常用逻辑用语练习题一
逻辑思维练习题
逻辑思维练习题一、判断推理类1. 如果今天下雨,那么路面湿滑。
已知路面不湿滑,那么今天是否下雨?2. 所有的猫都怕水,小明家的宠物不怕水,那么小明家的宠物是什么?3. 小华要么去图书馆,要么去公园。
如果小华没有去公园,那么他在哪里?4. 全部学生都参加了数学竞赛,小王不是学生,那么小王是否参加了数学竞赛?5. 要么是A要么是B,已知A是错误的,那么是什么?二、类比推理类1. 鸟()之于飞翔,正如鱼()之于游泳。
2. 书()之于知识,正如地图()之于路线。
3. 太阳()之于光明,正如月亮()之于夜晚。
4. 老师是学生的(),正如医生是病人的()。
5. 红色()之于热情,正如蓝色()之于宁静。
三、逻辑排序类1. A. 小明起床B. 小明吃早餐C. 小明去上学D. 小明做作业2. A. 播种B. 浇水C. 收获D. 施肥3. A. 提交报告B. 调查研究C. 分析数据四、逻辑谬误识别类1. 甲:所有的猫都喜欢吃鱼。
乙:你家的猫不喜欢吃鱼,所以甲的说法是错误的。
2. 甲:今天天气晴朗,适合户外活动。
乙:今天阴天,所以甲的说法是错误的。
3. 甲:努力学习可以取得好成绩。
乙:我努力学习,但成绩还是不好,所以甲的说法是错误的。
五、逻辑应用类1. 小明、小华、小丽三人参加比赛,小明说:“我不是一名。
”小华说:“我是第一名。
”小丽说:“我不是第一名。
”请问比赛的名次如何排列?2. 有四个人分别住在不同楼层,甲说:“我住在第二层。
”乙说:“我住在第三层。
”丙说:“我住在第四层。
”丁说:“我住在第一层。
”如果他们中只有一个人说了真话,那么他们分别住在哪一层?3. 有三个房间,分别放着苹果、香蕉和橘子。
每个房间门口都有一盏灯,其中一盏灯下放着正确的水果。
现在,你只能打开一盏灯,并且只能进入一个房间,如何确保拿到正确的水果?六、逻辑悖论类1. 一个村庄里,所有人都说谎。
一位旅行者来到村庄,询问村民:“你们这里的人是说谎的吗?”村民回答:“不是。
逻辑思维能力训练习题
逻辑思维能力训练习题一、判断推理类1. 如果今天下雨,那么路面湿滑。
已知路面不湿滑,那么今天是否下雨?2. 所有的猫都怕水,小明养的小动物不怕水,那么小明养的不是猫。
3. 要么去公园,要么去图书馆。
如果不去公园,那么一定会去哪里?4. 所有勤奋的学绩都好,小明成绩不好,那么小明是否勤奋?5. 如果A是正确的,那么B是错误的;如果B是错误的,那么C 是正确的。
现在已知C是正确的,那么A是正确还是错误?二、类比推理类1. 苹果之于水果,就像铅笔之于什么?2. 狗之于忠诚,就像猫之于什么?3. 太阳之于地球,就像月亮之于什么?4. 医生之于病人,就像老师之于什么?5. 水之于鱼,就像空气之于什么?三、逻辑排序类四、逻辑谬误识别类1. 小明说:“我每天都锻炼身体,所以我从不生病。
” 这个说法是否存在逻辑谬误?2. 小红说:“所有的猫都喜欢吃鱼,我的宠物是猫,所以它一定喜欢吃鱼。
” 这个说法是否存在逻辑谬误?3. 小李说:“我认识的所有的程序员都戴眼镜,所以戴眼镜的人一定是程序员。
” 这个说法是否存在逻辑谬误?4. 小王说:“这个餐厅的菜很难吃,所以我再也不会来这家餐厅了。
” 这个说法是否存在逻辑谬误?5. 小张说:“这本书的封面很漂亮,所以这本书的内容一定很有趣。
” 这个说法是否存在逻辑谬误?五、逻辑应用类1. 有三个房间,分别放着苹果、香蕉和橙子。
每个房间都有一个标签,但标签都贴错了。
你只能进入一个房间,并且只能通过观察房间外的标签来判断房间里放着哪种水果。
请问你怎么做?2. 有四个开关,对应着四个灯泡。
现在所有灯泡都是关着的,你只能按一次开关,然后去查看灯泡的状态。
请问你怎么找出哪个开关对应哪个灯泡?3. 有一群人中,有的人总是说真话,有的人总是说假话。
现在你有一次机会问其中一个人一个问题,来判断这群人中哪些人说真话,哪些人说假话。
请问你问什么问题?4. 有五个不同颜色的球,需要将它们放入两个不同的盒子中,使得每个盒子里的球颜色都不相同。
逻辑练习题及答案
逻辑练习题及答案1. 如果所有的猫都怕水,而小明养的宠物是一只猫,那么小明的宠物怕水吗?- 答案:是的,如果小明的宠物是猫,根据题目条件,它应该怕水。
2. 假设在一个岛上,所有的居民要么喜欢足球,要么喜欢篮球。
如果张三不喜欢足球,那么他喜欢篮球吗?- 答案:是的,根据题目条件,张三必须喜欢篮球,因为他不喜欢足球。
3. 一个逻辑问题:如果今天是星期三,那么明天是星期四吗?- 答案:是的,如果今天是星期三,那么按照一周七天的顺序,明天确实是星期四。
4. 一个推理问题:如果所有的苹果都是水果,而你手中有一个苹果,那么你手中的东西是水果吗?- 答案:是的,根据题目条件,你手中的苹果是一种水果。
5. 一个条件问题:如果下雨,那么地面会湿。
如果地面湿了,那么一定是因为下雨吗?- 答案:不一定,地面湿可能是因为其他原因,比如洒水或者有人倒水。
练习题答案解析1. 这个问题是一个典型的三段论,通过两个前提得出结论。
第一个前提是“所有的猫都怕水”,第二个前提是“小明的宠物是一只猫”,根据这两个前提,我们可以得出结论:小明的宠物怕水。
2. 这个问题也是一个三段论,通过条件“所有的居民要么喜欢足球,要么喜欢篮球”和“张三不喜欢足球”,我们可以推断出张三喜欢篮球。
3. 这个问题是一个简单的逻辑推理,基于一周的天数顺序,可以很容易地得出结论。
4. 这个问题涉及到类别的包含关系,苹果是水果的一个子集,所以如果你手中有一个苹果,那么你手中的东西自然是水果。
5. 这个问题涉及到因果关系的判断,虽然下雨会导致地面湿,但地面湿并不一定是由下雨引起的,可能还有其他原因。
逻辑练习题可以帮助学生提高他们的分析、推理和判断能力。
通过解决这些问题,学生可以更好地理解和应用逻辑规则,提高解决问题的能力。
说话逻辑练习题
说话逻辑练习题在日常生活中,我们经常需要进行言辞表达和沟通交流。
说话逻辑是一项重要的技能,它能够帮助我们有效地表达观点,理解他人的意图,并解决问题。
为了提高我们的说话逻辑能力,下面是一些说话逻辑练习题,帮助我们加深对说话逻辑的理解和应用。
练习一:逻辑连贯阅读以下两段话,找出每段话中逻辑连贯的错误,并给出改正意见。
1. "我每天都吃很多巧克力,所以我体重一直在增加。
可是今天我没有吃巧克力,所以我的体重一定减轻了。
"2. "Tom是个好学生,因为他每天都看书学习。
然而,他今天都没有看书,所以他一定不是好学生了。
"对于第一段话,逻辑上的错误在于作者将巧克力的摄入与体重减轻之间建立了因果关系。
事实上,体重的增加或减轻不仅取决于是否吃巧克力,还需要考虑其他因素,如饮食结构、运动等。
改正意见是作者应该提供更多的信息来支持他的推论。
对于第二段话,逻辑上的错误在于作者将看书学习与成为好学生之间建立了必然关系。
然而,成为好学生需要考虑的因素远不止于此,如学习能力、成绩等。
改正意见是作者应该在表达观点时考虑更多的因素,并提供更多的证据。
练习二:观点论证请写出一段话,论证以下观点:"运动有助于保持身心健康。
"在这段论证中,可以使用以下结构来展开论述:1. 引言:简要介绍运动对身心健康的重要性。
2. 主题句:明确表达观点,即运动有助于保持身心健康。
3. 证据支持:列举运动对身心健康的具体好处,如增强免疫力、减轻压力等。
4. 对比论证:对比不进行运动时可能带来的身心问题,如肥胖、焦虑等。
5. 总结:再次强调运动对身心健康的价值,鼓励读者积极参与。
练习三:问题解决请为以下问题提供一些建议。
问题:学习英语时遇到困难,无法提高。
解决思路:1. 确定问题:分析自己在学习英语中遇到的具体困难是什么,如听力、口语、语法等。
2. 目标设定:根据自己的实际情况,设定合理的学习目标,并将其分解为具体的小目标。
常用逻辑用语试题及答案
第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零, 另一根小于零,则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
2.12:,A x x 是方程20(0)ax bx c a ++=≠的两实数根;12:b B x x a+=-,则A 是B 的 条件。
3.用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的_____________________条件; ②p ⌝为假命题是p q ∨为真命题的_____________________条件; ③:23A x -<, 2:4150B x x --<, 则A 是B 的___________条件。
常用逻辑用语(单元测试卷)(原卷版)附答案.pdf
《常用逻辑用语》单元测试卷一、单选题1.(2019·山东济宁·高一月考)命题“”的否定是( )2,220x x x ∃∈++≤R A .B .2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C .D .2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 2.(2020·安徽省六安中学高二期中(文))设p :x<3,q :-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.(2020·湖南怀化·高三二模(文))除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的().A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件4.(2020·湖南天心·长郡中学高三其他(文))已知命题,,则命题的否定是( ):p x R ∃∈2230x x ++<p A .,B .,x R ∃∈2230x x ++>x R ∀∈2230x x ++≤C .,D .,x R ∀∈2230x x ++≥x R ∀∈2230x x ++>5.(2020·全国高一课时练习)下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题6.(2020·全国高一课时练习)下列语句:①;②作射线AB ;③;④有一个根是-1;⑤.32>sin 3012= 210x -=1x <其中是命题的是()A .①②③B .①③④C .③D .②⑤7.(2020·全国高一课时练习)已知不等式x +3≥0的解集是A ,若a ∈A 是假命题,则a 的取值范围是()A .a ≥-3B .a >-3C .a ≤-3D .a <-38.(2020·湖南雨花·雅礼中学高三其他(理))设集合,,则“”是“”的( ){}1,2M ={}2N a =1a =-N M ⊆A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件9.(2019·内蒙古集宁一中高三月考)命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x,使x 1≤C .对任意实数x, 都有x 1D .存在实数x,使x 1≤≤10.(2019·浙江湖州·高二期中)已知,那么“”是“”的( )a R ∈1a >21a >A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、多选题11.(2020·浙江高一单元测试)下列不等式中可以作为的一个充分不必要条件的有( )21x <A .B .C .D .1x <01x <<10x -<<11x -<<12.(2020·迁西县第一中学高二期中)下列命题的否定中,是全称命题且是真命题的是( )A .B .所有正方形都是矩形21,04x R x x ∃∈-+<C .D .至少有一个实数x ,使2,220x R x x ∃∈++=310x +=13.(2020·山东省桓台第一中学高二期中)(多选)对任意实数,,,给出下列命题:a b c ①“”是“”的充要条件;a b =ac bc =②“是无理数”是“是无理数”的充要条件;5a +a ③“”是“”的必要条件;4a <3a <④“”是“”的充分条件.a b >22a b >其中真命题是( ).A .①B .②C .③D .④14.(2020·全国高一单元测试)下列命题中,是全称量词命题的有( )A .至少有一个x 使成立B .对任意的x 都有成立2210x x ++=2210x x ++=C .对任意的x 都有不成立D .存在x 使成立2210x x ++=2210x x ++=E.矩形的对角线垂直平分三、填空题15.(2020·全国高一课时练习)把命题“当x =2时,x 2-3x +2=0”改写成“若p ,则q ”的形式:____________________________.16.(2020·安徽金安·六安一中高二期中(文))命题“”的否定是________.0,210x x ∃>-≤17.(2020·浙江高一单元测试)已知命题或,命题或,若是的充分非必要条件,则实数的取值范围是________:1p x <-3x >:31q x m <+2x m >+p q m 四、双空题18.(2020·全国高一课时练习)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q ”的形式,则p 是____________________,q 是__________________.19.(2020·上海)“”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.0x >20.(2019·宁波中学高二期中)下列语句是命题的有______,其中是假命题的有______.(只填序号)①等边三角形是等腰三角形吗?②作三角形的一个内角平分线③若为有理数,则,也都是有理数.x y +x y ④.8x >21.(2020·广东中山·高二期末)命题:,是__________(填“全称命题”或“特称命题”),它是_________命题(填“真”或“假”).p 0x R ∃∈200250x x ++=五、解答题22.(2020·全国高一课时练习)将下列命题改写成“若,则”的形式,并判断命题的真假.p q (1)是和的条约数;61218(2)当时,方程有两个不等实根;1a >-2210ax x +-=(3)平行四边形的对角线互相平分;(4)已知为非零自然数,当时,.,x y 2y x -=4,2y x ==23.(2020·浙江)判断下列命题的真假.(1).2,560x R x x ∀∈-+=(2).2,10x x ∃∈+=R (3).*22,,20a b N a b ∃∈+=24.(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使=0;11x -(3)对任意实数a ,|a |>0;25.(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直;(2)至少有一个整数n,使得为奇数;(3)是无理数},是无理数.2n n +{|x y y ∃∈2x 26.(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2);2,10x x x ∀∈++>R (3)平行四边形的对边相等;(4).2,10x x x ∃∈-+=R 27.(2020·浙江)写出下列命题的否定并判断真假.(1)不论m 取何实数,方程必有实数根.20x x m ++=(2)所有末位数是0或5的整数都能被5整除.(3)某些梯形的对角线互相平分.(4)被8整除的数能被4整除.《常用逻辑用语》单元测试卷一、单选题1.(2019·山东济宁·高一月考)命题“”的否定是( )2,220x x x ∃∈++≤R A .B .2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C .D .2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【参考答案】A【解析】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.2.(2020·安徽省六安中学高二期中(文))设p :x<3,q :-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【参考答案】C【解析】∵,∴,但,∴是成立的必要不充分条件,故选C.:3p x <:13q x -<<q p ⇒p q3.(2020·湖南怀化·高三二模(文))除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ).A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【参考答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B4.(2020·湖南天心·长郡中学高三其他(文))已知命题,,则命题的否定是( ):p x R ∃∈2230x x ++<p A .,B .,x R ∃∈2230x x ++>x R ∀∈2230x x ++≤C .,D .,x R ∀∈2230x x ++≥x R ∀∈2230x x ++>【参考答案】C【解析】命题为特称命题,其否定为,.p :p x R ⌝∀∈2230x x ++≥故选:C.5.(2020·全国高一课时练习)下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题【参考答案】D【解析】对于A,改写成“若p ,则q ”的形式应为“若两个角都是直角,则这两个角相等”,则A 错误;对于B,所给语句是命题,则B 错误;对于C,边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形,对角线相互垂直,但不是菱形,则C 错误;对于D,当时,,方程x 2-4x +a =0无实根,则D 正确;5a =16450∆=-⨯<故选:D6.(2020·全国高一课时练习)下列语句:①;②作射线AB ;③;④有一个根是-1;⑤.32>sin 3012= 210x -=1x <其中是命题的是( )A .①②③B .①③④C .③D .②⑤【参考答案】B【解析】解析②是祈使句,故不是命题,⑤无法判断真假,故不是命题.①③④符合命题的定义,故选:B.7.(2020·全国高一课时练习)已知不等式x +3≥0的解集是A ,若a ∈A 是假命题,则a 的取值范围是( )A .a ≥-3B .a >-3C .a ≤-3D .a <-3【参考答案】D【解析】∵x +3≥0,∴A ={x |x ≥},3-又∵a ∈A 是假命题,即a A ,∴a <.∉3-故选:D8.(2020·湖南雨花·雅礼中学高三其他(理))设集合,,则“”是“”的(){}1,2M ={}2N a =1a =-N M ⊆A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件【参考答案】A【解析】当时,,满足,故充分性成立;1a =-{}1N =N M ⊆当时,或,所以不一定满足,故必要性不成立.N M ⊆{}1N ={}2N =a 1a =-故选:A.9.(2019·内蒙古集宁一中高三月考)命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x,使x 1≤C .对任意实数x, 都有x 1D .存在实数x,使x 1≤≤【参考答案】C【解析】特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .10.(2019·浙江湖州·高二期中)已知,那么“”是“”的( )a R ∈1a >21a >A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【参考答案】A【解析】当时,成立,1a >21a >取,此时成立,但是不成立,2a =-21a >1a >“”是“”的充分不必要条件,1a >21a >故选:A.二、多选题11.(2020·浙江高一单元测试)下列不等式中可以作为的一个充分不必要条件的有()21x <A .B .C .D .1x <01x <<10x -<<11x -<<【参考答案】BC【解析】解不等式,可得,21x <11x -<< , , ,{}11x x -<< {}1x x <{}11x x -<<{}01x x <<{}11x x -<<{}10x x -<<因此,使得的成立一个充分不必要条件的有:,.21x <01x <<10x -<<故选:BC.12.(2020·迁西县第一中学高二期中)下列命题的否定中,是全称命题且是真命题的是( )A .B .所有正方形都是矩形21,04x R x x ∃∈-+<C .D .至少有一个实数x ,使2,220x R x x ∃∈++=310x +=【参考答案】AC【解析】由题意可知:原命题为特称命题且为假命题.选项A. 原命题为特称命题,,所以原命题为假命题,所以选项A 满足条件.2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭选项B. 原命题是全称命题,所以选项B 不满足条件.选项C. 原命题为特称命题,在方程中,所以方程无实数根,所以原命题为假命题,所以选项C 满足条件.2220x x ++=4420∆=-⨯<选项D. 当时,命题成立. 所以原命题为真命题,所以选项D 不满足条件.1x =-故选:AC13.(2020·山东省桓台第一中学高二期中)(多选)对任意实数,,,给出下列命题:a b c ①“”是“”的充要条件;a b =ac bc =②“是无理数”是“是无理数”的充要条件;5a +a ③“”是“”的必要条件;4a <3a <④“”是“”的充分条件.a b >22a b >其中真命题是( ).A .①B .②C .③D .④【参考答案】BC【解析】①由“”可得,但当时,不能得到,故“”是“”的充分不必要条件,故①错误;a b =ac bc =ac bc =a b =a b =ac bc =②因为5是有理数,所以当是无理数时,必为无理数,反之也成立,故②正确;5a +a ③当时,不能推出;当时,有成立,故“”是“”的必要不充分条件,故③正确.4a <3a <3a <4a <4a <3a <④取,,此时,故④错误;1a =2b =-22a b <故参考答案为:BC14.(2020·全国高一单元测试)下列命题中,是全称量词命题的有( )A .至少有一个x 使成立B .对任意的x 都有成立2210x x ++=2210x x ++=C .对任意的x 都有不成立D .存在x 使成立2210x x ++=2210x x ++=E.矩形的对角线垂直平分【参考答案】BCE【解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题;E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.故选:BCE三、填空题15.(2020·全国高一课时练习)把命题“当x =2时,x 2-3x +2=0”改写成“若p ,则q ”的形式:____________________________.【参考答案】若x =2,则x 2-3x +2=0【解析】命题“当x =2时,x 2-3x +2=0”可以改写成“若x =2,则x 2-3x +2=0”故参考答案为:若x =2,则x 2-3x +2=016.(2020·安徽金安·六安一中高二期中(文))命题“”的否定是________.0,210x x ∃>-≤【参考答案】0,210x x ∀>->【解析】命题为特称命题,则命题的否定为“,”.0x ∀>210x ->故参考答案为:,.0x ∀>210x ->17.(2020·浙江高一单元测试)已知命题或,命题或,若是的充分非必要:1p x <-3x >:31q x m <+2x m >+p q 条件,则实数的取值范围是________m 【参考答案】21,32⎡⎤-⎢⎥⎣⎦【解析】因为是的充分非必要条件,所以是的真子集,故解得:,又因为,所以,p q ()(),13,-∞-⋃+∞()(),312,m m -∞+⋃++∞31123m m +≥-⎧⎨+≤⎩2-13m ≤≤312m m +≤+12m ≤综上可知,故填.21-32m ≤≤21,32⎡⎤-⎢⎥⎣⎦四、双空题18.(2020·全国高一课时练习)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q ”的形式,则p 是____________________,q 是__________________.【参考答案】一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧【解析】已知中的命题改为“若p ,则q ”的形式为“若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧”,p :一条直线是弦的垂直平分线;q :这条直线经过圆心且平分弦所对的弧.故参考答案为:一条直线是弦的垂直平分线;这条直线经过圆心且平分弦所对的弧19.(2020·上海)“”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.0x >【参考答案】(参考答案不唯一) (参考答案不唯一)2x =1x >-【解析】“”的充分非必要条件可以为;一个必要非充分条件可以为;0x >2x =1x >-故参考答案为:(参考答案不唯一);(参考答案不唯一)2x =1x >-20.(2019·宁波中学高二期中)下列语句是命题的有______,其中是假命题的有______.(只填序号)①等边三角形是等腰三角形吗?②作三角形的一个内角平分线③若为有理数,则,也都是有理数.x y +x y ④.8x >【参考答案】③ ③【解析】①②不是陈述句,④不能判断真假,均不符合命题定义,不是命题③是可以判断真假的陈述句,是命题;当,时,为有理数,但不是有理数 ③是假命题x =y =x y +,x y ∴本题正确结果:③;③21.(2020·广东中山·高二期末)命题:,是__________(填“全称命题”或“特称命题”),它是_________命题(填“真”或“假”).p 0x R ∃∈200250x x ++=【参考答案】特称命题 假【解析】由题知命题:,中条件为,p 0x R ∃∈200250x x ++=0x R ∃∈故命题为特称命题,又因为方程中,2250x x ++=2245160∆=-⨯=-<故方程没有根,所以命题为假命题.2250x x ++=故参考答案为:特称命题;假.五、解答题22.(2020·全国高一课时练习)将下列命题改写成“若,则”的形式,并判断命题的真假.p q (1)是和的条约数;61218(2)当时,方程有两个不等实根;1a >-2210ax x +-=(3)平行四边形的对角线互相平分;(4)已知为非零自然数,当时,.,x y 2y x -=4,2y x ==【参考答案】参考答案见解析.【解析】(1)若一个数是,则它是和的条约数,是真命题.61218(2)若,则方程有两个不等实根,1a >-2210ax x +-=因为当时,原方程只有一解,所以原命题是假命题.0a =(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知是非零自然数,若,则,是假命题.,x y 2y x -=4,2y x ==23.(2020·浙江)判断下列命题的真假.(1).2,560x R x x ∀∈-+=(2).2,10x x ∃∈+=R (3).*22,,20a b N a b ∃∈+=【参考答案】(1)假命题;(2)假命题;(3)真命题.【解析】(1)假命题,因为只有或时满足.2x =3x =2560x x -+=(2)假命题,因为不存在实数x ,使成立.210x +=(3)真命题,因为存在正整数2和4,使.222420+=24.(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使=0;11x -(3)对任意实数a ,|a |>0;【参考答案】(1)是全称量词命题;是真命题;(2)是存在量词命题;是假命题;(3)是全称量词命题;是假命题.【解析】(1)是全称量词命题.因为都是奇数,所以该命题是真命题.,21x N x ∀∈+(2)是存在量词命题.因为不存在,使成立,所以该命题是假命题.x ∈R 11x =-(3)是全称量词命题.因为,所以不都成立,因此,该命题是假命题.00=||0a >25.(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直;(2)至少有一个整数n,使得为奇数;(3)是无理数},是无理数.2n n +{|x y y ∃∈2x 【参考答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若为整数,则必为偶数;n (1)n n +(3)真命题,因为是无理数,是无理数.π2π26.(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2);2,10x x x ∀∈++>R (3)平行四边形的对边相等;(4).2,10x x x ∃∈-+=R 【参考答案】(1)有的人不晨练;(2);2,10x x x ∃∈++≤R (3)存在平行四边形,它的对边不相等;(4);2,10x x x ∀∈-+≠R 【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“”是全称命题,2,10x x x ∀∈++>R 所以其否定是“”.2,10x x x ∃∈++≤R (3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题,所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“”是特称命题,2,10x x x ∃∈-+=R 所以其否定是“”.2,10x x x ∀∈-+≠R 27.(2020·浙江)写出下列命题的否定并判断真假.(1)不论m 取何实数,方程必有实数根.20x x m ++=(2)所有末位数是0或5的整数都能被5整除.(3)某些梯形的对角线互相平分.(4)被8整除的数能被4整除.【参考答案】(1)参考答案见解析;(2)参考答案见解析;(3)参考答案见解析;(4)参考答案见解析.【解析】(1)这一命题可以表述为“对所有的实数m ,方程都有实数根”,20x x m ++=其否定为“存在实数m ,使得没有实数根”,20x x m ++=注意到当,140m ∆=-<即时,一元二次方程没有实根,因此其否定是真命题;14m >(2)命题的否定是“存在末位数字是0或5的整数不能被5整除”,是假命题;(3)命题的否定是“任何一个梯形的对角线都不互相平分”,是真命题;(4)命題的否定是“存在一个数能被8整除,但不能被4整除”,是假命题.知识改变命运。
常用逻辑用语试题及答案
第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
2.12:,A x x 是方程20(0)ax bx c a ++=≠的两实数根;12:b B x x a +=-,则A 是B 的 条件。
3.用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的_____________________条件; ②p ⌝为假命题是p q ∨为真命题的_____________________条件;③:23A x -<, 2:4150B x x --<, 则A 是B 的___________条件。
常用逻辑用语习题及答案
常用逻辑用语习题及答案1.(2011·山东高考)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3【解析】命题“若p,则q”的否命题是“若綈p,则綈q”,将条件与结论实行否认.∴否命题是:若a+b+c≠3,则a2+b2+c2<3.【答案】A2.(2011·福建高考)若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解析】若a=2,则(a-1)(a-2)=0,但(a-1)(a-2)=0,有a=1或a=2,即(a-1)(a-2)=0a=2.∴“a=2”是“(a-1)(a-2)=0”的充分不必要条件.【答案】A3.(2011·湖北高考)若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=a2+b2-a-b,那么φ(a,b)=0是a与b互补的( )A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件【解析】若φ(a,b)=0,则a2+b2=a+b,∴a+b≥0且a2+b2=a2+b2+2ab,所以ab=0且a+b≥0.∴a≥0,b≥0且ab=0,“a与b”互补.则φ(a,b)=0是a与b互补的充分条件.显然a≥0,b≥0,且ab=0时,有a2+b2=(a+b)2,∴φ(a,b)=a2+b2-(a+b)=a+b-(a+b)=0,故φ(a ,b )=0是a 与b 互补的充要条件.4.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若¬p 是¬q 的充分不必要条件,求实数a 的取值范围.【尝试解答】 (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a . 当a =1时,1<x <3,又⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.得2<x ≤3. 由p ∧q 为真.∴x 满足⎩⎪⎨⎪⎧2<x ≤3,1<x <3.即2<x <3.所以实数x 的取值范围是2<x <3. (2)由¬p 是¬q 的充分不必要条件,知 q 是p 的充分不必要条件,由A ={x |a <x <3a ,a >0},B ={x |2<x ≤3}, ∴B A .所以a ≤2且3<3a .所以实数a 的取值范围是1<a ≤2.评析:.解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.提醒:列关于参数的不等式时要考查端点值是否能取到,常用的方法是代入端点值验证是否符合题意.5.已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.【解】 化简,B ={x |(x -2)[x -(3a +1)]≤0}, ①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件, 所以A ⊆B ,于是有⎩⎨⎧a ≥13,a 2+1≤3a +1,2a ≥2,解得1≤a ≤3. 或⎩⎨⎧a <13,a 2+1≤2,2a ≥3a +1,解得a =-1. 故a 的取值范围是{a |1≤a ≤3或a =-1}.6.(2011·山东高考)对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】 由y =f (x )是奇函数⇒y =|f (x )|是偶函数;但y =|f (x )|的图象关于y 轴对称y =f (x )为奇函数.∴“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的必要不充分条件,选B. 7.(2011·陕西高考)设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( ) A .若a ≠-b ,则|a |≠|b | B .若a =-b ,则|a |≠|b | C .若|a |≠|b |,则a ≠-b D .若|a |=|b |,则a =-b8.(2011·浙江高考)设a ,b 为实数,则“0<ab <1”是“b <1a ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】 ∵0<ab <1,∴a ,b 同号,且ab <1. ∴当a >0,b >0时,b <1a ;当a <0,b <0时,b >1a .∴“0<ab <1”是“b <1a ”的不充分条件.而取b =-1,a =1,显然有b <1a ,但不能推出0<ab <1, ∴“0<ab <1”是“b <1a ”的不必要条件9.(2011·辽宁高考)已知命题p :∃n ∈N ,2n >1 000,则綈p 为( ) A .∀n ∈N ,2n ≤1 000 B .∀n ∈N ,2n >1 000 C .∃n ∈N ,2n ≤1 000 D .∃n ∈N ,2n <1 000【解析】 因为特称命题的否认是全称命题,因而綈p 为∀n ∈N ,2n ≤1 000. 【答案】 A10.(2012·郑州一中月考)已知命题p :“∃x ∈R ,x 2+2ax +a ≤0”为假命题,则实数a 的取值范围是( )A .(0,1)B .(0,2)C .(2,3)D .(2,4)【解析】 由p 是假命题可知,∀x ∈R ,x 2+2ax +a >0恒成立, 故Δ=4a 2-4a <0,解之得0<a <1. 【答案】 A11.(2012·南京模拟)已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则以下选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)【思路点拨】 由2ax 0+b =0,知f (x )在x =x 0处取得极小值,从而做出判断. 【解析】 由f (x )=ax 2+bx +c ,知f ′(x )=2ax +b . 依题意f ′(x 0)=0,又a >0,所以f (x )在x =x 0处取得极小值. 所以,对∀x ∈R ,f (x )≥f (x 0),C 为假命题. 【答案】 C12.(2011·中山模拟)设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由N是M的真子集,则“a∈M”是“a∈N”的必要不充分条件,应选B.答案:B13.(2009·天津)命题“对任意x∈R,2x>0”的否认是( )A.不存有x0∉R,2x0>0 B.存有x0∈R,2x0>0C.存有x0∈R,2x0≤0 D.对任意x∈R,2x≤0解析:全称命题的否认为特称命题,“对任意x∈R,2x>0”的否认是“存有x0∈R,2x0≤0”.答案:C14.(2010·全国新课标)已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x 在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是( )A.q1,q3 B.q2,q3C.q1,q4 D.q2,q4关键提示:先判断出p1,p2的真假,然后再实行相关的判断.解析:因为y=2x为增函数,y=2-x为减函数,易知p1是真命题,p2是假命题,故q1,q4是真命题.答案:C15.[2011·湖南卷。
高二数学第一章 常用逻辑用语测试题及答案
高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
数学选修1-1第一章 常用逻辑用语测试题
第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是b a 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个3.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真4.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。
其中使用逻辑联结词的命题有( )A .1个B .2个C .3个D .4个7.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题8.设集合{}{}|2,|3M x x P x x =>=<,那么“x M ∈,或x P ∈”是“x M P ∈ ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假10.下列命题中的真命题是( )11.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )A .①②B .②③C .①③D .③④12.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件13.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( )A.若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠D.若0,0(,)a b a b R ≠≠∈或,则220a b +≠二、填空题14.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
常用逻辑用语练习题4套(有答案)
常用逻辑用语练习题4套(有答案)一、选择题1.下列语句不是命题的是()A.3是15的约数B.3小于2C.0不是自然数D.正数大于负数吗?【解析】选项D是疑问句,没有对正数与负数的大小关系作出判断,故选D.【答案】D2.若一个命题p的逆命题是一个假命题,则下列判断一定正确的是() A.命题p是真命题B.命题p的否命题是假命题C.命题p的逆否命题是假命题D.命题p的否命题是真命题【解析】一个命题的逆命题与否命题互为逆否命题,故它们同真假,故选B.【答案】B3.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】此命题的逆否命题为:若x≥1或x≤-1,则x2≥1.【答案】D4.假设坐标平面上一非空集合S内的点(x,y),具有以下性质:“若x >0,则y>0”,试问下列哪个叙述对S内的点(x,y)必定成立() A.若x≤0,则y≤0B.若y≤0,则x≤0C.若y>0,则x>0D.若y>0,则x≤0【解析】若x>0,则y>0⇔若y≤0,则x≤0,故选B.【答案】B5.有下列四个命题,其中真命题是()①“若x+y=0,则x,y互为相反数”的逆命题;②“若a+b≥2,则a,b中至少有一个不小于1”的否命题;③“面积相等的三角形全等”的否命题;④“若x≠π4+2kπ(k∈Z),则tanx≠1”的逆否命题.A.①②B.②③C.①③D.③④【解析】①逆命题为“若x,y互为相反数,则x+y=0”,真命题;②否命题为“若a+b<2,则a,b都小于1”,假命题;③否命题为“面积不相等的三角形不全等”,真命题;④逆否命题为“若tanx=1,则x=π4+2kπ(k∈Z)”,假命题.【答案】C二、填空题6.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t 的________命题.【解析】根据四种命题的关系,易知s是t的否命题.【答案】否7.在命题“若a>b,则a2>b2”的逆命题、否命题、逆否命题中,假命题的个数为________.【解析】当a=1,b=-2时,a2<b2,故原命题为假,所以它的逆否命题为假;当a=-2,b=1时,a<b,故原命题的逆命题为假,所以原命题的否命题为假,故假命题的个数为3.【答案】38.命题“负数的平方是正数”的否命题是________.【解析】负数的否定是非负数,是正数的否定是不是正数,故命题的否定是:非负数的平方不是正数.【答案】非负数的平方不是正数三、解答题9.将下列命题改写成“若p,则q”的形式.(1)偶数能被2整除;(2)奇函数的图像关于原点对称;【解】(1)若一个数是偶数,则它能被2整除;(2)若一个函数是奇函数,则它的图像关于原点对称.10.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.【解】(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.它是成立的,可用反证法证明:假设a+b<0,则a<-b,b<-a.因为f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b)与条件矛盾,逆命题真.(2)逆否命题是:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.它为真,可用证明原命题为真来证明:由a+b≥0,得a≥-b,b≥-a.∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-a)+f(-b).∴逆否命题为真.11.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c的年龄不是最小,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.【解】显然命题A和B的原命题的结论是矛盾的,因此我们应该从它的逆否命题来看.由命题A为真可知,b不是最大时,则a是最小,∴c最大,即c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,即b >a>c.同理由命题B为真可得:a>c>b或b>a>c.故由A与B均为真可知b>a>c.∴a,b,c三人的年龄的大小顺序是:b最大,a次之,c最小.。
常用逻辑用语练习题
常用逻辑用语练习题逻辑用语是数学和哲学中非常重要的工具,它帮助我们清晰地表达思想和论证。
以下是一些常用的逻辑用语练习题,旨在帮助学生熟悉和掌握这些基础概念。
# 练习题1:命题逻辑1. 给出命题P:今天是星期三。
命题Q:明天是星期四。
写出这两个命题的逻辑表达式。
2. 判断命题P和Q的逻辑关系,是互斥的、等价的还是既不互斥也不等价?3. 写出命题P或Q的逻辑表达式。
4. 写出命题P且Q的逻辑表达式。
5. 写出命题非P的逻辑表达式。
# 练习题2:条件语句1. 将“如果今天是星期三,那么明天是星期四”这个条件语句转化为逻辑表达式。
2. 给出一个条件语句的例子,并说明其真假条件。
3. 判断以下条件语句的真假:如果今天是星期一,那么明天是星期二。
# 练习题3:逻辑等价1. 证明以下两个逻辑表达式是等价的:(P → Q) ≡ ¬P ∨ Q。
2. 给出一个逻辑表达式,并找出它的逻辑等价表达式。
3. 使用逻辑等价规则简化以下表达式:(P ∨ Q) ∧ (¬P ∨ ¬Q)。
# 练习题4:逻辑推理1. 已知命题P:如果下雨,我就不去跑步。
命题Q:今天下雨了。
请使用逻辑推理判断我今天是否去跑步。
2. 给出一个包含两个前提的逻辑推理问题,并解答它。
3. 使用逻辑推理证明以下命题:如果所有的人都是动物,那么苏格拉底是动物。
# 练习题5:逻辑运算1. 给出命题P:今天是晴天。
命题R:我会去公园。
写出命题P且R的逻辑表达式。
2. 写出命题P或R的逻辑表达式。
3. 使用逻辑运算符,将命题P和R组合成一个复合命题,并判断其真假。
# 练习题6:逻辑谬误1. 识别并解释以下论证中的逻辑谬误:所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。
2. 给出一个常见的逻辑谬误的例子,并解释为什么它是谬误。
3. 判断以下论证是否包含逻辑谬误:如果一个学生学习努力,他就会取得好成绩。
小明学习努力,所以小明会取得好成绩。
# 练习题7:量化逻辑1. 将“有些学生喜欢数学”这个命题转化为量化逻辑表达式。
高中数学《常用逻辑用语》练习题(含答案)
高中数学《常用逻辑用语》练习题(含答案)1. 下列命题中,错误的是()A.一条直线与两个平行平面中的一个相交,则必与另一个相交B.平行于同一直线的两个平面平行C.平行于同一平面的两个平面平行D.一个平面与两个平行平面相交,交线平行2. 命题“∃x0∈(0, +∞),lnx0=x0−1”的否定是( )A.∃x0∈(0, +∞),lnx0≠x0−1B.∃x0∈(0, +∞),lnx0=x0−1C.∀x∈(0, +∞),lnx≠x−1D.∀x∈(0, +∞),lnx=x−13. 下列命题中,真命题是()A.∃x0∈R,e x0≤0B.a+b=0的充要条件是ba=−1C.∀x∈R,2x>x2D.a>1,b>1是ab>1充分条件4. 下列说法错误的是()A.命题“∃x∈R,x2−2x=0”的否定是“∀x∈R,x2−2x≠0”B.命题“若m>0,则方程x2+x−m=0有实根”的逆否命题为真命题C.若命题“p∧q”为真命题,则“p∨q”为真命题D.“x>1”是“|x|>0”的必要不充分条件5. 命题:“若x=1,则x2=1”的逆否命题是()A.若x≠1,则x2≠1B.若x2=1,则x=1C.若x2≠1,则x≠1D.若x2≠1,则x=16. 命题"若x=1,则x2−3x+2=0"的逆否命题是( )A.若x≠1,则x2−3x+2≠0B.若x2−3x+2=0,则x=1C.若x2−3x+2=0,则x≠1D.若x2−3x+2≠0,则x≠17. 下列结论错误的是()A.若“p且q”与“¬p或q”均为假命题,则p真q假B.命题“存在x∈R,x2−x>0”的否定是“对任意的x∈R,x2−x≤0”C.“x=1”是“x2−3x+2=0”的充分不必要条件D.“若am2<bm2,则a<b”的逆命题为真8. 命题“若a>2,则a≥1”以及它的逆命题、否命题、逆否命题中,假命题的个数为()A.1B.2C.3D.49. 在下列命题中,真命题是()A.“x=2时,x2−3x+2=0”的否命题B.“若b=3,则b2=9”的逆命题C.若ac>bc,则a>bD.“相似三角形的对应角相等”的逆否命题10. 已知命题p:在△ABC中,若A>B,则cosA+cosB>0,命题q:在等比数列{a n}中,若a2a6=16,则a4=4.下列命题是真命题的是()A.p∧(¬q)B.(¬p)∨qC.(¬p)∧(¬q)D.p∧q11. 已知命题p:∃x∈R,x2+mx+1=0;命题q:∀x∈R,4x2+4(m−2)x+1>0.若命题p∨q为真命题,¬p为真命题,则实数m的取值范围是________.12. 已知命题“ ∀x∈R,x2+2x+a≥0”是真命题,则实数a的取值范围为________.13. 若命题p:∀x∈R,x2+(1−a)x+1<0,则¬p:________.14. 若命题“∀x∈R,2x2−3x+m>0”是真命题,则实数m的取值范围是________>98.15. 命题“存在x∈Z,使3x2+x+m≤0”的否定是________.16. 命题“某些平行四边形是矩形”的否定是________.17. 命题“若x>0,则x2>0”的否命题是________命题.(填“真”或“假”之一)18. 已知p:∃x0∈(1,a),x02+ax0−4>0是假命题,则实数a的取值范围为________.19. 下列命题中真命题的序号为________.①若一个球的半径缩小为原来的一半,则其体积缩小为原来的八分之一②若两组数据的平均值相等,则它们的标准差也相等③直线x+y+1=0与圆x2+y2=1相切;④若两个平面都垂直于同一个平面,则这两个平面平行.20. 若“∀x∈[−π4,π4],tanx≤m”是真命题,则实数m的最小值为________.21. 已知不等式4x2+8x−5≤0的解集为集合A,x2−4x−m2+4≤0的解集为集合B.(1)求集合A和B;(2)当m∈(0, +∞)时,若“x∈B”是“x∈A”的必要条件,求实数m的取值范围.22. 已知函数p:f(x)=√x2−2ax+3的值域是[0, +∞),q:关于a的不等式a2−(2m−5)a+m(m−5)>0,若¬p是¬q充分不必要条件,求实数m的取值范围.23. 已知a>0,设p:函数y=a x在R上是增函数;q:不等式ax2−ax+1>0对∀x∈R恒成立.若“p∨q”为真,“p∧q”为假,求实数a的取值范围.24. 判断下列命题的真假:(1)对f(x)的定义域的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)成立,则函数f(x)是增函数;(2)在区间[−2π, 0]上,至少有一个角α,使得sinα=cosα;(3)平行于同一条直线的直线互相平行;(4)函数f(x)=x−2−lgx在(0, 12)上有零点.25.已知命题P:实数p使得二项分布ξ∼B(5,p)满足P(ξ=3)>P(ξ=4)成立;命题Q:实数p使得方程x23p+y22−p=1表示焦点在x轴上的椭圆,若P∧Q为假命题,P∨Q为真命题,求实数p的取值范围.26. 设命题p:函数f(x)=x3−ax−1在区间[−1, 1]上单调递减;命题q:函数y=ln(x2+ax+1)的定义域是R.如果命题p或q为真命题,p且q为假命题,求a的取值范围.27. 已知函数f(x)=−(x+2)(x−m)(其中m>−2),g(x)=2x−2﹒(1)若命题“log2g(x)≤1”是真命题,求x的取值范围;(2)设命题p:∀x∈(1, +∞),f(x)<0或g(x)<0,若¬p是假命题,求m的取值范围﹒28. 已知p:函数f(x)=x2−(2a+4)x+6在(1,+∞)上是增函数,q:∀x∈R,x2+ax+2a−3>0,若p∧(¬q)是真命题,求实数a的取值范围.29. 若ac2>bc2,则a>b;写出逆命题,否命题,逆否命题并判断真假.30. 已知原命题为“若a>2,则a2>4”,写出它的逆命题、否命题、逆否命题,并判断四种命题的真假.参考答案一、 选择题1.B2.C3.D4.D5. C6.D7.D8.B9.D 10.A 二、 填空题11.(1, 2) 12.[1,+∞) 13.∃x ∈R ,x 2+(1−a)x +1≥0 14.m 15.对任意x ∈Z 使3x 2+x +m >0 16.所有的平行四边形都不是矩形 17.假 18.1<a ≤√2 19.① 20.1 三、 解答题21.∵ 4x 2+8x −5≤0的解集为集合A ,∴ A =[−52, 12];∵ x 2−4x −m 2+4≤0的解集为集合B ,∴ B =[2−|m|, 2+|m|];当m ∈(0, +∞)时:B =[2−m, 2+m],若“x ∈B ”是“x ∈A ”的必要条件,则A ⊊B ,则{2−m ≤−522+m ≥12 ,解得:m ≥92.22.∵ f(x)=√x 2−2ax +3的值域是[0, +∞), ∴ y =x 2−2ax +3的值域是[0, +∞), 则△=4a 2−12≥0,得a 2≥3,得a ≥√3或a ≤−√3,即p:a ≥√3或a ≤−√3,∵ a 2−(2m −5)a +m(m −5)>0,∴ [a −(m −5)](a −m)>0, 得a >m 或a <m −5,即q:a >m 或a <m −5,若¬p 是¬q 充分不必要条件,则q 是p 的充分不必要条件, 则{m ≥√3m −5≤−√3 ,即{m ≥√3m ≤5−√3,得√3≤m ≤5−√3, 即实数m 的取值范围是得√3≤m ≤5−√3. 23.解:若p 真,则a >1.若q 真,则Δ=a 2−4a <0,解得0<a <4. ∵ p ∧q 为假,p ∨q 为真, ∴ 命题p ,q 一真一假.∴ 当p 真q 假时,{a >1,a ≥4,∴ a ≥4;当p 假q 真时,{0<a ≤1,0<a <4,∴ 0<a ≤1; 综上,a 的取值范围是(0, 1]∪[4, +∞). 24.解:(1)对f(x)的定义域的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2)成立,则函数f(x)是增函数,正确;(2)在区间[−2π, 0]上,至少有一个角α,使得sinα=cosα,正确,取α=−3π4即可;(3)平行于同一条直线的直线互相平行,正确;(4)当x →0时,f(x)→+∞,而f(12)=−32+lg2<0,因此函数f(x)=x −2−lgx 在(0, 12)上有零点,正确.综上可得:都正确. 25.解:对于命题P :由P(ξ=3)>P(ξ=4)知, C 53p 3(1−p)2>C 54p 4(1−p)且p ∈(0,1),得p ∈(0,23).对于命题Q :由{3p(2−p)>0,3p >2−p,得p ∈(12,2).P ∧Q 为假命题,P ∨Q 为真命题,则P,Q 一真一假, 若P 真Q 假,则p ∈(0,23)且p ∈(−∞,12]∪[2,+∞), 得p ∈(0,12].若Q 真P 假,则p ∈(12,2),且p ∈(−∞,0]∪[23,+∞), 得p ∈[23,2).综上可知,满足条件的实数p 的取值范围是(0,12]∪[23,2).26.解:p 为真命题:f′(x)=3x 2−a ≤0在[−1, 1]上恒成立⇔a ≥3x 2在[−1, 1]上恒成立⇔a ≥3. q 为真命题:若函数y =ln(x 2+ax +1)的定义域是R ,则x 2+ax +1>0恒成立,即Δ=a 2−4<0恒成立⇔−2<a <2, 若命题p 或q 为真命题,p 且q 为假命题, 则p 和q 一真一假.若p 真q 假⇔{a ≥3,a ≤−2或a ≥2⇔a ≥3; 若p 假q 真⇔{a <3,−2<a <2⇔−2<a <2. 综上所述:a ∈(−2, 2)∪[3, +∞). 27.解:(1)若命题“log 2g(x)≤1”是真命题,即log 2g(x)≤1恒成立; 即log 2g(x)≤log 22,等价于{2x −2>02x−2≤2… 解得1<x ≤2,…故所求x 的取值范围是{x|1<x ≤2};…(2)因为¬p 是假命题,则p 为真命题,…而当x >1时,g(x)=2x −2>0,… 又p 是真命题,则x >1时,f(x)<0,所以f(1)=−(1+2)(1−m)≤0,即m ≤1;…(或据−(x +2)(x −m)<0解集得出)故所求m 的取值范围为{m|−2<m ≤1}﹒… 28.解:由已知得,f(x)开口向上,对称轴为a +2,当p 真时, a +2≤1,解得,a ≤−1;q 真时, Δ=a 2−4(2a −3)=a 2−8a +12<0, 解得,2<a <6则¬q 为真时 a ≥6 或a ≤2, ∵p ∧(−q) 为真,∴p 与 ¬q 都为真,∴a ≤−1,即 a ∈(−∞,−1]. 29.解:若ac 2>bc 2,则a >b .∴ 原命题为真命题; 它的逆命题是“若a >b ,则ac 2>bc 2”如果c =0,则ac 2>bc 2不成立.逆命题为假命题. 它的否命题为:“若ac 2≤bc 2,则a ≤b ”如果c =0,则a ≤b 不成立,否命题为假命题. ∵ 逆否命题与原命题等价∴ 逆否命题也为真命题. 逆否命题为“a ≤b ,则ac 2≤bc 2”.真命题. 30.解:原命题为“若a >2,则a 2>4”,它是一个真命题;逆命题:“若a 2>4,则a >2”,它是一个假命题; 否命题:“若a ≤2,则a 2≤4”,它是一个假命题; 逆否命题:“若a 2≤4,则a ≤2”,它是一个真命题.。
50道经典逻辑题及答案
一、逻辑判断: 每题给出一段陈述, 这段陈述被假设是正确的, 不容置疑的。
要求你根据这段陈述, 选择一个答案。
注意, 正确的答案应与所给的陈述相符合, 不需要任何附加说明即可以从陈述中直接推出1. 以下是一则广告: 就瘘痛而言, 四分之三的医院都会给病人使用"诺维克斯"镇痛剂。
因此, 你想最有效地镇瘘痛, 请选择"诺维克斯"。
以下哪项如果为真, 最强地削弱该广告的论点?( )A. 一些名牌的镇痛剂除了减少瘘痛外, 还可减少其他的疼痛B. 许多通常不用"诺维克斯"的医院, 对那些不适应医院常用药的人, 也用"诺维克斯" C.许多药物制造商, 以他们愿意提供的最低价格, 销售这些产品给医院, 从而增加他们产品的销售额D. 和其他名牌的镇痛剂不一样, 没有医生的处方, 也可以在药店里买到"诺维克斯"正确答案:C2. 会骑自行车的人比不会骑自行车的人学骑三轮车更困难。
由于习惯于骑自行车, 会骑自行车的人在骑三轮车转弯时, 对保持平衡没有足够的重视。
据此可知骑自行车( )。
A. 比骑三轮车省力B. 比三轮车更让人欢迎C. 转弯时比骑三轮车更容易保持平衡D. 比骑三轮车容易上坡正确答案:C 解题思路: 题干已知, 不会骑自行车的人反而比会骑的人更容易学习骑三轮车, 原因是骑三轮车在转弯时需要更多地控制平衡, 由此可以推断出选项C为正确答案, 选项A、B、D与题干无关。
故选C。
3. 长久以来认为, 高水平的睾丸激素荷尔蒙是男性心脏病发作的主要原因。
然而, 这个观点不可能正确, 因为有心脏病的男性一般比没有心脏病的男性有显著低水平的睾丸激素。
上面的论述是基于下列哪一个假设的?( )。
A. 从未患过心脏病的许多男性通常有低水平的睾丸激素B. 患心脏病不会显著降低男性的睾丸激素水平C. 除了睾丸激素以外的荷尔蒙水平显著影响一个人患心脏病的可能性D. 男性的心脏病和降低睾丸激素是一个相同原因的结果正确答案:B 解题思路:题干推理过程为:有心脏病的男性的睾丸激素水平低于无心脏病的, 所以高水平的睾丸激素荷尔蒙不是男性心脏病发作的主要原因。
常见的逻辑用语——选择题【100道】
常见的逻辑用语——选择题【100道】一、单选题1.命题p :|1|1x -<,命题q :2280x x --<,则p 是q 的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件3.已知,a b R ∈,下列四个条件中,使a b >成立的充分不必要的条件是4.“k=5”是“两直线kx+5y-2=0和(4-k)x+y-7=0互相垂直”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知直线1:(1)10l x a y +--=,2:220l ax y ++=,则“1a =-”是“12l l //”的( ) A .充分非必要 B .必要非充分条件 C .充要条件 D .既不充分又不必要条件8.如果命题“”为假命题,则A .,p q 中至少有一个为真命题B .,p q 均为假命题C .,p q 均为真命题D .,p q 中至多有一个为真命题9.下列有关命题的叙述,错误的个数为①若p q 为真命题,则p q 为真命题. ②“5x >”是“”的充分不必要条件.③命题P :x ∈R,使得x +x-1<0,则p :x ∈R,使得x +x-1≥0.④命题“若,则x=1或x=2”的逆否命题为“若x 1或x 2,则”.A .1B .2C .3D .4A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.有四个命题:(1)对于任意的α、β,都有()sin sin cos cos sin αβαβαβ+=-; (2)存在这样的α、β,使得()sin sin cos cos sin αβαβαβ+=-; (3)不存在无穷多个α、β,使得()sin sin cos cos sin αβαβαβ+=-; (4)不存在这样的α、β,使得()sin sin cos cos sin αβαβαβ+=+. 其中假命题...的个数是( ) A .1B .2C .3D .4A .20,20x x x m ∀+-厔B .20,20x x x m ∃+->…C .20,20x x x m ∀<+-…D .20,20x x x m ∃<+-…A .1q ,3qB .1q ,4qC .2q ,3qD .2q ,4qA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件15.已知命题“若p ,则q ”为真命题,则下列命题中一定为真命题的是A .若q ,则pB .若p ⌝,则q ⌝C .若q ⌝,则p ⌝D .若p ,则q ⌝16.设命题p :函数1()2x f x -=在R 上为单调递增函数;命题q :函数()cos 2f x x =为奇函数,则下列命题中真命题是( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件18.命题“存在实数m ,使关于x 的方程210x mx +-=有实数根”的否定是( )A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题20.为非零向量,“”是“函数为一次函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不必要也不充分条件21.如果命题p q ∨为真命题,p q ∧为假命题,那么( ).A .命题p ,q 均为真命题B .命题p ,q 均为假命题C .命题p ,q 有且只有一个为真命题D .命题p 为真命题,q 为假命题22.下列命题正确的是( )A .若p q ∧为假命题,则,p q 都是假命题B .a b >是ln ln a b >的充分不必要条件C .命题“若cos cos αβ≠,则αβ≠”为真命题D .命题“00,60x R x ∃∈+<”的否定是“0060x R x ∀∉+≥,”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件24.等比数列{}n a 公比为()1q q ≠,若()123n n T a a a n a *=∈N ,则“数列{}n T 为递增数列”是“10a >且1q >”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件25.下列各组命题中,满足α是β的充要条件的是26.记n S 为数列{}n a 的前n 项和,“对任意正整数n ,均有0n a <”是“{}n S 为递减数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件27.已知命题p :N⊆Q :命题q :∀x >0,e lnx x ,则下列命题中的真命题为( )A .p q ∧B .p q ∧¬C .p q ∧¬D .p q ∧¬¬28.“函数y=sin(x +φ)为偶函数”是“φ=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件30.等比数列{n a }的首项为1a ,公比为q ,前n 项和为n S ,则“10a >”是“{n S }是递增数列”的( )A .充分而非必要条件B .必要而非充分条件C .充要条件D .既不充分也不必要条件32.对于平面α和直线,,a b c ,命题:p 若,,a b b c 则a c P ;命题:q 若,,a b αα 则a b ∥.则下列命题为真命题的是 ( )A .p q ∧B .p q ⌝∨C .p q ∧⌝D .()p q ⌝∨A .0B .1C .2D .334.下列命题中是全称量词命题且真命题的是( )A .所有的素数都是奇数B .有些梯形是等腰梯形C .平行四边形的对角线互相平分D .x ∃∈R ,20x <A .1p ,3pB .1p ,2pC .2p ,3pD .3p ,4p36.已知,a b ∈R .下列四个条件中,使a b >成立的必要而不充分的条件是37.数列{}n a 的通项公式为2n a n kn =+,那么“1k ≥-”是“{}n a 为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件38.已知命题p :{}2|02320x x x x x ∀∈≤≤-+>,,则p ⌝是( )39.“0?“00?xy x y ===是且成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件40.已知命题2:R,220p x x x ∀∈-+>,则p ⌝是( )A .2000R,220x x x ∃∈-+≤ B .2R,220x x x ∀∈-+≤ C .2000R,220x x x ∃∈-+> D .2R,220x x x ∀∈-+<41.命题:p 任意圆的内接四边形是矩形,则p ⌝为( )A .每一个圆的内接四边形是矩形B .有的圆的内接四边形不是矩形C .所有圆的内接四边形不是矩形D .存在一个圆的内接四边形是矩形 42.“0x =”是“20x x +=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件43.“m>2”是“x ∃∈R ,()222110x m x m +-+-≤是假命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .1个B .2个C .3个D .4个45.下列命题中,属于真命题的是( )A .四条边都相等的四边形是正方形B .矩形的对角线互相垂直C .三角形一条边的中线把三角形分成面积相等的两部分D .菱形的对角线相等46.“直线,a b 不相交”是“直线,a b 为异面直线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件47.在ABC ∆中,“sin sin cos cos B C B C =”是“ABC ∆为直角三角形”( )A .充分条件B .必要条件C .充要条件D .非充分非必要条件48.设R a ∈,复数(i)(1i)z a =+-,则“z 在复平面内对应的点位于第一象限”的一个充分不必要条件是( )A .10a -<<B .11a -<<C .10a -≤<D .11a -≤<49.设,a b ∈R ,则“a b >”是“()20a b a ->”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件51.已知函数3()f x x x =-,则“120x x +=”是“12()()0f x f x +=”的( )A .p ⌝B .p q ∧C .()p q ⌝∨D .()p q ∧⌝53.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且120a =-,则“35d <<”是“n S 的最小值仅为6S ”的( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假55.命题:“(),0,34x xx ∀∈-∞≥”的否定为( )A .[)0000,,34x xx ∃∈+∞<B .[)0000,,34x xx ∃∈+∞≤C .()000,0,34x xx ∃∈-∞< D .()000,0,34x xx ∃∈-∞≤56.已知x ,()0,y ∈+∞,则“1xy ≥”是“1x ≥且1y ≥”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件58.设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件59.已知A ,B 是平面α上的点,1A ,1B 是平面β上的点,且有11//AA BB ,则//αβ是11AA BB =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件60.“”是“”的.A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件61.下列命题中是全称量词命题并且是真命题的是( )“”A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件64.下列说法正确的是A .命题“若3320x x -+=,则1x =”的否命题是“若3320x x -+=,则1x ≠”B .命题“n ∃∈N ,22n n >”的否定是“N n ∀∈,22n n <”65.已知命题p :1x >,命题q :2x x >,则q ⌝是p ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件66.已知命题p :存在n ∈N,2n>1 000,则非p 为( )A .任意n ∈N,2n≤1 000B .任意n ∈N,2n>1 000C .存在n ∈N,2n≤1 000D .存在n ∈N,2n<1 00067.设命题:2p x ∀>,2e x x <,则命题p 的否定为( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件 D .充要条件69.已知命题p :x ∀∈R ,sin cos 2x x +<.则p ⌝为( ).A .0x ∃∈R ,00sin cos 2x x +>B .x ∀∈R ,sin cos 2x x +≥C .0x ∃∈R ,00sin cos 2x x +≥D .x ∀∈R ,sin cos 2x x +> 70.命题“存在,使”的否定是.存在,使 .不存在,使.对于任意,都有 .对于任意,都有A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件72.命题“(2,0)x ∀∈-,220x x +<”的否定是A .2000(2,0),20x x x ∃∉-+… B .2000(2,0),20x x x ∀∈-+… C .2000(2,0),20x x x ∀∉-+< D .2000(2,0),20x x x ∃∈-+…73.下列命题错误的是( )A .命题“若x 2﹣3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2﹣3x +2≠0”B .若p :∀x ≥0,sinx ≤1,则¬p :∃x 0≥0,sinx 0>1C .若复合命题:“p ∧q ”为假命题,则p ,q 均为假命题D .“x >2”是x 2﹣3x +2>0”的充分不必要条件 74.下列命题中,真命题的是( )75.已知函数()283640f x x x =-+-在[)1,2上的值域为A ,函数()2xg x a =+在[)1,2上的值域为B .若x A ∈是x B ∈的必要不充分条件,则a 的取值范围是A .[)4,-+∞B .(]14,4--C .[]14,4--D .()14,-+∞76.已知向量1e ,2e 为平面内的一组基底,12a e me =+ ,12b me e =+ ,则“a b ”是“幂函数()f x =()21mm m x +-在(0,)+∞上为增函数”的( )条件.A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要77.命题“25,23x x x ∀<-+≥"的否定是( )A .25,23x x x ∀<-+<B .25,23x x x ∃≥-+<C .25,23x x x ∃<-+<D .25,23x x x ∃<-+≤78.设命题2:,2021p x R x ∃∈>,则p ⌝为( )A .2,2021x R x ∀∈≤B .2,2021x R x ∀∈>C .2,2021x R x ∃∈≤D .2,2021x R x ∃∈<80.命题“1,()x ∃∈+∞,213x x +≤”的否定是( )A .(,1]x ∀∈-∞,213x x +>B .(1,)x ∀∈+∞,213x x +≤C .(,1]x ∃∈-∞,213x x +≤D .(1,)x ∀∈+∞,213x x +>二、多选题81.已知25a a +=,则( )A .“x a >”是“3x >”的充要条件B .“x a >”是“2x >”的必要不充分条件C .“x a >”是“1x >”的充分不必要条件D .“x a <”是“3x <”的充分不必要条件83.下列四个命题中,真命题的是( )84.下列说法中正确的有( )85.命题“2[1,2],x x a ∃∈≤”为真命题的一个充分不必要条件是( )A .1a ≥B .4a ≥C .2a ≥-D .=1a86.下列命题中为真命题的是( )A .若x AB ∈ ,则x A B ∈U B .x ∀∈R ,22x x <88.21x ≤的一个充分不必要条件是( )A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤89.命题“[]1,3x ∀∈,20x a -≤”是真命题的一个充分不必要条件是( )A .7a ≥B .8a ≥C .10a ≥D .11a ≥90.下列命题中,真命题的是( )93.下列说法错误的是( )95.下列说法正确的是( )A .若不等式220ax x c ++>的解集为{12}xx -<<∣,则2a c += B .若命题:(0,)p x ∀∈+∞,1ln x x ->,则p 的否定为(0,)x ∃∈+∞,1ln x x -≤ C .若0x >,0y >,8xy x y ++=,则+x y 的最大值为4D .若2320mx x m ++<对[0,1]∀∈m 恒成立,则实数x 的取值范围为(2,1)-- 96.下列命题正确的是( )97.设a 、b 是两条不同的直线,α、β、γ是三个不同的平面,则//αβ的一个充分条件是( )A .存在一条直线a ,//a α,//a βB .存在一条直线a ,a α⊂,//a βC .存在一个平面γ,满足//αγ,//βγD .存在两条异面直线a ,b ,a α⊂,b β⊂,//a β,//b αD .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +-= 99.下列说法正确的是( )参考答案: 是两直线和“”“”是一次函数若为偶函数,2则;选考点:1三角函数的性质;∴“1k ≥-”是“{}n a 为递增数列”的充分不必要条件. 故选:A. 38.B【分析】根据全称命题的否定的性质进行求解即可.【详解】因为命题p :{}2|02320x x x x x ∀∈≤≤-+>,,所以p ⌝是{}2|02320x x x x x ∃∈≤≤-+≤,,故选:B 39.B【分析】根据集合之间包含关系确定充要性.【详解】因为0xy =等价于00x y ==或,所以“0?“00?xy x y ===是且成立的必要非充分条件,选B.【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 40.A【分析】含有一个量词的命题的否定形式,全称量词命题的否定是存在量词命题. 【详解】全称量词命题的否定是存在量词命题,命题2:R,220p x x x ∀∈-+>,则p ⌝是2000R,220x x x ∃∈-+≤.故选:A. 41.B【分析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A ,C 不符合题意,同时对结论进行否定,所以p ⌝:有的圆的内接四边形不是矩形, 故选:B.借助集合思想化抽象为直观外,还可转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 59.A【分析】在前提条件下,设:p //αβ,11:AA q BB = ,然后p q ⇒和q p ⇒是否成立即可. 【详解】A ,B 是平面α上的点,1A ,1B 是平面β上的点,且有11//AA BB ,设:p //αβ,11:AA q BB =,充分性:p q ⇒,若//αβ,1,AA A α⋂= 11,AA A β⋂=1,BB B α⋂=11,BB B β⋂=且有11//AA BB ,所以11//AB A B ,所以四边形11AA B B 为平行四边形,所以11AA BB =,故充分性成立必要性:q p ⇒,若11:AA q BB =,且有11//AA BB ,则四边形11AA B B 为平行四边形, 所以11//AB A B ,因为A ,B 是平面α上的点,1A ,1B 是平面β上的点,所以AB α⊂,11A B β⊂ ,只有两直线平行无法得出//αβ,所以必要性不成立 所以//αβ是11AA BB =的充分不必要条件, 故选:A【点睛】本题主要考查充要条件的判断,涉及立体几何知识,属于中档题. 60.B【详解】试题分析:因为,所以sin 1α=±;但,可得,所以“”是“”的必要不充分条件.考点:充分、必要条件的判断. 61.B【分析】先判断AB 是全称量词命题,再判断A 为假命题,B 为真命题得到答案. 【详解】四个选项中AB 是全称量词命题对于A :2,210x R x x ∀∈++>当=1x -时,不成立,为假命题. 对于B :根据菱形定义知:所有菱形的4条边都相等,为真命题. 故选B“”存在,使”存在,使”的否定是:对于任意,都有.【分析】由向量共线定理,求出a b∥时m 的值,由幂函数的定义及性质,求出符合题意的m 得值,由推断关系判断充分性和必要性.【详解】因为a b ∥,所以存在实数λ使得a b λ= ,即1mm λλ=⎧⎨=⎩,解得1m =±,因为幂函数()2()1mf x m m x =+-在()0,∞+上为增函数,所以211m m +-=且0m >,解得1m =,又因为1m =±是1m =的必要不充分条件,所以a b ∥是幂函数()2()1mf x m m x =+-在()0,∞+上为增函数的必要不充分条件,故选:B. 77.C【分析】全称量词命题的否定是存在量词命题,把任意改为存在,把结论否定. 【详解】命题“25,23x x x ∀<-+≥"的否定是“25,23x x x ∃<-+<". 故选:C 78.A【分析】由特称命题否定的定义求解即可.【详解】由特称命题否定的定义知,p ⌝为2,2021x R x ∀∈≤ 故选:A 79.C【分析】利用向量共线的充要条件列出方程求解即可. 【详解】解:知向量(1,2)a x =- ,(2,1)b = ,//a b可得14x -=,可得5x =. 故选:C .80.D【分析】特称量词的否定是全称量词,据此得到答案. 【详解】特称量词的否定是全称量词:命题“1,()x ∃∈+∞,213x x +≤”的否定是(1,)x ∀∈+∞,213x x +> 故选:D【点睛】本题考查了特称量词的否定,意在考查学生的推断能力.【详解】对于A :若x A B ∈ ,则x A ∈且x B ∈,所以x A B ∈U ,故A 正确; 对于B :当0x =时,22x x =,故B 错误; 对于C :假设x ,y 都不大于1,即1x ≤,1y ≤,由加法的可加性可得,2x y +≤,与x ,R y ∈且2x y +>,矛盾, 故若x ,R y ∈且2x y +>,则x ,y 至少有一个大于1,故C 正确, 对于D :若x ∃∈R ,20x m +≤,即x ∃∈R ,2m x ≤-,因为()2max0x -=,所以0m ≤,故D 正确; 故选:ACD 87.BD【分析】由关于x 的不等式220x ax a -+>对x ∀∈R 恒成立,可求得01a <<,再由真子集关系,即可得到答案;【详解】由题意得:2(2)4001a a a ∆=--<⇒<<,∴所选的正确选项是01a <<的必要不充分条件, ∴01a <<是正确选项应的一个真子集,故选:BD 88.AC【解析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 89.CD【解析】由命题为真可得9a ≥,再由充分条件、必要条件的定义即可得解. 【详解】若命题“[]1,3x ∀∈,20x a -≤”是真命题, 则20x a -≤即2a x ≥在[]1,3x ∈上恒成立,所以22max ()39a x ≥==,直线y x b =+与曲线234y x x =--有公共点,则直线当直线和圆相切时,|23|2b -+=|2-3+,由于,所以。
常用逻辑用语测试题及答案(K12教育文档)
常用逻辑用语测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(常用逻辑用语测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为常用逻辑用语测试题及答案(word版可编辑修改)的全部内容。
常用逻辑用语测试题一.选择题(每小题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数2、下列说法中正确的是( )A 、一个命题的逆命题为真,则它的逆否命题一定为真B 、“a b >”与“ a c b c +>+”不等价C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠"D 、一个命题的否命题为真,则它的逆命题一定为真3、给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A 、3B 、2C 、1D 、04、命题“设a 、b 、c R ∈,若22ac bc >则a b >”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A 、0B 、1C 、2D 、35、“若x ≠a 且x ≠b ,则2()x a b x ab -++≠0”的否命题( )A 、若x =a 且x =b ,则2()x a b x ab -++=0B 、若x =a 或x =b ,则2()x a b x ab -++≠0C 、若x =a 且x =b,则2()x a b x ab -++≠0D 、若x =a 或x =b ,则2()x a b x ab -++=06、“0x >0>"成立的( )A 、充分不必要条件。
逻辑用语考试题及答案解析
逻辑用语考试题及答案解析一、选择题1. 以下哪个选项是逻辑中的“或”运算?A. ∨B. ∧C. →D. ¬答案:A解析:在逻辑中,“或”运算用符号“∨”表示,表示两个命题中至少有一个为真。
选项A正确。
2. 以下哪个命题是真命题?A. 如果今天是星期一,那么明天是星期二。
B. 如果今天是星期一,那么明天是星期三。
C. 如果今天是星期一,那么今天是星期二。
D. 如果今天是星期一,那么今天是星期六。
答案:A解析:选项A是一个真命题,因为如果今天是星期一,那么根据一周的顺序,明天确实是星期二。
选项B、C和D都是假命题,因为它们违反了一周的顺序或逻辑上的一致性。
二、填空题1. 如果命题P为“所有的苹果都是水果”,命题Q为“有些水果不是苹果”,那么命题P和Q的逻辑关系是_________。
答案:兼容解析:命题P和Q并不矛盾,它们可以同时为真。
命题P声称所有的苹果都是水果,而命题Q指出有些水果不是苹果,这两者并不冲突,因为可能存在除了苹果之外的其他水果。
三、简答题1. 解释逻辑中的“充分条件”和“必要条件”。
答案:在逻辑中,“充分条件”指的是当一个条件成立时,必然导致另一个条件成立。
换句话说,如果条件A是条件B的充分条件,那么每当A成立时,B一定成立。
而“必要条件”则是指为了使一个条件成立,必须满足的另一个条件。
如果条件A是条件B的必要条件,那么没有A,B就不可能成立。
解析:充分条件和必要条件是逻辑推理中非常重要的概念,它们帮助我们理解命题之间的依赖关系。
充分条件强调的是“有之则必然”,而必要条件强调的是“无之则不可能”。
四、论述题1. 论述逻辑中的“逆否命题”及其在逻辑推理中的应用。
答案:逆否命题是指将一个条件命题的前件和后件都取反,并且交换它们的位置。
如果原命题是“如果A,则B”,那么逆否命题就是“如果非B,则非A”。
根据逻辑原理,一个命题和它的逆否命题在真值上是等价的,即它们要么同时为真,要么同时为假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
常用逻辑用语练习题一一、选择题1.下列说法中,正确的是( )A .命题“若22bm am <,则b a <”的逆命题是真命题B .命题“q p ∨”为真命题,则命题“p ”和命题“q ”均为真命题C .已知R x ∈,则“1>x ”是“2>x ”的充分不必要条件D .命题“0,2>-∈∃x x R x ”的否定是:“0,2≤-∈∀x x R x ”2.已知命题x x R x p 21,:2<+∈∃;命题:q 若012<--mx mx 恒成立,则04≤<-m ,那么()A .“p ⌝”是假命题B .“q ⌝”是真命题C .“q p ∧”为真命题D .“q p ∨”为真命题3.命题“所有奇数的立方都是奇数”的否定是( )A .所有奇数的立方都不是奇数B .不存在一个奇数,它的立方是偶数C .存在一个奇数,它的立方是偶数D .不存在一个奇数,它的立方是奇数4.已知命题022,:0200≤++∈∃x x R x p ,则p ⌝为( ) A .022,0200>++∈∃x x R x B .022,0200<++∈∃x x R x C .022,2≤++∈∀x x R x D .022,2>++∈∀x x R x5.(2014年济南模拟)给出命题:p 直线013:1=++y ax l 与直线01)1(2:2=+++y a x l 互相平行的充要条件是3-=a ;命题:q 若平面α内不共线的三点到平面β的距离相等,则βα//.对以上两个命题,下列结论中正确的是( )A .命题“q p ∧”为真B .命题“q p ∨”为假C .命题“q p ⌝∨”为假D .命题“q p ⌝∧”为真6.给定命题:p 函数)42sin(π+=x y 和函数)432cos(π-=x y 的图象关于原点对称;命题:q 当)(2Z k k x ∈+=ππ时,函数)2cos 2(sin 2x x y +=取得最小值.下列说法正确的是( )A .q p ∨是假命题B .q p ∧⌝是假命题C .q p ∧是真命题D .q p ∨⌝是真命题7.(2013年高考全国新课标卷Ⅰ)已知命题x x R x p 32,:<∈∀;命题231,:x x R x q -=∈∃,则下列命题中为真命题的是( )A .q p ∧B .q p ∧⌝C .q p ⌝∧D .q p ⌝∧⌝8.将222)(2b a ab b a +=++改写成全称命题是( )A .222)(2,,b a ab b a R b a +=++∈∃B .222)(2,0,0b a ab b a b a +=++><∃C .222)(2,0,0b a ab b a b a +=++>>∀D .222)(2,,b a ab b a R b a +=++∈∀9.已知R c b a ∈,,,命题“若3=++c b a ,则3222≥++c b a ”的否命题是( )A .若3≠++c b a ,则3222<++c b aB .若3=++c b a ,则3222<++c b aC .若3≠++c b a ,则3222≥++c b aD .若3222≥++c b a ,则3=++c b a10.下列命题中为真命题的是( )A .命题“若y x >,则||y x >”的逆命题B .命题“1>x ,则12>x ”的否命题C .命题“若1=x ,则022=-+x x ”的否命题D .命题“若02>x ,则1>x ”的逆否命题11.若R a ∈,则“1=a ”是“1||=a ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件12.设集合}0)2(|{},0|{},02|{>-∈=<∈=>-∈=x x R x C x R x B x R x A ,则“B A x Y ∈”是“C x ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. (2013年高考湖南卷)“21<<x ”是“2<x ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件14.“d b c a +>+”是“b a >且d c >”的( )A .充分不必要条件B .既不充分也不必要条件C .充分必要条件D .必要不充分条件15. (2013年高考安徽卷)“0≤a ”是“函数|)1(|)(x ax x f -=在区间),0(+∞内单调递增”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件16. (2013年高考陕西卷)设,为向量,则“||||||⋅=⋅”是“//”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件17. (2014年西安模拟)若设平面α、平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且m b ⊥,则“βα⊥”是“b a ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.“1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件19. “222-≤+abb a ”是“0>a 且0<b ”的 ( ) A .必要不充分条件B .充要条件C .充分不必要条件 D .即不充分也不必要条件20. “},3{a x ∈”是“不等式03522≥--x x 成立”的一个充分不必要条件,则实数a 的取值范围是( )A. 0≥aB. 0<a 或2>aC. 0<aD. 21-≤a 或3>a 21. 命题“若ABC ∆有一内角为3π,则ABC ∆的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题22. 已知命题R x p ∈∃:,使25sin =x ;命题R x q ∈∀:,都有012>++x x ,给出下列结论;① 命题“q p ∧”是真命题;② 命题“q p ∨⌝”是真命题;③ 命题“q p ⌝∨⌝”是假命题;④ 命题“q p ⌝∧”是假命题.其中正确的是 ( )A. ②③B. ②④C. ③④D. ①②③23. 下列命题是真命题的有 ( )① 041,:2≥+-∈∀x x R x p ; ② :q 所有正方形都是矩形; ③ 022,:2≤++∈∃x x R x r ; ④ 至少有一个x ,使012=+x .A. 1个B. 2个C. 3个D. 4个24. (2013年高考湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .)()(q p ⌝∨⌝B .)(q p ⌝∨C .)()(q p ⌝∧⌝D .q p ∨ 25. 已知命题R x p ∈∃:,使45cos =x ;命题R x q ∈∀:,都有012>+-x x ,则下列结论正确的是( )A. 命题“q p ∧”是真命题B.命题“q p ∨⌝”是真命题C. 命题“q p ⌝∨⌝”是假命题D.命题“q p ∧⌝”是真命题.26. (2014年济南模拟)下列命题中是假命题的是( )A .,R ∈∃βα,使βαβαsin sin )sin(+=+B .R ∈∀φ,函数)2sin()(φ+=x x f 都不是偶函数C .R m ∈∃,使34)1()(2+-⋅-=m x m x f m 是幂函数,且在),0(+∞上单调递减D .0>∀a ,函数a x x x f -+=ln ln )(2有零点27. 下列命题中的假命题是( ) A. 25sin ,=∈∃x R x B. 1log ,2-=∈∃x R x C. 0)21(,>∈∃x R x D. 0,2≥∈∀x R x 28. (2013年高考四川卷)设Z ∈x ,集合A 是奇数集,集合B 是偶数集,若命题B x A x p ∈∈∀2,:,则( )A .B x A x p ∉∈∀⌝2,:B .B x A x p ∉∉∀⌝2,:C .B x A x p ∈∉∃⌝2,:D .B x A x p ∉∈∃⌝2,:29. 若命题,sin tan ),2,2(:x x x p >-∈∀ππ则命题:p ⌝( ) A. 000sin tan ),2,2(x x x ≥-∈∃ππ B. 000sin tan ),2,2(x x x >-∈∃ππ C. 000sin tan ),2,2(x x x ≤-∈∃ππ D. 000sin tan ),,2()2,(x x x >+∞--∞∈∃ππY 30. 已知命题:p 关于x 的方程042=+-ax x 有实根;命题:q 关于x 的函数422++=ax x y 在),3[+∞上是增函数.若q p ∨是真命题,q p ∧是假命题,则实数a 的取值范围是( )A .),4[]4,12(+∞--YB .),4[]4,12[+∞--YC .)4,4(]12,(---∞YD .),12[+∞-二、填空题1.若“12>x ”是“1<x ”的条件.(填充要条件、必要不充分条件、充分不必要条件 、既不充分也不必要条件)2.若命题“02,2≤--∈∀ax ax R x ”是真命题,则实数a 的取值范围是.3.命题:p 若R b a ∈,,则0=ab 是0=a 的充分条件,命题:q 函数3-=x y 的定义域是),3[+∞,则“q p ∨”、“q p ∧”、“p ⌝”中是真命题的有.4.命题“能被5整除的数,末位是0”的否定是.三、解答题1.写出命题“已知,,R b a ∈若关于x 的不等式02≤++b ax x 有非空解集,则b a 42≥”的逆命题、否命题、逆否命题,并判断它们的真假.2.写出由下列各组命题构成的“q p ∨”,“q p ∧”,“p ⌝”形式的新命题,并判断其真假.(1)2:p 是4的约数,2:q 是6的约数;(2):p 矩形的对角线相等,:q 矩形的对角线互相平分;(3):p 方程012=-+x x 的两个实根的符号相同,:q 方程012=-+x x 的两实根的绝对值相等.盛年不重来,一日难再晨。