(2)令u i=0,调节调零电位器使输出为零。

调节完毕,将输入与地断开。

(3)输入f=1kHz,幅度为1V的方波信号,用示波器观察输出信号波形并记录。

(效果不好时,接电容)图7-6 微分波形2.微分运算电路(1)按图7-5接电路,检查无误后通电。

(2)令u i=0,调节调零电位器使输出为零。

调节完毕,将输入与地断开。

(3)分别输入f=1kHz,幅度为1V的方波信号和三角波信号,用示波器观察输出信号波形并记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分与微分电路实验
实验目的
1.掌握使用集成运算放大器构成积分微分电路的方法;
2.了解积分微分电路的特点及性能。

实验仪器
1.模拟电子实验箱;
2.双踪示波器;
3.数字式万用表。

预习要求
1.分析图
2.1 电路,若输入正弦波,Vo 与Vi 相位差是多少? 当输入信号为100Hz 有
效值为2V;
2.分析图2.2 电路,若输入正弦波,Vo 与Vi 相位差多少? 当输入信号为160Hz 幅值
为1V 时,列出计算公式,画好记录表格。

实验内容
1.积分电路
实验电路如图3.1所示。

图3.1 积分电路
(1)取Vi=01V,断开开关K(开关K用一连线代替,拔出连线一端作为断开。

)用示波器观察Vo变化。

(2)测量饱和输出电压及有效积分时间。

(3)将图3.1 中积分电容改为0.1u,在积分电容两端并接100K 电阻,Vi 分别输入频率为lOOHz幅值为±1V(Vp-p=2V)的正弦波信号,观察和比较Vi 和Vo 的幅值大小及相位关系,并记录波形。

(4)改变信号频率为1KHz,观察Vi 与Vo 的相位、幅值关系。

2.微分电路
实验电路如图3.2 所示。

图3.2 微分电路
(1)输入正弦波信号,f=160Hz 有效值为1V,用示波器观察Vi 与Vo 波形并测量输出电压。

(2)改变正弦波频率为20~400Hz,观察Vi 与Vo 的相位、幅值变化情况并记录。

(3)输入方波,f=200Hz,V=±5V,用示波器观察Vo波形,按上述步骤重复实验步骤重复实验。

3.积分——微分电路:
实验电路如图3.3 所示。

图3.3 积分——微分电路
(1)在Vi 输入f=200Hz,V=±6V 的正弦波信号,用示波器观察Vi 和Vo 的波形并记录。

(2)将f 改为500Hz,重复上述实验。

实验报告
1.整理实验中的数据及波形。

2.分析实验结果与理论计算的误差原因。

思考题
1.总结积分、微分电路的特点。

2.若增大积分时间常数,应如何调整电路?。

相关文档
最新文档