矩阵分析试题2008

合集下载

矩阵分析2008-09(A)

矩阵分析2008-09(A)

北京交通大学2002008-20098-2009学年第一学期硕士研究生学年第一学期硕士研究生矩阵分析矩阵分析矩阵分析考试试卷考试试卷考试试卷(A)(A)专业班级学号姓名题号一二三四五六七总分得分一、(8分)设线性映射A :]4R x ⎡→⎣]3R x ⎡⎣且T (())()d f x f x dx=,对任意∈)(x f ]4R x ⎡⎣.求线性映射T 在基2323,,,x x x 及基22,3,x x 下的矩阵表示.其中,]210121{|}n n i nR x a a x a x a x a R −−⎡=++++∈⎣⋯.二(共14分,问题(1)4分,问题(2)10分)(1)叙述矩阵范数的定义(2)设3201i A i −⎛⎞=⎜⎟⎝⎠,求矩阵范数1A ,∞A ,2A ,F A .(这里12−=i );三求解题(共18分)(1)(6分)求矩阵的满秩分解。

(2)(4分)设三阶矩阵的特征多项式与最小多项式分别是:证明:13214261073931114128510A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 322()5()5f m λλλλλλ=−=−与4125A A=(3)(8分)求矩阵1010111A i i −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠的正交三角分解UR A =,其中U 是酉矩阵,R 是正线上三角矩阵.四证明题(共16分,每小题各8分):1设n 阶矩阵002,()k A A k ≠=≥.证明:A 不能与对角矩阵相似.2设,A B 是n 阶正规矩阵,试证:A 与B 相似的充要条件是A 与B 酉相似.五(14分)设01010i A i i i −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,验证A 是Hermite 矩阵并求酉阵U 使得1U AU −是对角矩阵.六(共30分,每小题6分)设308316205A ⎛⎞⎜⎟=−⎜⎟⎜⎟−−⎝⎠,(1)求A E −λ的Smith 标准形(写出主要步骤);其中E 为3阶单位阵。

(2)写出A 的初等因子和A 的最小多项式;(3)求相似变换矩阵P 和A 的Jordan 标准形J ,使得J AP P =−1;(4)求2008J 和矩阵函数)(A f ;(5)求2ln()A E +计算行列式2sin()A π.。

全国2008年4月高等教育自学考试

全国2008年4月高等教育自学考试

浙02198# 线性代数试题 第 1 页(共 4 页)全国2008年4月高等教育自学考试线性代数试题课程代码:02198说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 为m×n 矩阵,B 为n×m 矩阵,m ≠n, 则下列矩阵中为n 阶矩阵的是( )A.B T A TB.A T B TC.ABAD.BAB 2.设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A.-15B.-6C.6D.153.设A 为n 阶方阵,n ≥2,则|-5A |=( )A.(-5)n |A |B.-5|A |C.5|A |D.5n |A |4.设A =⎪⎪⎭⎫ ⎝⎛4321,则|A *|=( ) A.-4B.-2C.2D.45.向量组α1,α2…,αS (s>2)线性无关的充分必要条件是( )A. α1,α2,…,αS 均不为零向量B. α1,α2,…,αS 中任意两个向量不成比例C. α1,α2,…,αS 中任意s-1个向量线性无关D. α1,α2,…,αS 中任意一个向量均不能由其余s-1个向量线性表示浙02198# 线性代数试题 第 2 页(共 4 页) 6.设3元线性方程组Ax =b ,A 的秩为2,η1,η2,η3为方程组的解,η1+η2=(2,0,4)T ,η1+η3=(1,-2,1)T ,则对任意常数k ,方程组Ax =b 的通解为( )A.(1,0,2)T +k (1,-2,1)TB.(1,-2,1)T +k (2,0,4)TC.(2,0,4)T +k (1,-2,1)TD.(1,0,2)T +k (1,2,3)T7.设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是() A.E-A B.-E-AC.2E-AD.-2E-A8.设λ=2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于() A.41B.21C.2D.49.设3阶方阵A 的秩为2,则与A 等价的矩阵为( )A.⎪⎪⎪⎭⎫⎝⎛000000111 B. ⎪⎪⎪⎭⎫⎝⎛000110111C. ⎪⎪⎪⎭⎫ ⎝⎛000222111D. ⎪⎪⎪⎭⎫⎝⎛33322211110.二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( )A.1B.2C.3D.4二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案。

考研数一08真题

考研数一08真题

考研数一08真题2008年考研数学一真题中,试题主要分为两个部分:选择题和填空题。

选择题部分包括20道选择题,填空题部分包括10道填空题。

本文将以试题题号为标记逐一解析各道题目。

选择题部分解析:题目1:设A是n阶方阵,且满足A^2 = A,则下列结论正确的是()A. A = 0B. A = E(单位矩阵)C. A是对称方阵D. A的秩为1这道题目考察了对方阵幂运算的理解。

根据A^2 = A,我们可以发现A作为方阵必然有两种可能:A是零矩阵或者A是单位矩阵。

因此,选项B“A = E”为正确答案。

题目2:设f(x) = x^3 - 3x,则f'(x)的零点的个数是()A. 0B. 1C. 2D. 3这道题目考察了对函数的导数与零点的关系的理解。

f'(x)是f(x)的导函数,即f'(x) = 3x^2 - 3。

根据函数导数存在零点的性质,当f'(x) = 0时,f(x)存在极值点或转折点。

解方程3x^2 - 3 = 0,得到x = ±1。

因此,f'(x)的零点有2个,选项C“2”为正确答案。

填空题部分解析:题目1:若a是方程x^4 - x^3 - x + 1 = 0的一个实根,则a^3 - a^2 -a + 1的值等于________。

这道题目考察了对方程实根的运算。

首先,我们可以将方程x^4 -x^3 - x + 1 = 0进行变形,得到x(x^3 - x^2 - 1) + 1 = 0。

因为a是方程的一个实根,所以该式等于0,即a(a^3 - a^2 - 1) = -1。

因此,a^3 - a^2 -a + 1 = (-1)/a,即填空的值为-1/a。

题目2:设f(x) = (cosx + sinx)^2,g(x) = (cosx - sinx)^2,则f(x) -g(x)的最小值是________。

这道题目考察了对函数最小值的求解。

我们先展开f(x)与g(x):f(x) = cos^2 x + 2sinx cosx + sin^2 xg(x) = cos^2 x - 2sinx cosx + sin^2 x再计算f(x) - g(x):f(x) - g(x) = 4sinx cosx则f(x) - g(x)的值不为负数,且取最小值0,因此填空的答案为0。

矩阵分析试卷

矩阵分析试卷

2007《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)1. 设函数矩阵⎪⎪⎪⎭⎫⎝⎛=001t e -sint t e cost A(t)t2t 试求 )t A(t d d ; )t A(lim 0t →.2. 设矩阵⎪⎪⎭⎫ ⎝⎛=441-0A 试求 Ae . 3. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛110011-111.4. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-020021。

二、证明题(每题10分,共30分)1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321183232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥+=⋂2121V V V V .3. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过程.2007《矩阵分析》试题(B 卷)一、 计算题 (每题10分,共40分)5. 设函数矩阵⎪⎪⎪⎭⎝=003t 02e eA(t)t 2t-试求 t d )t A(1⎰.6. 设矩阵⎪⎪⎭⎫⎝⎛=12-10A 试求 Ae . 7. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛011-1-3241-1.8. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎪⎪⎭⎫⎝⎛1213214321.二、证明题(每题10分,共30分)4. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321113423232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.5. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥⋂=+2121V V V V .6. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)3. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?4. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 给出主要的过程.2008硕士研究生《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)9. 设函数矩阵⎪⎪⎪⎭⎝=001t e -sint A(t)t试求 t )d t A(1⎰; )t A(lim 0t →.10. 设矩阵⎪⎪⎭⎫⎝⎛=441-0A 试求 sinA . 11. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛11002-1-011.12. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-010012。

矩阵分析试卷2009(答案)

矩阵分析试卷2009(答案)

五邑大学 试 卷课程:矩阵分析在3R 中,定义),,2(),,(132321321x x x x x x x x x +--=ℜ,则ℜ是否是3R 上的线性变换?如果是求出ℜ在某一基下的矩阵,并求ℜ的核与值域。

(16分)解:1)3123123(,,),(,,),x x x y y y R k R αβ∀==∈∈,则有()()(),()()k k αβαβααℜ+=ℜ+ℜℜ=ℜ,所以ℜ是3R 上的线性变换。

2)取3R 的一组基123(1,0,0),(0,1,0),(0,0,1)ααα===,则123()(2,0,1),()(1,1,0),()(1,1,0)αααℜ=ℜ=-ℜ=-,所以123123211(,,)(,,)011100αααααα--⎛⎫⎪ℜ= ⎪ ⎪⎝⎭,故ℜ在该基下的矩阵为A ,211011100A --⎛⎫ ⎪= ⎪ ⎪⎝⎭。

3)ℜ的值域为向量12()(2,0,1),()(1,1,0)ααℜ=ℜ=-生成的子空间。

4)ℜ的核=3{|()0}R αα∈ℜ==3{|0}TR A αα∈=,线性方程组0T A α=的基础解系为11,η⎛⎫⎪= ⎪⎪故ℜ的核是{|}T k k R η∀∈。

二、(12分)设η是欧氏空间V 中一单位向量,定义ηαηαα),(2)(-=ℜ,证明ℜ是正交变换。

解:,,V k R αβ∀∈∈,有()()2(,)2(,)2(,)αβαβηαβηαηαηβηβηℜ+=+-+=-+-; ()2(,)2(,)(2(,))()k k k k k k k ααηαηαηαηαηαηαℜ=-=-=-=ℜ; ((),())(2(,),2(,))(,)2(,)(,)2(,)(,)4(,)(,)(,)(,)2(,)(,)2(,)(,)4(,)(,)(,)αβαηαηβηβηαβηαηβηβαηηαηβηηαβηαηβηβαηηαηβαβℜℜ=--=--+=--+=三、证明对任意的n n ⨯矩阵n n ij a A ⨯=)(,若定义∑∑===ni nj ijaA 11||||||,则|| ∙||是一种矩阵范数,但不是算子范数(从属于向量范数的矩阵范数)。

2008 年线性代数考研试题

2008 年线性代数考研试题

2008年线性代数考研试题[数一]1.设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若,则[ C ]O =3A (A )E-A 不可逆,E+A 不可逆 (B )E-A 不可逆,E+A 可逆(C )E-A 可逆,E+A 可逆 (D )E-A 可逆,E+A 不可逆【考点】 矩阵的可逆性2.设A 为二阶矩阵,21αα,为线性无关的二维列向量,21212A 0A αααα+==,,则A 的非零特征值为 1【考点】 矩阵的特征值3.设βα,为三维列向量,矩阵,其中的转置,的转置.T T A ββαα+=αα为T ββ为T (1) 证明 (2)若2 (A)≤r βα,线性相关,则2 (A)<r【考点】 矩阵的秩【祥解】 (1)βα,为三维列向量,则 1)()(,1)()(T ≤≤≤≤βββαααr r r r T 211)()()(r(A)T T =+≤+≤+=T T r r r ββααββαα,即2 (A)≤r .(2) 已知βα,线性相关,不妨设αβk =,则,21)())1(()))((()(r(A)2T T <≤=+=+=+=T T T T r k r k k r r ααααααααββαα即有.2 (A)<r 4.设n 元线性方程组,其中 b Ax = , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2a a 012a a 012a A 22%%%T T n b x )0,...0,1(,),...,(x x 1==(1) 证明行列式na n )1(A +=(2) a 为何值,方程组有唯一解?求x 1(3) a 为何值,方程组有无穷多解?求通解.【考点】 线性方程组解的结构和通解【祥解】 (1)利用行列式的性质可证n a n )1(A +=.(2) 若使方程组有唯一解,则00)1(A ≠≠+=a a n n ,即.则由克莱姆法则得an n x )1(1+=. (3) 若使方程组有无穷多解,则00)1(A ==+=a a n n ,即.把代入矩阵A 中,显然有0=a 1)()(−==n A r B A r #,方程组有一个基础解向量.取自由未知量x 1=1,得到它的基础解系为;代入后方程组化为,特解取为,则方程组的通解为为任意常数)k k T ()0,0,0,1("0=a ⎩⎨⎧====01432n x x x x "T )0,...0,0,1,0( . 为任意常数)k k T T ()0,...0,1,0()0,...0,0,1(+。

矩阵分析第3章习题答案

矩阵分析第3章习题答案

第三章1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量1212(,,,),(,,,)n n x x x y y y αβ== 定义内积为(,)H A αβαβ=(1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。

2、 已知2111311101A --⎡⎤=⎢⎥-⎣⎦,求()N A 的标准正交基。

提示:即求方程0AX =的基础解系再正交化单位化。

3、 已知308126(1)316,(2)103205114A A --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦试求酉矩阵U ,使得HU AU 是上三角矩阵。

提示:参见教材上的例子4、 试证:在nC 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。

5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使HU AU 为对角矩阵,已知131(1)612A ⎡⎢⎢⎢=⎢⎢⎢⎥⎢⎥⎣⎦01(2)10000i A i -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,434621(3)44326962260ii i A i i i i i +--⎡⎤⎢⎥=----⎢⎥⎢⎥+--⎣⎦11(4)11A -⎡⎤=⎢⎥⎣⎦6、 试求正交矩阵Q ,使TQ AQ 为对角矩阵,已知220(1)212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,11011110(2)01111011A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,222(2)254245A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。

反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。

矩阵分析所有习题及标准答案

矩阵分析所有习题及标准答案

证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1 =((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
注:可以不证 AA*=E; (E-(T+iS))(E+(T+iS))=(E+(T+iS))(E-(T+iS)) =(E+T+iS)(E-T-iS)
#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P*)-1BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,和det(A-1-B)=0的根全为实数(见例 3.9.1的相关证明)
习题3-13
#3-13:若AHnn,A2=A,则存在UUnn使得 U*AU=diag(Er,0),r=rank(A).
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. ∵ A2=A 和 A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U* ∴ i2=i,即i{0,1},i=1,…,n,. 取1,…,n的排列使特征值0全排在后面,则(*) 式即给出所需答案.

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。

研究生课程-《矩阵分析》试题及答案

研究生课程-《矩阵分析》试题及答案

第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。

由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。

故1x ,2x ,3x 是线性无关的。

(2)用反证法。

假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。

所以,1x +2x +3x 不是σ的特征向量。

二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。

四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。

08年1月线性代数(经管类)试题答案

08年1月线性代数(经管类)试题答案

全国2008年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为三阶方阵且2||-=A 则=|3|A A T ( D ) A .-108B .-12C .12D .1082.如果方程组⎪⎩⎪⎨=+=-04043232321kx x x x 有非零解,则k =( B )A .-2B .-1C .1D .2A .BA AB =B .111)(---+=+B A B AC .||||||B A B A +=+D .T T T B A B A +=+)(4.设A 为四阶矩阵,且2||=A ,则=*||A ( C ) A .2B .4C .8D .1212A .)1,1,2(B .)2,0,3(-C .)0,1,1(D .)0,1,0(-s 21的秩不为()的充分必要条件是( C ) A .s ααα,,,21 全是非零向量 B .s ααα,,,21 全是零向量C .s ααα,,,21 中至少有一个向量可由其它向量线性表出D .s ααα,,,21 中至少有一个零向量7.设A 为m n ⨯矩阵,方程AX =0仅有零解的充分必要条件是( C ) A .A 的行向量组线性无关 B .A 的行向量组线性相关 C .A 的列向量组线性无关D .A 的列向量组线性相关..A .||||B A =B .秩(A )=秩(B)C .存在可逆阵P ,使B AP P =-1D .BE A E -=-λλ9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( A )A .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001B .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011C .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001D .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤10002010110.设有二次型321321),,(x x x x x x f +-=,则),,(321x x x f ( C ) A .正定 B .负定 C .不定 D .半正定11.若0211=k ,则k =21. 12.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B =⎢⎣⎡⎥⎦⎤010201,则AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623.13.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤220010002,则=-1A ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1.)= __1__15.已知A 有一个特征值2-,则E A B 2+=必有一个特征值__6__.16.方程组0321=-+x x x 的通解是k k )1,0,1()0,1,1(21+-.123__2__18.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200020002的全部特征向量是T T T k k k )1,0,0()0,1,0()0,0,1(++不全为零)(,,k k k .__-16__20.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是3121232221321243),,(x x x x x x x x x x f +++-=. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式1002210002100021的值. 解:151500021000210002118021********2110402100021000211002210002100021-=-==-=.22.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤101111123,求1-A .解:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001101111123→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤001010100123111101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---301110100220010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110100200010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110200200010202→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----121110121200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1100010001,1-A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1.23.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011,B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A ,B ,X 满足E X B A B E T T =--)(1,求X ,1-X .解:由E X B A B E T T =--)(1,得E X A B E B T =--)]([1,即E X A BB BE T =--)(1,E X A B T =-)(,=-1X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100020002100020002)(TT A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10002/10002/1X . 24.求向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)6,5,1,2(4=α,)0,2,1,1(5-=α 的一个极大线性无关组.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--021165121470321304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4002130213021304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4004000000021304211→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0004000000021304211, 421,,ααα是一个极大线性无关组.25.求非齐次方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=+++-=-+++=++++12334523622232375432154325432154321x x x x x x x x x x x x x x x x x x x 的通解.解:=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12133452362210231123711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------236281023622102362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0006000000002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0000000006002362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362010711011→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---00000000010023620101651001, ⎪⎪⎪⎩⎪⎪⎪⎨⎧===--=++-=5544354254106223516x x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1006501021000231621k k .26.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----020212022,求P 使AP P 1-为对角矩阵.解:λλλλλλλλλ4)2(4)2)(1(2021222||-----=--=-A E 86323+--=λλλ )2(3)42)(2()2(3)8(23+-+-+=+-+=λλλλλλλλ)4)(1)(2()45)(2(2--+=+-+=λλλλλλ,特征值21-=λ,12=λ,43=λ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-220220012220232012220232024A E λ→⎪⎪⎪⎭⎫⎝⎛--000220012→⎪⎪⎪⎭⎫ ⎝⎛--000110012→⎪⎪⎪⎭⎫ ⎝⎛--000110102→⎪⎪⎪⎭⎫ ⎝⎛--0001102/101,⎪⎪⎩⎪⎪⎨⎧===33323121x x x x xx ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=112/11α; 对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-=-120120021120101021120202021A E λ→⎪⎪⎪⎭⎫ ⎝⎛-000120021→⎪⎪⎪⎭⎫ ⎝⎛--000120101→⎪⎪⎪⎭⎫ ⎝⎛0002/110101,⎪⎪⎩⎪⎪⎨⎧=-=-=33323121x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛--=12/112α;对于43=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000210022420210022420232022A E λ→⎪⎪⎪⎭⎫ ⎝⎛000210011→⎪⎪⎪⎭⎫⎝⎛-000210201,⎪⎩⎪⎨⎧=-==33323122xx x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛-=1223α. 令⎪⎪⎪⎭⎫ ⎝⎛---=11122/11212/1P ,则P 是可逆矩阵,使=-AP P 1⎪⎪⎪⎭⎫⎝⎛-400010002. 四、证明题(本大题6分)27.设321,,ααα是齐次方程组Ax =0的基础解系,证明1α,21αα+,321ααα++也是Ax =0的基础解系.证: (1)Ax =0的基础解系由3个线性无关的解向量组成.(2)321,,ααα是Ax =0的解向量,则1α,21αα+,321ααα++也是Ax =0的解向量. (3)设0)()(321321211=+++++ααααααk k k ,则0)()(332321321=+++++αααk k k k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,系数行列式01100110111≠=,只有零解0321===k k k ,所以1α,21αα+,321ααα++线性无关.由(1)(2)(3)可知,1α,21αα+,321ααα++也是Ax =0的基础解系.。

全国2008年07月高等教育自学考试 线性代数〔经管类〕试题.

全国2008年07月高等教育自学考试 线性代数〔经管类〕试题.

全国自考2008年7月线性代数(经管类试卷课程代码:04184试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;秩(A)表示矩阵A的秩;|A|表示A的行列式;E表示单位矩阵。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设3阶方阵A=[],其中(i=1, 2, 3)为A的列向量,且|A|=2,则|B|=|[]|=()A.-2B.0C.2D.62.若方程组有非零解,则k=()A.-1B.0C.1D.23.设A,B为同阶可逆方阵,则下列等式中错误的是()A.|AB|=|A| |B|B. (AB-1=B-1A-1C. (A+B-1=A-1+B-1D. (ABT=BTAT4.设A为三阶矩阵,且|A|=2,则|(A*)-1|=()A. B.1C.2D.45.已知向量组A:中线性相关,那么()A. 线性无关B. 线性相关C. 可由线性表示D. 线性无关6.向量组的秩为r,且r ,则()A. 线性无关B. 中任意r个向量线性无关C. 中任意r+1个向量线性相关D. 中任意r-1个向量线性无关7.若A与B相似,则()A.A,B都和同一对角矩阵相似B.A,B有相同的特征向量C.A-λE=B-λED.|A|=|B|8.设,是Ax=b的解,η是对应齐次方程Ax=0的解,则()A. η+是Ax=0的解B. η+(-)是Ax=0的解C. +是Ax=b的解D. -是Ax=b的解9.下列向量中与=(1,1,-1)正交的向量是()A. =(1,1,1)B. =(-1,1,1)C. =(1,-1,1)D. =(0,1,1)10.设A=,则二次型f(x1,x2=xTAx是()A.正定B.负定C.半正定D.不定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

西北工业大学2008硕士研究生矩阵论试题及答案

西北工业大学2008硕士研究生矩阵论试题及答案

0 1 13 0 26 65 0 10 0 15
G G T GG T


1
0 0 26 0 1 13 0 2 20 0 30 1 1 0 , A G F 60 10 0 4 650 0 40 0 0 0 78 0 3 39
1 令S H 0 ,则有 H1
2 2 1 0 0 1 1 0 Q S T H0 1 H 1 3 2 2 1 2 2 0 2 3 1 4 3 1 2 1 , A QR ,R 0 5 0 0 2
m( ) ( 2) . 令 f ( ) e t m( ) g ( ) (a b ) ,则有
M2008B 试题及解答
B3
f (0) 1 2t f (2) e
e
At

1 a 2t a 2b e
a 1 2t b (e 1) 2
1 行 0 解 1. A 0 0
0 0 3 0 1 1 2 0 0 2 0 3 1 0 FG ,A 2 0 0 0 0 0 1 2 0 0 0 0 0 3
2. F F T F


1
FT
a b a b a b b a T ( E11 ) E11 , T ( E12 ) E12 b a 0 0 b a 0 0 a b 0 0 a b 0 0 T ( E 21 ) E 21 , T ( E 22 ) E 22 b a a b b a b a
则 T 的核 N (T ) 的一个基为(

大连理工大学数值分析历年真题与答案(研究生期末卷)

大连理工大学数值分析历年真题与答案(研究生期末卷)


7.设 A 是 n 阶正规矩阵,则 A 2

8.求解一阶常微分方程初值问题 u(t ) (t 2 1)u t , u(t0 ) u0 的向后(隐式) Euler 法的显式化的格式为: 9.设 a 211.001 12 为 x 的近似值,且 x a 0.5 10 2 ,则 a 至少有 。
A-5
1 3 四、 (4 分)求 Householder 变换矩阵将向量 x 2 化为向量 y 0 . 2 0
五、 (12 分)写出解线性方程组的 Jacobi 法,G-S 法和超松弛(SOR)法的矩阵表示形式, 并根据迭代法 x ( k 1) Bx ( k ) f 对任意 x ( 0) 和 f 均收敛的充要条件为 ( B) 1 , 证明若线性方 程组 Ax b 中的 A 为严格对角占优矩阵, 则超松弛(SOR)法当松弛因子 (0,1] 时收敛.
x1 3 x2 3 x1 x2 2 x x 2 1 4 4 4 x3 7
A 1, L , U
m1
(1)列主元消元法求出上述方程组的解,并计算
和 x 2;
(2)试问用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解上述方程组是否收敛? ( 3) 请给出可求出上述方程组解的收敛的 Jacobi、 Gauss-Seidel 迭代法的分量形式的迭 代公式,并说明其收敛性。
五、 (12 分)求满足下列插值条件的分段三次多项式( [3,0] 和 [0,1] ), 并验证它是不是三次样条函数.
f (3) 27 , f (2) 8 , f (1) 1 , f (0) 0 , x [3,0] ; f (0) 0 , f (0) 0 , f (1) 0 , f (1) 1 , x [0,1] .

2008年全国考研数学一真题及答案.doc

2008年全国考研数学一真题及答案.doc

2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。

【解析】且,则是唯一的零点综上所述,本题正确答案是B。

【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A)(B)(C)(D)【答案】A。

【解析】所以综上所述,本题正确答案是A。

【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为任意常数为通解的是(A)(B)(C)(D)【答案】D。

【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。

【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。

【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。

【方法二】排除法:若取,,则显然单调,收敛,但,为偶数为奇数,显然不收敛,排除A。

若取,显然收敛且单调,但不收敛,排除C和D。

综上所述,本题正确答案是B。

【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则(5)设为阶非零矩阵,为阶单位矩阵,若,则(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。

【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。

【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则的正特征值的个数为(A)(B)1(C)2 (D)3【答案】B。

【解析】所给图形为双叶双曲线,标准方程为二次型正交变换化为标准形时,其平方项的系数就是的特征值,可知的正特征值的个数为1综上所述,本题正确答案是B。

2008年4月全国自考线性代数(经管类)真题参考答案

2008年4月全国自考线性代数(经管类)真题参考答案

2008年4月全国自考线性代数(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A.-15B.-6C. 6D.15答案:C2.A. AB. BC. CD. D答案:C3.A. AB. BC. CD. D 答案:B4.A. AB. BC. CD. D 答案:A5.A.-4B.-2C. 2D. 4 答案:B6.A. AB. BC. CD. D答案:D7.A. AB. BC. CD. D答案:D8.设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是()A.E-AB.-E-AC.2E-AD.-2E-A答案:D9.A. AB. BC. CD. D答案:A10.A. 1B. 2C. 3D. 4答案:C二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1.图中空格处答案应为:______答案:02.图中空格处答案应为:______答案:3.图中空格处答案应为:______答案:4.图中空格处答案应为:______答案:25.图中空格处答案应为:______答案:-26.图中空格处答案应为:______ 答案:7.图中空格处答案应为:______答案:08.图中空格处答案应为:______答案:49.图中空格处答案应为:______答案:10.图中空格处答案应为:______答案:三、计算题(本大题共6小题,每小题9分,共54分)1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:四、证明题(本题6分)1.答案:本资料由广州自考网收集整理,更多自考资料请登录下载考试必看:自考一次通过的秘诀!。

2008年考研高数一真题(附答案)

2008年考研高数一真题(附答案)

2008年考研数学一试题分析、详解和评注一、选择题:(本题共8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数2()ln(2)x f x t dt =+⎰,则()f x '的零点个数为【 】(A) 0. (B) 1. (C) 2. (D) 3. 【答案】应选(B).【详解】22()ln(2)22ln(2)f x x x x x '=+⋅=+.显然()f x '在区间(,)-∞+∞上连续,且(1)(1)(2ln 3)(2ln 3)0f f ''-∙=-∙<,由零点定理,知()f x '至少有一个零点.又2224()2ln(2)02xf x x x''=++>+,恒大于零,所以()f x '在(,)-∞+∞上是单调递增的.又因为(0)0f '=,根据其单调性可知,()f x '至多有一个零点.故()f x '有且只有一个零点.故应选(B).(2)函数(,)arctan x f x y y=在点(0,1)处的梯度等于【 】(A) i (B) i -. (C) j . (D) j - . 【答案】 应选(A).【详解】因为222211f y y x xx yy∂==∂++.222221x f x yx yx yy-∂-==∂++.所以(0,1)1f x∂=∂,(0,1)0f y∂=∂,于是(0,1)(,)i grad f x y =.故应选(A).(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意的常数)为通解的是【 】(A) 440y y y y ''''''+--=. (B) 440y y y y ''''''+++=.(C) 440y y y y ''''''--+=. (D) 440y y y y ''''''-+-=. 【答案】 应选(D).【详解】由123cos 2sin 2xy C e C x C x =++,可知其特征根为11λ=,2,32i λ=±,故对应的特征值方程为2(1)(2)(2)(1)(4)i i λλλλλ-+-=-+3244λλλ=+-- λλλ3244=-+-所以所求微分方程为440y y y y ''''''-+-=.应选(D).(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是【 】.(A) 若{}n x 收敛,则{()}n f x 收敛 (B) 若{}n x 单调,则{()}n f x 收敛 (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. 【答案】 应选(B).【详解】若{}n x 单调,则由函数()f x 在(,)-∞+∞内单调有界知,若{()}n f x 单调有界,因此若{()}n f x 收敛.故应选(B).(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则【 】则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆.(C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C). 【详解】故应选(C).23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=.故E A -,E A +均可逆.故应选(C).(6)设A 为3阶实对称矩阵,如果二次曲面方程()1x xyz A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】(A) 0. (B) 1. (C) 2. (D) 3.【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y z ac+-=.故A 的正特征值个数为1.故应选(B).(7) 设随机变量,X Y 独立同分布且X 的分布函数为()F x ,则max{,}Z X Y =的分布函数为【 】(A) 2()F x . (B) ()()F x F y . (C) 21[1()]F x --. (D) [1()][1()]F x F y --. 【答案】应选(A).【详解】(){}()m ax{,}F z P Z z P X Y z =≤=≤()()2()()()P X z P Y z F z F z F z =≤≤==.故应选(A).(8)设随机变量X N (0,1) , (1,4)Y N , 且相关系数1XY ρ=,则【 】(A) {21}1P Y X =--= (B) {21}1P Y X =-= (C) {21}1P Y X =-+= (D) {21}1P Y X =+= 【答案】应选 (D).【详解】用排除法.设Y aX b =+.由1XY ρ=,知X ,Y 正相关,得0a >.排除(A )和(C ).由(0,1)X N ,(1,4)Y N ,得0,1,()EX EY E aX b aEX b ==+=+.10a b =⨯+,1b =.从而排除(B).故应选 (D).二、填空题:(9-14小题,每小题4分,共24分. 把答案填在题中横线上.) (9)微分方程0xy y '+=满足条件(1)1y =的解是y = . 【答案】 应填1y x =.【详解】由dy y dxx=-,得dy dx yx=-.两边积分,得ln ||ln ||y x C =-+.代入条件(1)1y =,得0C =.所以1y x=.(10)曲线sin()ln()xy y x x +-=在点(0,1)的切线方程为 . 【答案】 应填1y x =+.【详解】设(,)sin()ln()F x y xy y x x =+--,则1(,)cos()1x F x y y xy y x-=+--,1(,)cos()x F x y x xy y x=+-,(0,1)1x F =-,(0,1)1y F =.于是斜率(0,1)1(0,1)x y F k F '=-='.故所求得切线方程为1y x =+.(11)已知幂级数0(2)nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数(2)nnn ax ∞=-∑的收敛域为 .【答案】 (1,5].【详解】由题意,知0(2)nn n a x ∞=+∑的收敛域为(4,0]-,则0nn n a x ∞=∑的收敛域为(2,2]-.所以0(2)nn n a x ∞=-∑的收敛域为(1,5].(12)设曲面∑是z =的上侧,则2xydydz xdzdx xdxdy ∑++=⎰⎰ .【答案】 4π.【详解】作辅助面1:0z ∑=取下侧.则由高斯公式,有2xydydz xdzdx xdxdy ∑++⎰⎰122xydydz xdzdx x dxdy xydydz xdzdx x dxdy ∑∑=++-++⎰⎰⎰⎰2224x y ydV x dxdy Ω+≤=+⎰⎰⎰⎰⎰.2222410()2x y x y dxdy +≤=++⎰⎰d r rdr πθππ222116424=∙==⎰⎰.(13) 设A 为2阶矩阵,12,αα为线性无关的2维列向量,10A α=,2122A ααα=+.则A 的非零特征值为___________. 【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+=⎪⎝⎭. 记12(,)P αα=,因12,αα线性无关,故12(,)P αα=是可逆矩阵.因此 0201AP P ⎛⎫=⎪⎝⎭,从而10201P AP -⎛⎫= ⎪⎝⎭.记0201B ⎛⎫= ⎪⎝⎭,则A 与B 相似,从而有相同的特征值.因为2||(1)01E B λλλλλ--==--,0λ=,1λ=.故A 的非零特征值为1.(14) 设随机变量X 服从参数为1的泊松分布,则{}2P X EX ==____________. 【答案】应填12e.【详解】因为X 服从参数为1的泊松分布,所以1EX D X ==.从而由22()D X EX EX =-得22EX =.故{}{}22P X EX P X ====12e.三、解答题:(15-23小题,共94分. )(15)(本题满分10分) 求极限[]4sin sin(sin )sin limx x x xx→-【详解1】[]4sin sin(sin )sin limx x x xx→-[]3sin sin(sin )limx x x x→-==2cos cos(sin )cos lim3x x x xx→-21cos(sin )lim3x x x→-= 0sin(sin )cos lim6x x xx→=(或221(sin )2lim 3x x x→=,或2221sin (sin )2lim 3x x o x x→+=)16=.【详解2】[]4sin sin(sin )sin limx x x xx→-[]4sin sin(sin )sin limsin x x x xx→-==3sin limt t t t→-201cos lim3t t t→-=2202lim 3t tt →=(或0sin lim 6t tt→=) 16=.(16)(本题满分9分)计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从(0,0)到(,0)π的一段.【详解1】按曲线积分的计算公式直接计算.2sin 22(1)Lxdx x ydy +-⎰2[sin 22(1)sin cos ]xdx x x x dx π=+-⎰2sin 2x xdx π=⎰2cos 2cos 22x xx xdx ππ=-+⎰2cos 22x xdx ππ=-+⎰2sin 2sin 2222x x x dx πππ=-+-⎰22π=-.【详解2】添加辅助线,按照Green 公式进行计算.设1L 为x 轴上从点(,0)π到(0,0)的直线段.D 是1L 与L 围成的区域12sin 22(1)L L xdx x ydy ++-⎰2(2(1)sin 2D x y x dxdy x y ⎡⎤∂-∂=--⎢⎥∂∂⎣⎦⎰⎰4D xydxdy =-⎰⎰sin 04xxydydx π=-⎰⎰22sin x xdx π=-⎰0(1cos 2)x x dx π=--⎰2cos 22xx xdx ππ=-+⎰2sin 2sin 2222x x x dx πππ=-+-⎰22π=-.因为12sin 22(1)sin 20L xdx x ydy xdx π+-==⎰⎰故2sin 22(1)Lxdx x ydy +-⎰22π=-【详解3】令2sin 22(1)LI xdx x ydy =+-⎰212sin 222Lxdx ydy x ydy I I =-+=+⎰对于1I ,记sin 2,2P x Q y ==-.因为0P P yx∂∂==∂∂,故1I 与积分路径无关.10sin 20I xdx π==⎰.对于2I , 2222022sin cos sin 2LI x ydy x x xdx x xdx ππ===⎰⎰⎰2cos 2cos 22x xx xdx ππ=-+⎰2cos 22x xdx ππ=-+⎰2sin 2sin 2222x x x dx πππ=-+-⎰22π=-.故2sin 22(1)Lxdx x ydy +-⎰22π=-17(本题满分11分)已知曲线22220,:35,x y z C x y z ⎧+-=⎨++=⎩求C 上距离xoy 面最远的点和最近的点.【详解1】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数2H z =在条件22220,x y z +-=35x y z ++=下的最大值点和最小值点.构造拉格朗日函数2222(,,,,)(2)(35)L x y z z x y z x y z λμλμ=++-+++-,由222220,20,220,43.,350x y z L x L y L z z x y z x y z λμλμλμ'=+=⎧⎪'=+=⎪⎪'=-++-=++==⎨⎪⎪⎪⎩ 得x y =,从而22220,23 5.x z x z -=+=⎧⎨⎩解得5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离x o y 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解2】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数22H x y =+在条件2225203x y x y +-⎛⎫+-= ⎪⎝⎭下的最大值点和最小值点.构造拉格朗日函数222222(,,,)(5)9L x y z x y x y x y λλ⎛⎫=+++-+- ⎪⎝⎭,由222520.422(5)0,9422(5)0,93x y L x x x y L y x x y y y y x λλ⎧⎛⎫'=+-+-=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫'=+-+-=+-⎨⎪⎝⎭⎛⎫+-= ⎪⎝⎭⎪⎪⎪⎪⎩得x y =,从而2222(25)09x x --=.解得5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离x o y 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解3】由22220x y z +-=得cos ,sin .x y θθ⎧=⎪⎨=⎪⎩代入35x y z ++=,得5z =所以只要求()z z θ=的最值.令()2sin cos )()03sin )z θθθθθ-+'==++,得cos sin θθ=,解得5,44ππθ=.从而5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离x o y 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).(18)(本题满分10分)设()f x 是连续函数, (I )利用定义证明函数0()()x F x f t dt =⎰可导,且()()F x f x '=;(II )当()f x 是以2为周期的周期函数时,证明函数2()2()()xG x f t dt x f t dt=-⎰⎰也是以2为周期的周期函数. (I )【证明】000()()()()()limlimx x x x x f t dt f t dtF x x F x F x xx+∆∆→∆→-+∆-'==∆∆⎰⎰()limx x xx f t dtx+∆∆→=∆⎰()limlim ()()x x f x f f x xξξ∆→∆→∆===∆【注】不能利用L ’Hospital 法则得到0()()lim limx x xx x f t dtf x x xx+∆∆→∆→+∆=∆∆⎰.(II) 【证法1】根据题设,有222000(2)2()(2)()(2)()x G x f t dt x f t dt f x f t dt +'⎡⎤'+=-+=+-⎢⎥⎣⎦⎰⎰⎰,22000()2()()2()()x G x f t dt x f t dt f x f t dt '⎡⎤'=-=-⎢⎥⎣⎦⎰⎰⎰.当()f x 是以2为周期的周期函数时,(2)()f x f x +=. 从而 (2)()G x G x ''+=.因而(2)()G x G x C +-=.取0x =得,(02)(0)0C G G =+-=,故 (2)()0G x G x +-=. 即2()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数.【证法2】根据题设,有 2200(2)2()(2)()x G x f t dt x f t dt ++=-+⎰⎰,2222022()()()2()x f t dt x f t dt x f t dt f t dt +=+--⎰⎰⎰⎰.对于22()x f t dt +⎰,作换元2t u =+,并注意到(2)()f u f u +=,则有22()(2)()()x x x x f t dt f u du f u du f t dt +=+==⎰⎰⎰⎰,因而 2220()()0x x f t dt x f t dt +-=⎰⎰.于是2(2)2()()()xG x f t dt x f t dt G x +=-=⎰⎰.即2()2()()x G x f t dt x f t dt =-⎰⎰是以2为周期的周期函数【证法3】根据题设,有 2200(2)2()(2)()x G x f t dt x f t dt ++=-+⎰⎰,222002()2()()2()xx xf t dt f t dt x f t dt f t dt +=+--⎰⎰⎰⎰2222()()2()2()x x xf t dt x f t dt f t dt f t dt +=-+-⎰⎰⎰⎰()220()2()()x xG x f t dt f t dt +=+-⎰⎰.当()f x 是以2为周期的周期函数时,必有220()()x xf t dt f t dt +=⎰⎰.事实上22(())(2)()0x d f t dt f x f x dx+=+-=⎰,所以22()x f t dt C +≡⎰.取0x =得,02222()()C f t dt f t dt +≡=⎰⎰.所以2(2)2()()()x G x f t dt x f t dt G x +=-=⎰⎰.即2()2()()x G x f t dt x f t dt =-⎰⎰是以2为周期的周期函数(19)(本题满分11分)将函数2()1(0)f x x x π=-≤≤展开成余弦级数,并求级数11(1)n n n-∞=-∑的和.【详解】将()f x 作偶周期延拓,则有0,1,2,n b n == .0a =22(1)d x x ππ-⎰2213π⎛⎫=- ⎪⎝⎭.2()cos n a f x nxdx ππ=⎰22cos cos nxdx x nxdx ππππ⎡⎤=-⎢⎥⎣⎦⎰⎰220cos x nxdx πππ⎡⎤=-⎢⎥⎣⎦⎰22sin 2sin x nx x nxdx nnπππ⎡⎤-=-⎢⎥⎣⎦⎰1222(1)n nππ--=124(1)n n--=.所以2101221()1cos (1)143cos 2n nn n a f x x nanx nx π-∞∞===-=+=--+∑∑,0x π≤≤.令x=0,有n n f nπ2121(1)(0)143-∞=-=-+∑又(0)1f =,所以n n nπ1221(1)12-∞=-=∑.(20)(本题满分10分)设,αβ为3维列向量,矩阵TTA ααββ=+,其中,TTαβ分别是,αβ得转置.证明: (I ) 秩()2r A ≤;(II )若,αβ线性相关,则秩()2r A <.【详解】(I )【证法1】()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤. 【证法2】因为T TA ααββ=+,A 为33⨯矩阵,所以()3r A ≤. 因为,αβ为3维列向量,所以存在向量0ξ≠,使得0,0TTαξβξ==于是 0T T A ξααξββξ=+= 所以0A x =有非零解,从而()2r A ≤.【证法3】因为TTA ααββ=+,所以A 为33⨯矩阵.又因为()00TT TT A αααββαββ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭, 所以|||0|00T TaA αββ==故 ()2r A ≤.(II )【证法】由,αβ线性相关,不妨设k αβ=.于是()2()()(1)()12TTTr A r rk r ααβββββ=+=+≤≤<.(21) (本题满分12分).设n 元线性方程组A x b =,其中2222212121212a a a aa A aa aa ⎛⎫ ⎪⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,b 100⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ .(I )证明行列式||(1)n A n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x . (III )当a 为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na aa aa D A aa aa==以下用数学归纳法证明(1)nn D n a =+. 当1n =时,12D a =,结论成立. 当2n =时,2222132a D a aa==,结论成立.假设结论对小于n 的情况成立.将n D 按第一行展开得n n n aa aa D aD aa aa2212211021212212--=-2122n n aD a D --=-1222(1)n n anaa n a--=--(1)nn a =+故 (1)nA n a =+.【注】本题(1)也可用递推法.由2122n n n D aD a D --==- 得,2211221()()n n n n n n n D aD a D aD aD aD a ------=-==-= .于是(1)nn D n a =+(I )【证法2】消元法.记2222212121||212na aa aa A aa aa=221222130121212212na aa a r ar aa aa-3222221301240123321212na aar ar a a aa aa-=n n na aan r ar nn an n an12130124011301110----+(1)nn a =+.(II )【详解】当0a ≠时,方程组系数行列式0n D ≠,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn aa a a aa aa D na aa aa aa aa---===所以,11(1)n nD a x D n a-==+.(III )【详解】 当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为 ()()010100TTx k =+,其中k 为任意常数.(22) (本题满分11分)设随机变量X 与Y 相互独立,X 的概率密度为1()(1,0,1)3P X i i ===-,Y 的概率密度为1,01,()0,Y y f y 其它.≤<⎧=⎨⎩记Z X Y =+. (I ) 求102P Z X ⎛⎫≤= ⎪⎝⎭; (II )求Z 的概率密度)(z f Z . (I )【详解】解法1.1100221110.222P Z X P X Y X P Y X P Y ⎛⎫⎛⎫≤==+≤= ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=≤==≤= ⎪ ⎪⎝⎭⎝⎭解法2.()()1,0120201,0112.022P X Y X P Z X P X P Y X P Y P X ⎛⎫+≤= ⎪⎛⎫⎝⎭≤==⎪=⎝⎭⎛⎫≤= ⎪⎛⎫⎝⎭==≤= ⎪=⎝⎭(II )解法1.Z z P Z z P X Y z P F (){}{}=P {X+Y z,X=-1}+P {X+Y z,X=0}+P {X+Y z,X=1} =P {Y z+1,X=-1}+P {Y z,X=0}+P {Y z-1,X=1}=P {Y z+1}P {X=-1}+P {Y z}P {X=0}+P {Y z-1}P {X=1}1 =[{Y z+1}P {Y 3=≤=+≤≤≤≤≤≤≤≤≤≤≤+≤Y Y Y z z Y Y Y F z F z F z f z F z z f z f z f z 'z}P {Y z-1}]1 =[(1)()(1)]3()()1,12;1(1)()(1)330,.其它+≤+++-=⎧-<<⎪=+++-=⎡⎤⎨⎣⎦⎪⎩解法2.11()()()1,12;1(1)()(1)330,.Z Y i Y Y Y f z P X i f z i z f z f z f z =-==-⎧-<<⎪=+++-=⎡⎤⎨⎣⎦⎪⎩∑其它 (23)(本题满分11分)设n X X X 21,是来自总体2(,)N μσ的简单随机样本,记∑==ni iXnX 11,2211()1ni i S X X n ==--∑,221T XS n=-.(1)证明T 是μ2的无偏估计量; (2)当μσ0,1==时,求.D T . 【详解1】(1)首先T 是统计量.其次 221()()E T E X ES n=-222222111()()D X EX ES nnnσμσ=+-=+-2μ=对一切,μσ成立.因此T 是2ˆμ的无偏估计量. 【详解2】(1)首先T 是统计量.其次()()22111111nnij k i j kn T XXX X n n n n n =≠=-=---∑∑,()()1njk j knET E X EX n ≠=-∑2μ=,对一切,μσ成立.因此T 是2ˆμ的无偏估计量. (2)解法2(0,1)N ,22(1)nXχ ,22(1)(1)n S n χ-- .于是2()2D nX =,()2(1)2(1)D n S n -=-.所以221()D T D X S n ⎛⎫=-⎪⎝⎭()()()22222112()(1)11D nX D n Snn n nn =+-=--。

考研数学二(矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学二(矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学二(矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(1998年)设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=【】A.kA*B.kn-1A*C.knA*D.k-1A*正确答案:B解析:由于n阶行列式的每个元素的余子式都是一个n-1阶行列式,故|kA|的每个元素的代数余子式等于|A|的对应元素的代数余子式的kn-1倍,于是由伴随矩阵的定义知(kA)*的每个元素等于A*的对应元素的kn-1倍,即(kA)*=kn-1A*.知识模块:矩阵2.(2004年)设A是3阶方阵,将A的第1列与第2列交换得B,再把B 的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为【】A.B.C.D.正确答案:D解析:记交换单位矩阵的第1列与第2列所得初等矩阵为E(1,2),记将单位矩阵第2列的忌倍加到第3列所得初等矩阵为E(3,2(k)),则由题设条件,有AE(1.2)=B,BE(3,2(1))=C,故有AE(1,2)E(3,2(1))=C 于是得所求逆矩阵为所以只有选项D正确.知识模块:矩阵3.(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则【】A.交换A*的第1列与第2列得B*.B.交换A*的第1行与第2行得B*.C.交换A*的第1列与第2列得-B*.D.交换A*的第1行与第2行得-B*.正确答案:C解析:用排除法.以2阶方阵为例,设由此可见,交换A*的第1列与第2列得-B*,而其它选项均不对,故只有C正确.知识模块:矩阵4.(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则【】A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的-1倍加到第2列即得矩阵Q,于是有C=BQ,从而有C=PAQ.由于所以,C=PAQ=PAP-1,只有选项B正确.知识模块:矩阵5.(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则【】A.E-A不可逆,E+A不可逆.B.E-A不可逆,E+A可逆.C.E-A可逆,E+A可逆.D.E-A可逆,E+A不可逆.正确答案:C解析:由于(E-A)(E+A+A2)=E-A3=E,(E+A)(E-A+A2)=E+A3=E,故由可逆矩阵的定义知:E-A和E+A均是可逆的.知识模块:矩阵6.(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】A.B.C.D.正确答案:B解析:记矩阵C=,则C的行列式|C|=(-1)4=|A||B|=6≠0,因此C为可逆矩阵,由公式CC*=|C|E,得故只有选项B正确.知识模块:矩阵7.(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QAQ为【】A.B.C.D.正确答案:A解析:故只有选项A正确.知识模块:矩阵8.(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记则A=【】A.P1P2B.P1-1P2C.P2P1D.P2P1-1正确答案:D解析:由题设条件有P2AP1=I,两端左乘P2-1,两端右乘P1-1,得A=P2-1P1-1,因P2-1=P2,而P1-1≠P1,故只有D正确.知识模块:矩阵9.(2012年)设区域D由曲线y=sinχ,χ=±,y=1围成,则(χy5-1)d χdy=【】A.πB.2C.-2D.-π正确答案:B解析:于是,Q-1AQ=(PM)-1A(PM)=M-1(P-1AP)M 因此选B.知识模块:矩阵填空题10.(2000年)设A=E为4阶单位矩阵,且B=(E+A)-1(E-A),则(E+B)-1=______.正确答案:解析:由题设等式得E+B=E+(E+A)-1(E-A) 用(E+A)左乘上式两端,得(E+A)(E+B)=E+A+E-A=2E 即[(E+A)](E+B)=E 所以(E+B)-1=知识模块:矩阵11.(2003年)设α为3维列向量,αT是α的转置.若ααT=,则αTα=_______.正确答案:3解析:于是有a2=1,b2=1,c2=1,从而得αTα=[a b c]=a2+b2+c2=1+1+1=3.知识模块:矩阵12.(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.正确答案:解析:由题设方程移项得A2B-B=A+E,(A2-E)B=A+E,(A+E)(A-E)B=A+E,注意A+E=可逆,用(A+E)-1左乘上式两端,得(A-E)B=E 两端取行列式,得|A-E||B|=1 因为|A-E|==2 得2|B|=1,知识模块:矩阵13.(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A 的伴随矩阵,E是单位矩阵,则|B|=_______.正确答案:解析:由于A*A=|A|E,而|A|=3,所以A*A=3E.用矩阵A右乘题设方程两端,可得3AB=6B+A,或3(A-2E)B=A,两端取行列式,得33|A-2E||B|=|A|,由于故有27|B|=3,所以|B|=知识模块:矩阵14.(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.正确答案:2.解析:利用矩阵乘法,可将B表示为涉及知识点:矩阵15.(2006年)设矩阵A=,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=_______.正确答案:2.解析:由给定矩阵方程得BA-B=2EB(A-E)=2E 两端取行列式,得|B||A-E|=|2E|因|A-E|==2,|2E|=22|E|=4 所以有2|B|=4,从而得|B|=2.知识模块:矩阵16.(2007年)设矩阵A=,则A3的秩为_______.正确答案:1.解析:利用矩阵乘法,容易计算得由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.知识模块:矩阵17.(2010年)设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_______.正确答案:3.解析:由于A+B-1=(AB+E)B-1=A(B+A-1)B-1=A(A-1+B)B-1,两端取行列式,并利用|ABC|=|A||B||C|及|B-1|=|B|-1,得|A+B-1|=|A|.|A-1+B|.|B-1|=3×2×=3.知识模块:矩阵18.(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.正确答案:-27.解析:由于互换行列式的两行,则行列式仅变号,于是知|B|=-3.再利用|A*|=|A|n-1-|A|2=9,得|BA*|=|B||A*|=-27.知识模块:矩阵19.(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij 的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.正确答案:-1.解析:由A≠0,不妨设a11≠0,由已知的Aij=-aij(i,j=1,2,3),得及A=-(A*)T,其中A*为A的伴随矩阵.以下方法:用AT右乘A=-(A*)T 的两端,得AAT=-(A*)AT=-(AA*)T=-(|A|I)T,其中I为3阶单位矩阵,上式两端取行列式,得|A|2=(-1)3|A|3,或|A|2(1+|A|)=0,因|A|≠0,所以|A|=-1.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密 封
研究生课程考试试卷
线 考试科目: 矩阵分析
Hale Waihona Puke 内不 考试时间:2009-1
要 说明:答题内容写在答题纸上,写在试卷或草稿纸上一律无
写 题
效,考完后试题随答题纸交回。
1、 填空(每小题3分,共30分)
1、在中,在基底下的坐标是( )。 2、已知中的两组基,与,。则由基到基的过渡矩阵为( )。 3、已知,则的最小多项式为( ) 4、设,则=( )。 5、线性映射由确定,其中,。则在基与基下的矩阵为( ) 6、设是中的线性变换,在基下的矩阵为。则的不变子空间为( ) 7、若是正规矩阵。则应满足( ) 8、设,则行列式因子为( ) 9、设,则范数=( ) 10、设,则矩阵幂级数是否收敛( )
二、解答下列各题(每小题10分,共40分)
11、,求的Smith标准形。 13、,求A的正交三角分解。 14、,求。 15、设,。 (1) 求的维数和基底 (2) 求的维数和基底
二、证明题(10分、7分、7分,6分,共30分)
16、设,证明为的子空间,并指出的维数。 17、若,则与对角矩阵相似。 18、设为正规矩阵,若。证明是Hermite矩阵。 19、设是上的相容矩阵范数,是可逆矩阵。对任意的矩阵,令。证 明是上的相容矩阵范数。
相关文档
最新文档