人教九年级数学上册-圆周角(附习题)

合集下载

圆周角+同步练习++2024—2025学年人教版数学九年级上册

圆周角+同步练习++2024—2025学年人教版数学九年级上册

24.1.4 圆周角学习目标1. 理解圆周角的概念.2. 掌握圆周角定理及其推论.3. 理解圆内接四边形的性质,探究四点共圆时的性质.课堂学习检测一、填空题1. 在圆上,并且角的两边都的角叫做圆周角.2. 一条弧所对的圆周角等于圆心角的 .3. 所对的圆周角 .4. 所对的圆周角是直角;90°的圆周角所对的弦是 .5. 圆内接四边形的对角 .̂的中点,则图中与∠BAC相等的角有6. 如图, 在⊙O中, 若点 C 是BD.二、选择题7. 如图, OA是⊙O的半径, 弦BC⊥OA, D 是⊙O上一点, 且点 D 在优弧BC 上. 若∠ADB =28°, 则∠AOC的度数为 ( ).(A) 14° (B) 28° (C) 56° (D) 84°综合·运用·诊断一、填空题8. 如图, AB是⊙O的直径, CD是弦. 若∠ACD =65°, 则∠BAD的度数为9. 如图, 点 B, C, D 在⊙O 上. 若∠BCD =130°, 则∠BOD 的度数为 .10. 如图, A, B, C是⊙O上的三点, 且四边形OABC是菱形. 若点 D 是圆上异于A, B, C 的另一点, 则∠ADC的度数是 .二、选择题11. 如图, 点A, B, C, D, E均在⊙O上, 且AC为⊙O的直径, 则∠A+∠B+∠C的度数为( ).(A) 30° (B) 45° (C) 60° (D) 90°̂分成相等的三段弧,点P 在AĈ上. 若点Q在12. 如图, AB是⊙O的直径, 点C, D将ABAB̂上且∠APQ=115°,则点 Q所在的弧是 ( ).̂(B)PĈ(C)CD̂(D)DB̂(A)AP三、解答题.13. 如图, A, B, C, D四个点都在⊙O上, AD是⊙O的直径且AD=6cm,∠ABC=∠CAD.(1) 求弦AC的长;(2) 求∠CAD的度数.14. 如图, ⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB于点 D.求证:∠ACD=∠BCE.拓展·探究·思考15. 如图,四边形ABCD 是圆的内接四边形,∠A=60°,∠B=90°,AB=2,CD=1,求AD的长.16. 如图, AB是⊙O的直径, 弦(CD⊥AB,E是⌢AC上一点, AE, DC的延长线交于点 F.求证:∠AED=∠CEF.。

圆的有关性质-圆周角定理考点训练课件人教版数学九年级上册

圆的有关性质-圆周角定理考点训练课件人教版数学九年级上册
【答案】 A
6 【母题:教材P88练习T2】如图,A,B,C,D是⊙O 上的点,则图中与∠A相等的角是( ) A.∠B B.∠C C.∠DEB D.∠D
【点拨】 根据同弧所对的圆周角相等得∠A=∠D.
【答案】 D
7 【2022·朝阳】如图,在⊙O中,点A是B︵C的中点, ∠ADC=24°,则∠AOB的度数是( ) A.24° B.26° C.48° D.66°
∵OA=OB,∴∠OAB=∠OBA=180°- 2 92°=44°.
【答案】 A
5 【2022·枣庄】将量角器按如图所示的方式放置在三 角形纸板上,使点C在半圆上,点A,B的读数分别为 86°,30°,则∠ACB的度数是( ) A.28° B.30° C.36° D.56°
【点拨】 设量角器的中心点为 O,连接 OA,OB. 由题意得∠AOB=86°-30°=56°, ∴∠ACB=12∠AOB=28°.
【点拨】

连接 BD.∵点 A 是BC的中点,
︵︵
∴AC=AB.∴∠ADB=∠ADC=24°.
∴∠AOB=2∠ADB=48°.
【答案】 C
8 【2022·包头】如图,AB,CD是⊙O的两条直径,E 是劣弧BC的中点,连接BC,DE,若∠ABC=22°, 则∠CDE的度数为( ) A.22° B.32° C.34° D.44°
【点拨】 如图,连接OE,根据等腰三角形的性质求出∠OCB,根
据三角形内角和定理求出∠BOC,进而求出∠COE,再根据圆 周角定理计算即可.
【答案】 C
9 【2023·北京四中月考】已知在半径为 4 的⊙O 中, 弦 AB=4 3,点 P 在圆上,则∠APB= _____6_0_°__或__1_2_0_°____.

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习一、选择题1、在⊙O中,同弦所对的圆周角()A、相等B、互补C、相等或互补D、都不对2、如图,在⊙O中,弦AD=弦DC ,则图中相等的圆周角的对数是()A、5对B、6对C、7对D、8对3、下列说法正确的是()A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半4、下列说法错误的是()A、等弧所对圆周角相等B、同弧所对圆周角相等C、同圆中,相等的圆周角所对弧也相等D、同圆中,等弦所对的圆周角相等5、如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A、20°B、25°C、30°D、50°6、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA ,若∠D的度数是50°,则∠C的度数是()A、25°B、40°C、30°D、50°7、在⊙O中,同弦所对的圆周角( )A、相等B、互补C、相等或互补D、都不对8、下列说法正确的是( )A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半9、如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是( )A、30°B、60°C、15°D、20°10、如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A、75°B、60°C、45°D、30°11、用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?( )A、B、C、D、12、已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )A、10°B、20°C、40°D、80°13、如图24-1-4-17所示,AB为⊙O的直径,P、Q、R、S为圆上相异四点,下列叙述正确的是( )A、为锐角B、为直角C、为钝角D、二、填空题14、如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.15、如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.16、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.17、如图24-1-4-16所示,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________.18、如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB=________°,∠ABD=________°19、如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF ,那么________(只需写一个正确的结论).20、圆周角是24度,那么它所对的弧是________度.三、解答题21、如图,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于D ,求BC、AD 和BD的长.22、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:(1)△DOE是等边三角形.(2)如图(2),若∠A=60°,AB≠AC ,则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.23、四边形ABCD中,AB∥DC ,BC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.图24-1-4-1124、在足球比赛中,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?25、如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC ,交AC于D ,BC=4 cm.(1)求证:AC⊥OD;(2)求OD的长;答案解析部分一、选择题1、【答案】C【考点】圆周角定理【解析】【解答】同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补. 【分析】此题考查了圆周角定理,要考虑全面.2、【答案】D【考点】圆周角定理【解析】【解答】先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2= ∠4;弧BC所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC ,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.【分析】在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.3、【答案】D【考点】圆周角定理【解析】【解答】本题考查圆周角和圆心角的联系,解决本题的关键为在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.【分析】此题考查了圆周角定理.4、【答案】D【考点】圆周角定理【解析】【解答】同圆或是等圆中才存在等弦所对的圆周角相等或互补.【分析】此题考查了原周角定义,本题为常考题,容易弄错的是在同圆中等弦所对的圆周角相等,而忽略还有互补.5、【答案】B【考点】圆周角定理【解析】【解答】同弧所对的圆心角等于所对圆周角的二倍,∠AOC的对顶角∠BOD也为50度,弧BD所对的圆周角为∠C,所对的圆心角为∠BOD,∠BOD为∠C的二倍,故选B选项.【分析】此题考查了圆周角和圆心角的相互联系.6、【答案】A【考点】平行线的性质,圆周角定理【解析】【解答】根据两直线平行内错角相等和同弧所对的圆心角等于所对圆周角的二倍,可以得到∠C 的度数是25度.【分析】此题考查了圆周角定义.7、【答案】C【考点】圆周角定理【解析】【解答】同圆或是等圆中等弦所对的圆周角相等或互补.【分析】此题考查了圆周角定义,要考虑全面.8、【答案】D【考点】圆周角定理【解析】【解答】根据圆周角的定义做题,考察圆周角和圆心角的联系,记住圆周角的度数等于它所对圆心角的一半.【分析】此题考查了圆周角定义,审题一定要仔细,结合基础知识做题.9、【答案】C【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,根据量角器我们可以读出∠BOC的度数为30度,∠BOC为圆心角,∠BAC为圆周角,他们是二倍的关系,故选择C选项.【分析】此题考查了圆周角定义,利用圆心角去推出圆周角的度数.10、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,弧AB所对的圆心角和圆周角分别为∠AOB和∠ACB,圆心角为圆周角的二倍,故本题选择B选项.【分析】此题考查了圆周角和圆心角的联系,做题时要注意利用所给的条件结合图像去发现所求问题和所给条件之间的相互联系.11、【答案】B【考点】圆周角定理【解析】【解答】A和C中的直角显然不是圆周角,因此不正确,D中的直角只满足圆周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.【分析】本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B符合定理的推论.实际问题应读懂题意,看懂图形.12、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,由“一条弧所对的圆周角等于它所对的圆心角的一半”解答.【分析】此题考查了原周角和圆心角的联系.13、【答案】B【考点】圆周角定理【解析】【解答】AB为直径,根据直径所对的圆周角是直角,所以∠APB、∠AQB、∠ARB、∠ASB都是直角,由于四个角都是直角,所以∠ASB=∠ARB=90°.【分析】直径所对的圆周角等于90度.二、填空题14、【答案】90【考点】圆周角定理【解析】【解答】所求的弧等于半圆周的一半,即90度,∠A随对的弧加上∠B所对的弧加上∠C所对的弧等于弧AC ,弧AC所对的圆心角为180度,所以所对的圆周角为90度.【分析】根据圆周角的定义做题,注意圆心角和圆周角之间的相互联系.15、【答案】50°【考点】圆周角定理【解析】【解答】连结AO ,则AO=OB ,OA=OC ,所以∠A=∠B+∠C=20°+30°=50°.【分析】根据圆周角的定义做题,注意作好辅助线,利用半径相等构造等腰三角形,然后转化角度. 16、【答案】15°或75°【考点】勾股定理,圆周角定理【解析】【解答】图(1)和图(2),分两种情况,作直径AD ,连结BD ,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.图1 图2【分析】根据圆周角的定义做题,要考虑全面.17、【答案】90°【考点】等边三角形的性质,圆周角定理【解析】【解答】∠1所对的弧是弧AE,∠2所对的弧是弧BE ,而弧AE+弧BE=弧AB是半圆,因此连结AD ,∠ADB的度数是90°,所以∠ADB=∠1+∠2.本题也可以连结EO ,得到圆心角∠EOA和∠EOB,而∠EOA+∠EOB=180°,所以∠1+∠2=90°.【分析】根据圆周角的定义做题.18、【答案】60;90【考点】圆周角定理【解析】【解答】同弧所对的圆周角相等,所以∠ADB=60度,直径所对的圆周角等于90度.【分析】根据圆周角的定义做题,要注意所给条件中等边三角形个内角的度数,及圆周角所对半圆弧的度数.19、【答案】AB=CD【考点】圆心角、弧、弦的关系【解析】【解答】在同圆或是等圆中,等弦的弦心距相等.【分析】根据弦心距做题,在同圆或是等圆中,等弦的弦心距相等.20、【答案】48【考点】圆周角定理【解析】【解答】弧的度数等于它所对的圆心角的度数,圆心角与圆周角为2倍的关系.【分析】根据圆周角和圆心角的联系做题.三、解答题21、【答案】解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB ,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【考点】勾股定理,圆周角定理【解析】【解答】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【分析】已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.22、【答案】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD ,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)解:当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE ,∴△DOE为等边三角形.【考点】等边三角形的性质,圆周角定理【解析】【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE,∴△DOE为等边三角形.【分析】△ABC是等边三角形,所以∠B、∠C均为60°,利用60°的圆周角定理,可知△DOB、△EOC均为等边三角形.第二种情形类似.23、【答案】解:∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A ,并延长BA交⊙A于E ,连结DE.∵AB∥CD ,∴弧BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为.【考点】勾股定理,圆周角定理【解析】【解答】∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A,并延长BA交⊙A于E,连结DE.∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为 .【分析】由AB=AC=AD=a可以得到点B、C、D在以A为圆心,以a为半径的圆上,因而可以作出该圆,利用圆的知识解决该题.本题考查圆的定义和圆周角定理及其推论.24、【答案】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C,则∠MAN<∠MCN,而∠MCN=∠MBN,所以∠MAN<∠MBN.因此在B点射门为好.【考点】圆周角定理【解析】【解答】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C ,则∠MAN<∠MCN ,而∠MCN=∠MBN ,所以∠MAN<∠MBN.因此在B点射门为好..【分析】在真正的足球比赛中情况比较复杂,这里仅用数学方法从两点的静止状态来考虑,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键是看这两点各自对球门MN的张角大小,当张角较小时,则容易被对方守门员拦截.25、【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC ,∴∠ADO=∠C=90°.∴AC⊥OD.(2)解:∵OD∥BC ,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【考点】三角形中位线定理,圆周角定理【解析】【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC,∴∠ADO=∠C=90°.∴AC⊥OD.(2)∵OD∥BC,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【分析】根据圆周角定理的推论以及三角形中位线定理计算.。

人教版九年级数学上册《圆周角》题组训练(含答案解析)

人教版九年级数学上册《圆周角》题组训练(含答案解析)

提技能·题组训练圆周角定理及其推论1.( 滨州中考 ) 如图 , 在☉ O中, 圆心角∠ BOC=78°, 则圆周角∠ BAC的大小为 ()A.156°B.78 °C.39°【解析】选C.∠BOC是所对的圆心角D.12°, ∠ BAC是所对的圆周角,∴∠ BAC=∠ BOC=39°.2.( 海南中考 ) 如图 , 在☉ O中 , 弦 BC=1,点 A 是圆上一点 , 且∠ BAC=30°, 则☉ O的半径是 ()A.1B.2C.D.【解析】选A. 方法一 : 连接OB,OC.∵∠ BAC=30°, ∴∠ BOC=2∠ BAC=60° ,∵OB=OC,∴△ OBC是等边三角形 ,∴OB=OC=BC =1.方法二 : 作直径 CD,连接 BD.则∠ CBD=90°, ∵∠ BDC=∠ BAC=30°, ∴CD=2BC=2,∴OC=CD=1.3.( 长春中考 ) 如图 , △ABC内接于☉ O,∠ABC=71° , ∠ CAB=53° , 点 D 在上,则∠ ADB的大小为()A.45°B.53 °C.56 °D.71 °【解析】选 C.在△ ABC中, ∵∠ ABC=71° , ∠ CAB=53°,∴∠ C=180°-71 °-53 °=56° , ∴∠ ADB=∠C=56°.D,则∠ BOD=. 4.( 佛山中考 ) 图中圆心角∠ AOB=30° , 弦 CA∥ OB,延长CO与圆交于点【解析】因为圆心角∠ AOB=30°, 弦 CA∥OB,所以∠ AOB=∠CAO=30°,又 OA=OC,所以∠ CAO=∠ ACO=30° , 所以∠ AOD=∠ CAO+∠ ACO=60° =∠ AOB+∠ BOD,所以∠BOD=30°.答案 : 30°5.( 贵阳中考 ) 如图 ,AD,AC 分别为☉ O的直径和弦 , ∠CAD=30°,B 是 AC上一点 ,BO⊥AD,垂足为【解析】在Rt△AOB中 , ∠A=30° ,BO=5cm,∴AO=5cm,∵AD是直径 ,∴AD=10cm,∠C=90°, 在 Rt△ ADC中,∠A=30°,AD=10cm,∴CD=5cm.答案: 56. 如图 , 正方形ABCD的顶点都在☉O上 ,P是弧DC上的一点 , 则∠ BPC=.【解析】连接 BD,则 BD是直径 ,∴△ BCD是等腰直角三角形 ,∴∠ BDC=45°, ∴∠ BPC=∠ BDC=45°.答案 : 45°【知识归纳】圆周角与直径1.当题目中出现了直径时 , 常作辅助线 , 利用直径所对的圆周角是直角解决问题 .2.当出现 90°的圆周角时 , 常连接该圆周角所对的弦 , 则该弦为直径 .7. 如图 , 在☉ O中, 直径 AB与弦 CD相交于点 P, ∠CAB=40°, ∠APD=65° .(1)求∠B 的大小 .(2)已知 AD=6,求圆心 O到 BD的距离 .【解析】 (1) ∵∠ APD=∠C+∠CAB,∴∠ C=65°-40 °=25° .∴∠ B=∠C=25° .(2) 过点 O作 OE⊥ BD于 E, 则 DE=BE.又∵ AO=BO,∴OE= AD= ×6=3.∴圆心 O到 BD的距离为 3.圆内接四边形1. 如图 , 四边形 ABCD内接于☉ O,如果∠ BOD=130°, 则∠ BCD的度数是 ()A.115°B.130°C.65°D.50°【解析】选 A. ∵∠ BOD=130°, ∴∠ A= ∠BOD=65°, ∵∠2.( 莱芜中考 ) 如图 , 在☉ O中 , 已知∠ OAB=22.5°, 则∠C 的度数为 ()A. 135 °B.122.5 °C.115.5°D.112.5 °【解析】选 D.如图, 作所对的圆周角 .∵OA=OB,∴∠ OBA=∠ OAB=22.5° . ∴∠ AOB=180 ° - ∠ OAB-∠ OBA =180° -22.5 ° -22.5 °=135° .∴∠ D= ∠ AOB=×135°=67.5 °.∵四边形 ACBD是圆内接四边形 ,∴∠ C+∠D=180° .∴∠ C=112.5 °.【方法技巧】1. 在圆中 , 求角的度数时 , 常利用圆周角定理和圆内接四边形的对角互补来完成.2.有时需要自己作出与已知角互补的圆周角 , 才能运用圆内接四边形的性质 .3. 四边形 ABCD内接于☉ O,AD∥BC,∠ B=75° , 则∠ C=.【解析】∵AD∥ BC,∴∠ A+∠B=180° ,∴∠ A=180°-75 °=105°,答案 : 75°【变式训练】已知 , 四边形 ABCD内接于☉ O, 且∠ A∶∠ C=1∶2, 则∠ BOD= ° .【解析】∵四边形 ABCD内接于☉ O,∴∠ A+∠C=180°.又∠ A∶∠ C=1∶ 2, 得∠ A=60° .∴∠ BOD=2∠A=120°.答案 : 1204.如图 , △ ABC内接于☉ O,AD为△ ABC的外角平分线 , 交☉ O 于点 D, 连接 BD,CD,判断△DBC的形状 , 并说明理由 .【解析】△DBC为等腰三角形 . 理由如下 :∵四边形 ABCD为☉ O的内接四边形 ,∴∠ DCB+∠DAB=180°,又∠ EAD+∠DAB=180°,∴∠ EAD=∠DCB.又∠ DAC=∠DBC,∠EAD=∠DAC,∴∠ DBC=∠DCB,∴DB=DC,即△ DBC为等腰三角形 .【错在哪?】作业错例课堂实拍A,B 为☉ O上的两点 , ∠ AOB=100° , 若点 C 也在☉ O上, 且点 C不与 A,B 重合 , 求∠ACB的度数 .(1)错因 :____________________________________.(2)纠错 :____________________________________________________________ _________________________________.答案: (1) 点 C也可能在劣弧AB上,需要分情况讨论(2)当 C在优弧AB上时,∠ ACB=1∠AOB=50°,当 C 在劣弧AB上时,∠ ACB=2 180°-50 °=130°。

人教版九年级上册数学 24.1.4 圆周角 同步练习(含答案)

人教版九年级上册数学  24.1.4 圆周角  同步练习(含答案)

人教版九年级上册数学24.1.4 圆周角同步练习一.填空题1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC=°.2.如图,⊙O中,∠AOB=80°,点C、D是上任两点,则∠C+∠D的度数是°.3.如图,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD=.4.如图,点A,D,B为⊙O上的三点,∠AOB=120°,且过A的直线交BD延长线于点C,连接AD,且AD =CD,则∠C的度数为.5.如图,ABCD是⊙O的内接四边形,AD为直径,∠C=130°,则∠ADB的度数为.6.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.7.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O的半径为;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为.9.如图,△ABC中,∠A=60°,以BC为直径的⊙O分别交AB、AC边于E、D,连接BD、CE交于点F.以下四个结论:①ED=BC;②∠ACE=30°;③BD平分∠ABC;④若连接AF,则AF⊥BC.其中正确的结论是(把你认为正确结论的序号都填上)10.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BOC=2∠BAD,则⊙O的直径为.二.解答题11.如图,AB为⊙O的直径,点C在⊙O上,连接BC并延长至点D,使DC=CB.连接DA并延长,交⊙O 于另一点E,连接AC,CE.(1)求证:∠E=∠D(2)若AB=4,BC﹣AC=2,求CE的长.12.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=62°,∠APD=86°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.13.如图,AB是半圆的直径,C、D是半圆上的两点,∠BAC=20°,∠DAC=35°.求证:AD=CD.14.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.15.如图,在△ABC中,∠A=68°,以AB为直径的⊙O与AC、BC分别相交于点D、E,连接DE.(1)求∠CED的度数.(2)若DE=BE,求∠C的度数.16.如图,AB是⊙O的直径,点C在圆上,∠BAD是△ABC的一个外角,它的平分线交⊙O于点E.不使用圆规,请你仅用一把不带刻度的直尺作出∠BAC的平分线.并说明理由.参考答案一.填空题1.36.2.80.3.130°.4.30°.5.40°.6. 25°.7.6.8.30°.9.①②④.10. 10.二.解答题11.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,即AC⊥BC,∵DC=CB,∴AD=AB.∴∠B=∠D,∵∠E=∠B,∴∠E=∠D;(2)解:∵∠E=∠D,∴DC=CE,∵DC=CB,∴CB=CE,在Rt△ABC中,AC2+BC2=AB2,即(BC﹣2)2+BC2=42解得,BC1=1+,BC1=1﹣(舍去),∴CE=1+,即CE的长为1+.12.(1)∵∠APD=∠CAB+∠C,∴∠C=∠APD﹣∠CAB=86°﹣62°=24°,∴∠B=∠C=24°;(2)作OE⊥BD于E,如图所示:则DE=BE,∵OA=OB,∴OE是△ABD的中位线,∴OE=AD=×6=3,即圆心O到BD的距离为3.13.证明:∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,∠B=90°﹣∠BAC=90°﹣20°=70°,∵四边形ABCD是圆的内接四边形,∴∠D=180°﹣∠B=180°﹣70°=110°,在△ABC中,∵∠DAC=35°,∴∠DCA=180°﹣∠DAC﹣∠D=180°﹣35°﹣110°=35°,∴∠DCA=∠DAC,∵AD=CD.14.(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)(2分)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形(2分)又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°(1分)∴OE=1,BE=2∴BE=2OE.(2分)15.(1)∵四边形ABED 圆内接四边形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°;(2)连接AE.∵DE=BE,∴=,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直径,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°.16.作直径EF交⊙O于F,连接AF,则AF是∠BAC的平分线.理由是:∵EF是⊙O的直径,∴∠EAF=90°,即∠EAO+∠OAF=90°,∵AE平分∠DAC,∴∠DAE=∠EAO,∴∠CAF=∠OAF,∴AF是∠BAC的平分线.。

九年级数学上册《圆周角》练习题及答案解析

九年级数学上册《圆周角》练习题及答案解析

九年级数学上册《圆周角》练习题及答案解析学校:___________姓名:___________班级:______________一、单选题1.如图,在⊙O中,AB=AC,⊙AOB=40°,则⊙ADC的度数是()A.40°B.30°C.20°D.15°2.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等3.如图,⊙O的两条弦AB⊙CD,已知⊙ADC=35°,则⊙BAD的度数为()A.55°B.70°C.110°D.130°4.如图,在⊙O中,点A是BC的中点,⊙ADC=24°,则⊙AOB的度数是()A.24°B.26°C.48°D.66°5.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒6.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°7.如图,AB 是O 的直径,C ,D 是O 上的两点,若54ABD ∠=︒,则BCD ∠的度数是( )A .36°B .40°C .46°D .65°8.下列说法正确的是( )A .顶点在圆上的角是圆周角B .两边都和圆相交的角是圆周角C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半9.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1310.如图,⊙O 是ABC 的外接圆,AC 是⊙O 的直径,点P 在⊙O 上,若40ACB ∠=︒,则BPC ∠的度数是( )A .40︒B .45︒C .50︒D .55︒11.如图,O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EB .若4AB =,1CD =,则EB 的长为( )A .5B .4C .3D .2.512.如图,点A ,B ,C 是O 上的点,连接,,AB AC BC ,且15ACB ∠=︒,过点O 作OD AB ∥交O 于点D .连接,AD BD ,已知O 半径为2,则图中阴影面积为( )A .2πB .3πC .4πD .23π 13.如图,ABC ∆中,AB 是O 的直径,AC 交O 于点E ,BC 交O 于点D ,点D 是BC 中点,O 的切线DF 交AC 于点F ,则下列结论中⊙A ABE ∠=∠;⊙BD DE =;⊙AB AC =;⊙F 是EC 中点,正确的个数是( )A .1B .2C .3D .4二、填空题14.如图,点A 、B 、C 、D 、E 在O 上,且弧AB 为50︒,则E C ∠+∠=________.15.如图,A 、B 、C 是⊙O 上的三点,AB =2,∠ACB =30°,那么⊙O 的半径等于_____.16.如图,AB 是⊙O 的直径,CD 为弦,AB ⊙CD ,若CD =CB =2,则阴影部分的面积是______.17.如图,在半径为1的O 上顺次取点A ,B ,C ,D ,E ,连接AB ,AE ,OB ,OC ,OD ,OE .若65BAE ∠=︒,70COD ∠=︒,则BC 与DE 的长度之和为__________.(结果保留π).18.如图,ABC内接于⊙O,AB=BC,⊙BAC=30°,AD为⊙O的直径,AD=2,则BD=________.19.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么________(只需写一个正确的结论).20.如图,AB是⊙O的直径,C、D是⊙O上的两点,⊙AOC=120°,则⊙CDB=_____°.三、解答题21.如图.AB是⊙O的直径,点C,D在⊙O上,C是BD的中点,连接BD交AC于点E,延长AC至F,使CE=CF.(1)求证:BF 是⊙O 的切线.(2)若BF =3,1sin 3A =,求BD 的长. 22.如图,在⊙AOB 和⊙COD 中,OA =OB ,OC =OD ,若⊙AOB =⊙COD =60°.(1)求证:AC =BD .(2)求⊙APB 的度数.23.如图,已知ABCD 是某圆的内接四边形,AB BD =,BM AC ⊥于M ,求证:AM DC CM =+.24.已知AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)如图⊙,⊙OPC 的最大面积是________;(2)如图⊙,延长PO 交⊙O 于点D ,连接DB ,当CP =DB 时,求证:CP 是⊙O 的切线.25.如图,,,//,//AD DB AE EC FG AB AG BC ==.利用平移或旋转的方法研究图中的线段,,DE BF FC 之间的位置关系和数量关系.参考答案及解析:1.C【详解】先由圆心角、弧、弦的关系求出⊙AOC=⊙AOB=50°,再由圆周角定理即可得出结论.解:⊙在⊙O 中,= ,⊙⊙AOC=⊙AOB ,⊙⊙AOB=40°,⊙⊙AOC=40°, ⊙⊙ADC=12⊙AOC=20°, 故选C .2.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.3.A【分析】根据垂直定义和三角形的两锐角互余进行解答即可.【详解】解:⊙AB ⊙CD ,⊙⊙ADC +⊙BAD =90°,⊙⊙ADC =35°,⊙⊙BAD =90°﹣35°=55°,故选:A .【点睛】本题考查垂直定义、直角三角形的两锐角互余,熟练掌握直角三角形的两锐角互余是解答的关键.4.C【分析】直接利用圆周角求解.【详解】解:⊙点A 是BC 的中点,⊙AC AB =,⊙⊙AOB =2⊙ADC =2×24°=48°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C【分析】如图,连接AO .利用正多边形的性质求出AOM ∠,AOB ∠,可得结论.【详解】解:如图,连接AO .AMN △是等边三角形,60ANM ∠∴=︒,2120AOM ANM ∠∠∴==︒, ABCDE 是正五边形,360725AOB ∠︒∴==︒,1207248BOM ∠∴=︒-︒=︒.故选:C .【点睛】本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.6.C【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】AC AC =,⊙ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.7.A【分析】连接AD ,如图,根据圆周角定理得到⊙ADB =90°,⊙C =⊙A ,然后利用余角的性质计算出⊙A ,从而得到⊙C 的度数.【详解】解:如图,连接AD ,⊙AB 为⊙O 的直径,⊙⊙ADB =90°,⊙⊙A =90°−⊙ABD =90°−54°=36°,⊙⊙C =⊙A =36°.故选:A .【点睛】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8.D【详解】解:顶点在圆上,且与圆有相交的角是圆周角,则A 和B 是错误的;同弧所对的圆周角的度数等于圆心角度数的一半,故选D .9.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意; 在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.10.C【分析】根据圆周角定理得到90ABC ∠=︒,BPC A ∠=∠,然后利用互余计算出⊙A 的度数,从而得到BPC ∠的度数.【详解】解:⊙AB 是⊙O 的直径,⊙90ABC ∠=︒,⊙90904050A ACB ∠=︒-∠=︒-︒=︒,⊙50BPC A ∠=∠=︒,故选:C .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.C【分析】设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r ,先利用垂径定理得到AC =2,即可利用勾股定理求出半径,从而求出AE 的长,再利用勾股定理即可求出BE .【详解】解:设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r , 由垂径定理得122AC BC AB ===,在Rt ⊙OAC 中,222OA OC AC =+,⊙()22221r r =+-, ⊙52r =, ⊙AE =5,⊙AE 是圆O 的直径,⊙⊙B =90°,⊙在Rt ⊙ABE 中,3BE ,故选:C .【点睛】本题主要考查了垂径定理,勾股定理,直径所对的圆周角是直角等等,熟知垂径定理是解题的关键.12.B【分析】根据圆周角定理可得⊙AOB =30°,再由OD AB ∥,可得AOB ADB SS =,从而得到阴影面积等于扇形AOB 的面积,即可求解.【详解】解:⊙15ACB ∠=︒,⊙⊙AOB =30°, ⊙23023603AOB S ππ⨯==扇形, ⊙OD AB ∥,⊙AOB ADB S S =,⊙阴影面积等于扇形AOB 的面积,⊙阴影面积等于3π. 故选:B【点睛】本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.13.C【分析】连接连接OD ,AD 、DE ,根据直径所对的圆周角是直角以及等腰三角形的性质可判断结论⊙;根据同圆或等圆中,同弧所对的弦相等可得结论⊙;根据切线的性质以及三角形中位线定理可得结论⊙;因为只有ABE △是等腰直角三角形时,才能满足结论⊙.【详解】解:连接OD,AD、DE.AB是O的直径,∴∠=︒(直径所对的圆周角是直角),ADB90∴⊥,AD BC点D是BC中点,=,故⊙正确;∴∠=∠,AB ACBAD CAD∴BD DE=,∴=,故⊙正确;BD DEDF是O的切线,∴⊥,OD DF=,BD DCAO BO=,∴,OD AC//∴⊥,DF AF∴,DF BE//⊙点D是BC的中点,∴点F是EC的中点,故⊙正确;只有当ABE△是等腰直角三角形时,45∠=∠=︒,BAC ABE故⊙错误,正确的有⊙⊙⊙共3个,故选:C.【点睛】本题考查了圆周角定理,圆切线的性质,等腰三角形的性质,三角形中位线定理的应用,题目难度适中,熟练掌握相关图形的性质定理是解本题的关键.14.155︒【分析】先根据弧的度数与它所对应的圆心角的度数的关系,求得弧AB对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得E C ∠+∠.【详解】弧的度数等于它所对应的圆心角的度数,由于弧AB 为50︒,所以3=50∠︒ .顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:112E ∠=∠ ,122C ∠=∠ , ()()()11112360336050155222E C ∠+∠=∠+∠=︒-∠=︒-︒=︒.【点睛】本题考查弧、圆周角、圆心角的概念,及它们之间的关系.15.2【分析】根据题意和圆周角定理得∠O =60°,则△OAB 是等边三角形,根据AB =2即可得.【详解】解:∵OA =OB ,∠ACB =30°,OA =OB ,∴∠O =60°,∴△OAB 是等边三角形,∵AB =2,∴OA =AB =2,故答案为:2.【点睛】本题考查了等边三角形的判定与性质,圆周角定理,解题的关键是掌握这些知识点.16.23π【分析】连接OC ,设CD 与AB 的交点为E ,利用垂径定理、勾股定理判定△OBC 是等边三角形,运用扇形的面积减去△OBC 的面积即可.【详解】连接OC ,设CD 与AB 的交点为E ,⊙AB 是⊙O 的直径,AB ⊙CD ,CD =CB =2,⊙CE 1BE ==,⊙⊙ECB =30°,⊙CBE =60°,⊙CO =BO ,⊙△OBC 是等边三角形,⊙⊙BOC =60°,OC =OB =2,⊙2602123602S =π⨯⨯-⨯阴影=23π故答案为:23π 【点睛】本题考查了垂径定理,勾股定理,扇形的面积公式,等边三角形的判定和性质,熟练掌握垂径定理,扇形的面积公式是解题的关键.17.13π##3π 【分析】由圆周角定理得2130BOE BAE ∠=∠=︒,根据弧长公式分别计算出BE 与DC 的长度,相减即可得到答案.【详解】解:⊙65BAE ∠=︒,⊙2130BOE BAE ∠=∠=︒又O 的半径为1,BE 的长度=130113=18018ππ⨯,又70COD ∠=︒,⊙DC 的长度=7017=18018ππ⨯, ⊙BC 与DE 的长度之和=13761-==1818183ππππ,故答案为:13π. 【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键.18【分析】根据AB =BC ,可得⊙C =⊙BAC =30°,再由圆周角定理,可得⊙D =30°,然后利用锐角三角函数,即可求解.【详解】解:⊙AB =BC ,⊙⊙C =⊙BAC =30°,⊙⊙C =⊙D ,⊙⊙D =30°,⊙AD 为⊙O 的直径,⊙⊙ABD =90°,在Rt ABD △ 中,AD =2,⊙D =30°,⊙cos302BD AD =⋅︒==.【点睛】本题主要考查了圆周角定理,锐角三角函数等知识,熟练掌握相关知识点是解题的关键.19.AB =CD (答案不唯一)【分析】根据圆心角、弧、弦、弦心距之间的关系定理的推论可以直接得到所求的结论.【详解】解:⊙OE =OF ,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,⊙AB =CD .故答案为:AB =CD (答案不唯一)【点睛】本题主要考查了圆心角、弧、弦的关系.熟练掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键. 20.30.【分析】先利用邻补角计算出BOC ∠,然后根据圆心周角定理得到CDB ∠的度数.【详解】⊙⊙BOC =180°﹣⊙AOC =180°﹣120°=60°,⊙⊙CDB =12⊙BOC =30°. 故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(1)见详解(2)BD=16 3【分析】(1)根据直径所对圆周角得出⊙ACB=90°,根据C是BD的中点,得出DC BC=,利用等弧所对圆周角得出⊙CAB=⊙CBD即可(2)连结OC,交BD于G,根据垂径定理得出OC⊙BD,DG=BG=12BD,由三角函数求出AF=9,利用勾股定理求出ABAB BFBCAF⋅===(1)证明:⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙C是BD的中点,⊙DC BC=,⊙⊙CAB=⊙CBD,⊙CE=CF,BC⊙EF,⊙BE=BF,⊙⊙FBC=⊙CBE,⊙⊙FBC=⊙CBE=⊙CAB,⊙⊙CAB+⊙CBA=90°,⊙⊙FBC+⊙CBA=90°,⊙FB⊙AB,AB为直径,⊙BF为⊙O的切线;,(2)解:连结OC,交BD于G,⊙DC BC=,OC为半径,⊙OC⊙BD,DG=BG=12 BD,⊙BF=3,1 sin3A=,⊙31sin 3BF A AF AF ===, ⊙AF =9,在Rt △ABF 中AB⊙S △ABF =12BC ·AF =12AB ·BF ,⊙AB BF BC AF ⋅=== ⊙sin A =sin⊙CBG =13CG BC ==,⊙3CG =,在Rt ⊙BCG 中83BG ==, ⊙BD =2BG =163.【点睛】本题考查圆的切线判定,等弧所对圆周角性质,线段线段垂直平分线性质,等腰三角形等腰三角形三线合一性质,勾股定理锐角三角函数,面积等积式,本题难度不大,是中考常考试题,掌握好相关知识是解题关键.22.(1)见解析(2)60°【分析】(1)通过证明⊙AOC ⊙⊙BOD ,即可求证;(2)由(1)可得⊙OAC =⊙OBD ,从而得到⊙P AB +⊙PBA =⊙OAB +⊙OBA ,利用三角形内角和的性质即可求解.(1)证明:⊙⊙AOB =⊙COD ,⊙AOB BOC COD BOC ∠+∠∠+∠=,即⊙AOC =⊙BOD ,在⊙AOC 和⊙BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,⊙⊙AOC ⊙⊙BOD (SAS ),⊙AC =BD .(2)解:⊙⊙AOC ⊙⊙BOD ,⊙⊙OAC =⊙OBD ,⊙⊙PBA =⊙ABO +⊙OBD ,⊙OAB =⊙P AB +⊙OAC ,⊙⊙P AB +⊙PBA =⊙P AB +⊙ABO +⊙OBD =⊙P AB +⊙OAC +⊙ABO =⊙OAB +⊙OBA ,⊙OA =OB ,⊙AOB =60°,⊙⊙AOB 是等边三角形,⊙⊙OAB +⊙OBA =120°⊙⊙P AB +⊙PBA =120°,⊙()180********APB PAB PBA ∠︒-∠+∠︒-︒︒===. 【点睛】此题考查了全等三角形的判定与性质,三角形内角和定理,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质.23.见解析【分析】在MA 上截取ME MC =,连接BE ,利用圆周角定理易得()ABE DBC AAS ≅,利用三角形的性质得到AE CD =即可求解.【详解】证明:在MA 上截取ME MC =,连接BE ,BM AC ⊥,BE BC ∴=,BEC BCE ∴∠=∠.AB BD =,∴AB BD =,ADB BAD ∴∠=∠,而ADB BCE ∠=∠,BCE BAD ∴∠=∠.又180BCD BAD ∠+∠=︒,180BEA BCE ∠+∠=︒,BEA BCD ∴∠=∠.BAE BDC ∠=∠,()ABE DBC AAS ∴∆≅∆,AE CD ∴=,AM AE EM DC CM ∴=+=+.【点睛】本题主要考查了圆周角定理,全等三角形的判定和性质,作出辅助线构建三角形全等是解答关键.24.(1)4(2)见解析【分析】(1)因为OC 长度确定,所以当点P 到OC 的距离最大时⊙OPC 的面积最大,当OP ⊙OC 时,当点P 到OC 的距离最大,等于圆O 的半径,求出此时的⊙OPC 的面积即可;(2)连接AP ,BP ,利用同圆中,相等的圆心角所对的弦相等,可得AP =DB ,因为CP =DB ,所以AP =CP ,可证⊙APB ⊙⊙CPO (SAS ),得到⊙OPC =90°,即可证明CP 是切线.(1)解:⊙AB =4,⊙OB =2,OC =OB +BC =4.在⊙OPC 中,设OC 边上的高为h ,⊙S △OPC 12=OC •h =2h , ⊙当h 最大时,S △OPC 取得最大值.作PH ⊙OC ,如图⊙,则PO PH >,当OP ⊙OC 时,PO PH =,此时h 最大,如答图1所示:此时h =半径=2,14242OPC S ⨯⨯==.⊙⊙OPC 的最大面积为4, 故答案为:4.(2)证明:如答图⊙,连接AP ,BP .⊙⊙AOP =⊙BOD ,⊙AP =BD ,⊙CP =DB ,⊙AP =CP ,⊙⊙A =⊙C ,在⊙APB 与⊙CPO 中, AP CPA C AB CO=⎧⎪∠=∠⎨⎪=⎩,⊙⊙APB ⊙⊙CPO (SAS ), ⊙⊙APB =⊙OPC ,⊙AB 是直径,⊙⊙APB =90°,⊙⊙OPC=90°,⊙DP⊙PC,⊙DP经过圆心,⊙PC是⊙O的切线.【点睛】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.25.DE与BF平行且相等,DE与FC平行且相等,BF与FC相等且在一条直线上【分析】易知DE是△ABC的中位线,则DE∥BC∥AG;由此可知四边形ADEG和四边形DBFE都是平行四边形,故AG=DE=BF;由全等三角形可得AG=FC,故DE=BF=FC.【详解】解:线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC,∵AG∥BC(已知)∴∠G=∠EFC(两直线平行,内错角相等)∵∠AEG=∠FEC(对顶角相等),又AE=EC(已知)∴△AGE≌△CFE(AAS);∴AG=FC,FE=EG(全等三角形的对应边相等),可以看做△AGE绕点E旋转180°得到△CFE,又∵AD=DB(已知)∴DE为三角形ABC的中位线,BC,∴DE∥BC,DE=12即DE∥BF,DE∥FC,∵FG∥AB,AG∥BC(已知)∴四边形ABFG是平行四边形∴AG=BF,BC,∴BF=FC=12∴DE=BF=FC,可以看做⊙ADE沿直线AE平移得到△EFC,故线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,BF与FC在一条直线上,数量关系是DE=BF=FC.【点睛】题考查的是三角形中位线定理、平行四边形及全等三角形的判定和性质.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.第21页共21页。

人教版九年级数学上册24.1.4圆周角同步测试及答案【推荐】

人教版九年级数学上册24.1.4圆周角同步测试及答案【推荐】

圆周角1.如图21-1-41,在⊙O 中,∠ABC =50°,则∠AOC 等于( D )图21-1-41A .50°B .80°C .90°D .100°2.如图21-1-42,点A ,B ,C 在⊙O 上,∠BOC =100 °,则∠A 的度数为( B )图21-1-42A .40°B .50°C .80°D .100°3.如图24-1-43,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知∠BOD =100°,则∠DCE 的度数为( C )A .40°B .60°C .50°D .80°【解析】 根据圆周角定理,可求得∠A 的度数;由于四边形ABCD 是⊙O 的内接四边形,根据圆DCE =∠A =50°.4.如图21-4-44,在⊙O 中,已知∠OAB =22.5°,则∠C 的度数为( D )图21-4-44A .135° B. 122.5° C. 115.5° D .112.5°【解析】 ∵OA =OB ,∴∠OAB =∠OBC =22.5°,∴∠AOB =180°-22.5°-22.5°=135°.∴∠C =12(360°-135°)=112.5°. 5.[2013·苏州]如图21-4-45,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠DAB 等于( C )图21-4-45 第5题答图A .55°B .60°C .65°D .70°【解析】 连接BD ,如图,∵点D 是弧AC 的中点,即弧CD =弧AD ,∴∠ABD =∠CBD ,而∠ABC =50°,∴∠ABD =12×50°=25°, ∵AB 是半圆的直径,∴∠ADB =90°,∴∠DAB =90°-25°=65°.6.[2012·湘潭]如图24-1-46,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( D )图24-1-46A .20°B .40°C .50°D .80°【解析】 ∵弦AB ∥CD ,∴∠ABC =∠BCD ,∴∠BOD =2∠BCD =2∠ABC =2×40°=80°.7.如图24-1-47,弦AB ,CD 相交于点O ,连接AD ,BC ,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是__答案不唯一,如∠A =∠C 等__.图24-1-478.[2013·张家界]如图24-1-48,⊙O 的直径AB 与弦CD 垂直,且∠BAC =40°,则∠BOD =__80°__. 24-1-489.如图24-1-49,若AB 是⊙O 的直径,AB =10 cm ,∠CAB =30°,则BC =__5__cm.图24-1-4910.如图24-1-50,△ABC是⊙O的内接三角形,AB是⊙O的直径,点D为⊙O上的一点,若∠CAB=55°,则∠ADC的大小为__35__度.【解析】∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=55°,∴∠B=90°-∠CAB=35°,∴∠ADC=∠B=35°.图24-1-5011.如图24-1-51,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC 的度数为__30°__.【解析】因为AB为⊙O的直径,所以∠ADB=90°.又因为△ABC是等边三角形,所以AD是∠BAC 的平分线,所以∠DAC=30°.图24-1-5112.如图24-1-52,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.解:如图,连接BD.∵AB是⊙O的直径,∴BD⊥AD.又∵CF⊥AD,∴BD∥CF,∴∠BDC=∠C.又∵∠BDC=12∠BOC,∴∠C=12∠BOC.∵AB⊥CD,即∠OEC=90°,∴∠C+∠BOC=90°,∴∠C=30°,∴∠ADC=90°-∠C=60°.图24-1-52第12题答图13.如图24-1-53,CD⊥AB于E,若∠B=70°,则∠A=__20°__.图24-1-53【解析】 因为CD ⊥AB ,∠B =70°,所以∠C =20°,所以∠A =20°.14.如图24-1-54,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =__27°__. 【解析】 ∠ABC =12∠AOC =12×108°=54°.因为BD =BC ,所以∠D =12∠ABC =12×54°=27°.15.如图24-1-55,已知AB ,CD 是⊙O 的直径,DF ∥AB 交⊙O 于点F ,BE ∥DC 交⊙O 于点E .(1)求证:BE =DF ;(2)写出图中4组不同的且相等的劣弧(不要求证明).【解析】 (1)首先由平行线性质得到∠EBA =∠COA =∠CDF ,然后根据相等的圆周角所对的弧相等即可证明ECA ︵=CAF ︵,进一步得到BE ︵=DF ︵,再根据等弧对等弦即可得到BE =DF ;(2)根据等弦对等弧和相等的圆周角所对的弧相等即可得到4组不同的且相等的劣弧.解:(1)证明:∵DF ∥AB ,BE ∥DC ,∴∠EBA =∠COA =∠CDF ,∴ECA ︵=CAF ︵,∴BE ︵=DF ︵,∴BE =DF .(2)图中相等的劣弧有:DF ︵=BE ︵,EC ︵=F A ︵,AC ︵=BD ︵,DA ︵=BC ︵,BF ︵=DE ︵等.图24-1-5616.已知:如图24-1-56,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD .(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点.证明:(1)∵BD 平分∠CBA ,∴∠CBD =∠DBA .∵∠DAC 与∠CBD 都是弧CD 所对的圆周角,∴∠DAC =∠CBD ,∴∠DAC =∠DBA .(2)∵AB 为⊙O 的直径,∴∠ADB =90°.又∵DE ⊥AB ,∴∠DEB =90°,∴∠ADE +∠EDB =∠ABD +∠EDB =90°,∴∠ADE =∠ABD =∠DAP ,∴PD =P A .又∵∠DF A +∠DAC =∠ADE +∠PD F =90°,∠ADE =∠DAC ,∴∠PDF =∠PFD , ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点.17.已知:如图24-1-57(1),在⊙O 中,弦AB =2,CD =1,AD ⊥BD .直线AD ,BC 相交于点E .(1)求∠E 的度数;(2)如果点C ,D 在⊙O 上运动,且保持弦CD 的长度不变,那么,直线AD ,BC 相交所成锐角的大小是否改变?试就以下两种情况进行探究,并说明理由(图形未画完整,请你根据需要补全). ①如图(2),弦AB 与弦CD 交于点F ;②如图(3),弦AB 与弦CD 不相交.图1-57【解析】 (1)连接OC ,OD , 则∠COD =60°,且∠DBE =12∠DOC =30°. 解:(1)如图(1),连接OC ,OD .∵AD ⊥BD ,∴AB 是⊙O 的直径,∴OC =OD =CD =1,∴△DOC是等边三角形,∴∠COD =60°,∴∠DBE =12∠COD =30°,∴∠E =90°-∠DBE =60°.(2)(2),,=CO =CD =1,∴△DOC 为等边三角形,∴∠DOC =60°,∴∠DAC =12∠DOC =30°,∴∠EBD =∠DAC =30°.∵∠ADB =90°,∴∠E =90°-∠EBD =60°.②如图(3),连接OD ,OC ,同理可得出∠CBD =30°,∠BED =90°-∠CBD =60°.。

(名师整理)最新人教版数学九年级上册24.1.4《圆周角》精品习题课件

(名师整理)最新人教版数学九年级上册24.1.4《圆周角》精品习题课件

结合基本图形认识概念、定理:
同圆或等圆中
(1) 弧 (2) 弦 (3) 弦心距 (4) 圆心角 (5) 圆周角
注意 其中,弦所对的圆周角有两种情况,应用时需
知 一
N M
B
推 四
α
A

圆周角定理及推论 斜三角形转化为直角三角形 A1
B1
1、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,
BA
D C
O
O
O
C
C
D
图1
A
B
图2
A
D
B
图3
4.如果AB为⊙O的直径,弦CD⊥AB,垂足为E, 则下列结论中,错误的是( D )
A. CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD
5.⊙O的直径为10,圆心O到弦AB的距离OM的长为3,
则弦AB的长是( D )
A.4 B.6
弦AB所对的弧有优弧和劣弧两种
C
O O
A
B
A CB
分类讨论思想
3. 已知:⊙O的半径为1,
弦AB 3,AC 2,
则∠BAC的度数是_1_5_°__或__7_5。° 圆心可能在圆周角内部,
也可能在圆周角外部。
由垂径定理及 勾股定理可求出: ∠CAO=45°, ∠BAO=30°.
转化思想 斜三角形转化为直角三角形
CD ⊥AB, AM=MB
CD为直径, 弧AD=弧BD,弧AC= 弧BC
圆心角、弧、弦(弦心距)
弧AB=弧MN
∠AOB= ∠ MON
AB=MN
OC=OP
与圆有关的角度计算
• 1.一条弦把圆分成1:3两部分,则劣弧所对

【人教版】数学九年级全一册圆周角——圆周角定理及其推论随堂练习(课件版)

【人教版】数学九年级全一册圆周角——圆周角定理及其推论随堂练习(课件版)

证明:∵DF=BE,∴D⌒F =B⌒E .
∵AB,CD 是⊙O 的直径,∴B⌒E +E⌒A =D⌒F +F⌒C .
∴E⌒A =F⌒C .∴∠B=∠D.
11.如图,⊙O 中,半径 OC⊥弦 AB 于点 D,点 E 在 ⊙O 上,∠E=22.5°,AB=4,求圆的半径.
解:∵OC⊥AB,∴A⌒C =B⌒C .
三级检测
6.下列说法正确的是( B )
A.相等的圆周角所对的弧相等 B.在同圆中,等弧所对的圆周角相等 C.相等的弦所对的弧相等 D.相等的弦所对的圆周角相等
7.如图,AB 是⊙O 的直径,C,D 为圆上两点,
∠AOC=130°,则∠D 等于( A )
A.25° B.30° C.35° D.50°
第二十四章 圆
第5课 圆周角(1)——圆周角定理及其推论
新课学习
1.(1)顶点在__圆__上____,并且两边都与圆__相__交___的 角叫做圆周角.如图所示,__A__O_B_____是圆心角, __∠__A_C__B___是圆周角;
(2)圆周角定理:一条弧所对的圆周角等于它所对的
圆__心__角__的一半; (3)圆周角定理的推论:_同__弧___或_等__弧___所对的圆周 角_相__等___;半圆(或直径)所对的圆周角是_直__角___;90° 的圆周角所对的弦是_直__径___.
圆周角的定义 【例 1】下列各圆中,是圆周角的是( C )
2.如图,在图中标出的 4 个角中,圆周角有( B )
A.1 个 B.2 个 C.3 个 D.4 个
二次函=_7_0_°_;(2)∠A=_8__0_°;(3)∠A=__9_0_°.
3.如图,点 C 在⊙O 上,若∠ACB=35°,

人教版2020年九年级数学上册24.1.4《圆周角》同步练习 (有答案)

人教版2020年九年级数学上册24.1.4《圆周角》同步练习 (有答案)

九年级数学24.1.4《圆周角》同步练习一、选择题:1、如图,已知AB 是⊙O 的直径,∠D =40°,则∠CAB 的度数为( )A. 40°B.50°C. 45°D. 60°2、如图,AD 是⊙O 的弦,AB ∥CD ,∠AOC =76°,则∠BAD =( )A. 48°B.60°C. 38°D.26°3、如图,弦AB 把圆周分成1:2的两部分,已知⊙O 半径为1,则弦长AB 为( ).A. 3B.2C. 2.5D. √34、如图,A.B.C 是⊙O 上三点,42ACB ∠,则ABO ∠等于( )A. 48°B.50°C. 45°D. 64°5、如图,△ABC 的三个顶点都在⊙O 上,且AB 是⊙O 的直径,∠A =20°,则∠B = ()A. 40°B.50°C. 45°D. 70°6、若⊙O 的弦AB 的长等于⊙O 的半径,则弦AB 所对的圆周角的度数为( )A. 60°B.50°C. 45°或150°D. 30°或150°7、如图,⊙O的弦AB、CD的延长线相交于点P,且DA=DP.若BC=5,则BP=().A. 5B.10C. 2.5D. 5√28、如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A. 45°B.70°C. 55°D. 35°9、如图,点A、B、C、D在⊙O上,AC为直径,若∠D=22°,则∠ACB=( )A. 68°B.44°C. 45°D. 64°10、如图,AB是⊙O的直径,C、D是圆上的两点(不与A、B重合),已知BC=6,∠ADC =30°,则AB=( )A. 4√3B.6C. 7.5D. 5√211、如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=100°,则∠DCE的度数为( )A .40°B .50°C .60°D .80°12、如图,AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.则∠EBC 的度数为( )A .40°B .22.5°C .30°D .17.5°二、填空题:13、如图,已知点A B C ,,在⊙O 上,若50ACB ∠=°,则AOB ∠= °.14、如图,点A 、B 、C 在⊙O 上,∠AOB =72°,则∠ACB 等于 .15、在直径为10cm 的⊙O 中,弦AB =5cm ,则弦AB 所对的圆周角= .16、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE= 。

(精校版)人教版九年级数学上册圆知识点归纳及练习(含答案)

(精校版)人教版九年级数学上册圆知识点归纳及练习(含答案)

(直打版)人教版九年级数学上册圆知识点归纳及练习(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版九年级数学上册圆知识点归纳及练习(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版九年级数学上册圆知识点归纳及练习(含答案)(word版可编辑修改)的全部内容。

CMAAM=BM垂足为 M AC =BCAD=BD D垂径定理的推论不是直径)的直径垂直于弦弦所对的两条弧如上图所示,直径 CD 与非直径弦 M,CD⊥ABAM=BMAC=BCAD=BD注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。

24.1.3 弧、弦、圆心角知识点弦、弧、圆心角的关系(1) 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。

(3) 注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等.24.1.4 圆周角知识点一圆周角定理(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

(2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径.(3)圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。

“同弧或等弧”是不能改为“同弦或等弦"的,否则就不成立了,因为一条弦所对的圆周角有两类。

24.1.4 圆周角 人教版数学九年级上册同步练习(含答案)

24.1.4 圆周角 人教版数学九年级上册同步练习(含答案)

24.1.4圆周角知识点1 圆周角定理例1.如图,«Skip Record If...»是«Skip Record If...»的直径,«Skip Record If...»为圆内一点,则下列说法中正确的是()A.«Skip Record If...»是«Skip Record If...»的弦B.«Skip Record If...»是圆心角C.«Skip Record If...»是圆周角D.«Skip Record If...»变式2.如图,在«Skip Record If...»中,点«Skip Record If...»是«Skip Record If...»上一点,若«Skip Record If...»,则«Skip Record If...»的度数是()A.80°B.100°C.120°D.130°3.AB是⊙O的直径,C.D是圆上两点,∠BDC=32°,则∠AOC的度数为()A.32°B.64°C.116°D.128°知识点2 同弧或等弧所对的圆周角相等例4.如图,«Skip Record If...»、«Skip Record If...»是«Skip Record If...»的直径,«Skip Record If...»,«Skip Record If...»交«Skip Record If...»于点«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»的度数为()A.20°B.40°C.60°D.70°变式5.如图,«Skip Record If...»是«Skip Record If...»的直径,点«Skip Record If...»,«Skip Record If...»在圆上,«Skip Record If...»,则«Skip Record If...»等于()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»6.如图CD是⊙O的直径,CD=10,点A在⊙O上,∠ACD=30°,B为«Skip Record If...»的中点,P是直径CD上一动点,则PA+PB的最小值为()A.5«Skip Record If...»B.«Skip Record If...»C.5D.«Skip Record If...»知识点3 直径所对的圆周角例7.如图,半径为5的«Skip Record If...»经过点C和点O,点B是y轴右侧«Skip Record If...»的优弧上一点,«Skip Record If...»,则点C的坐标为()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»变式8.如图,在圆内接五边形ABCDE中,∠EAB∠+∠C+∠CDE+∠E=430°,则∠CDA =_____度.9.如图,扇形OAB的圆心角为124°,C是弧«Skip Record If...»上一点,则∠ACB=_______.课堂练习10.如图,在⊙O 中,AC =«Skip Record If...»AB , 直径BC =2«Skip Record If...», «Skip Record If...», 则AD =___.11.如下是小华设计的“作«Skip Record If...»的角平分线”的尺规作图过程,请帮助小华完成尺规作图并填空(保留作图痕迹).步骤作法推断第一步在«Skip Record If...»上任取一点C ,以点C 为圆心,«Skip Record If...»为半径作半圆,分别交射线«Skip Record If...»于点P ,点Q ,连接«Skip Record If...»«Skip Record If...» ①«Skip Record If...»,理由是② 第二步过点C 作«Skip Record If...»的垂线,交«SkipRecord If...»于点D ,交«Skip Record If...»于点E«Skip Record If...»,«Skip Record If...» ③ 第三步作射线«Skip Record If...»射线«Skip Record If...»平分«Skip Record If...»射线«Skip Record If...»为所求作.12.如图,△ABC 是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设∠OAB =α,∠C =β,(1)当α=35°时,求β的度数;(2)猜想α与β之间的关系,并给以证明.13.如图所示,已知AB为圆O的直径,CD是弦,且AB⊥CD于点E,连接AC.OC.BC.(1)求证:∠ACO=∠BCD;(2)若EB=2cm,CD=8cm,求圆O的直径.14.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC 分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.参考答案1.B【分析】根据弦、圆心角、圆周角的概念可直接进行排除选项.【详解】解:A.点C不在«Skip Record If...»上,所以AC不是«Skip Record If...»的弦,故错误,不符合题意;B.因为点O是圆心,所以∠BOC是圆心角,故正确,符合题意;C.点C不在«Skip Record If...»上,所以∠C不是圆周角,故错误,故不符合题意;D.当点C在圆上时,则OC=OA=OB,若«Skip Record If...»成立,则AC+OC<OA+OB,∴AC<OA,与题干矛盾,∴D选项错误,不符合题意;故选B.【点拨】本题主要考查弦、圆心角、圆周角的概念,熟练掌握弦、圆心角、圆周角的概念是解题的关键.2.D【分析】在优弧AC上取点D,连接AD.CD,由∠AOC= 100° 求出∠ADC= «Skip Record If...»∠AOC,根据四边形ABCD是圆内接四边形,得到∠ADC+∠ABC= 180° ,即可求出∠ABC的度数.【详解】在优弧AC上取点D,连接AD.CD,∵∠AOC= 100° ,∴∠ADC= «Skip Record If...»∠AOC=50° ,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC= 180° ,∴∠ABC= 180° -50° =130° ,故选:D.【点拨】此题考查圆周角定理:同弧所对的圆周角等于圆心角的一半,圆内接四边形的性质:圆内接四边形的对角互补.3.C【分析】根据圆周角定理可求∠AOC,根据邻补角定义可求∠AOC的度数.【详解】∵AB是⊙O的直径,C.D是圆上两点,∠BDC=32°∴∠BOC=2∠D=2×32°=64°∴∠AOC=180°-∠BOC=116°故选:C【点拨】考核知识点:圆周角定理.理解圆周角定理是关键.4.C【分析】先根据圆周角定理可得∠EOD=2∠A=40°,再根据平行线的性质可得∠ADB=∠A =20°,由三角形外角定理即可得出答案.【详解】解:∵∠A=20°,∴∠EOD=2∠A=40°,又∵«Skip Record If...»,∴∠ADB=∠A=20°,∴∠AFC=∠EOD+∠ADB=40°+20°=60°.故选:C.【点拨】本题主要考查了圆周角定理,熟练应用圆周角定理进行求解是解决本题的关键.5.B【分析】由圆周角定理得出∠ACB=90°,由直角三角形的性质求出∠B=55°,再由圆周角定理得出∠ADC=∠B=55°即可.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=35°,∴∠B=90°﹣35°=55°,∴∠ADC=∠B=55°.故选:B.【点拨】此题主要考查了三角形的外接圆、圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.6.A【分析】首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和勾股定理解答.本题考查的是轴对称-最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.【详解】解:作A关于MN的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB=QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵B为«Skip Record If...»的中点,∴∠BOD=∠ACD=30°,∴∠QOD=2∠QCD=2×30°=60°,∴∠BOQ=30°+60°=90°.∵直径CD=10,∴OB=«Skip Record If...»CD=«Skip Record If...»×10=5,∴BQ=«Skip Record If...»=«Skip Record If...»=5«Skip Record If...»,即PA+PB的最小值为5«Skip Record If...» .故选A.【点拨】此题主要考查圆周角定理的应用,解题的关键是熟知圆周角定理、圆的对称性质应用.7.A【分析】先根据«Skip Record If...»可得CD是«Skip Record If...»的直径,进而求得«Skip Record If...»,再利用圆周角定理得出∠CDO的度数,进而利用含30°的直角三角形的性质得出答案.【详解】解:如图,设«Skip Record If...»与x轴的交点为D,连接CD.«Skip Record If...»∴CD是«Skip Record If...»的直径,∵«Skip Record If...»的半径为5,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,∴点C的坐标为«Skip Record If...»,故选:A.【点拨】此题主要考查了圆周角定理及其推论以及含30°的直角三角形的性质,作出正确的辅助线是解决本题的关键.8.70【分析】先利用多边的内角和得到∠EAB+∠B+∠C+∠CDE+∠E=540°,则可计算出∠B=110°,然后根据圆内接四边形的性质求∠CDA的度数.【详解】解:∵五边形ABCDE的内角和为(5-2)×180°=540°,∴∠EAB+∠B+∠C+∠CDE+∠E=540°,∵∠EAB+∠C+∠CDE+∠E=430°,∴∠B=540°-430°=110°,∵四边形ABCD为⊙O的内接四边形,∴∠B+∠CDA=180°,∴∠CDA=180°-110°=70°.故答案为70.【点拨】本题考查了多边形的内角和与圆内接四边形的性质,运用圆内接四边形的性质是解决问题的关键.9.118°【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【详解】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=124°,∴∠ADB=«Skip Record If...»∠AOB=«Skip Record If...»×124°=62°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣62°=118°.故答案为:118°.【点拨】本题主要考查了圆内接四边形的性质,圆心角与它的圆周角的关系,解题的关键在于能够熟练掌握相关知识进行求解.10.«Skip Record If...»【分析】过D点作DE⊥AB交AB于E,连接BD,DC,根据«Skip Record If...»和BC是直径可以得到,∠DAB=∠DAC=45°=∠DBC=∠DCB,即可得到AE=DE,利用勾股定理先求出AB,BD再求出AE,即可求出AD.【详解】解:如图所示,过D点作DE⊥AB交AB于E,连接BD,CD∵BC是圆的直径∴∠BAC=90°=∠BDC∵«Skip Record If...»∴∠DAB=∠DAC=45°=∠DBC=∠DCB∴BD=DC∵DE⊥AB∴∠AED=90°∴∠EDA=∠DAB=45°∴AE=DE在Rt△ABC中,AC=«Skip Record If...»AB,BC=2«Skip Record If...»,«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»同理«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»设AE=DE=x,则BE=4-x在Rt△DEB中,«Skip Record If...»∴«Skip Record If...»解得«Skip Record If...»或«Skip Record If...»∵«Skip Record If...»,«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴AE=DE=3∴«Skip Record If...»故答案为:«Skip Record If...».【点拨】本题主要考查了圆周角定理,直径所对的圆周角是90°,勾股定理,等腰三角形的判定等等,大角对大边,解题的关键在于能够熟练掌握相关知识进行求解.11.见解析;①90;②直径所对的圆周角是直角;③«Skip Record If...»【分析】根据直径所对的圆周角是直角,和同弧所对的圆周角相等即可得出结论【详解】解:补全的图形如图1所示.①∵OQ是直径∴∠OPQ=90°故答案为:90;②故答案为:直径所对的圆周角是直角;③∵CE⊥PQ∴由垂径定理得:«Skip Record If...»«Skip Record If...».故答案为:«Skip Record If...»【点拨】本题考查圆周角定理的推论,垂径定理,熟练掌握圆周角定理及推论是关键12.(1)55°;(2)α+β=90°,证明见解析.【分析】(1)连接OB,根据等腰三角形的性质得到∠OBA=35°,根据三角形内角和定理求出∠AOB,根据圆周角定理计算即可;(2)根据三角形内角和定理和圆周角定理计算.【详解】解:(1)连接OB,∵∠OAB=α=35°,∴∠OBA=35°,∴∠AOB=110°,∴β=«Skip Record If...»∠AOB=55°;(2)结论:α+β=90°.证明:∵∠AOB=180°-2α,β=«Skip Record If...»∠AOB∴β=90°-α,∴α+β=90°.【点拨】本题考查的是三角形的外接圆与外心,掌握圆周角定理、三角形内角和定理是解题的关键.13.(1)翙解析;(2)圆O的直径为10cm.【分析】(1)由AB为⊙O的直径,AB⊥CD,根据垂径定理即可得«Skip Record If...»,然后由圆周角定理可得∠BCD=∠BAC,又由OA=OC,根据等边对等角,可得∠BAC=∠ACO,继而证得结论;(2)根据勾股定理,求出各边之间的关系,即可确定半径.【详解】(1)证明:∵AB为⊙O的直径,AB⊥CD,∴«Skip Record If...»,∴∠BCD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠ACO=∠BCD;(2)设⊙O的半径为R cm,则OE=OB-EB=(R-2)cm,CE=«Skip Record If...»CD=«Skip Record If...»×8=4(cm).在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-2)2+42,解得R=5,∴OB=5 cm.故圆O的直径为10 cm.【点拨】本题考查圆周角定理、垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.14.(1)见解析;(2)BD=2.8【分析】(1)利用弧的中点,等腰三角形的性质计算即可.(2)利用勾股定理,三角形中位线定理,垂径定理的推论计算即可.【详解】(1)证明:∵C是«Skip Record If...»的中点,∴«Skip Record If...»,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+∠CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC=«Skip Record If...»=6,∵C是«Skip Record If...»的中点,∴OC⊥AD,∴«Skip Record If...»,∴«Skip Record If...»,∴OF=1.4,又∵O是AB的中点,F是AD的中点,∴OF是△ABD的中位线,∴BD=2OF=2.8.【点拨】本题考查了垂径定理及其推论,直径所对的圆周角是直角,勾股定理,三角形中位线定理,熟练掌握垂径定理,灵活运用勾股定理和三角形中位线定理是解题的关键.。

部编人教版九年级数学上册24.1.5 圆周角——圆周角和直径的关系 (习题课件)

部编人教版九年级数学上册24.1.5 圆周角——圆周角和直径的关系 (习题课件)

A.35°
B.45°
C.55°
D.65°
返回
3.(中考·毕节)如图,AB是⊙O的直径,CD是⊙O的
弦,∠ACD=30°,则∠BAD为( C )
A.30°
B.50°
C.60°
D.70°
返回
4.(中考·福建)如图,AB是⊙O的直径,C,D是⊙O
上位于AB异侧的两点,下列四个角中,一定与
∠ACD互余的角是( D )
中,可判断圆弧为半圆的是( B )
返回
10.如图,小华同学设计了一个测圆直径的测量器,标有
刻度的尺子OA,OB在O点钉在一起,并使它们保持垂 直,在测直径时,把O点靠在圆周上,测得OE=8个单 位长度,OF=6个单位长度,则圆的直径为( B ) A.12个单位长度 B.10个单位长度 C.4个单位长度 D.15个单位长度
第24章 圆
24.1 圆的有关性质 第5课时 圆周角——圆周角和直径的关系
1
2
3
4
5
6
7
8
9
10 11 12
13 14 15 16
知识点 1 直径所对的圆周角是直角 1.半圆(或直径)所对的圆周角是_图,△ABC的顶点A,B,C在⊙O上,AB是
⊙O的直径,∠A=35°,则∠B的度数是( C )
解:(1)∵ A(0,2),B(2 3,0),∴OA=2,OB=2 3. 在 Rt△AOB 中,AB= OA2+OB2= 22+(2 3)2=4. 如图,连接 OC.∵∠AOB=90°,
∴AB 为⊙C 的直径,C 为 AB 的中点. ∴AC=OC=12AB=2=OA.∴△AOC 是等边三角形.
∴∠BAO=60°.∴∠ABO=30°.
证明:∵AB是⊙O的直径,∴∠ACB=90°. ∵△AEF为等边三角形, ∴∠CAB=∠EFA=60°.∴∠B=30°. ∵∠EFA=∠B+∠FDB, ∴∠B=∠FDB=30°. ∴FB=FD,即△DFB是等腰三角形.

人教版九年级数学上册24.1.4圆周角 练习题(含答案)

人教版九年级数学上册24.1.4圆周角 练习题(含答案)

人教版九年级数学上册24.1.4圆周角 练习题(含答案)一、填空题:1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是__120o ______.DDCB AO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有____5_____对相等的角。

3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=___160____度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=___23____度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为__50o ______.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O到CD 的距离___.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( A ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D是AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个10.如图10,∠AOB=100°,则∠A+∠B等于( )A.100°B.80°C.50°D.40°11.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.解:连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.解:连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2.B A15.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.16.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?答案:1.120°2.3 13.160°4.44°5.50°7.A 8.C 9.B 10.C 11.B 12.C13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2. 15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′C D=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.。

人教版九年级数学上册24.1.4 第1课时 圆周角定理及推论及答案【精选】

人教版九年级数学上册24.1.4 第1课时 圆周角定理及推论及答案【精选】

24.1.4 圆周角第1课时圆周角定理及推论一、选择题1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().A.140° B.110° C.120° D.130°OBA2143OBAC(1) (2) (3)2.如图2,∠1、∠2、∠3、∠4的大小关系是()A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠23.如图3,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC 等于().A.3 B.3+3 C.5-123 D.5二、填空题1.半径为2a的⊙O中,弦AB的长为23a,则弦AB所对的圆周角的度数是________.2.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.•O BAC 21ED(4) (5)3.如图5,已知△ABC为⊙O内接三角形,BC=•1,•∠A=•60•°,•则⊙O•半径为_______.三、综合提高题1.如图,弦AB 把圆周分成1:2的两部分,已知⊙O 半径为1,求弦长AB .2.如图,已知AB=AC ,∠APC=60° (1)求证:△ABC 是等边三角形.(2)若BC=4cm ,求⊙O 的面积.3.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO=120°. (1)求证:AB 为⊙C 直径. (2)求⊙C 的半径及圆心C 的坐标.参考答案一、1.D 2.B 3.D二、1.120°或60° 2.90° 3.3三、1 2.(1)证明:∵∠ABC=∠APC=60°,又»»AB AC ,∴∠ACB=∠ABC=60°,∴△ABC 为等边三角形. (2)解:连结OC ,过点O 作OD ⊥BC ,垂足为D , 在Rt △ODC 中,DC=2,∠OCD=30°,设OD=x ,则OC=2x ,∴4x 2-x 2=4,∴OC=433.(1)略 (2)4,(2)。

九上 圆 5.3 圆周角含答案

九上 圆  5.3 圆周角含答案

5.3 圆周角一、填空题1.(2010.眉山)如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC的度数为________.第1题第2题第3题第4题2.(2010.綦江)如图所示,A、B、C、D是圆上的点,∠1=68°,∠A=40°,则∠D=________.3.(2010.青岛)如图,点A、B、C在⊙O上,若∠BAC=24°,则∠BOC=________°.4.(2010.娄底)如图,在半径为R的⊙O中,弦AB的长与半径R相等,C是优弧AB上一点,则∠ACB的度数是________.5.(2011.扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD50=°,则∠ACD= __ °.6.(2011.连云港)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC 于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=_ .xyBCOAD第6题第7题第8题7.(2011.无锡)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= °.8.(2011.南京)如图,海边有两座灯塔A、B,暗礁分布在经过A、B两点的弓(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为了避免触礁,轮船P与A、B的张角∠APB 的最大值为°.二、选择题9.如图,在⊙O中,圆周角共有( )A.1个B.2个C.3个D.4个10.(2011.绍兴)如图,AB O为的直径,点C在O上,若16C∠=︒,则BOC∠的OBDC度数是()A.74︒B. 48︒C. 32︒D. 16︒OA BDC 第9题第10题第11题第12题11.如图,AB为⊙O的直径,C 、D、E都是⊙O上的点,则∠1+∠2=( )A .45°B.180°C.90°D.75°12.(2011.成都)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD= A.116°B.32°C.58°D.64°13.在同圆中,同弦所对的圆周角( )A.相等B.互补C.相等或互补D.互余14.(2010.江津)如图,已知:点A、B、P为⊙O上的点,若∠PBO=15°,且PA∥OB,则∠AOB=( )A.15°B.120°C.30°D.45°第14题第15题第16题15.(2011.四川)如图,100AOB∠=,点C在O上,且点C不与A、B重合,则ACB∠的度数为()A.50B.80或50C.130D.50或130 16.(2011.乐山)如图,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=()A.40°B.60°C.70°D.80°三、解答题17.如图,已知⊙O的弦AB、CD的延长线相交于点P,且DA=DP,BC与BP相等吗?为什么?18.如图,AB是⊙O的直径,以OA为直径的OC与⊙O的弦AD相交于点E,线段AE 和ED相等吗?为什么?19.空投物资用的某种降落伞的轴截面如图所示,△ABG是等边三角形,C,D是以AB 为直径的半圆O的两个三等分点,CG,DG分别交AB于点E,F,试判断E,F分别位于所在线段的什么位置.并证明你的结论(证一种情况即可).20.如图所示,已知⊙O的弦AB、CD互相垂直,OE⊥AD于点E,求证:BC=2OE.21.如图所示,以△ABC的BC边为直径的半圆交AB于点D,交AC于点E,过点E作EF⊥BC,且BF:FC=5:1,AB=8,AF=2,求CE的长.],22.(2010.杭州)已知:如图,AB是⊙O的直径,点C、D为圆上两点,且CB CD CF⊥AB于点F,CE⊥AD交AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=6,求△ACD的面积.23.(2011.肇庆)已知:如图,∆ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC =∠DBA;(2)求证:P是线段AF的中点;24.(2011.苏州)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB=________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以点A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.•A BCDE OFP参考答案1.50°2.28°3.48 4.30°5.40°6.33°7.65°8.40°9.B 10.C 11.C 12.B 13.C 14.C 15.D 16.C17.BC=BP.18.AE=DE.理由略19.E为AB、DG的三等分点.点F为AB、DG的三等分点.理由略20.略21.CE=23.22.(1)略(2)93 423.(1)∵BD平分∠CBA,∴∠CBD=∠DBA∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD∴∠DAC =∠DBA(2)∵AB为直径,∴∠ADB=90°又∵DE⊥AB于点E,∴∠DEB=90°∴∠ADE +∠EDB=∠ABD +∠EDB=90°∴∠ADE=∠ABD=∠DAP∴PD=P A又∵∠DF A +∠DAC=∠ADE +∠PD F=90°且∠ADE=∠DAC∴∠PDF=∠PFD∴PD=PF ∴P A=PF 即P是线段AF的中点24.(1)23.(2)解法一:∵∠BOD是△BOC的外角,∠BCO是△ACD的外角,∴∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.∴∠BOD=∠B+∠A+∠D.又∵∠BOD=2∠A,∠B=30°,∠D=20°,∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,∴∠BOD=2∠A=100°.解法二:如图,连接OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D.又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°.(3)∵∠BCO=∠A+∠D,∴∠BCO>∠A,∠BCO>∠D.∴要使△DAC与△BOC相似,只能∠DCA=∠BCO=90°.此时,∠BOC=60°,∠BOD=120°,∴∠DAC=60°. ∴△DAC ∽△BOC.∵∠BCO=90°,即OC ⊥AB ,∴AC=21AB=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.如图,已知A,B,C,D是⊙O上的四点,延长 DC,AB相交于点E,若BC=BE.求证:△ADE 是等腰三角形.
证明:∵∠A+∠BCD=180°, ∠BCE+∠BCD=180°.
∴∠A=∠BCE. ∵BC=BE, ∴∠E=∠BCE, ∴∠A=∠E, ∴AD=DE, ∴△ADE是等腰三角形.
综合应用
下列说法是否正确,为这什两么个?角有什 么关系吗?
“在同圆或等圆中,同弦或等弦所对的圆周角相等”.
一条弦所对应的圆周角有两个.
D
如图所示,连接BO、EO.
O.
显然,∠C与∠D所对应的圆心角和为 360°,
所以根据圆周角定理可知∠C+∠D = 180°.
B
E
C
在同圆或等圆中,同弦或等弦所直径, ∴ ACB=ADB=90°. 在 Rt△ABC 中,
6
O
A
10
B
BC AB2 AC2 102 62 (8 cm).
D
∵ CD 平分ACB, ∴ ACD=BCD,
∴ AOD=BOD . ∴ AD=BD.
在 Rt△ABD 中, AD2+BD2=AB2 ,
1 2
α.
证明:由(1)知∠BOM=90°-α.
M
又∠C=β= 12∠AOB,
C
∴β=
1 2
(90°-α)=45°-
1 2
α.
课堂小结
圆周角的定义:顶点在圆上,并且两边都和圆相交的角.

定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
周 圆周角定理
角 及其推论:
①同弧或等弧所对的圆周角相等.
推论 ②半圆(或直径)所对的圆周角是直角,90°的圆
24.1.4 圆周角
新课导入
如图,把圆心角∠AOB的顶点 O拉到圆上,得到∠ACB. 问 题 1 : ∠ ACB 有 什 么 特 点 ? 它 与 ∠AOB有何异同? 问题2:你能仿照圆心角的定义给 ∠ACB取一个名字并下定义吗?
C O
A
B
(1)知道什么是圆周角,并能从图形中准确识别它. (2)探究并掌握圆周角定理及其推论. (3)体会“由特殊到一般”“分类” “化归”等数学思想.
A.40° B.50° C.60° D.70°
解析:⊙O是△ABC的外接圆,OB=OC,
所以∠OBC=∠OCB=50°,∠BOC=80°,
∠A=
12∠BOC=
1 2
×80°=40°.
上节课我们学习了一个反映圆心角、弧、弦三个 量之间关系的一个结论,这个结论是什么?
在同圆(或等圆)中,如果圆心角、弧、弦有一 组量相等,那么它们所对应的其余两个量都分别相等.
∠BAD+∠ABC+∠BCD+∠ADC =360°
C
圆内接四边形的对角 互补 .
D O
A
B
随堂演练
基础巩固
1.下列四个图中,∠x是圆周角的是( C )
2.如图,⊙O中,弦AB、CD
相交于E点,且∠A=40°,
∠AED=75°,则∠B=( D )
A.15°
B.40°
C.5°
D.35°
3.如图,⊙O的直径AB与弦CD垂 直,且∠BAC=40°,则∠BOD=
∠FBC=α,∠ACB=β.
(1)当α=50°时,求β的度数;
(2)猜想α与β之间的关系,并
给予证明.
C
解:(1)连接OA,交BF于点M. ∵A是B⌒F上的中点,∴OA垂直平分BF.
∴∠BOM=90°-∠B=90°-α=40°.
∴∠C=
1 2
∠AOB=
1 2
×40°=20°,
即β=20°.
(2)β=45°-
C
8 6
O
A
10
B
∴ AD=BD= 2 AB 2
= 5 2 (cm).
D
知识点3 圆内接多边形
如果一个多边形的所有顶点
C
都在同一个圆上,这个多边形叫 D
做圆内接多边形,这个圆叫做这
O
个多边形的外接圆.
A
B
如图所示,四边形ABCD是⊙O的内接四边形, ⊙O是四边形ABCD的外接圆.
圆内接四边形的四个角之间有什么关系?
AB OA2 OB2 2OA2 2OA 2.
7.如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB= 60°,判断△ABC的形状并证明你的结论. 解:△ABC是等边三角形. 证明如下: ∵∠APC=∠ABC=60°,
∠CPB=∠BAC=60°, ∴∠ACB=180°- ∠ABC-∠BAC=60°, ∴△ABC是等边三角形.
又∵∠BOD=∠BAD+∠B,
∴ BAD 1 BOD.
2
同理,CAD 1 COD.
B
∴ BAC
2 BAD
CAD
1
BOC.
2
O
C D
第三种情况: 请同学们自己完成证明.
A O
B C
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
【对应训练】
如图,⊙O是△ABC的外接圆,∠OCB=50°, 则∠A等于( A )
80°.
4.如图,点B、A、C都在⊙O上, ∠BOA=110°,则∠BCA=
125°.
5.如图,⊙O中,弦AD平行于弦BC,
∠AOC=78°,求∠DAB的度数.
解:∵AD∥BC,
∴∠DAB=∠B.
又∵∠B=
1 2
∠AOC=39°.
∴∠DAB=39°.
6.如图,⊙O的半径为1,A,B,C是⊙O上的三个 点,且∠ACB=45°,求弦AB的长. 解:连接OA、OB. ∵∠ACB=45°, ∴∠BOA=2∠ACB=90°. 又OA=OB, ∴△AOB是等腰直角三角形.
C
那么,圆周角与弧、弦有什么 关系吗?
O
A
B
知识点2 圆周角定理的推论 同弧:∠BAC与∠BDC同B⌒C,∠BAC与∠BDC
有什么关系?
证明:根据圆周角定理可知,
A
D
BAC 1 BOC, BDC 1 BOC.
2
2
∴ BAC BDC.
同弧所对的圆周角相等.
O
B
C
等弧:B⌒C=C⌒E,∠BDC与∠CAE有什么关系?
等,也可能互补.
半圆(或直径)所对的圆周角有什么特殊性?
所对应的圆心角为 180°, 则对应的圆周角为 90°.
C2 C1
C3
A
O
B
推论2:
半圆(或直径)所对的圆周角是直 角,90°的圆周角所对的弦是直径.
例4 如图,⊙O的直径AB为10 cm,弦AC为 6 cm,
ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.
周角所对的弦是直径.
圆内接四边形:圆内接四边形的内角和为360°,并且四边形的对角互补.
如图,作出两弧所对应的圆心角.
根据圆周角定理可知,
D
BDC 1 BOC, CAE 1 COE.
O.
2
2
A
又由B⌒C=C⌒E可知,∠BOC=∠COE.
B
E
C
∴ ∠BDC=∠CAE
等弧所对的圆周角相等.
推论1:
显然,在同圆
同弧或等弧所对的圆周角相等.或等圆中,相等的圆
周角所对应的弧相等, 所对应的弦也相等.
推进新课
知识点1 圆周角的定义及圆周角定理
1.圆心角的定义?
C
顶点在圆心的角叫圆心角.
2.图中∠ACB 的顶点和边有哪些特点? O
顶点在圆上,并且两边都和 圆相交的角叫圆周角.
A
B
图中圆周角∠ACB 和圆心角∠AOB 有怎样
的关系?
C
先猜一猜,再用 量角器量一量.
O
ACB 12AOB
A
B
(1)在圆上任取B⌒C,画出圆心角∠BOC 和圆 周角∠BAC,圆心角与圆周角有几种位置关系?
9.如图,已知EF是⊙O的直径,把∠A为60°的直角三 角板ABC的一条直角边BC放在直线EF上,斜边AB与 ⊙O交于点P,点B与点O重合;将三角形ABC沿OE方 向平移,使得点B与点E重合为止.设∠POF=x°,则 x的取值范围是 30≤x≤60 .
拓展延伸
10.如图,BC为半圆O的直径,点F是B⌒C上一动 点(点F不与B、C重合),A是B⌒F上的中点,设
A A
A
O
O
O
B
C
B
B
C
C
(2)如何证明一条弧所对的圆周角等于它所 对的圆心角的一半?
第一种情况: A
证明:∵ OA=OC,
∴ ∠A=∠C.
O
又∵ ∠BOC=∠A+∠C,
∴ BAC 12BOC.
B
C
第二种情况:
证明:如图,连接 AO 并延长交⊙O 于点 D. A ∵OA=OB,
∴∠BAD=∠B.
相关文档
最新文档