分布拟合检验简介
数据分布拟合
数据分布拟合检验的数学模型摘 要假设检验的基本思想,讨论当总体分布为正态时,关于其中未知参数的假设检验问题,可能遇到这样的情形,总体服从何种理论分布并不知道,要求我们直接对总体分布提出一个假设 。
一般的各种检验法, 是在总体分布类型已知的情况下, 对其中的未知参数进行检验, 这类统计检验法统称为参数检验. 在实际问题中, 有时我们并不能确切预知总体服从何种分布, 这时就需要根据来自总体的样本对总体的分布进行推断, 以判断总体服从何种分布。
这类统计检验称为非参数检验. 解决这类问题的工具之一是英国统计学家K. 皮尔逊在1900年发表的一篇文章中引进的——2χ检验法。
关键词:数据检验 分布拟合 2χ检验法一、问题重述①、问题背景:自1965年1月1日至1971年2月9日共2231天中,全世界记录到里氏震级4级和4级以上地震计162次,统计如下:相继两次地震记录表:86681017263150403935343029252420191514109540出现的频率间隔天数--------x 试检验相继两次地震间隔的天数X 服从指数分布(=α0.05)。
在概率论中,大家对泊松分布产生的一般条件已有所了解,容易想到,每年的次数,可以用一个泊松随机变量来近似描述。
也就是说,我们可以假设每年爆发战争次数分布X 近似泊松分布。
现在的问题是:上面的数据能否证实X 具有泊松分布的假设是正确的?②、检验法的基本思想检验法是在总体X 的分布未知时, 根据来自总体的样本, 检验总体分布的假设的一2χ种检验方法。
具体进行检验时,先提出原假设:0H : 总体X 的分布函数为)(x F然后根据样本经验分布和所假设的理论分布之间的吻合程度来决定是否接受原假设。
这种检验通常称作拟合优度检验. 它是一种非参数检验. 一般地, 我们总是根据样本观察值用直方图和经验分布函数, 推断出总体可能服从的分布, 然后作检验.1、 通过提出的方案和计算来决定给出数据分布拟合检验的数学模型的的情况。
分布拟合检验
3、计算样本观测值 4、判断 p1 PH 0 ( D D0 ), p2 PH 0 ( A2 A02 ), p3 PH 0 (W 2 W02 )
当p , 拒绝H 0;p ,不能拒绝H 0
Hale Waihona Puke 正态性W检验方法专用正态性检验的方法 1、假设
H0:F(x)是正态分布函数,H1:F(x)不是正态分布函数 2、构造统计量 对称位置次序统计量的差
2、构造检验统计量
其中, mi和npi 频数 p1 F0 (a1 )
2 ( m np ) i 2 = i npi i 1 分别为第i组的样本频数和理论 l
pi F0 (ai ) F0 (ai 1 ), i 2, 3,, ... l 1 pl 1 F0 (al 1 )
数据分组为l个区间1提出假设01122构造检验统计量其中分别为第i组的样本频数和理论频数当原假设为真时该检验统计量的极限分布是k为理论分布中待估计参数的个数
数据的分布拟合检 验与正态性检验
总体分布服从正态分布或总体分布已知 条件下的统计检验,称为参数检验。 但是在数据探索分析中,我们需要拟合的 正是数据的分布。这就要用到非参数假设检 验——分布拟合检验(用于检验样本观测值 是否来自某种给定分布)。 常用的分布拟合检验方法有 2 检验, 经验分布拟合检验法,以及正态性W检验法 。
由于0<W<1,在H0为真时,W接近1,W值过小应拒 绝H0
p1 PH 0 (W W0 ) 当p , 拒绝H 0;p ,不能拒绝H 0
请看SAS实现部分
H0:F(x)=F0(x),H1:F(x)≠F0(x)
经验分布拟合检验方法
2、构造检验统计量 统计量是以两个函数的距离为基础的,根据 不同的距离定义有不同的统计量。
概率论课件分布拟合检验
基因表达分析
通过分布拟合检验,可以 对基因表达数据进行统计 分析,了解基因表达模式 和功能。
临床试验数据分析
在临床试验中,分布拟合 检验可用于分析药物疗效、 疾病发病率等数据。
其他应用场景
环境监测
在环境监测领域,分布拟合检验可用 于分析空气质量、水质等环境指标的 分布特征。
社会调查
在社会调查中,分布拟合检验可用于 分析人口普查、民意调查等数据,了 解社会现象和趋势。
本研究还发现,不同分布拟合检验方法在拟合效 果上存在差异,其中QQ图和概率图在判断分布拟 合优劣方面表现较好,而直方图在可视化展示方 面更具优势。
研究展望
在未来的研究中,可以进一步 探讨其他理论分布与实际数据 的拟合程度,以寻找更合适的
分布模型。
可以结合机器学习和人工智能 算法,对数据进行更深入的挖 掘和分析,以提高分布拟合检
分析结果表明,所选理论分布与实际数据存在一 定的拟合程度,但也存在一定的偏差。其中,正 态分布和指数分布与实际数据的拟合效果较好, 而泊松分布和威布尔分布的拟合效果相对较差。
在本研究中,我们采用了多种分布拟合检验方法 ,包括直方图、QQ图、概率图和统计检验等方法 ,对实际数据进行了深入的分析和比较。
通过绘制直方图和QQ图,可 以直观地观察数据分布与理论 分布的拟合程度。同时,计算 峰度系数和偏度系数等统计指 标,可以量化地评估分布拟合 程度。
案例二:人口普查数据分布拟合检验
• 总结词:人口普查数据分布拟合检验是评估人口数据质量和预测人口发 展趋势的重要手段。
• 详细描述:通过对人口普查数据进行分布拟合检验,可以判断人口数据 是否符合预期的分布形态,如年龄、性别、地区分布等,从而评估数据 质量和预测未来人口发展趋势。
分布拟合
在前面的课程中,我们已经了解了假 设检验的基本思想,并讨论了当总体分布 为正态时,关于其中未知参数的假设检验 问题 .
然而可能遇到这样的情形,总体服从何 种理论分布并不知道,要求我们直接对总体 分布提出一个假设 .
例如,从1500到1931年的432年间,每年 爆发战争的次数可以看作一个随机变量,椐统 计,这432年间共爆发了299次战争,具体数据 如下:
若有r个未知参数需用相应的估计量来代 替,自由度就减少r个. 此时统计量 渐近(k-r-1)个自由度的 分布.
2 2
根据这个定理,对给定的显著性水平 , 2 2 查 分布表可得临界值 ,使得
P ( )
2 2
得拒绝域:
( k 1) (不需估计参数)
例1
在一个正二十面体的二十个面上,分别标有
数字0, 1, 2, …, 9. 每个数字在两个面上标出.
为检验其均匀性,作了800次投掷试验,数字0, 1,
2, …, 9朝正上方的次数如下: 数字 0 频数 74 1 92 2 83 3 79 4 80 5 73 6 77 7 75 8 76 9 91
2
使用 2检验法对总体分布进行检验时,
我们先提出原假设:
H0:总体X的分布函数为F(x) 然后根据样本的经验分布和所假设的理论分 布之间的吻合程度来决定是否接受原假设. 这种检验通常称作拟合优度检验,它是一 种非参数检验.
在用 2检验法 检验假设H0时,若在H0下 分布类型已知,但其参数未知,这时需要先 用极大似然估计法估计参数,然后作检验.
K-S检验的优势和劣势
• • • • 作为一种非参数方法,具有稳健性; 不依赖均值的位置; 对尺度化不敏感; 适用范围广(不像 t 检验仅局限于正态分布, 当数据偏离正态分布太多时t 检验会失效; • 比卡方更有效; • 如果数据确实服从正态分布,没有 t 检验敏感 (或有效)。
总体分布的卡方拟合检验
知识点8.6总体分布的卡方拟合检验设总体X的分布函数F(x)未知, X,⋯,X n是X的一个样本, 要1求检验假设H0:F(x)=F0(x),H1:F(x)≠F0(x).这里F(x)是数学表达形式已知的分布函数. 备择假设表示F(x)是除了F(x)以外的某一函数, 通常可以不写出来.用k −1个分点t 1,⋯,t k−1将实数轴分成k 个区间, 记为A i =t i−1,t i ,其中t 0=−∞,t k =+∞.H 0为真时, 有p i =P(X ∈A i )=F 0(t i )−F 0(t i−1).解决方案A i +∞−∞t 1t i−1t i ⋯⋯如果F 0(x)中带有未知参数,则先利用样本求出未知参数的最大似然估计值,然后将估计值代入F 0x 计算概率p i .记样本观测值x 1⋯,x n 落入区间A i 的频数为n i , 称其为实际频数.从频率和概率之间关系的角度出发, Karl Pearson 提出了如下形式的检验统计量:χ2=i=1kn p i n i n−p i2=i=1k(n i −np i)2np inp i 称为理论频数.当H 0为真时, 在样本容量充分大的情况下, 该检验统计量近似服从χ2(k −r −1)分布, 其中r 为F 0(x)中待估计的未知参数个数.由Bernoulli 大数定律可知,当试验次数较大时,事件发生的频率和概率出现较大偏差的概率是比较小的.所以当H 0为真时,对于给定的显著水平α有P i=1k(n i −np i )2np i≥χα2(k −r −1)≈α.故H 0的拒绝域为:χα2k −r −1,+∞.H 0的接受域为:0,χα2k −r −1.注意事项(1) 原假设H0中的总体分布也可以用分布律或密度函数来表示, 只要在H0为真时, 能够计算概率pi即可.(2) 根据实践经验, 要求样本容量n≥50, 且要求理论频数np i≥5.若npi <5, 则应适当合并Ai以满足此要求.例1将一枚骰子抛掷120次, 结果如下问这枚骰子的六个面是否匀称?取显著性水平为0.05.解将骰子六个面的点数作为总体X,H0:P X=k=16,k=1,2,⋯,6.点数123456频数212819241612分组数k =6, 待估计参数个数r =0,χα2k −r −1=χ0.052(5)=11.07.由于8.1<11.07, 故接受H 0, 即认为这枚骰子的六个面是匀称的.分组n ip inp i(n i −np i)2/npi1211/6201/202281/62064/203191/6201/204241/62016/205161/62016/206121/62064/20Σχ2=8.1例2从某纱厂生产的一批棉纱中抽取300条进行拉力强度试验, 得到数据如下, 检验该批棉纱的拉力强度是否服从正态分布(取显著水平为0.05).拉力强度区间频数拉力强度区间频数拉力强度区间频数拉力强度区间频数0.50~0.6411.06~1.20371.48~1.62521.90~2.0416 0.64~0.7821.20~1.34531.62~1.76262.04~2.184 0.78~0.9291.34~1.48561.76~1.90192.18~2.321 0.92~1.0624解设棉纱的拉力强度为总体X , H 0:X~N μ,σ2.以拉力强度区间的中点为观测值x i , 得到μ和σ2的最大似然估计值分别为ෝμ=x =1300i=113x i n i =1.41,ෝσ2=s n 2=1300i=113x i −x 2n i =0.0892.当H 0为真时,p i =Φt i −1.410.0892−Φt i−1−1.410.0892,i =1,⋯,13.这样合并满足np i >5np i <5需要合并分组这部分要重新计算合并后仍有np i <5要继续合并从而得计算表如下这里也要相应合并分组拉力强度区间实际频数n i 概率p i 理论频数np i n i −np i2np i 10.50~0.6410.00381.140.017220.64~0.7820.01253.750.816730.78~0.9290.03309.900.081840.92~1.06240.070221.060.410451.06~1.20370.120436.120.021461.20~1.34530.166449.920.190071.34~1.48560.185355.590.003081.48~1.62520.166449.920.086791.62~1.76260.120436.122.8354101.76~1.90190.070221.060.2015111.90~2.04160.03309.903.7586122.04~2.1840.01253.750.0167132.18~2.3210.00381.140.0172合并后的计算表分组拉力强度区间实际频数ni 概率pi理论频数npi(n i−np i)2/np i10.50~0.92120.049314.790.526320.92~1.06240.070221.060.410431.06~1.20370.120436.120.021441.20~1.34530.166449.920.190051.34~1.48560.185355.590.003061.48~1.62520.166449.920.086771.62~1.76260.120436.122.835481.76~1.90190.070221.060.201591.90~2.32210.049314.792.6074Σχ2=6.8822分组数k=9, 待估计参数个数r=2,χα2(k−r−1)=χ0.052(6)=12.592.由于6.8822<12.592, 故接受H, 即认为该批棉纱的拉力强度服从正态分布.。
7.4似然比检验与分布拟合检验
4 July 2024
第七章 假设检验
第23页
解:这是一个典型的分布拟合优度检验,总体 共有6类,其发生概率分别为0.1、0.2、0.3、 0.2、0.1和0.1,选用如下卡方检验统计量
2 k ni npi 2 ,
i 1
npi
检验拒绝域为:
这里k=6,
2
2 1
5
,
4 July 2024
4 July 2024
第七章 假设检验
第2页
当 ( x) 较大时,拒绝原假设 H0 , 否则,接受 H0 ,
这种检验方法称为似然比检验。
例1 对正态总体,方差已知,检验问题
H0 : 0 , H1 : 1 (1 0 )
似然比为
(x)
p( x1,, xn , 1 ) p( x1,, x, 0 )
1
2
n exp
1
2 2
n
( xi
i 1
1
)2
1
2
n exp
1
2 2
n
( xi
i 1
0
)2
4 July 2024
第七章 假设检验
exp
1
2 2
n
[( xi
i 1
1 )2
(xi
0
)2
]
exp
1 2
0
2
n
(2xi
i 1
1 0 )
exp
n ( 1
0 )
x
0
n
4 July 2024
第七章 假设检验
第10页
可得临界值为 c1 F1 (1, n 1)
这样检验统计量也可以为
常见的几种非参数检验方法
常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。
分布拟合检验
随机变量 x 的偏度和峰度指的是 x 的标准化变 量[x-E(x)]/ D( x ) 的三阶中心矩和四阶中心矩: x - E(x) 3 E[( x E ( x )) 3 ] v1=E[( ) ]= , 3/ 2 ( D( x )) D(x) x - E(x) 4 E[( x E ( x )) 4 ] v2=E[( ) ]= . 2 ( D( x )) D(x) 当随机变量 x 服从正态分布时,v1=0 且 v2=3. 设 x1,x2,…,xn 是来自总体 x 的样本,则 v1,v2 的矩估 计分别是 g1=B3/B 3/2 , g2=B4/B 2 . 2 2 其中 Bk(k=2,3,4)是样本 k 阶中心矩,并分别称 g1, g2 为样本偏度和样本峰度.
例 1 在一实验中,每隔一定时间观察一次由某 种铀所放射的到达计数器上的 粒子数 x,共观察了 100 次,得结果如下表所示: 表 8.2 铀放射的 粒子数的实验记录 i 0 1 2 3 4 5 6 7 8 9 10 11 12 fi 1 5 16 17 26 11 9 9 2 1 2 1 0 Ai A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 其中 fi 是观察到有 i 个 粒子的次数。从理论上考虑 知 x 应服从泊松分布
155 149 141 142 141 147 149 140
158 158 140 137 149 146 138 142
解 为了粗略了解这些数据的分布情况,我们先根 据所给的数据画出直方图,下面就来介绍直方图。 上述数据的最小值、最大值分别为126、158,即所 有数据落在区间[126,158]上现取区间[124.5,159.5] ,它能覆盖区间[126,158]。将区间[124.5,159.5]等 分为7个小区间,小区间的长度记为 , (159.5 124.5) / 7 5. 称为组距。小区间的端点称为组限。数出落在每个 小区间内的数据频数 f i ,算出频率 f i / n / n( n 84, i 1,2,,7) 如下表
分布拟合检验
可建立统计假设
1 1 1 1 H 0 : p1 = , p2 = , p3 = , p4 = p5 = 2 4 8 16 依题意n=100,k=5,因此
(ν i − npi ) χ =∑ = 3.2 npi i =1
2 5 2
给定 α = 0.05, 查表 χ 0.95 ( 4) = 9.488 由于 χ < χ 0.95 ( 4)
H 0 : F ( x ) = F0 ( x); H1 : F ( x ) ≠ F0 ( x)
这是分布检验问题,属于非参数假设检验 问题。从解决实际问题的角度来看,在获 得样本 (ξ1,L, ξn ) 的观察值后,应设法找 到一个分布函数,把它作为总体的分布是 与观察值相吻合的。这就是所谓的分布拟 合问题。因此,检验总体分布是否是某一 个确定的分布,也称为分布拟合检验。很 明显,分布拟合问题是难度很大的问题, 2 因为已知的东西太少,下面只介绍 χ 拟合 检验法,但不给出理论证明。
2 2
2
故不能拒绝原假设 H 0 ,即认为黑盒中白球与 黑球的个数相等。
例 根据63年的观察资料,上海每年夏季(5月 至9月)发生的暴雨的天数记录如下:
暴雨 天数
0 4
1 8
2
3
4
5
6 2
7 1
8 1
9 0
年 份 数
14 19 10 4
能否由此表明上海夏季发生暴雨的天数服从泊松 分布? 解:总体 ξ 是上海夏季发生暴雨的天数。待检 验的假设是
ˆ i = F0 ( a i ; θˆ1 , L , θˆr ) − F0 ( a i −1 ; θˆ1 , L , θˆr ) p
令
ˆi ) (ν i − n p νi =∑ −n χ =∑ ˆi ˆi np i =1 i =1 n p
第八章 假设检验(分布拟合检验)
这些试验及其它一些试验, 这些试验及其它一些试验,都显 示孟德尔的3: 理论与实际是符合的 理论与实际是符合的. 示孟德尔的 1理论与实际是符合的 这本身就是统计方法在科学中的一项 这本身就是统计方法在科学中的一项 重要应用. 重要应用
用于客观地评价理论上的某个结论是 否与观察结果相符, 否与观察结果相符,以作为该理论是 否站得住脚的印证. 否站得住脚的印证 Nhomakorabea或
k f i2 n fi χ 2 = ∑ − pi = ∑ −n i =1 pi n i =1 npi
2
统计量
χ
2
的分布是什么? 的分布是什么
皮尔逊证明了如下定理: 皮尔逊证明了如下定理 若原假设中的理论分布F(x)已经完全给 已经完全给 若原假设中的理论分布 定,那么当n → ∞ ,统计量 时 的分布渐近(k-1)个自由度的 χ 分布 个自由度的 分布. 的分布渐近 如果理论分布F(x)中有 个未知参数需用 中有r个未知参数需用 如果理论分布 中有 相应的估计量来代替,那么当 相应的估计量来代替, 时,统 n →∞ 计量 2的分布渐近 (k-r-1)个自由度的 2 个自由度的 分 χ χ 布.
2 2
如果根据所给的样本值 X1,X2, …,Xn算得 2 的实测值落入拒绝域, 统计量 χ 的实测值落入拒绝域,则拒绝原假 否则就认为差异不显著而接受原假设. 设,否则就认为差异不显著而接受原假设
皮尔逊定理是在n无限增大时推导出来 皮尔逊定理是在 无限增大时推导出来 无限 因而在使用时要注意n要足够大 要足够大, 的,因而在使用时要注意 要足够大,以及 npi 不太小这两个条件 不太小这两个条件 这两个条件. 根据计算实践,要求 不小于 不小于50, 根据计算实践,要求n不小于 ,以及 npi 都不小于 5. 否则应适当合并区间,使 否则应适当合并区间, npi满足这个要求 .
复杂数据模型下瑞利及广义瑞利分布的拟合检验与统计推断
复杂数据模型下瑞利及广义瑞利分布的拟合检验与统计推断关键词:瑞利分布;广义瑞利分布;数据模型;拟合检验;统计推断1.引言随着科学技术的进步,数据的规模和复杂性不息增长。
在大数据时代,探究数据分布模型是分外重要的,并且对模型的拟合检验和统计推断也变得尤其关键。
瑞利分布及广义瑞利分布是常见的概率分布模型,其在信号处理、天文学、物理学等领域都有广泛的应用。
因此,对这两种概率分布模型的拟合检验和统计推断具有重要的探究价值。
2.瑞利分布及广义瑞利分布2.1瑞利分布瑞利分布是一种常见的概率分布模型,常用来描述射线、波和信号在随机震动的介质中传输的衰减状况,其概率密度函数为:$$f(x;\sigma)=\frac{x}{\sigma^2}\exp(-\frac{x^2}{2\sigma^2}),x\geq0$$其中,$\sigma$是瑞利分布的标准参数,它是随机过程振幅的方均值的平方根,也称为瑞利参数。
2.2广义瑞利分布广义瑞利分布是瑞利分布的推广形式,其概率密度函数为:$$f(x;k,\sigma)=\frac{2x}{\sigma^2}\left(\frac{x^2}{\sig ma^2}\right)^{\frac{k}{2}-1}\exp(-\frac{x^k}{\sigma^k}),x\geq0,k>0,$$其中,$\sigma$是广义瑞利分布的标准参数,$k$是广义瑞利分布的外形参数。
3.数据模型和预估方法在现实生活中,瑞利分布及广义瑞利分布往往作为复杂数据模型的子模型出现。
针对这种状况,本文介绍了最大似然预估法、贝叶斯预估法和矩预估法等统计方法,并详尽谈论了在复杂数据模型下的参数预估方法。
4.拟合检验为了验证瑞利分布及广义瑞利分布在复杂数据模型下的适用性,本文提出了适用于大样本的渐进理论检验方法和适用于小样本的Bootstrap检验方法。
通过这两种方法的试验结果,本文验证了瑞利分布及广义瑞利分布在复杂数据模型下的优越性。
家电可靠性讲座第八讲分布拟合优度检验方法介绍
C 、、 等脱氧气体, 0SC 在它们的作用下, 芯片中的 0 , 均将大 -一 e 动器性恶化, 而导致电冰箱及其制冷压缩机不能正常工作
全要求 》
( 辑 韩彬) 编
7 0. 塞电 技 2 第l 科 o 吆年 0 期
维普资讯
定数截尾试验是指 , 试验中 发生的相关故障次数累计达到 规定数时就停试的试验。 称停试 的相关故障数为截尾数,记为 r
品进行替换, 并继续进行试验的, 称为有替换 , 记为 R; 否则 , 称
设随机变量 X的分布函数为 F )此处要讨论的是如何对 2 定时截例如设 H: x F x 其中 F x 0 (= 0) F ) (, 0) ( 为特定分布类。
因此 P[ 1 ℃启动器在恶劣环境的运行是否可靠, 我们进行了环境 可靠性试验。通过试验发现因环境中部分脱氧气体改变了芯片 内部的物理状态, P’ 使 I C启动器芯片性能变化很大。 4 . 3脱氧气体对芯片物理状态的影响 热敏电阻芯片内部中存有游离的氧离子 ( 一 0 )和电离子
长试验时间后, [ PI 1 C启动器极限电阻进一步衰减, 极限电阻过小
同样, 定数截尾试验也分有替
表 2 威 布 尔 分 布 的 检 验 计 算
换与无替换两种方式: 可用符号表示试验方式, n , 表示有 如[, r R] 替换定数截尾试验。 混合截尾试验是指这样一种试验,试验前同时规定截尾数 r 和截尾时间 c若在 c z , z 前某时间c r 发生第 r 次相关故障, 则在 c r 结束试验, 试验成为定数截尾方式, 若累积相关故障数尚未达到 r 而试验时间已达到 c则在 c 次, z , z 结束试验 , 试验成为定时截尾
。
表 1 某 批 仪 器 的 分 布 拟 合 优 度 检 验
总体分布的假设检验
其次,提出假设 H0 :总体 X 的分布函数为 F(x) ,
H1 :总体 X 的分布函数不是 F(x) .
这里, F(x) 是待检验的某已知分布函数,但其中所含的参数可 以未知.
最后,根据样本的经验分布和所假设的理论分布的吻合 程度,来决定是接受还是拒绝原假设.
注:①在这里备择假设 H1 可不必写出. ②常以分布律或概率密度代替分布函数 F(x) .若总体 为离散型随机变量,则上述假设相当于 H0 :总体 X 的分布律为 P{X xi} pi ,i 1,2,, pi 已知; 若总体分布为连续型随机变量,则上述假设相当于
H0 :总体 X 的概率密度为 f (x) , f (x) 已知.
1.2 2拟合检验法的推理方法和步骤
若 H0 中所假设的 X 的分布函数 F(x) 不含未知参数,将随机 试验的可能结果的全体分成 k 个互不相容的事件,记为 A1, A2, , Ak , 在 H 0 为真的条件下计算 P( Ai ) pi , i 1,2,, k .在 n 次试验中,事件
总体分布的假设 检验
1.1 2拟合检验法的基本思想
2 拟合检验法是在总体 X 的分布未知时,根据来自总 体的样本的信息,检验关于总体分布的假设的一种检验方 法.
设总体 X 的分布未知, X1, X 2 ,, X n 是来自总体 X 的
一个样本. 2 拟合检验法的基本思想是: 首先,根据样本观察值用直方图和经验分布函数,推测
i1
npi
故接受 H 0 , 认为这颗骰子是均匀、对称的.
谢谢聆听
Ai 发生的频率
ni n
k
(其中 ni i 1
n
)与
pi
常有差异,但由大数定律可
《概率论与数理统计》课程教案
现在2=363. 37-360=3.37,k=4,20.1(4-1)=6. 251>3.37,故接受H0,认为两性状符合孟德尔遗传规律中9:3:3:1的遗传比例.
第三部分分布族的2拟合检验法(40分钟)
(二)分布族的2拟合检验
在(一)中要检验的原假设是H0:总体X的分布函数是F(x),其中F(x)是已知的,这种情况是不多的.我们经常遇到的所需检验的原假设是
H0:总体X服从泊松分布
解因在H0中参数未具体给出,所以先估计.由最大似然估计法得 .在H0假设下,即在X服从泊松分布的假设下,X所有可能取的值为Ω ={0,1,2,…},将Ω分成如表8-4所示的两两不相交的子集A0,A1,…A12.则P{X=i}有估计
例如
表8-5例3的2拟合检验计算表
Ai
fi
A0
皮尔逊定理及其应用
教学方法
提问、讲授、启发、讨论
工具仪器
多媒体教具、教材、教案、教学课件、考勤表、平时成绩登记表
教学安排
考勤、复习相关知识点、新课内容概述、组织教学、布置作业、课后小结
教学过程
教学组织、具体教学内容及教学方法、手段、时间分配及其它说明
备 注
第一部分:旧知识点复习和新课内容概述(5分钟)
(6.2)
的统计量来度量样本与H0中所假设的分布的吻合程度,其中Ci(i=1,2,…k)为给定的常数。皮尔逊证明,如果选取Ci=n/pi(i=1,2,…k),则由(6.2)定义的统计量具有下述定理中所述的简单性质。于是我们就采用
2= = (6.3)
作为检验统计量。
定理若n充分大,则当H0为真时统计量(6.3)近似服从2(k-1)分布。(证略)
表8-3例2的2检验计算表
K-S分布检验和拟合优度χ2检验
第八章 分布检验和拟合优度χ2检验
1
Kolmogorov-Smirnov 单样本检验及一些正态性检验
2
Kolmogorov-Smirnov 两样本分布检验
3
Pearson χ2 拟合优度检验 5
(1 0 0 0 , 0 .0 5 )
1000
因为D1ooo<0.043,故认为样本数据所提供的信息 因为D , 无法拒绝H 即接受H 认为可做正态分布的拟合。 无法拒绝 0,即接受 0,认为可做正态分布的拟合。 K-S检验法是一种精确分布的方法 检验法是一种精确分布的方法, K-S检验法是一种精确分布的方法,不受观察次 数多少的限制。 数多少的限制。这个方法可应用于分组或不分组的 情形。检验量D 情形。检验量 n也可用于检验随机样本是否抽自某 特定的总体的问题。 特定的总体的问题。
第二节
K-S双样本分布检验 双样本分布检验
一、适用范围 K-S双样本检验主要用来检验两个独立样本是否来自 双样本检验主要用来检验两个独立样本是否来自 同一总体(或两样本的总体分布是否相同)。 )。其单 同一总体(或两样本的总体分布是否相同)。其单 尾检验主要用来检验某一样本的总体值是否随机地 大于(或小于)另一样本的总体值。 大于(或小于)另一样本的总体值。 二、理论依据和方法 1、理论依据: 、理论依据: 单样本检验相似, 与K-S单样本检验相似,K-S双样本检验是通过两个 单样本检验相似 双样本检验是通过两个 样本的累计频数分布是否相当接近来判断H 样本的累计频数分布是否相当接近来判断 o是否为 真。如果两个样本间的累计概率分布的离差很大, 如果两个样本间的累计概率分布的离差很大, 同的总体,就应拒绝H 这就意味着两样本来自不同的总体,就应拒绝 o。
分布拟合检验
8
p ˆ9F ˆ(A 9)1 F ˆ(A i)0.05,68
i1
216 .53 61 36 3 12 .56, 3k 38,r1,
2(k r 1 )0 2 .0(5 6 ) 1.5 29 1 .5 26 , 33
故在水平 0.05 下接受 H0 ,
认为样本服从指数分布.
例4 下面列出了84个依特拉斯坎人男子的头颅的最大宽度(mm), 试验证这些数据是否来自正态总体?
H0
:
X的概率密f度 (x)
1ex
,
0,
x 0, x 0.
由H 于 0 中在 参 未数 具 ,故 体 先 .给 估 出
由最大似然估计法得
ˆx22311.37,7
162
X 为连续型随机变量,
将 X可能取 [0 ,值 )分 区 k为 9 间 个互不 的子 [ai,区 ai1)i,间 1,2, ,9. (见下页表)
16.3
0.114
11.4
0.069
6.9
0.036
3.6
0.017
1.7
0.007
0.7
0.003
0.002
0.3 0.2
fi2 / npˆi
19.394 15.622 34.845 7.423 7.105 11.739
其中有 npˆi 些 5的组予,以 使合 得并 每组均 nip5,如表中第四示 列 . 化括号所
2. 2检验法的基本思想
将随机试验可能结果的 全体 分为 k 个互不
k
相容的事件 A1 , A2 ,, An ( Ai , Ai Aj , i j,
i1
i, j 1, 2,, k ). 于是在假设 H 0 下, 我们可以计算
分布拟合检验
分布拟合检验分布拟合检验是一种统计方法,用于验证一个随机变量是否符合某个特定的概率分布。
在许多实际问题中,我们常常需要根据观测数据来推断数据的分布情况,而分布拟合检验可以帮助我们判断观测数据是否与我们假设的分布相符合。
我们需要明确什么是分布拟合检验。
分布拟合检验通过计算观测数据与理论分布之间的差异程度,来判断观测数据是否服从某个特定的概率分布。
常用的分布拟合检验方法有卡方检验和Kolmogorov-Smirnov检验。
卡方检验是一种基于频数的检验方法,它将观测数据根据某个分布的概率密度函数进行分组,并计算观测频数与理论频数之间的差异。
通过比较观测频数和理论频数之间的差异程度,我们可以判断观测数据是否符合某个特定的概率分布。
Kolmogorov-Smirnov检验是一种基于累积分布函数的检验方法,它通过计算观测数据的经验分布函数与理论分布的累积分布函数之间的最大差异,来判断观测数据是否符合某个特定的概率分布。
下面以一个例子来说明分布拟合检验的具体步骤。
假设我们有一组观测数据,表示某种产品的寿命。
我们想要验证这些数据是否符合指数分布。
我们需要根据观测数据计算出经验分布函数。
经验分布函数是指在某个点上,小于或等于该点的观测值的比例。
通过计算观测数据的经验分布函数,我们可以得到一个累积分布函数的曲线。
然后,我们需要计算出指数分布的理论累积分布函数。
指数分布是一种常见的连续概率分布,它描述了独立随机事件发生的时间间隔的概率分布。
根据指数分布的参数估计,我们可以计算出理论累积分布函数的曲线。
接下来,我们使用Kolmogorov-Smirnov检验来比较观测数据的经验分布函数与指数分布的理论累积分布函数之间的差异。
具体来说,我们计算出两个分布函数之间的最大差异,并根据该差异值和显著性水平,来判断观测数据是否符合指数分布。
我们还可以使用卡方检验来验证观测数据是否符合指数分布。
卡方检验通过计算观测频数与理论频数之间的差异,来判断观测数据是否符合指数分布。
分布拟合检验
分布拟合检验1.检验数据是否服从正态分布一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。
两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。
由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。
2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。
SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。
SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。
对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。
由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。
(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布拟合检验简介
重点:分布拟合检验方法
在很多场合下,我们连总体服从什么分布也无法知道,这时我们需要对总体的分布进行检验,这正是分布拟合检验要解决的问题。
一、 分布拟合检验的方法
二、 例题
例1 在某一实验中,每隔一定时间观测一次某种铀所放射的到达计数器上的α粒子数X ,共观测了100次,得结果如下表所示
其中n i 为观测到i 个粒子的次数。
从理论上考虑,X 应服从泊松分布,问这种理论上的推断是否符合实际(取显著性水平α=0.05)
解:原假设H 0:X 服从泊松分布Λ,1,0,!
}{===-i i e i X P i
λλ
λ的极大似然估计值为2.4ˆ==x λ。
当H 0为真时,P{X=i}的估计值为Λ,1,0,!
2.4ˆ2.4==-i i e p i 。
2χ的计算如下表
所示。
查表可得592.122
05.0=χ
由于592.128215.62<=χ,故在显著性水平α=0.05下接受H 0,即认为理论上的推断符合实际
例2 自1965年1月1日至1971年2月9日共2231天中,全世界记录到的里氏震级4级和4级以上地震计162次,统计如下:
试检验相继两次地震间隔天数是否服从指数分布?取显著性水平α=0.05
解:原假设H 0:X 的概率密度为⎪⎩
⎪⎨⎧<>=-0 x 00 x )(x e x f λλ
λ的极大似然估计值为0726.0ˆ=λ
X 是连续性随机变量,将X 可能取值的空间(0,+∞)分为k=9个互不重叠的子区间921,,,A A A Λ
当H 0为真时,X 的分布函数为⎪⎩
⎪⎨⎧≤>-=-0 x 00 x 1)(ˆ0726.0x e x F 由上式可得概率p i =P{X ∈A i }的估计值i p
ˆ,将计算结果列表如下
查表可得067.14)7(2
05.0=χ
067.145631.12<=χ
故在显著性水平α=0.05下接受H 0,即认为X 服从指数分布。