多元函数微分学的几何应用29页PPT
合集下载
61-2多元函数微分学的几何应用-PPT课件
9
第五章 多元函数微分学及其应用
3 4 9 x y z 5 5 25 , 故切线方程为 4 3 24 5 5 25
3 4 9 x y z 5 5 25 。 即 4 3 24
4 3 3 4 24 9 法平面方程为 ( x ) ( y ) ( z ) 0 , 5 5 5 5 25 25
3
第五章 多元函数微分学及其应用
当点 M M0 时,有 t 0 ,得
x x 0 y y0 z z 0 x( t 0 ) y( t 0 ) z( t 0 )
即为曲线 在点 M 0 处的切线 M 0T 的方程。
切线的方向向量 a x(t0 ), y(t0 ), z(t0 ) 。
2 y 16 x 1 例 2.求曲线 : 在对应于 x 的点 M 处 2 2 z 12 x
的切线方程与法平面方程。
例 3.求抛物柱面 z x 2 及圆柱面 x 2 y 2 1 相交所成的
3 4 9 空间曲线在 M 0 ( , , ) 处的切线方程和法平面方程。 5 5 25
M0 ( x0 , y0 , z0 ) 及 M ( x0 x, y0 y, z0 z ) ,则割线
x x 0 y y0 z z 0 , M 0 M 的方程为 x y z
x x y y z z 上式分母除以 t ,得 , x y z t t t
∴螺旋线在点 M 处的切线方程为
2 2 x 2 y 2 z 4 x 2 y 2 z 4 ,即 ; 2 2 2 1 1 1 6
第五章 多元函数微分学及其应用
螺旋线在点 M 处的法平面方程为
2 2( x 2 ) 2( y 2 ) 2(z ) 0 , 4
多元函数微分学的几何应用ppt课件
9.6 多元函数微分学的几何应用
2. 空间曲线的方程为 两个柱面 的交线
x
设曲线直角坐标方程为
x0 y y0 z z0
y z
y( x) ,
z( x)
x(t0 ) y(t0 ) z(t0 )
x x
令
x为参数,
曲线的参数方程是
y
y(
x)
z z( x) 由前面得到的结果, 在M(x0, y0, z0)处,
5
9.6 多元函数微分学的几何应用
(3)向量值函数的图像
设向量 r 的起点在坐标原点,则终
点M随t的改变而移动,点M的轨迹 Γ
称为向量值函数 r=f(t) 的终端曲 x
线,也称为该函数的图像,记作Γ
反过来,向量值函数
z
•M
rf
(t)
o
y
r f (t) ( f1(t), f2 (t), f3 (t))
f (2) (4,4,2), f (2) 42 42 22 6.
所求单位切向量一个是:(4,4,2) 2 , 2 , 1 6 3 3 3
另一个是: 2 , 2 , 1
其指向与t的增长方向一致
3 3 3 其指向与t的增长方向相反
16
9.6 多元函数微分学的几何应用
二、空间曲线的切线与法平面
lim
t t0
f
(t)
r0
7
9.6 多元函数微分学的几何应用
说明 设 f (t) ( f1(t), f2(t), f3(t))
r 0 (m, n, p),
则lim f (t) t t0
r0
lltt iimmtt00
f1(t) f3(t)
m,
第二章 多元函数微分法及其应用 第四节 多元函数微分法在几何上的应用
Fz ( x0 , y0 , z0 ) ( t0 ) 0
- 15 -
第四节
多元函数微分在几何上的应用
令 T { ( t0 ) , ( t0 ) , ( t0 )}
第 八 章 切向量 T n 多 元 函 数 微 分 法 及 其 应 用
n { Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 )}
第四节
多元函数微分在几何上的应用
切平面方程
第 八 章
Fx ( x0 , y0 , z0 ) ( x x0 ) Fy ( x0 , y0 , z0 ) ( y y0 )
Fz ( x0 , y0 , z0 )( z z0 ) 0
多 元 通过点 M ( x 0 , y 0 , z 0 ) 而垂直于切平面的直线称为曲 函 数 面在该点的法线.法线方程 微 分 x x0 y y0 z z0 法 Fx ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) 及 其 应 用
第 八 章
在
解: 由于
M 0 (0 , R , k ) 2 z
多 对应的切向量为 T ( R , 0 , k ) , 故 元 函 yR zk x 2 切线方程 数 微 0 R k 分 法 k x Rz R k 0 2 即 及 其 yR0 应 用 法平面方程 R x k ( z k ) 0 2
- 17 -
第四节
多元函数微分在几何上的应用
垂直于曲面上切平面的向量称为曲面的法向量. 曲面在M 处的法向量即
第 八 章 多 元 函 数 微 分 法 及 其 应 用
多元函数微分法 PPT课件
x
y
z f [u( x, y), x, y]
z
x
y
z f u f , x u x x
两者的区别
变而对 x 的偏导数
z f u f . y u y y
把 z f (u, x, y) 中 的 u 及 y
把复合函数 z f [(x, y), x, y] 中的 y 看作不 看作不变而对 x 的
的偏导数都存在,函数在 z f (u, v) 对应点 (u, v) 可微,则 复合函数 z f [ ( x, y), ( x, y)] 在点 ( x, y ) 处存在对 x 、 y 的偏导数,且
z z u z v , x u x v x
z z u z v . y u y v y
z z u z v v 1 v vu x u ln u 1 y u y v y
xy(1 xy)
y
y 1
(1 xy) ln(1 xy)
y
xy (1 xy) [ ln(1 xy)] 1 xy
医用高等数学
推论:
”
医用高等数学
医用高等数学
第三节
多元函数微分法
一、复合函数微分法
二、隐函数微分法
医用高等数学
一、复合函数微分法
我们知道 : 如果函数u ( x )在点 x处可导 , 而 y f ( u)在 x点对应u处可导 , 则复合函数 y f [ ( x )] 在点 x处可导, 且其导数为
u
z
v
x
医用高等数学
全导数
例4-24 设 z e
u 2v
3 u sin x v x , 而 , ,求
多元函数微分学的几何应用.ppt
x1 y 1 z 1 , 123 法平面方程为
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束
铃
二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束
铃
曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束
铃
二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0
2019年六节多元函数微分学几何应用.ppt
z z0
' (t0 )
z
M
Q
M T
xo
y
方向向量 T ( '(t0), '(t0),'(t0) )
切线的方向向量也称为曲线的切向量。
法平面: 过点 M 且与这点的切线垂直的平面
由点法式得:点 M (x0, y0, z0)处的法平面方程为
'(t0)(x x0) '(t0)( y y0) '(t0)(z z0) 0
点M (x0, y0, z0)对应于参数t t0,
且'(t0)、 '(t0)、'(t0) 不全为0.
则
z
曲线在点M处的切线方程为:
x x0 y y0 z z0
'(t0 ) '(t0 ) '(t0 )
曲线在曲面上 F[(t), (t),(t)] 0
O x
y
F(x, y, z)在点(x0, y0, z0)处有连续偏导数,
且'(t0), '(t0),'(t0)存在 上式左端在点t t0可导
d dt
F[(t), (t),(t)] |t t 0
0
(*)
(链锁法则)
由链锁法则,得
d dt
F[ (t ),
(t ), (t )]
2 y
(
x0
,
y0 )
cos
1
1
f
2 x
(
x0
,
y0)
f
2 y
(
x0
,
y0 )
例3 求球面 x2 y2 z2 14 在点(1,2,3)处的 切平面及法线方程.
高等数学第九章第六节多元函数微分学的几何应用课件.ppt
当J (F,G) 0时, 可表示为 (y, z)
, 且有
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
T 1, (x0 ), (x0 )
1 ,
1 J
(F,G) (z , x)
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
➢定义
设向量值函数 f (t )在点 t0的某一邻域内有定义, 如果
x x0 Fx (x0 , y0 , z0 )
y y0 Fy (x0 , y0 , z0 )
z z0 Fz (x0 , y0 , z0 )
T
M
特别, 当光滑曲面 的方程为显式
F(x, y, z) f (x, y) z
时, 令
则在点 (x, y, z),
故当函数
在点 ( x0, y0 ) 有连续偏导数时, 曲面
f (t)的三个分量函数 f1(t), f2(t), f3(t)都在 t0 可导.
当f (t)在 t0 可导时, f (t) f1(t)i f2(t) j f3(t)k.
➢运算法则
设u(t), v(t),(t)可导, C是常向量, c是任一常数,则
(1) d C 0 dt
(2) d [cu(t)] cu(t) dt
例1. 求圆柱螺旋线
在
对应点处的切线方程和法平面方程.
解: 由于
对应的切向量为 T (R , 0, k), 故
多元函数的微积分PPT课件
曲线的一般方程为
z
F x, y, z 0
G
x,
y,
z
0
x2 y2 1 如
z 2
o
y
x
x2 y2 1
z y, z 0
第9页/共29页
二次曲面及截痕法 椭球面(几何演示)
抛物面(几何演示)
双曲面(几何演示)
第10页/共29页
曲面在坐标平面内的投影
例 求上半球面 z 2 x与2上半锥y面2 所围成的立体在 xoy 面内的投影区域。
第2页/共29页
空间解析几何简介
空间直角坐标系(三维直角坐标系)
z(竖轴)
O
x(横轴)
y (纵轴)
右手原则
第3页/共29页
O O O
z 空间直角坐标系
z
z
y
y
x
y
x
x
三个坐标平面分空间为八个卦限 (演示)
z
八个卦限
三个坐标平面
Ⅲ
Ⅱ
xoy 平面
Ⅳ
Ⅰ
xoz 平面
O
y
yoz 平面
x
第4页/共29页
Ⅶ
Ⅵ
∙ Px0, y0
第18页/共29页
二元函数的极限计算
6 lim x y
x0 x y
y0
×x 2 y 3y lim 3 y0 y
事实上,设 x ky k 1
x y
x y 换元时 与 不能相互制约
则 lim
x0 x y
y0
lim
y0
yk yk
1 1
k k
1 1
∙ Px0, y0
结果与 k 有关,故原极限不存在。
多元函数微分学在几何上的应用
多元函数微分学在几 何上的应用
目录
CONTENTS
• 引言 • 多元函数微分学基础 • 多元函数微分学在几何中的应用 • 具体案例分析 • 结论与展望
01
引言
主题简介
多元函数微分学是数学的一个重要分 支,主要研究多元函数的可微性、微 分法则和微分方程等。
在几何上,多元函数微分学可以用来 研究曲面、曲线和流形等的几何性质 和变化。
05
结论与展望
研究结论
多元函数微分学在几何上有着广泛的应用,它为解决几何问题提供了重要 的理论工具。
通过多元函数微分学,我们可以更好地理解几何对象的性质,例如曲面、 曲线和流形等的几何特征。
多元函数微分学在解决几何问题时具有高效性和精确性,为几何学的发展 提供了重要的推动力。
研究展望
01
随着数学理论和计算机技术的 不断发展,多元函数微分学在 几何上的应用将更加深入和广 泛。
球面函数的微分学分析
总结词
通过球面函数的微分学分析,可以研究球面上的几何性质和变多元函数,其定义域为球面。通过研究球面函数的导数和微分,可以了解球面上点的切线和法线, 以及曲面在一点的切平面和法线方向。这些信息对于研究球面的几何性质和变化规律非常重要,例如球面上的曲 线、曲面和体积等。
二次曲面在几何中的应用
总结词
二次曲面是一类重要的几何对象,可以通过二次曲面 的微分学分析来研究其几何性质和变化规律。
详细描述
二次曲面是由两个二元二次多项式定义的曲面。通过 研究二次曲面的导数和微分,可以了解曲面的切线和 法线,以及曲面在一点的切平面和法线方向。这些信 息对于研究二次曲面的几何性质和变化规律非常重要 ,例如二次曲面的面积、体积和质量分布等。此外, 二次曲面在几何、物理和工程等领域也有着广泛的应 用,例如地球表面形状、光学和力学等。
目录
CONTENTS
• 引言 • 多元函数微分学基础 • 多元函数微分学在几何中的应用 • 具体案例分析 • 结论与展望
01
引言
主题简介
多元函数微分学是数学的一个重要分 支,主要研究多元函数的可微性、微 分法则和微分方程等。
在几何上,多元函数微分学可以用来 研究曲面、曲线和流形等的几何性质 和变化。
05
结论与展望
研究结论
多元函数微分学在几何上有着广泛的应用,它为解决几何问题提供了重要 的理论工具。
通过多元函数微分学,我们可以更好地理解几何对象的性质,例如曲面、 曲线和流形等的几何特征。
多元函数微分学在解决几何问题时具有高效性和精确性,为几何学的发展 提供了重要的推动力。
研究展望
01
随着数学理论和计算机技术的 不断发展,多元函数微分学在 几何上的应用将更加深入和广 泛。
球面函数的微分学分析
总结词
通过球面函数的微分学分析,可以研究球面上的几何性质和变多元函数,其定义域为球面。通过研究球面函数的导数和微分,可以了解球面上点的切线和法线, 以及曲面在一点的切平面和法线方向。这些信息对于研究球面的几何性质和变化规律非常重要,例如球面上的曲 线、曲面和体积等。
二次曲面在几何中的应用
总结词
二次曲面是一类重要的几何对象,可以通过二次曲面 的微分学分析来研究其几何性质和变化规律。
详细描述
二次曲面是由两个二元二次多项式定义的曲面。通过 研究二次曲面的导数和微分,可以了解曲面的切线和 法线,以及曲面在一点的切平面和法线方向。这些信 息对于研究二次曲面的几何性质和变化规律非常重要 ,例如二次曲面的面积、体积和质量分布等。此外, 二次曲面在几何、物理和工程等领域也有着广泛的应 用,例如地球表面形状、光学和力学等。
6-7多元函数微分学的-PPT课件
例1
求曲线:x
t
0
eu
cosudu,y
2sint
cost,z 1e3t 在t 0处的切线和法平面方程.
解 当t 0时,x 0 ,y 1 ,z 2 ,
xetcots, y2co ts sit,n z3e3t,
x(0)1, y(0)2, z(0)3,
x (t0 x)0 y (ty0)0 z (tz00).
切向量:切线的方向向量称为曲线的切向量.
T ( t 0 ) ( t , 0 ) ( t , 0 )
法平面:过M点且与切线垂直的平面. ( t 0 ) x x 0 ( ) ( t 0 ) y y 0 ( ) ( t 0 ) z z 0 ) ( 0
特殊地:1.空间曲面方程形为 zf(x,y)
令 F ( x ,y ,z ) f ( x ,y ) z , 曲面在M处的切平面方程为
f x ( x 0 , y 0 ) x x ( 0 ) f y ( x 0 , y 0 ) y ( y 0 ) z z 0 , 曲面在M处的法线方程为
解 1 直 接 利 用 公 式 ;
解 2 将 所 给 方 程 的 两 边 对 x 求 导 并 移 项 , 得
y
dy dx
z dz dx
x
dy
dz
1
dx dx
dy z x , dx y z
dz x y , dx y z
dy
0,
dx (1,2, 1)
切线方程 x0y1z2,
1 23
法平面方程 x 2 ( y 1 ) 3 ( z 2 ) 0 ,
高等数学 多元函数微分法及其应用ppt课件
其余类推
fxy( x,
y)
lim
y0
fx(x, y
y) y
fx(x, y)
(2) 同样可得:三阶、四阶、…、以及n 阶偏导数。
(3) 【定义】二阶及二阶以上的偏导数统称为高阶偏导数。
【例
1】设 z
x3
y2
3 xy 3
xy
1,求二阶偏导数及
3z x 3
.
【解】 z 3x2 y2 3 y3 y, x
x2 y2 sin x2 y2 ( x2 y2 )3 2
y0
换元,化为一元 函数的极限
机动 目录 上页 下页 返回 结束
【阅读与练习】 求下列极限
5/51
x2
(1)lim sin( xy) (a 0); (2) lim (1 1 )x2 y2 ;
x0 x
x
x
ya
ya
1
(3)lim(1 sin xy)xy; x0
(2) 【复合函数求导链式法则】
①z
u
v
t t
dz z du z dv dt u dt v dt
全导数
u
x z z u z v y x u x v x
②z
v
x z z u z v
y y u y v y
③ z f (u, x, y)
u x z f f u
y x x u x
(
x,
y,
z)
lim
z0
z
.
机动 目录 上页 下页 返回 结束
10/51
4. 【偏导数的几何意义】 设 M0( x0 , y0 , f ( x0 , y0 )) 为曲面 z f ( x, y) 上一点, 如图
《多元函数微分学》PPT课件
0 V .
14
定义1 设D是xOy平面上的点集, 若变量z与D
多 元
函
中的变量x, y之间有一个依赖关系, 使得在D内
数 的
基
每取定一个点P(x, y)时,按着这个关系有确定的
本 概
z值与之对应, 则称z是x, y的二元(点)函数.记为 念
z f ( x, y) (或z f (P) )
称x, y为自变量,称z为因变量,点集D称为该函数
P0 称为 E 的内点:如果存在一个正数 使得U (P0 ) E P0 称为 E 的外点:如果存在一个正数 使得
U (P0 ) E
P0 称为 E 的边界点:如果对任意一个正数 使得
U (P0 ) 中即有E中点又有非E中点
P0 即不是E的内点也不是E的外点
闭区域: G G G
12
(3)Rn 中的集合到 Rm的映射
的 基 本
和方法上都会出现一些实质性的差别, 而多元
概 念
函数之间差异不大. 因此研究多元函数时, 将以
二元函数为主.
24
3、多元函数的极限
多
讨论二元函数 z f ( x, y),当x x0 , y y0 ,
元 函
即P( x, y) P0 ( x0 , y0 )时的极限.
数 的 基
怎样描述呢? 回忆: 一元函数的极限
多 元 函 数
的
基
解 定义域是 ( x 1)2 y2 1且x2 y2 1
本 概
念
y
•
O
1
x
有界半开半闭区域
18
3 求 f ( x, y) arcsin(3 x2 y2的) 定义域. x y2
解
3 x2 y2 1
多元函数微分学(共184张PPT)
z
sin
x2
1 y2
1
• 在 点圆 都周 是x2间 断y2 点1,是上一没条有曲定线义,. 所以该圆周上各
• 性质1(最大值和最小值定理) 在有界闭区域 D上的多元连续函数,在D上一定有最大值和最小
值.
• 在D上至少有一点 及一点 ,使得 为最大 值而 为最小值,P 即1 对于一切P 2 P∈D,有f ( P1 )
•
P
于E的点,也有不属于E的点,
•
E
则称P为E的边界点(图8-2).
•
设D是开集.如果对于D内的
• 图 8-1 任何两点,都可用折线连结起
上一页 下一页 返 回
•
来,而且该折线上的点都属于D,
•
P 则称开集D是连通的.
•
连通的开集称为区域或开区域.
•
E
开区域连同它的边界一起,称
•
为闭区域.
• 图 8-2
f( x x ,y ) f( x ,y ) A x ( x )
• 上式两边各除以 x ,再令 x 0而极限,就得
limf(xx,y)f(x,y)A • 从而 ,x 偏0导数 z 存 在x,而且等于A.同样可证
• =B.所以三式 x 成立.证毕.
z y
上一页 下一页 返 回
• 定理2(充分条件) 如果z=f(x,y)的偏导数
• 3.n维空间
• 设n为取定的一个自然数,我们称有序n元数组
•
的全体为n维空间,而每个有序n元数
(x1组,x2, ,xn) 称为n维空间中的一个点,数 称
(x1,x2, ,xn)
xi
上一页 下一页 返 回
• 为该点的第i个坐标,n维空间记为 .n