二次函数选择、填空

合集下载

二次函数——选择填空题

二次函数——选择填空题

二次函数——选择填空题二次函数是高中数学中的一个重要的内容,它在数学的习题中占据很重要的地位。

下面是一些与二次函数有关的选择填空题,希望可以帮助你更好地理解和掌握二次函数的知识。

1. 设二次函数y=ax^2+bx+c(a≠0)的图像是抛物线,则下列说法错误的是()。

A.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

B.抛物线的顶点坐标为(-b/2a,f(-b/2a))。

C.当a>0时,抛物线的最大值为f(-b/2a);当a<0时,抛物线的最小值为f(-b/2a)。

D. 二次函数的图像在x轴上的交点称为二次函数的零点,也就是方程ax^2+bx+c=0的解。

答案:D解析:二次函数的零点就是方程ax^2+bx+c=0的解,而图像在x轴上的交点就是零点。

2. 设二次函数y=ax^2+bx+c(a≠0)的图像是抛物线,且顶点坐标为(1, 3),则a、b、c的值分别为()。

A.a=1,b=-2,c=0B.a=1,b=-2,c=1C.a=2,b=-4,c=1D.a=2,b=-4,c=3答案:C解析:顶点坐标为(1, 3),所以函数的标准式为y=a(x-1)^2+3、展开得到y=ax^2-2ax+a+3、将其与原函数比较可得到a=2、故a=2,b=-4,c=13.设抛物线y=(x-2)(x-3)-1的顶点坐标为()。

A.(2,-4)B.(3,-4)C.(2,-2)D.(3,-2)答案:D解析:根据抛物线的顶点公式可得,顶点坐标为(x0,y0),其中x0=-(-1)/(2*1)=1/2=0.5,y0=(-1-4)/(-4)=5/4=1.25、由于x-2和x-3只是x-0.5和x-1.5的平移,所以顶点坐标为(3,-2)。

4. 已知二次函数y=x^2+2ax-4的图像过点(-1, -3),则a的值为()。

A.-2B.-1C.0D.1答案:A解析:把点(-1, -3)代入函数得到-3=x^2+2ax-4、整理得到x^2+2ax+1=0。

二次函数综合试题及答案

二次函数综合试题及答案

二次函数综合试题及答案一、选择题1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = 3x^2 + 5C. y = 2x + 1D. y = -x^2 + 3答案:C2. 二次函数y = ax^2 + bx + c的顶点坐标为:A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2 / 4a)D. (b, -c)答案:C二、填空题1. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, -4),则a的值为______。

答案:a > 02. 二次函数y = x^2 - 2x + 3的最小值为______。

答案:2三、解答题1. 已知二次函数y = 2x^2 - 4x + 3,求该函数与x轴的交点。

解:令y = 0,得到方程2x^2 - 4x + 3 = 0。

使用求根公式,得到x1 = (2 + √10) / 2,x2 = (2 - √10) / 2。

因此,与x轴的交点坐标为((2 + √10) / 2, 0)和((2 - √10) / 2, 0)。

2. 某抛物线经过点(1, 1)和(2, 4),且对称轴为直线x = 2。

求该抛物线的解析式。

解:设抛物线解析式为y = a(x - 2)^2 + k。

将点(1, 1)代入,得到a(1 - 2)^2 + k = 1,即a + k = 1。

将点(2, 4)代入,得到a(2 - 2)^2 + k = 4,即k = 4。

解得a = -3,k = 4。

因此,抛物线的解析式为y = -3(x - 2)^2 + 4。

四、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 5000,其中x为生产数量。

求该工厂生产多少件产品时,成本最低。

解:成本函数C(x) = 0.5x^2 - 100x + 5000是一个开口向上的二次函数,其顶点即为成本最低点。

点击中考中的二次函数填空选择题

点击中考中的二次函数填空选择题

点击中考中的二次函数填空选择题一、判断二次函数图象例1( 河南省)二次函数221y ax x a =++-的图象可能是( )解析:对于122-++=a x ax y 的图象,对称轴是直线a x 21-=,当0>a 时,021<-a ,则抛物线的对称轴在y 轴左侧,A 、B 、C 、D 四个选项均不符合;当0<a 时,021>-a,则抛物线的对称轴在y 轴右侧,只有B 项图象符合,故选B二、判断二次函数系数符号例2( 甘肃兰州)二次函数y =ax 2+bx +c 图象如图1所示,则点A(ac ,bc)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限解析:由二次函数y =ax 2+bx +c 图象可知:0,0><c a ,∵对称轴0>x ,在y 轴右侧,即02>-ab ,所以0>b ,∴0,0><bc ac ,即点A(ac ,bc)在第二象限 选B 三、求二次函数解析式例3 ( 哈尔滨)如图2,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为(不要求写出自变量x 的取值范围). 解析:∵AB 边长为x 米 ∴230x AD -= ∴x x x x AD AB y 15212302+-=-∙=∙= 四、利用二次函数求最值例4 ( 山东临沂)如图3,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x y ,应分别为( D ) A .1014x y ==, B .1410x y ==, C .1215x y ==, D .1512x y ==, 解析:作AB CE ⊥,在BCE Rt ∆中,16)8(1620--=y x AB C D图2 菜园墙 x y O xy O x y O x y O A B C D O 图1xE D C B A y x 24 820图3解得x y 5424-= 所以矩形面积=x x x x 2454)5424(2+-=- 当截取的矩形面积最大时,15)54(224=-⨯-=x ,此时125424=-=x y 所以选D 五、与一次函数结合例5 ( 四川绵阳)已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是CA .0B .1C .2D .3解析:把(-2,1)代入b ax y +=得b a +-=21 把(-2,1)代入32+-=bx ax y 得3241++=b a ,上述两个同解,所以①成立,由对称轴1=x 得12=ab ,得a b 2=,与b a +-=21矛盾,所以②不成立;由于y = ax 2-bx + 3与y 轴交于点(0,3),所以抛物线的顶点最小值为3,③成立 ,所以选C六、创新题例6 ( 烟台)小明、小亮、小梅、小花四人共同探究代数式542+-x x 的值的情况.他们作了如下分工:小明负责找值为1时x 的值,小亮负责找值为0时x 的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是( )A .小明认为只有当2=x 时,542+-x x 的值为1B .小亮认为找不到实数x ,使542+-x x 的值为0C .小梅发现542+-x x 的值随X 的变化而变化,因此认为没有最小值D .小花发现当x 取大于2的实数时,542+-x x 的值随x 的增大而增大,因此认为没有最大值解析:令1542=+-x x ,则0442=+-x x ,解之得221==x x ,故小明的说法正确.令0542=+-x x ,∵0454)4(422<-=⨯--=-ac b ,∴原方程没有实数根,即找不到实数x ,使x 2一4x+5的值为0,所以小亮的说法也正确.∴1)2(14454222+-=++-=+-x x x x x ,∴当2=x 时,542+-x x 有最小值为1,故小梅的说法错误.令542+-=x x y ,该抛物线开口向上,对称轴为2=x ,当2>x 时,y 随x 的增大而增大,故没有最大值,所以小花的说法正确. 选C。

二次函数填空选择精选50题(含解析)

二次函数填空选择精选50题(含解析)

2015中考数学二次函数(选择题)及解答一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+2.(2015•宁夏)函数y =与y =﹣kx 2+k (k ≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .3.(2015•衢州)下列四个函数图象中,当x >0时,y 随x 的增大而减小的是( )A .B .C .D .4.(2015•锦州)在同一坐标系中,一次函数y =ax +2与二次函数y =x 2+a 的图象可能是( )A .B .C .D .5.(2015•湖北)二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数y =在同一平面直角坐标系中的图象可能是( )A .B .C .D .6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.7.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C. 1 D.﹣58.(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.9.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.10.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.11.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个12.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)13.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 414.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧15.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣217.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣118.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m >0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<019.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)20.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2C.y=﹣2x2﹣2 D.y=2(x﹣2)221.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<022.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小23.(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A. 1 B. 2 C. 3 D. 424.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③25.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤26.(2015•毕节市)二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.b2﹣4ac>0 D.a+b+c<027.(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A. 1 B. 2 C. 3 D. 428.(2015•南宁)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A. 0个B. 1个C. 2个D. 3个29.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A. 4 B. 3 C. 2 D. 130.(2015•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A. 2 B. 3 C. 4 D. 5二.填空题(共21小题)1.(2015•常州)二次函数y=﹣x2+2x﹣3图象的顶点坐标是.2.(2015•漳州)已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.3.(2015•杭州)函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y随x的增大而(填写“增大”或“减小”).4.(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.5.(2015•淄博)对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).6.(2015•十堰)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)7.(2015•乌鲁木齐)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)8.(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.9.(2015•河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.10.(2015•乐山)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.11.(2015•宿迁)当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为.12.(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.13.(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.14.(2015•绥化)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.15.(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.16.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.17.(2015•资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.18.(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.19.(2015•温州)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.20.(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.21.(2015•衢州)如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是.参考答案与试题解析一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+考点:二次函数的定义.分析:根据二次函数的定义,可得答案.解答:解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c(a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.点评:本题考查了二次函数的定义,y=ax2+bx+c(a≠0)是二次函数,注意二次函数都是整式.2.(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.专题:压轴题;数形结合.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y 轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y 轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y 轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y 轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.3.(2015•衢州)下列四个函数图象中,当x>0时,y随x的增大而减小的是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:计算题.分析:利用一次函数,二次函数,以及反比例函数的性质判断即可.解答:解:当x>0时,y随x的增大而减小的是,故选B点评:此题考查了二次函数的图象,一次函数的图象,以及反比例函数的图象,熟练掌握各自的图象与性质是解本题的关键.4.(2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象.解答:解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.点评:此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.5.(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c >0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选C.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.解答:解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.点评:本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.7.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C. 1 D.﹣5分析: 根据关于对称轴对称的自变量对应的函数值相等,可得答案.解答: 解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得, 解得,函数解析式为y =﹣3x 2+1x =2时y =﹣11,故选:D .点评: 本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.8.(2015•沈阳)在平面直角坐标系中,二次函数y =a (x ﹣h )2(a ≠0)的图象可能是( )A .B .C .D .考点: 二次函数的图象.分析: 根据二次函数y =a (x ﹣h )2(a ≠0)的顶点坐标为(h ,0),它的顶点坐标在x 轴上,即可解答.解答: 解:二次函数y =a (x ﹣h )2(a ≠0)的顶点坐标为(h ,0),它的顶点坐标在x 轴上, 故选:D .点评: 本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.9.(2015•安徽)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b ﹣1)x +c 的图象可能是( )A .B .C .D .考点: 二次函数的图象;正比例函数的图象.分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.10.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解答:解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.点评:此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.11.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.12.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)考点:二次函数的性质.专题:压轴题.分析:直接利用顶点式的特点可写出顶点坐标.解答:解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.点评:主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.13.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 4考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.14.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧考点:二次函数的性质.分析:根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.解答:解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的右侧.故选D.点评:本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.15.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数考点:二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析:求出一次函数和反比例函数的解析式,根据其性质进行判断.解答:解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.点评:本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质.分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.17.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1考点:二次函数的性质.分析:根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.解答:解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.18.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m >0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0考点:二次函数的性质;反比例函数图象上点的坐标特征.专题:计算题.分析:把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.解答:解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.点评:本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.19.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)考点:二次函数的性质.分析:根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.解答:解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.点评:本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.20.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2C.y=﹣2x2﹣2 D.y=2(x﹣2)2考点:二次函数的性质.分析:根据二次函数的性质求出各个函数的对称轴,选出正确的选项.解答:解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.点评:本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.21.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.22.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小考点:二次函数的性质;二次函数的图象.分析:A、将x=0代入y=x2﹣2x﹣3,求出y=﹣3,得出函数图象与y轴的交点坐标,即可判断;B、将一般式化为顶点式,求出顶点坐标,即可判断;C、将y=0代入y=x2﹣2x﹣3,求出x的值,得到函数图象与x轴的交点坐标,即可判断;D、利用二次函数的增减性即可判断.解答:解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,∴x<0时,y随x的增大而减小,故本选项说法正确;故选B.点评:本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键.23.(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.解答:解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.24.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,。

二次函数练习题及答案

二次函数练习题及答案
17.若二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是______
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得最大的年利润?
25.(12分)已知抛物线 经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.
(1)求该抛物线的解析式及点D的坐标;
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为 , 和 ,用等式表示 , 、 之间的数量关系,并说明理由;
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
∵12>5>-4,
∴12+m>5+m>-4+m,
∴y1>y2>y3.
按从小到大依次排列为y3<y2<y1.
故答案为y3<y2<y1.
13.③,④
【解析】找到二次项的系数不是2的函数即可.
解:二次项的系数不是2的函数有③④.
故答案为③,④.
本题考查二次函数的变换问题.用到的知识点为:二次函数的平移,不改变二次函数的比例系数.
投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲、p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)

二次函数的选择题与填空题复习

二次函数的选择题与填空题复习

考点一:二次函数的图像与基本性质1.二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是A .向左平移2个单位,再向上平移1个单位B .向左平移2个单位,再向下平移1个单位C .向右平移2个单位,再向上平移1个单位D .向右平移2个单位,再向下平移1个单位 2.抛物线21y x x =--与x 轴的一个交点为(0)m ,,代数式22008m m -+的值为( ) A .2006B .2007C .2008D .20093.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 24.如图为二次函数y=ax 2+bx +c 的图象,在下列说法中:①ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2=③a +b +c >0 ④当x >1时,y 随x 的增大而增大。

正确的说法有___________。

(把正确的答案的序号都填在横线上)5.函数在同一直角坐标系内的图象大致是 ( )7.初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y = . 8.已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 29.已知二次函数()与一次函数的图2y ax b y ax bx c =+=++和c bx ax y ++=210≠a )0(2≠+=k m kx y象相交于点A (-2,4),B (8,2)(如图所示),则能使成立的x 的取值范围是 .10.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )11.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2D .y =2(x + 2)2+ 212.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 下列哪个函数是二次函数?A. y = x^2 + 3x + 2B. y = 3x + 2C. y = x^3 - 1D. y = 1/x答案:A2. 二次函数 y = ax^2 + bx + c 的顶点坐标是什么?A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2) / 4aD. (-b/2a, 4ac - b^2) / (4a)答案:D3. 如果二次函数 y = ax^2 + bx + c 的 a < 0,那么它的图像开口方向是?A. 向上B. 向下C. 向左D. 向右答案:B二、填空题4. 二次函数 y = 2x^2 - 4x + 3 的顶点坐标是()。

答案:(1, 1)5. 如果二次函数 y = ax^2 + bx + c 与 x 轴有两个交点,那么 a 的取值范围是()。

答案:a ≠ 0 且Δ > 0三、解答题6. 已知二次函数 y = -3x^2 + 6x - 5,求该函数与 x 轴的交点。

答案:解:令 y = 0,得 -3x^2 + 6x - 5 = 0,解得x1 = (3 + √33) / 6,x2 = (3 - √33) / 6,因此,该函数与 x 轴的交点坐标为( (3 + √33) / 6, 0) 和( (3 - √33) / 6, 0)。

7. 某二次函数的图像经过点 (1, 2) 和 (2, 3),且顶点在 x 轴上,求该二次函数的解析式。

答案:解:设二次函数为 y = a(x - h)^2 + k,由于顶点在 x 轴上,所以 k = 0,又因为图像经过点 (1, 2) 和 (2, 3),代入得:a(1 - h)^2 = 2a(2 - h)^2 = 3解得 h = 1.5,a = 2,因此,该二次函数的解析式为 y = 2(x - 1.5)^2。

四、应用题8. 一个矩形的长是宽的两倍,如果面积为 24 平方米,求这个矩形的长和宽。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。

A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。

A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。

A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。

2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。

三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。

2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。

四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。

求出当生产多少件产品时,成本最低,并求出最低成本。

2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。

设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。

答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。

2. 函数与x轴的交点坐标为(1,0)和(2,0)。

四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。

2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。

二次函数——选择填空题

二次函数——选择填空题

二次函数中考专题(一)——选择填空题1、若二次函数2ax y =的图象经过点P (-2,4),则该图象必经过点( )A. (2,4)B. (-2,-4)C. (-4,2)D. (4,-2) 2、同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线y=﹣x 2+3x BA .(2,5)B .(2,﹣19)C .(﹣2,5)D .(﹣2,﹣43)5、二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面直角坐标系中的大致图象是( )6、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )直角坐标系中的大致图象为( ) .、在同一直角坐标系中,函数y=mx+m 和≠0)的图象可能是( )Ca 的值等于( )A .﹣2B .﹣1C .1D .210、已知两点),3(),,5(21y B y A -均在抛物线)0(2≠++=a c bc ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( )A .50->xB .10->xC .150-<<-xD .320<<-x11、在二次函数221y x x =-++的图像中,若y 随x 的增大而增大,则x 的取值范围是( ) (A )1x < (B )1x > (C )1x <- (D )1x >- 12、给出下列命题及函数y=x ,y=x 2和y=1/x ①如果,那么0<a <1; ②如果,那么a >1; ③如果,那么﹣1<a <0; ④如果时,那么a <﹣1.则正确的个数是( )A.1个 B.2个 C.3个 D.4个13、已知一元二次方程230x bx +-=的一根为3-,在二次函数23y x bx =+-的图象上有三点14 5,y ⎛⎫- ⎪⎝⎭、25 4,y ⎛⎫- ⎪⎝⎭、31 6,y ⎛⎫⎪⎝⎭,1y 、2y 、3y 的大小关系是 ( ) A . 123y y y << B. 213y y y << C. 312y y y << D. 132y y y <<14、已知二次函数512-+-=x x y ,当自变量x 取m 时对应的值大于0,当自变量x 分别取1-m 、1+m 时对应的函数值为1y 、2y ,则1y 、2y 必须满足 ( )A .1y >0、2y >0B .1y <0、2y <0C .1y <0、2y >0D .1y >0、2y <0 15、已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:点A(x 1,y 1)B(x 2,y 2)在函数的图象上,则当1<x 1<2,3<x 2<4时,y 1 与y 2的大小关系正确的是( )A. y 1 >y 2 B. y 1 < y 2 C. y 1 ≥y 2 D. y 1 ≤y 2 16、抛物线y=x 2+bx+c 的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数218、把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式A B C20、如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为( )A .2B .4C .8D .1621、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=1. 下列结论:① abc >O , ②2a+b=O , ② b 2﹣4ac <O , ③ ④4a+2b+c >O第23题第27题第28题2(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.2A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大28、如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两12x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是( ).A .a >0B .b 2-4ac ≥0C .x 1<x 0<x 2D .a (x 0-x 1)( x 0-x 2)<0第29题 第30题 第31题 第32题29、函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.①abc >0;②b+2a=0;③抛物线与x 轴的另一个交点为(4,0); ④a+c >b ;⑤3a+c <0. 其中正确的结论有( ) A .5个 B . 4个 C .3个 D .2个31、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;22且对称轴为x=1,点B 坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c <0;③ac >0;④当y <0时,x <﹣1或x >2.发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OEF 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为34、若关于x 的函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为 .35、请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________ 36、若抛物线y=x 2+bx+c 与x 轴只有一个交点,且过点A (m ,n ),B (m+6,n ),则n= . 37、如图12,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C1,它与x 轴交于点O ,A 1;将C1绕点A 1旋转180°得C2,交x 轴于点A 2; 将C2绕点A 2旋转180°得C3,交x 轴于点A 3; ……如此进行下去,直至得C13.若P (37,m ) 在第13段抛物线C13上,则m =_________.38、如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线y=x 2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .第37题 第38题39、在平面直角坐标系xOy 中,直线y=kx (k 为常数)与抛物线21y 23x =-交于A,B 两点,且A 点在y 轴左侧,P 点坐标为(0,-4),连接PA,PB.有以下说法: ① 2PO PA PB =⋅;②当k>0时,(PA+AO)(PB-BO)的值随k的增大而增大;③当k=时,2=⋅;BP BO BA④PAB面积的最小值为其中正确的是___________.(写出所有正确说法的序号)。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且与x轴有两个交点,则a、b、c之间的关系是()。

A. b^2-4ac>0B. b^2-4ac=0C. b^2-4ac<0D. b^2-4ac≤0答案:A2. 若二次函数y=ax^2+bx+c的图象与y轴的交点为(0,3),则c的值为()。

A. 3B. -3C. 0D. 1答案:A二、填空题1. 若二次函数y=ax^2+bx+c的图象的顶点坐标为(2,-1),则b=______。

答案:-4a-42. 已知抛物线y=ax^2+bx+c与x轴的交点为(-1,0)和(3,0),则b=______。

答案:-2a三、解答题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,2)和(-1,0),求该二次函数的解析式。

答案:将点(1,2)和(-1,0)代入二次函数的解析式,得到方程组:\begin{cases}a+b+c=2 \\9a-3b+c=0\end{cases}解得a=1,b=-2,c=1,所以二次函数的解析式为y=x^2-2x+1。

2. 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过点(0,3),求抛物线的解析式。

答案:由对称轴为直线x=1,可知-b/2a=1,即b=-2a。

又抛物线经过点(0,3),代入解析式得c=3。

设a=1,则b=-2,c=3,所以抛物线的解析式为y=x^2-2x+3。

四、综合题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点为(2,0)和(-3,0),且抛物线的顶点坐标为(-1,-4),求该二次函数的解析式。

答案:由抛物线与x轴的交点可知,2和-3是方程ax^2+bx+c=0的两个根,所以有:\begin{cases}4a+2b+c=0 \\9a-3b+c=0\end{cases}又因为顶点坐标为(-1,-4),所以有:\begin{cases}-\frac{b}{2a}=-1 \\\frac{4ac-b^2}{4a}=-4\end{cases}解得a=1,b=4,c=-6,所以二次函数的解析式为y=x^2+4x-6。

二次函数选择填空题

二次函数选择填空题

二次函数选择填空题一、二次函数的基本概念1. 二次函数的定义- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数叫做二次函数。

- 例如:y = 2x^2+3x - 1是二次函数,其中a = 2,b = 3,c=-1。

- 题目:下列函数中是二次函数的是()- A. y=3x + 1(这是一次函数,不符合二次函数定义)- B. y = x^2+2x - 1(符合二次函数定义,a = 1,b = 2,c=-1)- C. y=(1)/(x^2)(这不是二次函数,因为自变量x在分母上)- D. y=√(x^2)+1(这不是二次函数,它是一个复合函数)- 答案:B2. 二次函数的图象- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如:对于二次函数y = 3x^2-2x + 1,因为a = 3>0,所以其图象开口向上。

- 题目:二次函数y=-2x^2+5x - 3的图象开口()- A. 向上(因为a=-2<0,所以图象开口向下,A错误)- B. 向下(正确)- 答案:B3. 二次函数的对称轴和顶点坐标- 对于二次函数y = ax^2+bx + c(a≠0),其对称轴公式为x =-(b)/(2a),顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如:求二次函数y = x^2-4x + 3的对称轴和顶点坐标。

- a = 1,b=-4,c = 3。

- 对称轴x=-(-4)/(2×1)=2。

- 顶点纵坐标y=frac{4×1×3-(-4)^2}{4×1}=(12 - 16)/(4)=-1。

- 所以顶点坐标为(2,-1)。

- 题目:二次函数y = 2x^2+8x - 3的对称轴是()- A. x=-2- 因为a = 2,b = 8,对称轴x =-(8)/(2×2)=-2,答案为A。

二次函数选择题与填空题练习

二次函数选择题与填空题练习

二次函数选择题与填空题练习一.选择题:1.如图,平面直角坐标系中有抛物线y=x 2及一点P (2,4).若将此抛物线向右、向上移动后,得抛物线的顶点为(7,2),则此时点P 的坐标是( ) A.(9,4) B. (9, 6) C. (10 , 4) D. (10 , 6)2.在平面直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次函数y=-x 2+6x- 27/4的图象与x 轴所围成的封闭图形染成红色,则在此红色区域内部及其边界上的整点的个数是( )A.5 B.6 C.7 D.83.如图,抛物线m :y=ax 2+b (a <0,b >0)与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它的顶点为C 1,与x 轴的另一个交点为A 1,若四边形AC 1A 1C 为矩形,则a ,b 应满足的关系式为( ) A.ab= - 2 B.ab= -3 C.ab= - 4 D.ab=54.一台机器原价为100万元,如果每年的折旧率为x ,两年后这台机器的价位为y 万元,则y 关于x 的函数关系是( ) A .100=y (x -1)2B .100=y (21x -) C .2100x y -= D .2100x y =5.已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x= -1,P 1 (x 1,y 1),P 2 (x 2,y 2)是抛物线上的点,P 3 (x 3 ,y 3)是直线 上的点,且-1<x 1<x 2,x 3<- 1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 3<y 1C. y 3 < y 1 <y 2D. y2<y1<y36.如图,抛物线y 1=a (x +2)2-3与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1= 4;④2AB=3AC ;其中正确结论是-----------------;A .①②B .②③C .③④D .①④7.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,点Q (3,k )是抛物线上的一点,且BQ AQ ⊥,则ak 的值为( ) A 、-1 B 、-2C 、-3D 、38.函数2+y ax b y ax bx c =+=+与在同一直角坐标系内的图象大致是 ( )9.某公园草坪的防护栏是由100段形状相同的抛物线形成组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图)则这条防护栏需要不锈钢支柱的总长度至少为( ) A.50m B.100m C.160m D.200m10.已知抛物线c bx ax y ++=2的部分图象如右图所示,若y<0,则x 的取值范围是( )A .-1<x<4 B.-1<x<3 C.x<-1或x>4 D.x<-1或x>3 11.已知抛物线m mx m x y (141)1(22--++=为整数)与x 轴交于点A ,与y 轴交于点B ,且OBOA=,则m 等于( )A 、52+B 、52-C 、2D 、2-12.已知)0(2≠++=a c bx ax y 的图像如图所示,则)20,0(2<<≠=++n a n c bx ax 的方程的两实根21,x x ,则满足( )A.3121<<<x xB. 2131x x <<<C. 3121<<<x xD. 3,1021><<x x 且13.抛物线5422---=x x y 经过平移得到22x y -=,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位14.如果对于任何实数x ,二次函数y=ax 2+x+c 的值恒为正数,那么a 、c 应满足的条件是-----------;410410410410<>>>≤<≥>ac a D ac a C ac a B ac a A 且.且.且.且.15. 在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则 |m| 的最小值为( ) A .1 B .2 C .3 D .6 二.填空题:1. 函数y=x 2- 2x + 3的图象的顶点坐标是( )2.抛物线y=x 2+bx+c ,经过A(- 1, 0),B(3 , 0)两点,则这条抛物线的解析式为_____________.3若二次函数223(03)y x x x =+-≤≤的最大值为--------------------; 4.已知抛物线y= x 2 + x + b 2经过点(a , - 0.25)和( - a ,y1),则y1的值是_________. 5.将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( )个单位6.函数cbx ax y ++=2的图象如图所示,且线段OM 与ON 相等,则a ,b ,c 之间的关系为 .7.直线y=x+2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x轴上,若抛物线y=ax 2+bx+c 以C 为顶点,且经过点B ,则这条抛物线的关系式为.8.若一抛物线y=ax2与四条直线x=1、x=2、y=1、y=2围成的正方形有公共点,则a的取值范围是 ------------------;9.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是-----------------;2)的图象时,列出的部分数据如下表:---------------;(只填序号)11.已知函数()1232++-=xxky的图象与x轴有交点,则k 的取值范围是()12.如图,抛物线y=12x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是( ).13.如图抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y---------------0(填“>”,“=”或“<”号).图2-314.已知实数x,y满足0332=-++yxx,则x+y的最大值为。

实际问题与二次函数选择填空习题精选(含答案)

实际问题与二次函数选择填空习题精选(含答案)

实际问题与二次函数选择填空习题精选(含答案)一.选择题(共22小题)1.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()23.(2010•石家庄一模)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()2的y与x的部分对应值如下表:则下列判断中正确的是()5.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的22211.(2014•滨州二模)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是()12.(2010•丽水)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是()y=13.(2009•庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()14.(2007•自贡)进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百15.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是16.一个容器内盛满纯酒精50kg,第一次倒出若干千克纯酒精后加入同千克的水;第二次又倒出相同千克的酒精溶C.17.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为18.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利xx19.两个正方形的周长和是10,如果其中一个正方形的边长为a,则这两个正方形的面积的和S关于a的函数关系.20.有长24m的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()21.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x22.如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为()t t﹣t二.填空题(共8小题)23.(2014•昌平区二模)如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为_________.24.(2014•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=_________.25.(2012•崇明县一模)一个边长为2厘米的正方形,如果它的边长增加x厘米,面积随之增加y平方厘米,那么y关于x的函数解析式是_________.26.(2009•泰安)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为_________.27.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为_________.28.某商店以40元的价格购进了一批服装,若按每件50元出售时,一周内可销售100件;当售价每提高1元时,其周售量就会减少5件.若设每件售价为x元,总利润是y元,则y关于x的函数解析式为_________.29.某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,若设增种x棵枇杷树,投产后果园枇杷的总产量为y千克,则y与x之间的函数关系式为_________.30.永嘉县九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为xm,高度为ym,则y关于x的函数解析式是_________.实际问题与二次函数选择填空习题精选(含答案)参考答案与试题解析一.选择题(共22小题)1.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()﹣,2﹣3.(2010•石家庄一模)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是(),解得=±故其正根为+5.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的222==11.(2014•滨州二模)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是()12.(2010•丽水)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是()y=,×13.(2009•庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是(),﹣14.(2007•自贡)进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百15.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是16.一个容器内盛满纯酒精50kg,第一次倒出若干千克纯酒精后加入同千克的水;第二次又倒出相同千克的酒精溶C.,然后根据酒精质量,第二次倒出后容器内剩余的质量为:×=50)17.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为18.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利xx20+)x19.两个正方形的周长和是10,如果其中一个正方形的边长为a,则这两个正方形的面积的和S关于a的函数关系.,另一个正方形的边长为))20.有长24m的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()21.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x22.如图,铅球的出手点C距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为()t t﹣t.(t二.填空题(共8小题)23.(2014•昌平区二模)如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为.(y=﹣x24.(2014•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.25.(2012•崇明县一模)一个边长为2厘米的正方形,如果它的边长增加x厘米,面积随之增加y平方厘米,那么y关于x的函数解析式是y=x2+4x.26.(2009•泰安)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为y=x2+4x(0<x≤6).=∴,﹣y=x27.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为y=(20﹣2t)2.y=(28.某商店以40元的价格购进了一批服装,若按每件50元出售时,一周内可销售100件;当售价每提高1元时,其周售量就会减少5件.若设每件售价为x元,总利润是y元,则y关于x的函数解析式为y=﹣5x2+550x﹣14000.29.某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,若设增种x棵枇杷树,投产后果园枇杷的总产量为y千克,则y与x之间的函数关系式为y=(100+x)(40﹣0.25x).30.永嘉县九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为xm,高度为ym,则y关于x的函数解析式是.,﹣.。

二次函数习题带答案

二次函数习题带答案

二次函数习题带答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二十二章、二次函数二次函数一、选择题1、抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且经过点P(3,0).则a+b+c的值为( B )A.-1 B.0 C.1 D.22、已知二次函数的图象经过(1,3)、(2,7)和(0,1)三点,则该函数的解析式是( A )A.y=x2+x+1 B.y=x2+3x+2 C.y=x2-2x+3 D.y=2x2+x+13、已知二次函数的图象的顶点为(1,1),且经过点(2,2)则该函数的解析式是( C )A.y=x2+x+1 B.y=x2+2x+1 C.y=x2-2x+2 D.y=x2-x+14、无论m为任何实数,二次函数y=2x+(2-m)x+m的图象总过的点是( A )A.(1,3) B.(1,0) C.(-1,3) D.(-1,0)5、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b-c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是( B )A.③④ B.②③ C.①④ D.①②③6、如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(-2,0),顶点是(1,3).下列说法中不正确的是( C )A.抛物线的对称轴是x=1 B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0) D.当x=1时,y有最大值是37、y=(x-2)2+2的图象可由y=x2的图象( A )A.向右平移2个单位,向上平移2个单位得到;B.向右平移2个单位,向下平移2个单位得到;C.向左平移2个单位,向上平移2个单位得到;D.向左平移2个单位,向下平移2个单位得到。

8、抛物线y=x2-4x+5的顶点P到x轴的距离为PQ,则△PQO的周长是( A )A.53+ B.53- C.8 D.56+9、二次函数y=ax2+bx+c的图象如图所示,那么a,b,c的符号是( C )A.a>0,b>0,c<0 B.a<0,b<0,c>0C.a<0,b>0,c>0 D.a<0,b<0,c<010、某拱门跨度为2米,高度为2米,若边长为a米的立方体恰好能从此门通过,则a为( A )米.A.1 B.2 C.3 D.4姓名: 教案二、解答题11、已知二次函数y=2x 2+2kx +k 2-4的图象与x 轴的一个交点是A(-2,0),求该二次函数的顶点坐标.解:(-1,-2)12、已知二次函数y=ax 2+bx +c 的图象经过点(0,0),(2,0),(1,1)。

二次函数——选择填空题

二次函数——选择填空题

二次函数——选择填空题1、已知两点),3(),,5(21y B y A -均在抛物线)0(2≠++=a c bc ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( )A .50->xB .10->xC .150-<<-xD .320<<-x解析:由点),(00y x C 是该抛物线的顶点,且021y y y ≥>,所以0y 为函数的最小值,即得出抛物线的开口向上,因为021y y y ≥>,所以得出点A 、B 可能在对称轴的两侧或者是在对称轴的左侧,当在对称轴的左侧时,y 随x 的增大而减小,因此0x >3,当在对称轴的两侧时,点B 距离对称轴的距离小于点A 到对称轴的距离,即得0x -(-5)>3-0x ,解得10->x ,综上所得:10->x ,故选B2、二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .当﹣1<x <3时,y >0C .c <0D .当x≥1时,y 随x 的增大而增大解答:解:A .抛物线的开口方向向下,则a <0.故本选项错误;B .根据图示知,抛物线的对称轴为x=1,抛物线与x 轴的一交点的横坐标是﹣1,则抛物线与x 轴的另一交点的横坐标是3,所以当﹣1<x <3时,y >0.故本选项正确;C .根据图示知,该抛物线与y 轴交与正半轴,则c >0.故本选项错误;D .根据图示知,当x≥1时,y 随x 的增大而减小,故本选项错误.故选B .3、若二次涵数y =ax +bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是( D ). A .a >0B .b 2-4ac ≥0C .x 1<x 0<x 2D .a (x 0-x 1)( x 0-x 2)<0【解题思路】 抛物线与x 轴有不同的两个交点,则240b ac ->,与B 矛盾,可排除B 选项;剩下A 、C 、D 不能直接作出正误判断,我们分a >0,a <0两种情况画出两个草图来分析(见下图).由图可知a 的符号不能确定(可正可负,即抛物线的开口可向上,也右向下),所以012,,x x x 的大小就无法确定;在图1中,a >0且有102x x x <<,则0102()()a x x x x --的值为负;在图2中,a <0且有102x x x <<,则0102()()a x x x x --的值也为负.所以正确选项为D.4、 二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面直角坐标系中的大致图象是( B )解析:由二次函数图象,知a <0,c >0,2ba->0,所以,b >0, 所以,反比例函数图象在一、三象限,排除C 、D ,直线y =cx +a 中,因为a <0,所以,选B 。

二次函数题目及答案

二次函数题目及答案

二次函数题目及答案一、 选择题:1.抛物线y=(x-2)²+3的对称轴是( )A. 直线x=-3B. 直线x=3C. 直线x=-2D.直线x=23.已知二次函数y=ax ²+bx+c, 且a<0, a-b+c>0, 则一定有 ( )A. b ²-4ac>0B. b ²-4ac=0C. b ²-4ac<0D. b ²-4ac ≤04.把抛物线y=x ²+bx+c 向右平移3个单位,再向下平移2个单位,所得图象的解析式是 y=x ²-3x+5.则有( )A. b=3. c= 7B. b=-9, c=-15C. b=3, c=3D. b=-9, c=216. 抛物线 y=x ²-2x+3| 的对称轴是直线( )A. x=-2B. x=2C. x=- 1D. x=12.二次函数y=ax ²+bx+c 的图象如右图,则点M (b ,c a)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5. 下面所示各图是在同一直角坐标系内, 二次函数y=ax²+(a+c)x+c与一次函数 y=ax+c 的大致图象,有且只有一个是正确的,正确的是( )7. 二次函数 y=(x-1)²+2的最小值是( )A. - 2B.2C. - 1D.18. 二次函数 y=ax²+bx+c的图象如图所示,若 M=4a+2b+cN=a-b+c, P=4a-b, 则 ( )A. M>0, N>0, P>0B. M<0, N>0, P>0C. M>0, N<0, P>0D. M<0, N>0, P<0二、填空题:9. 将二次函数y=x²-2x+3配方成y=(x-h)²+k的形式,则y= .10. 已知抛物线y=ax²+bx+c 与x轴有两个交点,那么一元二次方程ax²+bx+c= 0 的根的情况是 .11. 已知抛物线y=ax²+x+c 与x 轴交点的横坐标为-1, 则a+c= .12.请你写出函数 y=(x+1)².与y=x²+1 具有的一个共同性质: .13.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式: .14. 如图,抛物线的对称轴是x=1,与x轴交于A、 B两点,若B点坐标是(√3,0),则A点的坐标是 .三、解答题:1. 已知函数y=x²+bx-1的图象经过点(3,2).(1) 求这个函数的解析式.(2)当x>0时,求使y≥2的x的取值范围.2、如右图,抛物线y =-x²+5x+n 经过点A(1,0),与y轴交于点 B.(1) 求抛物线的解析式:(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.参考答案一、选择题:二、填空题:9. y=(x-1)²+2 10.有两个不相等的实数根 11.112.(1)图象都是抛物线:(2)开口向上:(3)都有最低点(或最小值)13. y=-x²+2x+1 等(只须a<0, c>0)14.(2−√3,0)三、解答题:1.解: (1) ∵函数 y=x²+bx-1 的图象经过点(3, 2), ∴9+3b-1=2.解得b=-2.∴函数解析式为y=x²-2x-1.(2) 当x=3时, y=2.根据图象知当x≥3时, y≥2∴当x>0时,使y≥2的x的取值范围是x≥3.2.解:(1)由题意得-1+5+n=0.∴n=-4.∴抛物线的解析式为 y=-x²+5x-4.(2) ∵点A的坐标为(1,0),点B的坐标为(0,-4).∴OA=1, OB=4.在 Rt△OAB中, AB=√OA2+OB2=√17,且点P在y轴正半轴上。

二次函数练习题及答案解析

二次函数练习题及答案解析

二次函数练习题及答案解析二次函数练习题及答案解析(初三数学)学好数学要多做练习、上课认真听讲、不会的题要问老师、做作业要当做考试来看待、不要在心理上抵触数学、平时多抽出一些时间来练习数学,下面是我为大家整理的二次函数练习题及答案解析,希望对您有所帮助!二次函数练习题及答案解析一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab0,c0B ab0,c0C ab0,c0D ab0,c06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大答案与解析:一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C 6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元九年级数学二次函数练习题一、填空题:(每空2分,共40分)1、一般地,如果,那么y叫做x的二次函数,它的图象是一条。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 已知二次函数\( y = ax^2 + bx + c \),当\( a < 0 \)时,抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:B2. 对于二次函数\( y = -2x^2 + 3x + 1 \),其顶点的横坐标是:A. \( -\frac{1}{2} \)B. \( -\frac{3}{2} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)答案:C3. 若二次函数\( y = x^2 + 2x + 1 \)与x轴有交点,则交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题4. 二次函数\( y = 3x^2 - 6x + 5 \)的对称轴方程是\_\_\_\_\_\_\_\_\_\_\_\_。

答案:\( x = 1 \)5. 当\( x = 2 \)时,二次函数\( y = x^2 - 4x + 3 \)的值为\_\_\_\_\_\_\_\_\_\_\_\_。

答案:-1三、解答题6. 已知二次函数\( y = -x^2 + 2x + 3 \),求其与x轴的交点坐标。

解:令\( y = 0 \),得\( -x^2 + 2x + 3 = 0 \)。

解此方程,我们可以使用求根公式:\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]代入\( a = -1, b = 2, c = 3 \),得:\[ x = \frac{-2 \pm \sqrt{4 + 12}}{-2} = \frac{-2 \pm\sqrt{16}}{-2} = 1 \pm 2 \]因此,与x轴的交点坐标为\( (-1, 0) \)和\( (3, 0) \)。

7. 已知抛物线\( y = 2x^2 - 4x + 1 \),求其顶点坐标。

解:顶点的横坐标可以通过公式\( x = -\frac{b}{2a} \)求得,代入\( a = 2, b = -4 \),得:\[ x = -\frac{-4}{2 \times 2} = 1 \]将\( x = 1 \)代入原方程求得\( y \)值:\[ y = 2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1 \]因此,顶点坐标为\( (1, -1) \)。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。

2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。

在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。

3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。

抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数选择、填空大练兵 姓名:___________班级:_________
一、选择题
1.如图1是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )
A .-1<x <5
B .x >5
C .x <-1且x >5
D .x <-1或x >5
2.已知二次函数y=ax 2+bx+c (a≠0)的图象如图2所示对称轴为x=-2
1.下列结论中,正确的是( )
A .abc >0
B .a+b=0
C .2b+c >0
D .4a+c <2b
3. 二次函数y=ax 2+bx+c (a≠0)的图象如图3所示,其对称轴为直线x=1,有如下结论:
①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2,
则正确的结论是( )
A .①②
B .①③
C .②④
D .③④
图1 图2 图3
4.已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )
A.1个
B.2个
C.3个
D.4个
5. 已知二次函数y=ax 2+bx+c (a≠0)的图象如图4所示,下列结论错误的是()
A .abc >0
B .3a >2b
C .m (am+b )≤a -b (m 为任意实数)
D .4a-2b+c <0
6. 二次函数y=a (x+m )2+n 的图象如图5,则一次函数y=mx+n 的图象经过( )
A .第一、二、三象限
B .第一、二、四象限
C .第二、三、四象限
D .第一、三、四象限
图4 图5
二、填空
7.二次函数y=x2-2x-3的图象如图6所示.当y<0时,自变量x的取值范围是_______.
8.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图7所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是:_____________________(把正确的序号都填上).
9.在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为________.
图6 图7 第九题图
10.如图8所示,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n-1B n都为等腰直角三角形(点B0是坐标原点),则△A2011B2010B2011的腰长=________.
11.如图9,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B.(1)写出点B的坐标________;
(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为__________.
12.如图10所示,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的命题是________.(只要求填写正确命题的序号)
图8 图9 图10。

相关文档
最新文档