大学线性代数考试模拟题线性代数试卷
线性代数模拟试卷及答案
线性代数(文)模拟试卷(一)参考答案一。
填空题(每小题3分,共12分)1.设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,⎪⎪⎪⎭⎫⎝⎛=333222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3332221113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=---=12=-B A .2。
已知向量)3,2,1(=α,)31,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-.解 注意到3321)31,21,1(=⎪⎪⎪⎭⎫ ⎝⎛=T βα,故n A =βαβαβαβαT n T T T 个)())((=ββαβαβααβαTn T T T T 个)1()())((-=A n T n 1133--=βα。
注 若先写出A ,再求2A ,…,n A 将花比前更多的时间.3。
若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-.解 由1α,2α,3α线性相关,则有321,,ααα=k k 0143011--=1043011--k k k =04)1(3143=--=-k k k k 。
由此解得3-=k .4。
若4阶矩阵A 与B 相似,矩阵A 的特征值为21,31,41,51,则行列式E B --1 =24.解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4。
故2443211=⋅⋅⋅=--E B . 注 本题解答中要用到以下结论:(1)若A 可逆,A 的特征值为λ,则1-A 的特征值为λ1。
(2)若λ是A 的特征值,则)(A f 的特征值为)(λf ,其中)(x f 为任意关于x 的多项式。
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。
A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。
A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。
A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。
A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。
答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。
答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。
答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。
答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。
大学数学线性代数期末复习模拟测试试卷(含答案)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。
线性代数习题及模拟题
习题选作Ch1 行列式一、填空题1.____________)4637251(=τ。
2设行列式1112131112132122233132333132332122233333333333a a a a a a a a a a a a a a a a a a = ,则 等于 。
3.四阶行列式00000000000dc b a = 。
4.行列式222333ab ca b c a b c =___。
5.行列式3214214314324321中第1行第4列元素的代数余子式的值等于 。
6.三阶行列式 D =333222111435214352143521a a k a a a k a a a k a +++++++++ = 。
7.若01400200345678910=x ,则=x 。
8. 如果行列式D=12334152--a中第二行第一列的代数余子式A 12=5,则a= 。
9.线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλλ 有非零解,则λ=10.4阶行列式xd d d x c c c x b b b x a a a D 3213213213214=中第一列各元素的代数余子式之和=+++41312111A A A A 。
0二.判断题1.任意一个n 级排列都可以经过一系列的对换变成排列1 2 3 …n 。
( ) 2.每作一次对换改变排列的奇偶性。
( )3.如果n (n>1)阶行列式的值等于零,则行列式中必有两行成比例。
( ) 4.如果n (n>1)阶行列式的值等于零,则行列式中必有一行全为零。
( )5.设D=|a ij |是n 阶行列式,如果D 的元素中0的个数多于 n(n-1), 则D 的值为零。
( ).6.交换一个行列式的两行(或两列),则行列式值改变符号( ).7.333332222211111e d c b a e d c b a e d c b a ++++++=333222111d b a d b a d b a +333222111e c a e c a e c a 。
线性代数模拟题1含答案
(A)若 m n ,则 Ax b 有无穷多解;
(B)若 m n ,则 Ax 0 有非零解,且基础解系含有 n m 个线性无关解;
(C)若 A 有 n 阶子式不为零,则 Ax b 有唯一解;
模一第 1 页 共 2 页
(D)若 A 有 n 阶子式不为零,则 Ax 0 仅有零解.
5.若 n 阶矩阵 A,B 有共同的特征值,且各有 n 个线性无关的特征向量,则( ).
.
二、单项选择题(每小题 3 分,共 15 分)
1.下列矩阵中,(
)不是初等矩阵.
0 0 1
1 0 0
1 0 0
1 0 0
(A) 0 1 0 (B) 0 1 2 (C) 0 2 0 (D) 0 0 0
1 0 0
0 0 1
0 0 1
0 1 0
2.设向量组1,2 ,3 线性无关,则下列向量组中线性无关的是( ).
5.(11 分) 设二次型 f (x1, x2 , x3 ) 5x12 5x22 3x32 2x1x2 6x1x3 6x2 x3 ,
(1)写出 f 对应的对称矩阵 A ;(2)求一个正交变换,化二次型为标准型.
四、证明题(13 分)
1.(6 分)向量组 A :1=(0,1,1)T, 2=(1,1, 0)T; 向量组 B : 1=(1, 0,1)T ,
(2) A E 1 5 3 4 5 3 3 3 5 0 3 3
= (-4)(-9) ….. ……. ….. ……. ……. ……. ….. ……. ……. ……...(3 分)
3. n 元齐次线性方程组 Ax 0 有非零解的充要条件是______ .
4.设 B 可逆,矩阵 C 的秩 R C 3 , A BC ,则矩阵 A 的秩 R A
线性代数模拟题及答案
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
长沙理工大学线性代数考试试卷及答案
长沙理工大学模拟考试试卷…………………………………………………………………………………………………………………………试卷编号1拟题教研室(或教师)签名教研室主任签名…………………………………………………………………………………………………………………………课程名称(含档次)线性代数课程代号0701011专业全校各专业层次(本、专)本科考试方式(开、闭卷)闭卷一、判断题(正确答案填√,错误答案填×。
每小题2分,共10分)1.设阶方阵可逆且满足,则必有()2.设是的解,则是的解()3.若矩阵的列向量组线性相关,则矩阵的行向量组不一定线性相关()4.设表示向量的长度,则()5.设是的解,则是的解()二、填空题:(每小题5分,共20分)1.计算行列式=;2.若为的解,则或必为的解;3.设n维向量组,当时,一定线性,含有零向量的向量组一定线性;4.设三阶方阵有3个特征值2,1,-2,则的特征值为;三、计算题(每小题10分,共60分)1.;第1页(共2页)2.若线性方程组有解,问常数应满足的条件3.设是方程组的解向量,若也是的解,则;4.求齐次线性方程组的基础解系;5.已知矩阵与矩阵相似,求的值;6.设为正定二次型,求.四、证明题(10分):设向量组线性无关,证明线性无关。
长沙理工大学模拟试卷标准答案课程名称:线性代数试卷编号:1一、判断题(正确答案填√,错误答案填×。
每小题2分,共10分)1,×2,×3,√4,×5,√二、填空题:(每小题5分,共20分)1,42;2,;3,相关,相关;4,4,1,4.三、计算题(每小题10分,共60分)1.==5(5分)=5=5(5分)2.(2分)(5分)若有解,则A的秩与的秩相等,即。
(3分)3.(6分)∴(1)当时,矩阵的秩为2;(2分)(2)当时,矩阵的秩为3.(2分)第1页(共3页)4.对系数矩阵作作初等行变换得同解方程组令,;得,基础解系为:5.解:∵与相似,∴特征多项式相同,即亦即6.解:的矩阵为∵为正定二次型,∴的各阶主子式大于0.即>0,>0>0第2页(共3页)解联立不等式组>0或<0<<或<<0<<0即当<<0时,为正定二次型.四、证明题(10分):证明:设存在一组数使得,(3分)又向量组线性无关,因此,(7分)由此可知,只有当时,等式才成立,即向量组线性无关。
XXXX大学《线性代数》模拟试卷答案(A卷)
RAb RA 2 4,故原方程组有无穷多个解.………………………6 分
导出组的基础解系为
ξ1
112
;
0
0
1
1
ξ2
2 0
,原方程组的一个 特解为
η
2 0
0
0
1
0
所以,原方程组的通解可表示为:
x t1ξ1 t2ξ2 η,其中t1和t2为任意常数. ………………………………12 分
第 1 页共 4 页
2 111
2.
求 n阶行列式
Dn
1
2
1
1.
1 112
1 1 1 1
解:
1 Dn [2 (n 1)]
2
1
1 ……………………………………6 分
1 1 1 2
1 1 1 1
n
1
0
21
0
0
0 0 0 21
(n 1) 1n n 1 ……………………………………………12 分
2 2
.
3 3
0
作正交变换 x py 把原二次型化为标准型 f 3 y12 3 y32 .……………12 分
四.证明题(共 1 小题,共 10 分)
已知向量组, , 线性无关,证明向量组 , , 2 3 也线 性无关.
证:令 k1 k2( ) k3 2 3 0
1 2
3 0
0
2 1 1 3 2 3 3 3
1
2 2
可得特征值: 1 3, 2 0, 3 3 .……………………………………6 分
对于特征值
1
3
,由 A
3E x
0 得其特征向量为1
线性代数模拟试卷A及答案
线性代数模拟试卷A 及答案(考试时间:120分钟)一、填空题(每小题3分,共15分)1.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中1111111111111111D -=--。
2.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛-=420310002A ,则A -1等于 。
3.设向量组ααα123,,线性相关,而向量组ααα234,,线性无关,则向量组ααα123,,的最大线性无关组是 。
4.3阶实对称矩阵A 的特征值为2、5、5,A 属于特征值2的特征向量是1111Tα=(,,),则A 属于特征值5的两个线性无关的特征向量可以取为2α=_ ;3α=__ 。
5.已知3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=44644325x A 和3阶矩阵对角矩阵⎪⎪⎪⎭⎫⎝⎛=300020001B 相似,则=x ___ _____。
二、单项选择题(每小题3分,共15分)1.设向量组()1,1,1Tαλ=,()21,,1Tαλ=,()31,1,Tαλ=线性相关,则必有( )A.0λ= 或 λ=1B.1λ=- 或 λ=2C.1λ= 或 λ=2D.1λ= 或 λ=-22.设α是n 维列向量,λ为实数,则向量λα的长度λα= ( )A.αλB.αλ⋅C.αλ⋅nD.αλ⋅n3.若向量组r ααα,,,21 可由另一向量组s βββ,,,21 线性表示,则 ( ) A.s r ≤B.s r ≥C.1212(,,,(,,,)r s r r αααβββ≤ )D.1212(,,,(,,,)r s r r αααβββ≥ )4.设n 阶矩阵A 与B 相似,则必有 ( )A.,A B 同时可逆或同时不可逆B.,A B 有相同的特征向量C.,A B 均与同一个对角矩阵相似D.矩阵λE -A 与λE -B 相等5. 设A 为n 阶矩阵,满足2A A =,且A E ¹,则( )A. A 为可逆矩阵B. A 为零矩阵C. A 为不可逆矩阵D. A 为对称矩阵三、计算题(每小题10分,共60分)1.计算行列式 D =--1102334620331247的值2.设101110012A 骣÷ç÷ç÷ç÷=-ç÷ç÷ç÷÷ç桫,301110014B 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,X 为未知矩阵,且满足:AX B =。
线性代数模拟试题及答案(三套)
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555n n A A +==。
5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。
由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。
A .M 8 B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数模拟试题及答案
3、
1 1 =__________。 2 2 é 2 3ù é - 1ù ú ê ú =__________。 ë - 1 0û ë 3 û
4、矩阵 ê
5、若 A,B 为 n 阶矩阵,则 ( A + B )( A - B ) =__________。 6.设 A, B 为 3 阶方阵,且 A = 4, B = 2 ,则 2( B* A-1 ) = 7、若 A 是可逆矩阵,则 ( A¢ ) -1 =__________。 .
æ- 2 0 0 ö æ1 0 0 ö ÷ ç ç ÷ A - 3E = ç - 2 2 - 2 ÷ ~ ç 0 1 - 1÷ ç - 2 4 - 4÷ ç0 0 0 ÷ ø è è ø æ0ö ç ÷ ì x 2 - x3 = 0 从而解得基础解系 p1 = ç 1 ÷ 得对应的方程组为 í î x1 = 0 ç1÷ è ø
.
A+ B = A + B
A. 若矩阵 A, B 满足 AB = O ,则有 A = O 或 B = O B. 若矩阵 A, B 满足 AB = E ,则矩阵 A, B 都可逆。 C. 若 A* 是 n 阶矩阵 A 的伴随矩阵,则 A* = A D. 若 A ¹ O ,则 A ¹ 0
7.下列说法不正确的是( ) 。
æ1 ç 0 8.设矩阵 A = ç ç0 ç ç0 è
2 0 0ö ÷ 1 0 0÷ -1 ,则 A = ÷ 0 3 3 ÷ 0 2 1÷ ø
.
9 、 在 线性方程组 AX = O 中,若 末知 量的个数 n=5 , r ( A) = 3 ,则方程组的一 般 解中 自由末知 量的个数为 _________。 10. 设向量组 a1 , a 2 , a3 线性无关,则向量组 a1 , a1 + a 2 , a1 + a2 + a3 (填线性相关,线性无关) 。
线性代数期末模拟试题F(附解答)
线性代数期末模拟试题F一 单项选择题(每题3分,共18分)1.设33)(⨯=j i a A 为非零实矩阵,j i j i A a =,j i A 是行列式 ||A 中元素j i a 的代数余子式,则行列式||A =a . 0;b . 1;c . 2;d . 3。
2.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则 a . A A A n 2||)(-**=; b . A A A n 1||)(+**=; c . A A A n 1||)(-**=; d . A A A n 2||)(+**=。
3.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=96342321k A ,0)(33≠=⨯j i b B ,且0=AB ,则a . 当6=k 时,必有秩1)(=B r ;b . 当6=k 时,必有秩2)(=B r ;c . 当6≠k 时,必有秩2)(=B r ;d . 当6≠k 时,必有秩1)(=B r 。
4.设B A ,为 n 阶矩阵,且0=AB ,0≠B ,则必有a . 222)(B A B A +=+;b . 0||=B ;c . 0||*=B ;d . 0||*=A 。
5.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T 为正定矩阵的 a . 充分条件; b . 必要条件; c . 充要条件; d . 无关条件。
6.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2231=-=βαααB ,则行列式 =+B Aa . 12;b . 12-;c . 3-;d . 16-。
二 填空题(每题3分,共18分)7.设行列式 2154301200011311=D ,j i A 是D 中元素j i a 的代数余子式,则 =+2414A A 。
8.已知⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A 相似于对角阵⎪⎪⎪⎭⎫⎝⎛210,则a = ,b = 。
线性代数模拟试题(4套)
模拟试题一一、判断题:(正确:√,错误:×)(每小题2分,共10分)1、若B A ,为n 阶方阵,则 B A B A +=+。
……………………( )2、可逆方阵A 的转置矩阵T A 必可逆。
……………………………( )3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合. …………………………………………………………( ) 二、填空题:(每空2分,共20分)1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= .2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 .3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 .4、已知()⎪⎪⎪⎭⎫ ⎝⎛-==256,102B A 则=AB 。
5、若⎪⎪⎭⎫ ⎝⎛--=1225A ,则=-1A . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 .7、()B A R + ()()B R A R +.8、若*A 是A 的伴随矩阵,则=*AA 。
9、设=A ⎪⎪⎪⎭⎫ ⎝⎛-500210111t ,则当t 时,A 的行向量组线性无关.10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)1、已知4阶行列式1611221212112401---=D ,求4131211132A A A A +-+。
2、设矩阵A 和B 满足B A E AB +=+2,其中⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵B .四、(10分) 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解。
线性代数模拟试卷1,2,3及参考答案(有三处错误)
3 2
1
E 2 A A2 。
1
版权属于燕山大学应用数学系,如有错误,请联系 zzzlmn@
09 级线代作业参考答案 提示: A( A 2 A E ) E 。
2
线代模拟试卷
1
1 5. 设 X 满足矩阵方程 a a2
三、计算 n 阶行列式(8 分)
1 2 1 cn 1 2 1 1 2 2 1 解: c1 2 , c2 3 ,设 k n 时, ck k 1 ,由行列式可得关系式 1 2 cn 2cn 1 cn 2 于是在归纳假设下, cn 2cn 1 cn 2 2n (n 1) n 1 ,由数学归纳法 cn n 1 2 1
变换矩阵。 (7 分) 解: f ( x1 x2 x3 ) x2 4 x3 4 x2 x3 ( x1 x2 x3 ) ( x2 2 x3 )
2 2 2 2 2
y1 x1 x2 x3 , 令 y2 x2 2 x3 , ,即作变换 y x3 , 3 x1 y1 y2 y3 , y2 2 y3 , , x2 x y3 , 3
2.若非齐次线性方程组 AX=b 无解,则系数矩阵 A 的秩与其增广矩阵 B(Ab)的秩关系为: R(B)=R(A)+1. (√) 3.设 A 是 n 阶矩阵,其秩 r<n,那么 A 的 n 个行向量中的任意 r 个行向量构成其行向量组 的一个最大线性无关组。 (×) 提示:应为 r 个线性无关的行向量。 4.若 n 阶方阵 A 相似于对角阵,则 A 必有 n 个互不相同的特征值。 (×) 提示:应为 n 个线性无关的特征向量。 5.实对称矩阵 A 的不同特征值所对应的特征向量必正交。 (√) 二.填空题(40)
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数模拟试题及答案
...《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分) 1.设)det(ij a 为四阶行列式,若23M 表示元素23a 的余子式,23A 表示元素23a 的代数余子式,则23M +23A = 。
2.三阶行列式3331221311000a a a a a 中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对n 阶行列式(填成立或不成立)。
3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。
4.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=458271,131027241,213012C B A ,则=-C B A T2。
5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C 一定可以由矩阵B 经过(填行或列)初等变换而得到。
6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α一定可以由向量唯一的线性表示。
得分阅卷人...7.非齐次线性方程组b Ax =有 唯一的解是对应的齐次方程组0=Ax 只有零解的充分但不必要条件。
8.设3阶矩阵A 的行列式0=A ,则矩阵A 一定有一个特征值。
9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。
10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R 一个规范正交基。
二、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A 为n 阶方阵,则关于非齐次线性方程组b Ax =的解下列说法( )不正确(A ) 若方程组有解,则系数行列式0≠A ; (B ) 若方程组无解,则系数行列式0=A ;(C ) 若方程组有解,则或者有唯一解或者有无穷多解;...(D ) 系数行列式0≠A 是方程组有唯一解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是( ) (A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。
大学线性代数考试题(四套)
第一章行列式(一)一、填空1. 二阶行列式2a ab bb=22a b ab -.2. 四阶行列式1000120012301234= 24 .3. 设311231012D -=--,则元素332a =的代数余子式33A = -11 . 二、选择1. 四阶行列式112233440000000a b a b b a b a 的值等于 ( D ). (A )12341234a a a a b b b b - (B ) 12341234a a a a b b b b +(C )12123434()()a a b b a a b b -- (D )23231414()()a a b b a a b b --2. 若行列式125132025x-=,则x =( D ). (A )-3 (B )-2 (C )2 (D )3 3. 若k =( A ), 则21200111kk=-.(A )-2 (B )2 (C )0 (D )-3三、计算1. 000x yxz y z-=--(对角线法则) 2. 12311234412345000000000000000b b b a b b b b b a a a a a = (按第一列展开) 3.(1)(2)20000100002000000(1)!02000010000000n n n n n n--=---(二)一、填空1. 若||n ij D a a ==,则||n ij D a =-=(1)na -.2. 若1231231238a a a b b b c c c =,则123123123222222222a a a b b b c c c ------=--- -64 . 3. 设a bc d c b d a D dbc a a b dc=,则14243444A A A A +++= 0 .二、选择1. 设111212122212n n n n nna a a a a a D a a a =,则(1)1(1)(1)(1)(1)111(1)11nnn n n n n n n n nn a a a a a a D a a a ------==( A ).(A ) D (B ) D - (C ) (1)nD - (D ) 2D 2. 行列式0D =的必要条件是( B ). (A )D 中有两行(列)元素对应成比例(B )D 中至少有一行元素可用行列式的性质化为零 (C )D 中有一行元素全为零(D )D 中任意一行元素都可用行列式的性质化为零3. 在函数211()12xf x xx x x-=--中,3x 的系数是( A ). (A )-2 (B )1 (C )-1 (D )2三、计算1.41241202010520117=2.2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++3. n x a a axa D a ax=1()[(1)].n x a x n a -=-+-(三)一、填空1. 齐次线性方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解的充分必要条件是λ= 1或-2 .2. 若线性方程组x y ax y bλλ-=⎧⎨-+=⎩有唯一解,则λ必须满足1≠±.3. 齐次线性方程组1231231232202405820x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩的解的情况是 仅有零解 .(填仅有零解或有非零解)二、选择1. 若齐次线性方程组有非零解,则它的系数行列式D ( A ).(A )必为零 (B )必不为零(C )必为1 (D )可为任意数2. 设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( D ).(A ) 0a ≠且0b ≠ (B )32a ≠且0b ≠ (C )32a ≠且32b ≠ (D )0a ≠且32b ≠3. 当k ≠( C )时,齐次线性方程组1312312302020kx x x kx x kx x x +=⎧⎪++=⎨⎪-+=⎩只有零解.(A )0 (B )-1 (C )2 (D )-2三、计算1. 若齐次线性方程组121232302200ax x x ax x x ax +=⎧⎪++=⎨⎪+=⎩有非零解,求a 的值.解:方程组有非零解,则系数行列式21022(4)001a a a a a=-=,则 0a =或2±.2.1111(1)()(1)()1111n n n n n n n a a a n a a a n D a a a n ---+----=--,提示:利用范德蒙德行列式的结果.解 :将行列式上下左右翻转,即为范德蒙德行列式.11111()(1)n nnna n a n a D a n a n a +--+=--+11().j i n i j ≤<≤+=-∏3. 问λ,μ取何值时,齐次线性方程组1231 2.31230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解: 方程组的系数行列式必须为01111121D λμμ=32r r -=====1111(1)0λμμλμ=--故只有当0μ=或1λ=时,方程组才可能有非零解.第二章 矩阵(一)一.填空1. 设123a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,()123b b b =B ,则=AB 1112212223313233a b a b a ba b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;=BA 112233()a b a b a b ++;T ()=AB 112131122232132333a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;T T =A B 112233()a b a b a b ++;T T =B A 112131122232132333a b a b a b a b a b a b a b a b a b ⎛⎫⎪ ⎪ ⎪⎝⎭. 2. 设101020101⎛⎫⎪= ⎪ ⎪⎝⎭A ,而2n ≥为正整数,则12n n --A A =O .3. 设T11(1,,),(1,1,1,)23==αβ,则()n =βα1111231111()162311123n -⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 二.选择1. 设,A B 都是n 阶方阵且=AB O ,则( B )(A ) =B O (B )||0=A 或||0=B (C ) =BA O (D )222()-=+A B A B2. 以下结论正确的是( C )(A )若方阵A 的行列式等于0,则=A O (B )若2=A O ,则=A O(C )若A 为对称矩阵,则2A 也为对称矩阵(D )对任意的同阶方阵,A B ,有22()()+-=-A B A B A B 3. 由,m n s t ⨯⨯A B 做乘积TTA B ,则必须满足( B )(A )m n = (B )m t = (C) n s = (D )n t =三.计算与证明1. 设111111111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,123124051⎛⎫ ⎪=-- ⎪ ⎪⎝⎭B ,求32-AB A 及TA B .解: 32-AB A 1111233111124111051⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭1112111111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭21322217204292-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭T A B 111123111124111051⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭058056290⎛⎫⎪=- ⎪ ⎪⎝⎭.2. 13121400121134131402⎛⎫⎪-⎛⎫ ⎪ ⎪ ⎪--⎝⎭ ⎪-⎝⎭6782056-⎛⎫= ⎪--⎝⎭3. ()111213112312222321323333a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫⎪=++++++ ⎪⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++.4. 设,A B 为n 阶方阵,且A 为对称阵,证明TB AB 也是对称阵.证明:已知:T=A A ,则 TTTTTTTT()()===B AB B B A B A B B AB从而 TB AB 也是对称阵.(二)一.填空1. 设A 为三阶可逆矩阵,且1123012001-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,则*=A123012001---⎛⎫⎪- ⎪ ⎪⎝⎭2. 设100220345⎛⎫⎪= ⎪ ⎪⎝⎭A ,则1()*-=A 10A ;1()-*=A 10A3.设A 为3阶矩阵,且A =12,则1*(2)5--=A A -16 . 4. 设α为3维列向量,T 111111111-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭αα,则T=αα 3 .二.选择1. 设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,则必有( A ) (A ) 1n -*=A A(B ) *=A A (C )n*=A A (D )1*-=A A2. 设n 阶方阵,,A B C 满足关系式=ABC E ,其中E 为n 阶单位矩阵,则必有( D ). (A ) =ACB E (B )=CBA E (C )=BAC E (D )=BCA E3. 已知A 为n 阶方阵,且满足关系式2340++=A A E ,则()1-+=A E ( C )(A )1-+A E (B )12+E A (C ) 12--E A (D )4+A E 4. 设,A B 都是n 阶方阵,则下列命题中正确的是 ( D )(A )若≠A O 且≠B O ,则≠AB O (B )若,A B 都是对称阵,则AB 是对称阵 (C)若AB 不可逆,则,A B 都不可逆 (D )若AB 可逆,则,A B 都可逆三.计算与证明1. 求520021*******011⎛⎫ ⎪⎪⎪- ⎪⎝⎭的逆阵.解:115221A ⎛⎫=⎪⎝⎭,1111225A --⎛⎫= ⎪-⎝⎭,221211A -⎛⎫= ⎪⎝⎭,122121113A -⎛⎫= ⎪-⎝⎭, 112002500120033110033A --⎛⎫⎪- ⎪ ⎪= ⎪⎪⎪-⎪⎝⎭.2. 解矩阵方程25461321-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭X解:125461321--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭X 35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭.3. 设1-=P AP Λ, 其中1411--⎛⎫= ⎪⎝⎭P , 1002-⎛⎫= ⎪⎝⎭Λ, 求11A .解:1-=P AP Λ故1-=A P P Λ所以11111-=A P P Λ3=P 1411*⎛⎫=⎪-⎝⎭P 1141113-⎛⎫= ⎪-⎝⎭P 而 11111110100202--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭Λ 故11111414103311021133⎛⎫ ⎪--⎛⎫⎛⎫= ⎪ ⎪⎪- ⎪⎝⎭⎝⎭-- ⎪⎝⎭A 27312732683684⎛⎫= ⎪--⎝⎭. (三)一.填空1. 已知2223311x x-⎛⎫⎪= ⎪ ⎪-⎝⎭A 不可逆,则x = -6或-3 . 2. 设++=A AB B O ,且200000004-⎛⎫⎪= ⎪ ⎪⎝⎭A ,则=B 2000004005⎛⎫⎪- ⎪ ⎪ ⎪- ⎪⎝⎭ .3.设300140003⎛⎫⎪= ⎪ ⎪⎝⎭A ,则1(2)--=A E 10011022001⎛⎫⎪ ⎪- ⎪ ⎪⎝⎭.二.选择1. 设,A B 都是n 阶可逆矩阵,则必有( C )(A ) +A B 是n 阶可逆矩阵 (B ) |+|=||+||A B A B (C ) 只用初等变换可把A 变为B (D ) =AB BA2. 设n 阶矩阵,,,A B C D 满足=ABCD E ,则( A )(A ) 1()=-CB CDADAB (B ) 1()=-CB DA (C ) 1()=-CB AD (D ) 1()=-CB DABCDA3. 设=AX B ,则( B )(A ) 当A 可逆时, 1=-X BA (B ) 当A 可逆时, 1=-X A B (C ) 当≠B O 时,||0≠A (D ) 当≠X O 时,A 可逆三.计算与证明1. 用初等变换求矩阵1011201031203104-⎛⎫⎪⎪⎪⎪-⎝⎭的逆矩阵.解:4211410711822262411--⎛⎫ ⎪--- ⎪ ⎪- ⎪--⎝⎭2. 设,+=AX B X 其中01011111,2010153-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A B ,求X .解: 1()-=-X E A B 而 12103321()13311033-⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪-⎪⎝⎭E A 所以 =X 210332113311033⎛⎫⎪⎪ ⎪- ⎪⎪ ⎪-⎪⎝⎭112053-⎛⎫ ⎪ ⎪ ⎪-⎝⎭312011-⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 3. 设三阶矩阵,A B 满足关系式13-=+A BA A BA ,且100310041007⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭A ,求B . 解:13--=A BA BA A ,1()3--=A E BA A ,1300040007-⎛⎫⎪= ⎪ ⎪⎝⎭A ,11323()112--⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪⎝⎭B A E .(四)一.填空1. 设矩阵m n ⨯A 的秩为r ,P 为m 阶可逆矩阵,则()R =PA r .2. 设四阶方阵A 的秩()2R =A ,则其伴随矩阵*A 的秩为()R *A = 0 .3.设111111111111k k k k ⎛⎫⎪⎪= ⎪ ⎪⎝⎭A ,()3R =A ,则k = -3 . 二.选择1. 从矩阵A 中划去一行得到矩阵B ,则,A B 的秩的关系为( A ) (A) ()()()1R R R ≥≥-A B A (B) ()()()1R R R ≥>-A B A (C) ()()()1R R R >>-A B A (D) ()()()1R R R >≥-A B A2. 在秩是r 的矩阵中( C ) (A) 没有等于0的1r -阶子式 (B) 没有等于0的r 阶子式(C) 等于0的1r -阶子式和等于0的r 阶子式都可能有 (D) 所有1r -阶子式等于03. 设,A B 都是n 阶方阵,且=AB O ,则必有( A ) (A) 若()R n =A ,则 =B O (B) 若≠A O ,则 =B O (C) =A O 或者 =B O (D) ||A +||0=B4. 设A 是43⨯矩阵,且A 的秩()2R =A ,而102020103⎛⎫ ⎪= ⎪ ⎪-⎝⎭B ,则()R =AB (C )(A )0 (B )1 (C )2 (D )3三.计算1.求矩阵310211211344⎛⎫⎪=-- ⎪ ⎪-⎝⎭A 的秩.解:()2R =A2.设12312323k k k -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,求k 为何值时可使()R A 等于:(1) 1 ;(2) 2 ;(3) 3 .解:123~02(1)3(1)003(1)(2)k k k k k -⎛⎫ ⎪-- ⎪ ⎪-+⎝⎭A(1)当1k =时,()1R =A ; (2)当2k =-时,()2R =A ; (3)当1k ≠且2k ≠-时,()3R =A .3.设矩阵00121132212645013405-⎛⎫⎪--⎪= ⎪-⎪---⎝⎭A ,求()R A ,并求一个最高阶非零子式.解:()3R =A ,一个最高阶非零子式为012122245--.第三章 线性方程组(一)一、选择1.当( D )时,齐次线性方程组0m n ⨯=A x 一定有非零解。
大一线性代数考试题库及答案解析
大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。
因此,|A^(-1)| = 1/|A| = 1/2。
2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。
将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。
二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。
答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。
4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。
答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。
三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。
答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。
6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。
答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。
但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。
四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 x2 2 x3 3 x4
1 2
400
0 3 1 ,求一个正交矩阵 P ,
013
使P 1 AP 为对角矩阵 .
第 2页共2页
三 、设A 0 3 1 ,利用初等变换求 A 1 .
021
四 、设 1
1
2, 2
2
3, 3
3
4,
4
4 1试证 1, 2, 3 1
(1
,2
,1
,3
),
a
T 2
(4, 1, 5, 6),
a
T 3
(1, 3, 4, 7)的秩,并求一个最大无
关组。
六 、求 方 程 组 的 通 解:
命题人: 审批人:
试卷分类( A 卷或 B 卷) A
大学继续教育学院 试 卷
课程: 线性代数
专业:
班级: 1
学期: 2 至学年度第 一 学期 姓名:
得分:
a bc
一 、 计算行列式
bca
ca b
1 120
45 14
二、已知 A 1 4 2 5 , B 3 1 1 5
2 314
23 11
求矩阵 X , 使A 2X B 500
第 1页共2页
学期: 2002 至 2003 学年度第 一 学期 姓名:
得分:
111
一 、 计算行列式
a bc a 2 b2 c2
11 1
1 23
二、设 A 1 1 1 , B
1 2 4,
1 11
0 51
求 3AB 2 A及AT B.
1 23
三 、设A 2 2 1 ,利用初等变换求 A 1 .
343
x1 x2 3x3 x4 1 3 x1 x 2 3 x3 4 x4 4 x1 5 x 2 9 x3 8 x4 0
20 0
七 、设A 1 2 1 ,求 A的特征值及特征向量 .
10 1
命题人:方波漪 审批人:
试卷分类( A 卷或 B 卷) B
五邑大学继续教育学院 试 卷
课程: 线性代数
专业: 计算机 班级: By01061
四 、已知 1 , 2 , 3 线性无关 , 1
1
2, 2
3
3
1,试证 1, 2, 3线性无关。
五、 求 1 (2, 2, 4), 2 (1,9,3), 3 (
4 (3,7,1)的秩及最大无关组。
六 、求 方 程 组 的 通 解:
2
3,
2, 4,1),
七 、设A
x1 x2 x3 x4 0
x1 x2 x3 3 x4 1