初中数学数学名师莱布尼茨

合集下载

数学故事——莱布尼茨

数学故事——莱布尼茨

数学故事——莱布尼茨二进制应用的推进者、自动计算的先驱者之一,终生致力于设计、改进计算器,造出的计算器样机达到了进行四则运算的水平,他就是莱布尼茨。

戈特弗里德·威廉·莱布尼茨(1646年7月1日-1716年11月14日),德国哲学家、数学家,是历史上少见的通才,被誉为十七世纪的亚里士多德。

1679年莱布尼茨发明了一种计算法,用两个数字代替原来的十进制数字,即1 和0。

1701年他写信给在北京的神父Grimaldi(中文名字闵明我)和 Bouvet(中文名字白晋)告知自己的新发明,希望能引起他心目中的“算术爱好者”康熙皇帝的兴趣。

白晋很惊讶,因为他发现这种“二进制的算术”与中国古代的一种建立在两个符号基础上的符号系统是非常近似的,这两个符号分别由一条直线和两条短线组成,即—和- -。

这是中国最著名大概也是最古老的书《易经》的基本组成部分。

据推测,该书大约产生于公元前第一个千年的初期,开始主要是一部占卜用书,里边的两个符号可能分别代表“是”和“不”。

莱布尼茨对这个相似也很吃惊,和他的笔友白晋一样,他也深信《易经》在数学上的意义。

现在我们可以肯定地说,这种解释与《易经》没有联系。

《易经》不是数学书,而是一本“预言”,并在漫长的历史中逐渐演变为一本“智慧之书”。

书里的短线意味着阴阳相对,也即天与地、光明与黑暗、造物主和大自然。

六爻以不同的组合出现,人们可以借此对自然界和人类生活的变换做出各种不同的解释。

这一次将数学与古代中国《易经》相联的尝试是不符合实际的。

莱布尼茨的二进制数学指向的不是古代中国,而是未来。

莱布尼茨在1679年记录下他的二进制体系的同时,还设计了一台可以完成数码计算的机器。

我们今天的现代科技将此设想变为现实,这在莱布尼茨的时代是超乎人的想象能力的。

莱布尼茨在数学上的成就

莱布尼茨在数学上的成就

莱布尼茨在数学上的成就莱布尼茨(Gottfried Wilhelm Leibniz)是17世纪欧洲数学史上最伟大的数学家之一,他在数学领域的工作成果卓著,其著作和成就至今仍受到广泛赞誉。

莱布尼茨因其广泛而重要的数学工作而被誉为“现代数学之父”之一。

下面,我们将逐一讨论莱布尼茨在数学领域所取得的成就:一、微积分莱布尼茨将微积分学推向了前沿,他发明了微积分符号“∫” 和“d”,并且为极限符号“lim” 和“dx” 做出了初步的定义。

他发明了微积分学的原理,并应用于各种现代物理领域,比如力学、天文学、电学、化学、水利工程以及统计学等等。

其成果对于现代科学的发展和应用有着深远的影响。

二、二进制数莱布尼茨发明的二进制数是现代计算机科学的基础。

这种方法使用了“1”和“0”,表示数值及运算,它是现代计算机算法和数据储存的核心。

这项发明极大地促进了计算机科学的发展,并成为通信和信息技术领域的基础。

三、逻辑学莱布尼茨被广泛认为是逻辑学的奠基人,他发明了二元谓词符号,即量词和一个逻辑与/或符号,这为数学、科学以及哲学等领域的逻辑问题提供了基础。

他的逻辑符号,不仅为科学和技术进步做出了贡献,同时也为社会和法律学领域储备了很多更为严密和精确的推理手段。

四、天文学莱布尼茨在天文学领域的工作成果,对其后的科学家和研究者具有深远的影响。

他发明了一种天文工具,即“反思镜”来观测星体,以及提出了一种解释力学哥白尼太极图的方法。

他将肯定的数学方法引入了其他自然科学领域,尤其是物理和力学,这为工程和天文学领域的成果做出了很大的贡献。

总之,莱布尼茨是一个多才多艺的天才。

无论在哪个领域,他的成就都是令人瞩目的。

他不仅完成了伟大科学家的一生,还为未来提供了广泛而深刻的启示,其思想贡献仍然在许多领域发挥着很大的影响。

莱布尼茨重要数学发现

莱布尼茨重要数学发现

莱布尼茨重要数学发现摘要:一、莱布尼茨简介二、莱布尼茨的数学成就1.发明微积分2.发现莱布尼茨定理3.对数与对数表的发明三、莱布尼茨的数学贡献与影响四、结论正文:【一、莱布尼茨简介】戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646 年7 月1 日-1716 年11 月14 日),德国哲学家、数学家和科学家,是启蒙时代的杰出代表。

他对数学、物理、哲学等领域有着广泛的研究,并取得了许多重要的成果。

他与英国科学家艾萨克·牛顿并称为微积分的创立者,他们的成就对后世产生了深远的影响。

【二、莱布尼茨的数学成就】1.发明微积分微积分是现代数学的基础,它的发展和成熟对现代科学产生了深远的影响。

莱布尼茨与牛顿几乎同时独立地发明了微积分,他们通过引入微分和积分概念,为解决各种实际问题提供了强大的工具。

莱布尼茨的微积分符号系统更加简洁,为后世广泛采用。

2.发现莱布尼茨定理莱布尼茨定理是数论中的一个重要定理,它表明了关于二次剩余的某些性质。

该定理对于整数解的求解、密码学等领域具有重要意义。

3.对数与对数表的发明对数是数学中一种非常有用的工具,它可以简化乘法与除法的计算过程。

莱布尼茨在1679 年发明了对数,并首次制作了对数表。

对数的发明使数学家们能够更方便地进行各种复杂计算,为科学研究提供了有力支持。

【三、莱布尼茨的数学贡献与影响】莱布尼茨的数学成就不仅在当时产生了广泛的影响,而且在今天也具有重要意义。

他的微积分发明为物理学、工程学等学科的发展提供了数学基础;他的莱布尼茨定理在数论领域具有广泛应用;而对数和对数表的发明则为各种实际问题的求解提供了便利。

【四、结论】戈特弗里德·威廉·莱布尼茨是数学史上最杰出的科学家之一,他的贡献对现代数学、物理学、工程学等学科的发展产生了深远影响。

莱布尼茨——精选推荐

莱布尼茨——精选推荐

莱布尼茨摘要:在求面积问题方面,莱布尼茨深受卡瓦列里"线由无穷多个点... 数学符号,代数莱布尼茨在微积分方面的贡献突出地表... 莱布尼茨希望能用二进位制证明圆周率π的超越性. ...关键词:线,代数,微积分,性类别:专题技术来源:牛档搜索()本文系牛档搜索()根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。

不代表牛档搜索()赞成本文的内容或立场,牛档搜索()不对其付相应的法律责任!莱布尼茨北京大学孙小礼中国科学院自然科学史研究所张祖贵莱布尼茨,G.W.(Leibniz,Gottfried Wilhelm)1646年7月1日(儒略历,1646年6月21日)生于德国莱比锡;1716年11月14日卒于德国汉诺威.数学、科学、哲学.莱布尼茨出身书香门第,父亲弗里德里希·莱布尼茨(Frie-drich Leibniz,1597—1652)是莱比锡大学的道德哲学教授,母亲凯瑟琳娜·施马克(Katherina Schmuck,1621—1664)出身教授家庭,虔信路德新教.父母亲自做孩子的启蒙教师,耳濡目染,使莱布尼茨从小就十分好学.他最先是对诗歌和历史有着浓厚的兴趣.父亲在他6岁时去世了,留给他十分丰富的藏书.知书达理的母亲担负起儿子的幼年教育.莱布尼茨8岁时入尼古拉学校,学习拉丁文、希腊文、修辞学、算术、逻辑、音乐以及圣诗、路德教义等,对逻辑学很感兴趣.他不满足学校所学的内容,充分利用家中的藏书,广泛接触了古希腊罗马文化,阅读了许多著名学者的著作.13岁时,他就试图改进亚里士多德(Aristotle)的范畴理论.1661年,莱布尼茨进入莱比锡大学学习法律,刚一进校就跟上了大学二年级标准的人文学科的课程,还抓紧时间学习哲学和科学,广泛地阅读了F.培根(Bacon)、J.开卜勒(Kepler)、G.伽利略(Galileo)等人的著作,并且对前人的著述进行深入的思考和评价.1663年5月,他以题目为“论个体原则方面的形而上学争论”(Disputatio Metaphysica de principio Indiuidui)的论文获学士学位.1663年夏季,莱布尼茨前往耶拿大学,跟随E.魏格尔(Weigel)系统地学习了欧氏几何,使他开始确信毕达哥拉斯-柏拉图(Pythagoras-Plato)宇宙观:宇宙是一个由数学和逻辑原则所统率的和谐的整体.1664年1月,莱布尼茨写出论文“论法学之艰难”(Specimendifficultatis in lure),获哲学硕士学位.是年2月12日,他18岁时母亲去世了.他一生在思想、性格方面受母亲影响颇深.从1665年开始,莱比锡大学审查他提交的博士论文“论身份”(De Conditionibus),但1666年以他太年轻(年仅20岁)为由而拒绝授予他法学博士学位.对此他很气愤,毅然离开莱比锡前往纽伦堡附近的阿尔特多夫大学,并立即向学校提交了早已准备好的那篇博士论文,1667年2月该大学授予他法学博士学位,还聘请他为法学教授.但是他拒绝了,决心投身到外部世界,去干更有意义的事情.莱布尼茨在纽伦堡加入了一个炼金术士团体.1667年,通过该团体结识了政界人物博因堡男爵约翰·克里斯蒂安(Johann Choristian,Freiherr Von Boyneburg,1622—1672),并经男爵推荐给迈因茨选帝侯J.D.冯·舍恩博恩(von Sch nborn),从此莱布尼茨登上了政治舞台.1669年,通过阅读英国皇家学会《会刊》(PhilosophicalTran-sactions),莱布尼茨了解到C.U.惠更斯(Huygens)正在与别人讨论有关碰撞问题,促使他开始思考自然哲学问题.从1671年开始,莱布尼茨利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界情况、与人进行思想交流的一种主要方式.从这一年起,他与英国皇家学会秘书亨利·奥顿伯格(Henry Oldenburg),以及巴黎科学院的著名学者们书信往来长达几十年.1671—1672年冬季,莱布尼茨受迈因茨选帝侯之托着手准备制止法国进攻德国的计划.1672年,他作为一名外交官出使巴黎想游说法国国王路易十四(Louis XIV,Le Grand)放弃进攻,却始终未能与法王见面,这次外交活动以失败而告终.但是,在1672—1676年留居巴黎期间,莱布尼茨却开始了自己的学术生涯.当时巴黎是欧洲科学文化中心.他学习了法语,结识了科学界、哲学界的许多著名人士,使他的思想、行动开始越出德国而走向世界.他一生中的许多科学成就和科学思想,如微积分等等,都是在这一时期取得或萌发的.1673年1月,为了促进英国与荷兰之间的和解,他前往伦敦进行斡旋,未果.但他却趁机与英国学术界知名学者建立了联系.他见到了已通信三年的奥顿伯格,结识了R.胡克(Hooke)、R.玻意耳(Boyle)等人.1673年3月回到巴黎,4月即被推荐为英国皇家学会会员.这一时期,他的兴趣越来越明显地朝向数学和自然科学.1673年2月,他的保护人和挚友冯·舍恩博恩去世,使莱布尼茨失去了职位和薪金,仅仅是一位家庭教师了,当时年仅28岁.他曾多方设法谋求外交官职位或在法国科学院谋职,都没有成功.因此只好接受汉诺威公爵约翰·弗里德里希(Johann Friedrich)的邀请,离开巴黎前往汉诺威.莱布尼茨于1676年10月4日离开巴黎,先在伦敦短暂停留,继而前往荷兰见到了A.U.列文虎克(Leeuwenhoek).列文虎克使用显微镜第一次观察了细菌、原生动物和精子,这些对莱布尼茨的哲学思想曾经产生了影响.他于11月底抵达汉诺威,担任不伦瑞克公爵府法律顾问兼图书馆长.汉诺威成了他的永久居住地.在汉诺威定居后,莱布尼茨广泛地研究哲学和各种科学、技术问题.他的哲学思想逐渐走向成熟,同时也从事多方面的学术文化和社会政治活动.不久他就成为宫庭议员,在社会上开始声名显赫,生活也由此而富裕.1682年,与O.门克(Mencke)创办拉丁文科学杂志《教师学报》(又译《学术记事》)(Acta eruditorum lip-siensium,1682—1732).他的数学、哲学文章大都在该杂志刊登.1679年,不伦瑞克公爵约翰·弗里德里希突然去世,其弟奥古斯特(Ernestus Augustus)继任爵位,莱布尼茨仍保留原职.新公爵夫人苏菲(C.U.H.Sophie)是他的哲学学说的崇拜者,“世界上没有两片完全相同的树叶”,这一名言就出自他与苏菲的谈话.新公爵聘请他编写不伦瑞克家族的历史.为了从事这一工作,他在欧洲作了广泛的学术旅行.1687年,莱布尼茨离开汉诺威外出旅行.1688年5月抵达维也纳,拜见了奥地利皇帝利奥波德一世(Leopold Ⅰ),他为皇帝构画出的一系列经济、科学规划,给皇帝留下了深刻印象.他试图在奥地利宫庭中谋一职位,但直到1713年才得到肯定答复,而他请求奥地利建立一个“世界图书馆”的计划则始终未能实现.随后他前往威尼斯,然后抵达罗马.在罗马,他被选为罗马科学与数学科学院成员.1690年3月左右回到汉诺威,由于撰写不伦瑞克史料的功绩,他获取了枢密顾问宫职务.在1700年世纪转变时期,莱布尼茨热心地从事于科学院的筹划、建设事务.他竭力提倡集中人才研究学术、文化和工程技术,从而更好地安排社会生产,指导国家建设.从1695年起,他就一直为在柏林建立科学院而四处奔波,1698年为此亲往柏林.1700年当他第二次访问柏林时,终于得到了弗里德里希一世(FriedrichⅠ,1701—1713年在位),特别是其妻子(汉诺威奥古斯特公爵之女)的赞助,建立了柏林科学院,他出任首任院长.1700年2月,他被选为法国科学院院士.1713年初,维也纳皇帝授予他帝国顾问的职位,并封他为男爵,邀请他指导建立科学院.俄国的彼得大帝(Peter I, The Great)也在1711—1716年几次听取了他关于建立科学院的建议,并于1712年给予他一个有薪水的数学和科学宫庭顾问的职务.1712年左右,他被维也纳、不伦瑞克—纽伦堡、柏林、维也纳和彼得堡五个王室所雇用.他一有机会总是鼓吹他的编写百科全书、建立科学院以及利用技术改造社会的计划.后来维也纳科学院、彼得堡科学院先后都建立起来了.传说他还曾写信建议康熙皇帝在北京建立科学院.汉诺威公爵奥古斯特选帝侯1698年去世后,继任的公爵乔治·路德(George Ludwig,1660—1727,即后来的英王乔治一世)对莱布尼茨不甚信任,使他在各个王室包括在汉诺威都开始遭受冷遇.1714年,当听到乔治·路德成为英国国王的消息后,68岁高龄的莱布尼茨于9月14日从外地回到了汉诺威.但三天前乔治·路德已经作为乔治一世国王前往英国了.他请求在伦敦宫庭谋一历史学家的职位,却被乔治一世拒绝.他忧心忡忡,处境每况愈下,晚年凄惨悲凉.1716年夏,乔治一世访问汉诺威时,曾同他一起渡假,这给了他少许安慰.1716年11月14日,由于痛风和胆结石症引起腹绞痛卧床一周后,莱布尼茨离开了人世,终年70岁.数学微积分 1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列0,1,4,9 16,…的性质,例如它的第一阶差为1,3,5,7,…,第二阶差则恒等于2,2,2,…等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为 1+3+5 +7=16,即序列的第5项.他用X表示序列中项的次序,用Y 表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列.1672年,惠更斯给莱布尼茨出了一道他自己正同别人竞赛的题目:求三角级数(1,3,6,10,…)倒数的级数之和莱布尼茨圆满地解决了这一问题,他是这样计算的:初次成功激发了他进一步深入钻研数学的兴趣.通过惠更斯,他了解到B.卡瓦列里(Cavalieri)、I.巴罗(Barrow)、B.帕斯卡(Pascal)、J.沃利斯(Wallis)的工作.于是,他开始研究求曲线的切线以及求平面曲线所围图形的面积、立体图形体积等问题.1674年,他学习R.笛卡儿(Descartes)几何学,同时对代数性发生了兴趣.这一时期,他检索了已有的数学文献.对于当时数学界密切关注的切线问题和求积问题,莱布尼茨在前人的基础上提出了一个普遍方法.这个方法的核心是特征三角形(characteristic triangle).在帕斯卡、巴罗等人讨论过的特征三角形的基础上,他建立了由dx,dy和PQ(弦)组成的特征三角形.其中dx,dy的意义是这样的:在他1666年“论组合术”中所考虑的序列中,用dx表示相邻的序数之差,dy表示两个相邻项值之差,然后在数列项的顺序中插入若干dx,dy,于是过渡到了任意函数的dx,dy.特征三角形的两条边就是任意函数的dx,dy;而PQ 则是“P和 Q之间的曲线,而且是T点的切线的一部分”.如图1,T是曲线y=f(x)上的一点,dx,dy分别是横坐标、纵坐标的差值.利用这个特征三角形,他很快就意识到两个问题:(1)曲线的切线依赖于纵坐标的差值与横坐标的差值(当这些差值变成无穷小时)之比.通过考虑图1中△PQR和△STU,发现△PQR∽△STU,从而有dy/dx=Tu/Su.也就是说,曲线y上过T点的切线的斜率是dy/dx.(2)求积(面积)依赖于横坐标的无限小区间的纵坐标之和或无限窄矩形之和.有了这些思想,他很快就推导出了一大批新结论.用他自己的话说就是,从特征三角形出发,“毫不费力,我确立了无数的定理”.根据莱布尼茨留下的遗稿可以判定,他是在1673年建立起特征三角形思想的.他将图1中特征三角形的斜边PQ用“dS”表示,这样特征三角形又称为微分三角形(differential triangle)如图2,其中ds2=dx2+dy2.利用特征三角形,莱布尼茨早在1673年就通过积分变换,得到了平面曲线的面积公式这一公式是从几何图形中推导出来的,经常被他用来求面积.1673—1674年,他给出了求一条曲线y=y(x)绕x轴旋转一周所形成的旋转体的表面积A的公式同时,他还给出了曲线长度公式在求面积问题方面,莱布尼茨深受卡瓦列里“线由无穷多个点构成,面由无穷多条线构成”思想的影响,认为曲线下的面积是无穷多的小矩形之和.1675年10月29日,他用“∫”代替了以前的和符号“Omn”(“∫”是Sum 和)的第一个字母“s”的拉长),用∫ydx表示面积,在这份手稿中,他还从求积出发,得到了分部积分公式1676年11月,他得出了公式其中n是整数或分数(n≠-1).莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定给出长度,因此他开始探讨“∫”的运算(积分)和“d”的运算(微分)之间的关系,认识到要从y回到dy,必须做出y的微差或者取y的微分.经过这种不充分的讨论,他断定一个事实:作为求和的过程的积分是微分的逆.这样,莱布尼茨就第一次表达出了求和(积分)与微分之间的关系.莱布尼茨于1675—1676年给出了微积分基本定理(后来又称为牛顿-莱布尼茨公式)(A为曲线f下的图形的面积,图3.)于1693年给出了这个定理的证明.以前,微分和积分作为两种数学运算、两类数学问题,是分别地加以研究的.卡瓦列里、巴罗、沃利斯等许多人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果是孤立、不连贯的.虽然他们已开始考虑微分和积分之间的关系,然而只有莱布尼茨和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者的内在的直接联系:微分和积分是互逆的两种运算.而这正是建立微积分学的关键所在.只有确立了这一基本关系,才能在此基础上构建系统的微积分学.并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则.莱布尼茨于1684年10月发表在《教师学报》(Acta erudito-rum)上的论文,题目是“一种求极大值与极小值和求切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算”(Nova Methodus pro Maximis et Minimis,itemque tangentibus,quae necfractas,necirrationales quantitates moratur,et singularepro illis Calculi genus),在数学史上被公认为是最早发表的微积分文献.早在1677年7月11日前后及11月左右,莱布尼茨明确定义了dy为函数微分,给出了dy的演算规则:“如果a是给定的常数,则da=0,dax=adx;加法和减法 v=z—y+w+x,dv=dz-dy+dw+dx;乘法 y=vx,dy=vdx+xdv在1676—1677年的手稿中,他利用特征三角形分析了曲线切线的变化情况:对于曲线v=v(x),当dv与dx之比为无穷大时,切线垂直于坐标轴(x轴).当dv与dx之比等于0时,切线平行于x轴,当dv=dx≠0时,则切线与坐标轴成45°角,他指出,对于曲线v,当dv=0时,“在这个位置的v,明显地就是极大值(或极小值)”,他详细讨论了当dv<0,而变成dv=0后又dv<0时取极大值,反之则取极小值的情形.他还给出了拐点——曲线的凹凸情况发生变法的条件是d2v=0.以后,莱布尼茨具体求出了各种各样复杂函数的微商(导数).1686年,给出了对数函数,指数函数的微商.1695年求出了y=x x的微商dy=xx(1+lnx),等等.他引入了n阶微分的符号d n,并且给出了高阶微分的“莱布尼茨法则”:其中n!=1×2×3×…×(n-1)×n.莱布尼茨在积分方面的成就,后来比较集中地写在1686年5月发表在《教师学报》上的一篇论文中,题为“潜在的几何与不可分量和无限的分析”(De Geometria recondita et Analysi Indivisi-bilium atque Infinitorum).品中出现了积分符号.同年,他引入了空间曲线的“密切”(osculating)这一术语,并给出了曲率ρ公式:其中R为曲率半径.1692年和1694年,他给出了求一族曲线 f(x,y,α)=0(α为曲线族参数)包络的普遍方法:在中消去α.实际上,用微积分方法研究几何在微积分奠基者(牛顿、莱布尼茨等)那里已经开始了.切线、包络等几何问题在莱布尼茨手中是与微积分连在一起的.无穷级数在微积分的早期研究中,有些函数如指数函数等超越函数的处理相当困难,然而人们发现,若用它们的级数来处理,则非常有成效.因此,无穷级数从一开始就是莱布尼茨、牛顿等人微积分工作的一个重要部分.有时使用无穷级数是为了计算一些特殊的量,如莱布尼茨曾用无穷级数表达式计算π(圆周率).在求面积的过程中,通过无穷级数表示圆在第一象限的面积,他得到了π的一个十分漂亮的表达式(图4):1673年左右,他独立地得到了sinx,cosx和arctgx等函数的无穷级数展开式.还得到了圆面积和双曲线面积的具体展开式,并且将这些展开式与反正切、余割、正弦函数、自然对数函数、指数函数联系起来了.他经常利用级数展开式研究超越函数.有时还将多项式定理用于分式函数或超越函数的展开式.无穷级数展开式,得到了如下的式子:误的.直到1734—1735年,L.欧拉(Euler)才得到在1713年10月25日写给约翰·伯努利(John Bernoulli)的信中,莱布“莱布尼茨判别法”,但他当时的证明却错了.在考虑级数还相当混乱.微分方程微分方程在微积分创立之初就为人们所关注.1693年,莱布尼茨称微分方程为特征三角形的边(dx,dy)的函数.在微分方程方面,他进行了一系列工作.其中有些工作是十分独特的.1691年,他提出了常微分方程的分离变量法,解决了形如型方程的求解问题.方法是,先写成然后两边积分.这一年,他还提出了求解一次齐次方程的方法:因此经过这种变换,原来的一次齐次方程就变成了1694年,他证明了把一阶线性常微分方程y′+P(x)y=Q(x)化成积分方程的正确方法,他的方法使用了因变量替换.同时,他还给出了(y′)2+p(x)y′+q(x)=0的解法.1694年,他和约翰·伯努利引进了找等交曲线或曲线族的问题,并求出了一些特殊问题的解.1696年,他证明了,利用变量替换z=y1-n,可以将伯努利方程变换x=P11u+P12v,y=P21u+P22v可以将微分方程a00+a10x+(a01+a11x)y′=0进行简化.通过求解微分方程,莱布尼茨解决了许多具体问题.例如,1686年,他解决了这样的问题:求一条曲线,使得一个摆沿着它作一次完全振动,都用相等的时间,而无论摆所经历的弧长怎样(即等时问题).他指出,证明,并认识到了圆函数、三角函数的超越性,弄清了许多超越函数的基本性质.此外,他还考虑过概率方程.这一时期,他还求出了十分重要的曳物线方程:1691年,他给出了自达·芬奇(L.Da Vinci)时代就考虑过的悬链线(catenary,这个名称是莱布尼茨给出的)方程为1696年,约翰·伯努利提出了著名的最速降线问题:求从一给定点到不是在它垂直下方的另一点的一条曲线,使得一质点沿这条曲线从给定点P1下滑所用的时间最短(图5);其中摩擦和空气阻力都忽略.这是约翰·伯努利向全欧洲数学家发出的挑战.1697年,莱布尼茨和I.牛顿(Newton)、G.F.A.洛比达(L’Hospital)、约翰·伯努利分别解决了最速降线问题,指出这是由方程表示的上凹的旋轮线,并由此开始了变分法的研究.数学符号、代数莱布尼茨在微积分方面的贡献突出地表现在他发明了一套适用的符号系统.1675年引入dx表示x的微分,“∫”表示积分,ddv,dddy表示二阶、三阶微分.1695年左右用d m n表示m阶微分.他比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一.他自觉地和格外慎重地引入每一个数学符号,常常对各种符号进行长期的比较研究,然后再选择他认为最好的、富有启示性的符号.他创设的符号还有此外还有对数符号、函数符号、行列式符号等等.很多符号的普遍使用与他的提倡和影响密切相关.他还引入了“函数”(function)、“常量”(constant quantity)、变量”(variate)、“参变量”(para-meter)等术语.在代数学方面,莱布尼茨不仅强调引入符号的重要性,而且还讨论了负数、复数的性质,认为复数的出现是无害的,断言复数的对数是不存在的,为此曾在当时的数学界掀起了一场关于负数、虚数的对数之争论.在研究复数时,他还得出过这样的结论:共轭复数的和是实数用一般的复数表示.他把虚数看作是存在(being)与非存在(not-being)的中介.在1678年以前,莱布尼茨就开始了对线性方程组、行列式的研究,对消元法从理论上进行了探讨.在1693年4月28日致洛比达的信中他提出了行列式概念:“我引进方程:此处,在两个数码中,前者表示此数所属的方程式,后者代表此数所属的字母(未知数).”这样,他创设了采用两个数码的系数记号,相当于现在的a ik,为矩阵和行列式一般理论的发展提供了方便的工具.莱布尼茨与牛顿的发明权之争 1698年,瑞士人法蒂奥·德迪勒(Nicolas Fatio de Duiller)断言,牛顿比莱布尼茨先发明微积分,而后者可能是剽窃,于是掀起了一场发明微积分的优先权问题的论战.拥护莱布尼茨的欧洲大陆派与拥护牛顿的英国数学家之间开始了长达一个多世纪的争论.1713年,莱布尼茨发表“微积分的历史和起源”(Historia et origo Calculi differen-tialis,1713)一文,力图说明自己成就的独立性.实际上,牛顿在微积分方面的研究虽然早于莱布尼茨,但莱布尼茨成果的发表则早于牛顿.牛顿在《自然哲学的数学原理》(Philosophiaenaturalis principia mathematica)的第一版(1687年)和第二版(1713年)中都写道:“十年前在我和最杰出的几何学家G.W.莱布尼茨的通信中,我表明我已知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的人在回信中写道,他也发现了一种同样的方法.他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外.”但在第三版(1726年)及以后再版时,这段话却被删去了.事实上后来人们都公认,他们是相互独立地创立了微积分.尽管如此,他们两人的工作确有差异,各有特色.牛顿注重物理方面,而莱布尼茨则侧重在几何方面,并与他的“单子”概念有联系,有一定的哲学色彩;牛顿的工作方式是经验的、具体的和谨慎的,在符号方面不甚用心,而莱布尼茨则是富于想象和大胆的,力图运用符号建立一般法则,善于把具体结果加以推广和普遍化.计算机莱布尼茨是在未看到帕斯卡的加法计算机的情况下,发明他的算术计算机(machina arithmetica)的.1671—1672年,莱布尼茨着手设计、制造计算机——一种能够进行加、减、乘、除及开方运算的机器.1673年到伦敦旅行时,他随身携带的一个木制计算器的模型引起了人们的极大兴趣.人们甚至认为,当时英国皇家学会吸收他为会员,也主要是因为这架计算器,他自己也为这一发明深感自豪.同时这一机器在巴黎也受到人们的热烈赞扬.1674年,莱布尼茨在物理学家E.马略特(Mariotte)的帮助下,制成了一架计算机,并将计算机呈交给巴黎科学院审查验收,后来还当众做过演示,他设计的这种新型计算机(图6),主要由两个部分组成:第一部分是固定的,用于加法和减法,其装置与帕斯卡以前设计的加法机基本一样;第二部分用于乘法和除法,是他专门设计的乘法器和除法器,由两排齿轮构成(被乘数轮与乘数轮),这是莱布尼茨首创的.这架计算机中的许多装置成为后来的技术标准,那些齿轮被称为“莱布尼茨轮”.这架机器可进行四则运算.莱布尼茨充分认识到了计算机的重要性,指出:“这是十分有价值的.把计算交给机器去做,可以使优秀的人才从繁重的计算中解脱出来.”为了制造计算机,他投入大量的精力和财力.当时他曾预言,J.纳皮尔(Napier)的计算尺快要闲置不用了.需要代之以能进行各种运算的快速计算机器.虽然他始终未能研制出一种能够完全自动运算的计算器,但却概括地描述了今天称之为程序自动化的思想——计算机发展中的一个重要方面.这也是莱布尼茨的“使所有的推理过程都机械化”宏大计划中的一部分.1685年.莱布尼茨叙述了他设计这架能进行四则运算的计算机的经过,用拉丁文写下了一份手稿,但这篇手稿直到1897年才由C.若尔当(Jordan)公布.刊登在《测量杂志》(DieZeischift fur Vernessungs-Wesen)上.在文末他预言:“我所说的关于该机器的建造和未来的应用在将来一定会更完善,并且,我相信对于将来能见到它的人会看得更清楚.”莱布尼茨早年制作的那些计算机,有一个被幸运地保存下来了,现在存放在汉诺威博物馆.。

线性代数数学家数学家莱布尼茨

线性代数数学家数学家莱布尼茨

莱布尼茨大哲学家、伟大科学家戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz)。

一、人物戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。

他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。

二、个人生平与事迹公元1646年7月1日,戈特弗里德·威廉·凡·莱布尼茨出生于德国东部莱比锡的一个书香之家,父亲弗里德希·莱布尼茨是莱比锡大学的道德哲学教授,母亲凯瑟琳娜·施马克出身于教授家庭,虔信路德新教。

莱布尼茨的父母亲自做孩子的启蒙教师,耳濡目染使莱布尼茨从小就十分好学,并有很高的天赋,幼年时就对诗歌和历史有着浓厚的兴趣。

不幸的是,父亲在他6岁时去世,却给他留下了丰富藏书。

莱布尼茨的父亲在他年仅六岁时便去世了,给他留下了比金钱更宝贵的丰富的藏书,知书达理的母亲担负起了儿子的幼年教育。

莱布尼茨因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。

8岁时,莱布尼茨进入尼古拉学校,学习拉丁文、希腊文、修辞学、算术、逻辑、音乐以及《圣经》、路德教义等。

1661年,15岁的莱布尼茨进入莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,他还抓紧时间学习哲学和科学。

莱布尼茨对数学的贡献

莱布尼茨对数学的贡献

莱布尼茨对数学的贡献
哎呀,你知道莱布尼茨吗?我跟你说呀,他可太厉害了!他对数学的贡献那简直是超级巨大!
莱布尼茨就像是数学世界里的超级英雄!他提出的微积分,这可不得了啊!你想想,以前大家计算一些复杂的图形面积、物体体积啥的,得多费劲啊。

可莱布尼茨弄出的微积分,就像是给了我们一把神奇的钥匙,一下子就能打开这些难题的大门。

比如说,计算一个不规则图形的面积,以前大家可能都抓耳挠腮,不知道咋办。

但有了微积分,嘿!那就轻松多啦!这难道不神奇吗?
还有啊,他对符号的运用,那也是一绝!他创造的那些符号,就像是数学语言里的小精灵,让数学的表达变得更加简洁和清晰。

你说,要是没有这些符号,我们得多糊涂呀?
有一次,我们数学老师在课堂上讲莱布尼茨,同学们都听得入了迷。

“你们想想,要是没有莱布尼茨的这些贡献,咱们现在学数学得有多难啊!”老师这么一说,大家都忍不住点头。

我回家还跟爸爸妈妈讲了莱布尼茨的故事,爸爸笑着说:“这莱布尼茨可真是个天才,他的贡献让数学前进了一大步!”妈妈也跟着说:“可不是嘛,就像给数学插上了翅膀!”
莱布尼茨的贡献可不只是在学校里被老师讲讲,在很多科学研究里,微积分和那些符号都发挥着巨大的作用呢!飞机的设计、桥梁的建造,哪一样能离开数学呀?而莱布尼茨的成果就是数学大厦的重要基石。

你说,这么伟大的莱布尼茨,我们能不佩服吗?能不感谢他吗?他的贡献真的是让数学变得更加精彩,让我们能探索更多未知的世界!我以后也要像他一样,为数学做出自己的贡献!。

初中数学 数学 莱布尼茨

初中数学 数学 莱布尼茨

莱布尼茨莱布尼茨数学微积分 1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列0,1,4,9 16,…的性质,例如它的第一阶差为1,3,5,7,…,第二阶差则恒等于2,2,2,…等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为 1+3+5 +7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列.1672年,惠更斯给莱布尼茨出了一道他自己正同别人竞赛的题目:求三角级数(1,3,6,10,…)倒数的级数之和莱布尼茨圆满地解决了这一问题,他是这样计算的:初次成功激发了他进一步深入钻研数学的兴趣.通过惠更斯,他了解到B.卡瓦列里(Cavalieri)、I.巴罗(Barrow)、B.帕斯卡(Pascal)、J.沃利斯(Wallis)的工作.于是,他开始研究求曲线的切线以及求平面曲线所围图形的面积、立体图形体积等问题.1674年,他学习R.笛卡儿(Descartes)几何学,同时对代数性发生了兴趣.这一时期,他检索了已有的数学文献.对于当时数学界密切关注的切线问题和求积问题,莱布尼茨在前人的基础上提出了一个普遍方法.这个方法的核心是特征三角形(characteristic triangle).在帕斯卡、巴罗等人讨论过的特征三角形的基础上,他建立了由dx,dy和PQ(弦)组成的特征三角形.其中dx,dy的意义是这样的:在他1666年“论组合术”中所考虑的序列中,用dx表示相邻的序数之差,dy表示两个相邻项值之差,然后在数列项的顺序中插入若干dx,dy,于是过渡到了任意函数的dx,dy.特征三角形的两条边就是任意函数的dx,dy;而PQ 则是“P和 Q之间的曲线,而且是T点的切线的一部分”.如图1,T是曲线y=f(x)上的一点,dx,dy分别是横坐标、纵坐标的差值.利用这个特征三角形,他很快就意识到两个问题:(1)曲线的切线依赖于纵坐标的差值与横坐标的差值(当这些差值变成无穷小时)之比.通过考虑图1中△PQR和△STU,发现△PQR∽△STU,从而有dy/dx=Tu/Su.也就是说,曲线y上过T点的切线的斜率是dy/dx.(2)求积(面积)依赖于横坐标的无限小区间的纵坐标之和或无限窄矩形之和.有了这些思想,他很快就推导出了一大批新结论.用他自己的话说就是,从特征三角形出发,“毫不费力,我确立了无数的定理”.根据莱布尼茨留下的遗稿可以判定,他是在1673年建立起特征三角形思想的.他将图1中特征三角形的斜边PQ用“dS”表示,这样特征三角形又称为微分三角形(differential triangle)如图2,其中 ds2=dx2+dy2.利用特征三角形,莱布尼茨早在1673年就通过积分变换,得到了平面曲线的面积公式这一公式是从几何图形中推导出来的,经常被他用来求面积.1673—1674年,他给出了求一条曲线y=y(x)绕x轴旋转一周所形成的旋转体的表面积A的公式同时,他还给出了曲线长度公式在求面积问题方面,莱布尼茨深受卡瓦列里“线由无穷多个点构成,面由无穷多条线构成”思想的影响,认为曲线下的面积是无穷多的小矩形之和.1675年10月29日,他用“∫”代替了以前的和符号“Omn”(“∫”是Sum 和)的第一个字母“s”的拉长),用∫ydx表示面积,在这份手稿中,他还从求积出发,得到了分部积分公式1676年11月,他得出了公式其中n是整数或分数(n≠-1).莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定给出长度,因此他开始探讨“∫”的运算(积分)和“d”的运算(微分)之间的关系,认识到要从y回到dy,必须做出y的微差或者取y 的微分.经过这种不充分的讨论,他断定一个事实:作为求和的过程的积分是微分的逆.这样,莱布尼茨就第一次表达出了求和(积分)与微分之间的关系.莱布尼茨于1675—1676年给出了微积分基本定理(后来又称为牛顿-莱布尼茨公式)(A为曲线f下的图形的面积,图3.)于1693年给出了这个定理的证明.以前,微分和积分作为两种数学运算、两类数学问题,是分别地加以研究的.卡瓦列里、巴罗、沃利斯等许多人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果是孤立、不连贯的.虽然他们已开始考虑微分和积分之间的关系,然而只有莱布尼茨和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者的内在的直接联系:微分和积分是互逆的两种运算.而这正是建立微积分学的关键所在.只有确立了这一基本关系,才能在此基础上构建系统的微积分学.并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则.莱布尼茨于1684年10月发表在《教师学报》(Acta erudito-rum)上的论文,题目是“一种求极大值与极小值和求切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算”(Nova Methodus pro Maximis et Minimis,itemque tangentibus,quae necfractas,necirrationales quantitates moratur,et singularepro illisCalculi genus),在数学史上被公认为是最早发表的微积分文献.早在1677年7月11日前后及11月左右,莱布尼茨明确定义了dy为函数微分,给出了dy的演算规则:“如果a是给定的常数,则da=0,dax=adx;加法和减法 v=z—y+w+x,dv=dz-dy+dw+dx;乘法 y=vx,dy=vdx+xdv在1676—1677年的手稿中,他利用特征三角形分析了曲线切线的变化情况:对于曲线v=v(x),当dv与dx之比为无穷大时,切线垂直于坐标轴(x轴).当dv与dx之比等于0时,切线平行于x轴,当dv=dx≠0时,则切线与坐标轴成45°角,他指出,对于曲线v,当dv=0时,“在这个位置的v,明显地就是极大值(或极小值)”,他详细讨论了当dv<0,而变成dv=0后又dv<0时取极大值,反之则取极小值的情形.他还给出了拐点——曲线的凹凸情况发生变法的条件是d2v=0.以后,莱布尼茨具体求出了各种各样复杂函数的微商(导数).1686年,给出了对数函数,指数函数的微商.1695年求出了y=xx的微商dy=xx(1+lnx),等等.他引入了n阶微分的符号dn,并且给出了高阶微分的“莱布尼茨法则”:其中n!=1×2×3×…×(n-1)×n.莱布尼茨在积分方面的成就,后来比较集中地写在1686年5月发表在《教师学报》上的一篇论文中,题为“潜在的几何与不可分量和无限的分析”(De Geometria recondita et Analysi Indivisi-bilium atque Infinitorum).品中出现了积分符号.同年,他引入了空间曲线的“密切”(osculating)这一术语,并给出了曲率ρ公式:其中R为曲率半径.1692年和1694年,他给出了求一族曲线 f(x,y,α)=0(α为曲线族参数)包络的普遍方法:在中消去α.实际上,用微积分方法研究几何在微积分奠基者(牛顿、莱布尼茨等)那里已经开始了.切线、包络等几何问题在莱布尼茨手中是与微积分连在一起的.无穷级数在微积分的早期研究中,有些函数如指数函数等超越函数的处理相当困难,然而人们发现,若用它们的级数来处理,则非常有成效.因此,无穷级数从一开始就是莱布尼茨、牛顿等人微积分工作的一个重要部分.有时使用无穷级数是为了计算一些特殊的量,如莱布尼茨曾用无穷级数表达式计算π(圆周率).在求面积的过程中,通过无穷级数表示圆在第一象限的面积,他得到了π的一个十分漂亮的表达式(图4):1673年左右,他独立地得到了sinx,cosx和arctgx等函数的无穷级数展开式.还得到了圆面积和双曲线面积的具体展开式,并且将这些展开式与反正切、余割、正弦函数、自然对数函数、指数函数联系起来了.他经常利用级数展开式研究超越函数.有时还将多项式定理用于分式函数或超越函数的展开式.无穷级数展开式,得到了如下的式子:误的.直到1734—1735年,L.欧拉(Euler)才得到在1713年10月25日写给约翰•伯努利(John Bernoulli)的信中,莱布“莱布尼茨判别法”,但他当时的证明却错了.在考虑级数还相当混乱.微分方程微分方程在微积分创立之初就为人们所关注.1693年,莱布尼茨称微分方程为特征三角形的边(dx,dy)的函数.在微分方程方面,他进行了一系列工作.其中有些工作是十分独特的.1691年,他提出了常微分方程的分离变量法,解决了形如型方程的求解问题.方法是,先写成然后两边积分.这一年,他还提出了求解一次齐次方程的方法:因此经过这种变换,原来的一次齐次方程就变成了1694年,他证明了把一阶线性常微分方程y′+P(x)y=Q(x)化成积分方程的正确方法,他的方法使用了因变量替换.同时,他还给出了(y′)2+p(x)y′+q(x)=0的解法.1694年,他和约翰•伯努利引进了找等交曲线或曲线族的问题,并求出了一些特殊问题的解.1696年,他证明了,利用变量替换z=y1-n,可以将伯努利方程变换x=P11u+P12v,y=P21u+P22v可以将微分方程a00+a10x+(a01+a11x)y′=0进行简化.通过求解微分方程,莱布尼茨解决了许多具体问题.例如,1686年,他解决了这样的问题:求一条曲线,使得一个摆沿着它作一次完全振动,都用相等的时间,而无论摆所经历的弧长怎样(即等时问题).他指出,证明,并认识到了圆函数、三角函数的超越性,弄清了许多超越函数的基本性质.此外,他还考虑过概率方程.这一时期,他还求出了十分重要的曳物线方程:1691年,他给出了自达•芬奇(L.Da Vinci)时代就考虑过的悬链线(catenary,这个名称是莱布尼茨给出的)方程为1696年,约翰•伯努利提出了著名的最速降线问题:求从一给定点到不是在它垂直下方的另一点的一条曲线,使得一质点沿这条曲线从给定点P1下滑所用的时间最短(图5);其中摩擦和空气阻力都忽略.这是约翰•伯努利向全欧洲数学家发出的挑战.1697年,莱布尼茨和I.牛顿(Newton)、G.F.A.洛比达(L’Hospital)、约翰•伯努利分别解决了最速降线问题,指出这是由方程表示的上凹的旋轮线,并由此开始了变分法的研究.数学符号、代数莱布尼茨在微积分方面的贡献突出地表现在他发明了一套适用的符号系统.1675年引入dx表示x的微分,“∫”表示积分,ddv,dddy表示二阶、三阶微分.1695年左右用dmn表示m阶微分.他比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一.他自觉地和格外慎重地引入每一个数学符号,常常对各种符号进行长期的比较研究,然后再选择他认为最好的、富有启示性的符号.他创设的符号还有此外还有对数符号、函数符号、行列式符号等等.很多符号的普遍使用与他的提倡和影响密切相关.他还引入了“函数”(function)、“常量”(constant quantity)、变量”(variate)、“参变量”(para-meter)等术语.在代数学方面,莱布尼茨不仅强调引入符号的重要性,而且还讨论了负数、复数的性质,认为复数的出现是无害的,断言复数的对数是不存在的,为此曾在当时的数学界掀起了一场关于负数、虚数的对数之争论.在研究复数时,他还得出过这样的结论:共轭复数的和是实数用一般的复数表示.他把虚数看作是存在(being)与非存在(not-being)的中介.在1678年以前,莱布尼茨就开始了对线性方程组、行列式的研究,对消元法从理论上进行了探讨.在1693年4月28日致洛比达的信中他提出了行列式概念:“我引进方程:此处,在两个数码中,前者表示此数所属的方程式,后者代表此数所属的字母(未知数).”这样,他创设了采用两个数码的系数记号,相当于现在的aik,为矩阵和行列式一般理论的发展提供了方便的工具.二进位制莱布尼茨发明二进位制的时间,大约是在1672—1676年的巴黎时期.1679年3月15日,莱布尼茨写了题为“二进位算术”(De I’arthmetique binaire)的论文.文中对二进位制进行了相当充分的讨论,与十进位制进行了比较:给出了将二进位数改写成十进位制数的法则:1011000(二进位制)写成十进位制数就是26+0+24+23+0+0+0=64+16+8=88.下面就是1679年3月15日手稿的一页(见183页).莱布尼茨不仅完整地解决了二进位制的表示问题,而且给出了正确的二进位制加法与乘法规则.例如,他给出以下这类实例:1695年5月莱布尼茨与鲁道夫•奥古斯特(Rudolphus Au-gustus)大公的一次谈话中,大公对他的二进位制非常感兴趣,认为一切数都可由0与1创造出来这一点,为基督教《圣经》所讲的创世记提供了依据.这是因为唯一完美的上帝是从无到有创造了世界,这与一切数的根源来自0与1的这种体系是对应的.莱布尼茨由此激起热情,试图以大公的这一想法来争取人们对他的二进位制的关注.1697年他在致大公的信函中,就将他创造设计的象征二进位制的纪念章图章当作新年礼品奉献给大公.纪念章正面是大公图象,背面的设计是这样的(见图7):水面上笼罩着一片黑暗,顶部光芒四射——象征创世的故事;中间排列着二进位、十进位制数字对照表,两侧是加法与乘法的实例.莱布尼茨希望能用二进位制证明圆周率π的超越性.1701年,莱布尼茨将自己的二进制数表给了法国在中国的传教士白晋(F.J.Bouvet),同时又将自己关于二进制的论文送交巴黎科学院,但要求暂不发表.同年11月白晋把宋代邵雍(1011—1077)的伏羲六十四卦次序和伏羲六十四方位两个图给了莱布尼茨.莱布尼茨对白晋提供的材料欣慰异常,发现中国古老的易图可以解释成0—63的二进制数表.莱布尼茨因为从二进制数学理解了六十四卦图(邵雍的六十四卦方圆图,图8)而高兴地说:“几千年来不能很好被理解的奥秘由我理解了,应该让我加入中国籍吧!”1703年,他将修改补充的论文“关于仅用0与1两个记号的二进制算术的说明,并附其应用以及据此解释古代中国伏羲图的探讨”(Explication de l’arthmetique binaire,quise sent des seuls caracteres 0 et 1,avec des remarques Surson utilite,et Sur ce quelle donne Le Sens des aneiennes fi-gures Chinoises Fohy,1703)再送巴黎科学院,要求公开发表.自此二进制公之于众了.根据上述历史事实,表明莱布尼茨并不是受易图的启发而发明二进制的,而是他发现了易图结构可以用二进制数学予以解释.应该说,莱布尼茨的二进制数学能被用来理解古老的中国文化.自他发现了二者之间的这种关系后,在世界范围内兴起了对易学的数理研究,使人们对易学的兴趣日增.莱布尼茨所进行的计算机设计,程序自动化、程序设计的思想,再加上二进制,为计算机的现代发展奠定了坚实的基础.尽管莱布尼茨本人为计算机的设计、二进制的发明感到自豪,但他却没有将二进制用于计算机,没有使二者结合起来.在当时条件下,一个二进位制的机器只会增加技术上的困难,只有随着电子技术的发展,人们才能将二者有效地结合起来.那种认为他是为计算机而引进二进位制的说法是违背历史事实的.逻辑学莱布尼茨的逻辑学研究包括两个方面:数理逻辑与形式逻辑.数理逻辑莱布尼茨决心构造一门基本学科,这门学科在某些方面象数学,但也包括传统逻辑中一些尚未发展的研究内容.他注意到了传统逻辑与数学的共性,发现逻辑及其词项、命题和三段论与代数中的字母、方程式和变换,具有某种形式上的相似,因此他决心把逻辑表示成一种演算,这种演算研究非数量的抽象关系或形式关系,他曾称之为普遍数学.他希望建立一种哲学语言(lingua philosophica)或普遍语言(characteristica universalis),这种语言不仅有助于思想交流,而且有利于思想本身.莱布尼茨力图发明一种对概念进行演算的理论,使得概念也能象数一样进行代数演算.1679年,莱布尼茨开始进行了这方面的研究.他的思想是:每一个简单的词项用一个素数表示,每一个合成词项用素数乘积来表示.如用3表示“能思维的”,7表示动物,人是能思维的动物则可用21表示,写成21=3.7.一个全称肯定命题,如果主项的数能被谓项的数整除,则该命题为真.1686年,莱布尼茨发展了关于概念相等和概念包含的理论,其中引入了词项a,b,c,…,运算符号—(non,表示“非”).四个关系利用这种演算,他成功地将亚里士多德的四种类型的一般命题,表示成了符号公式形式,从而使得用符号表示逻辑命题成为可能.他所考虑的方案和表达方式是:莱布尼茨认为,有可能构造一种符号系统,这种系统可以作内涵的解释也可以作外延的解释.1690年他已经引入了概念的加、减法,用以表示逻辑概念演算及逆运算.他用表示逆运算,例如A—B=C,当且仅当A=B+C,且B和C没有共同的东西.意义.以此为基础,他建立了一套全新的理论体系.他的体系要点主要是公式及一套关于词项、命题的定义与演算规则,如A=B的定义:词项是同一的或一致的,就是说它们能在任何地方,以一个代之以另外一个而不改变任何命题的真值.A=B表示A和B是同一的.这种体系在逻辑上是从未有过的,直到约一个世纪以后才由G.布尔(Boole)重新给出.可惜的是,莱布尼茨没有发展和写出系统的著作,只留下了大批手稿,其中还有许多是断简残篇,但D.希尔伯特(Hilbert)依然说:“数理逻辑的思想首先是莱布尼茨明显说出的.”而这种数理逻辑还仅仅只是莱布尼茨符号语言的一部分.莱布尼茨符号语言的理想是,使一切推理过程、思维过程、争论过程都像数学一样能够计算,甚至能够交给机器完成.为此,他做了很多工作.形式逻辑莱布尼茨在形式逻辑方面的主要工作是,关于判断的分析理论,在此基础上的复合概念理论和关于偶然命题的理论,以及“充足理由律”的提出.他不相信一切论证都可以纳入三段论式,因为他了解到条件论证和析取论证不能还原为三段论形式.对于形式证明,他承认经院哲学争论中使用三段论可能堕落为蠢笨迂腐的学究,但他认为不能没有形式化,否则就会丧失严格性.但对亚里士多德的推崇妨碍了他在这方面取得更大的成就.区分和研究两类真理:理性的真理(必然性命题)与事实的真理(偶然性命题)是莱布尼茨整个科学思想体系特别是他的哲学认识论的核心内容.从逻辑方面他又把必然真理分成原始的真理和推理的真理,并且指出:“推理的真理是必然的,它们的反面是不可能的,事实的真理是偶然的,它们的反面是可能的.”他又认为推理是建立在两大原则上的:(1)矛盾原则,凭着这个原则,我们判定包含矛盾者为假,与假的相对立和相矛盾者为真;(2)充足理由原则,凭着这个原则,任何一件事如果是真实的或实在的,任何一个陈述如果是真的,就必须有一个为什么这样而不那样的充足理由,也许这些理由常常不知道.因此他在逻辑学中引入了“充足理由律”,使之成为与传统的同一律、矛盾律、排中律相并列的一条基本思维定律.物理学、力学、光学1671年,莱布尼茨写下了《物理学新假说》(Hypothesisphysica noua),其中包括两个部分:具体运动原理(Theoriamotus Concreti),是奉献给伦敦英国皇家学会的;抽象运动原理(Theoria motus Abstracti),是奉献给巴黎科学院的.他的具体原理是试图从较简单现象的角度来解释最重要的复杂现象的一种假说,这种原理建立在以太的相对循环的基础上,以太则是通过围绕地球的最初组成状态的物质才起作用的.他认为物体的全部内聚力依靠构成这些物体的微粒的运动,运动的起因是以太微粒的碰撞,它是物体的全部特性的终极原因.莱布尼茨的抽象原理来源于他对连续体的研究和对运动定律的看法,他认为物质的微粒完全处于静止状态时,对一个运动着的物质不存在阻力,只有当微粒构成部分的内在运动时,物体才具有阻力或内聚力.他认为,运动着的物体,不论多么微小,它将带着处于完全静止状态的物体的部分一起运动.他的物理学研究计划是:根据一个审慎的计划和规模,进行某些实验,借以在其上建立一个稳定的和论证的物理学堡垒.他的最终的奋斗目标是为物理学建立一个类似欧氏几何的公理系统.莱布尼茨在物理学上最重要的工作是对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型.1686年,莱布尼茨在《教师学报》上发表了反对笛卡儿关于力的度量的文章“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”(Breuis demonstratio erroris memorabilis Cartesii et aliorum circa Legem naturae),提出了运动的量的问题,从而开始了与笛卡儿学派关于运动度量的长期争论,并发展成了力学中的两个派别.莱布尼茨指出,如果只用动量(mv,m为物体质量,v为物体运动速度)度量运动,那么“力”(mv2)在自然界不断增加或减少时,就会导致动量(mv)不守恒,因此他认为动量(mv)不能做为运动的度量单位.他把力分为“死力”和“活力”,“死力”是静止物体的“压力”或“拉力”,这种力是外来的,其度量是物体的质量和物体由静止状态到运动状态时具有的速度的乘积,即动量mv.“活力”(vis viva)是内在于物体的力,是物体的真运动.在他看来,“活力”应该由物体的质量和该物体所能上升的高度来测量(mh),按照伽利略落体定律,莱布尼茨成功地计算出高度h与速度v的平方成正比,“活力”保持不变m1v21=m2v22.因此,1695年他正式称mv2为“活力”(vis viva),并以mv2作为运动的度量单位,动能的概念就这样被引入到物理学中来了.这是他在《教师学报》上发表的“动力学实例”(Specimen dynamium)中提出的,这篇论文是莱布尼茨力学的结晶,包含了他的大部分研究成果.莱布尼茨第一次认为“活力”mv2是物理学上的终极因,因而可以转化为各种各样的形式,同时还第一次认为mv2的守恒是一个普遍的物理原理,这样他就有充分的理由证明“永动机是不可能”这样的观点.究竟应该以mv2,还是以mv,作为运动的量度,经过长达半个世纪的争论,直到1743年J.R.达朗贝尔(d’Alembert)指出两者都是正确的,不过各自所着眼的角度不同罢了,争论才平息.莱布尼茨反对牛顿的绝对时空观,与牛顿的学生S.克拉克(Clarke)进行了长时期的辩论.在莱布尼茨看来,时空与运动、物质是密不可分的,认为“没有物质也就没有空间,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样.可是这些东西虽有区别,却是不可分离的”.这些思想后来引起了A.爱因斯坦(Einstein)等人的关注.在材料力学方面,莱布尼茨支持马里奥特关于梁受力性质的思想.1684年,他在“固体受力的新分析证明”(Demonstratonsnovae de Resistentia Solidorum)一文中指出,纤维是可以延伸的,它们的拉力与伸长成正比.因此,他提出将胡克定律F=-kx应用于单根纤维,这一假说后来在材料力学中被称为马里奥特-莱布尼茨理论.在光学方面,莱布尼茨利用微积分中的求极值方法,推导出了折射定律:。

莱布尼兹--博学多才的数学符号大师

莱布尼兹--博学多才的数学符号大师

莱布尼兹--博学多才的数学符号大师第一篇:莱布尼兹--博学多才的数学符号大师莱布尼兹--博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一位博学多才的学者。

他的学识涉及哲学、历史、语言、数学、生物、地质、物理、机械、神学、法学、外交等领域。

并在每个领域中都有杰出的成就。

然而,由于他独立创建了微积分,并精心设计了非常巧妙而简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。

莱布尼兹对微积分的研究始于31岁,那时他在巴黎任外交官,有幸结识数学家、物理学家惠更斯等人。

在名师指导下系统研究了数学著作,1673年他在伦敦结识了巴罗和牛顿等名流。

从此,他以非凡的理解力和创造力进入了数学前沿阵地莱布尼兹在从事数学研究的过程中,深受他的哲学思想的支配。

他的著名哲学观点是单子论,认为单子是“自然的真正原子......事物的元素”,是客观的、能动的、不可分割的精神实体。

牛顿从运动学角度出发,以“瞬”(无穷小的“0”)的观点创建了微积分。

他说dx 和x相比,如同点和地球,或地球半径与宇宙半径相比。

在其积分法论文中,他从求曲线所围面积积分概念,把积分看作是无穷小的和,并引入积分符号∫,它是把拉丁文Summa的字头S拉长。

他的这个符号,以及微积分的要领和法则一直保留到当今的教材中。

莱布尼兹也发现了微分和积分是一对互逆的运算,并建立了沟通微分与积分内在联系的微积分基本定理,从而使原本各处独立的微分学和积分学成为统一的微积分学的整体。

莱布尼兹是数学史上最伟大的符号学者之一,堪称符号大师。

他曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动,”正象印度--阿拉伯数字促进算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。

欧洲大陆的数学得以迅速发展,莱布尼兹的巧妙符号功不可灭。

除积分、微分符号外,他创设的符号还有商“a/b”,比“a:b”,相似“∽”,全等“≌”,并“∪”,交“∩”以及函数和行列式等符号。

数学家传记4——莱布尼茨

数学家传记4——莱布尼茨

数学家传记4——莱布尼茨德国的莱布尼茨(G.W.Ieibnlz,公元1646~1716年),是一位当之无愧的“万能大师”。

数学和哲学,是莱布尼茨显示其杰出天才的诸多领域之一。

他在法律、管理、历史、文学、逻辑等方面都作出过卓越贡献,因其在这些领域显赫的成就,人们永远纪念他。

用“全才”这个词形容莱布尼茨,可以说并不夸张。

1646年7月1日,莱布尼茨出生于德国莱比锡。

他的祖父以上三代人均曾在萨克森政府供职;他的父亲是莱比锡大学的伦理学教授。

莱布尼茨的少年时代是在官宦家庭以及浓厚的学术气氛中度过的。

莱布尼茨在6岁时失去父亲,但他父亲对历史的钟爱已经感染了他。

虽然考进莱比锡学校,但他主要是靠在父亲的藏书室里阅读自学的。

8岁时他开始学习拉丁文,12岁时学希腊文,从而广博地阅读了许多古典的历史、文学和哲学方面的书籍。

13岁时,莱布尼茨对中学的逻辑学课程特别感兴趣,不顾老师的劝阻,他试图改进亚里士多德的哲学范畴。

1661年,15岁的莱布尼茨进入莱比锡大学学习法律专业。

他跟上了标准的二年级人文学科的课程,其中包括哲学、修辞学、文学、历史、数学、拉丁文、希腊文和希伯莱文。

1663年,17岁的莱布尼茨因其一篇出色的哲学论文《论个体原则方面的形而上学争论——关于“作为整体的有机体”的学说》,获得学士学位。

莱布尼茨需在更高一级的学院,如神学院、法律学院或医学院学习才能拿到博士学位。

他选择了法学。

但是,法律并没有占据他全部的时间,他还广泛地阅读哲学,学习数学。

例如他曾利用暑期到耶拿听韦尔的数学讲座,接触了新毕达哥拉斯主义——认为数是宇宙的基本实在,以及一些别的“异端”思想。

1666年,20岁的莱布尼茨已经为取得法学博士学位做了充分的准备,但是莱比锡的教员们拒绝授予他学位。

他们公开的借口是他太年轻,不够成熟,实际上是因为嫉妒而恼怒——当时莱布尼茨掌握的法律知识,远比他们那些人的知识加在一起还要多!于是,莱布尼茨转到纽伦堡郊外的阿尔特多夫大学,递交了他早已准备好的博士论文,并顺利通过答辩,被正式授予博士学位。

莱布尼兹--博学多才的数学符号大师

莱布尼兹--博学多才的数学符号大师

莱布尼兹--博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一位博学多才的学者。

他的学识涉及哲学、历史、语言、数学、生物、地质、物理、机械、神学、法学、外交等领域。

并在每个领域中都有杰出的成就。

然而,由于他独立创建了微积分,并精心设计了非常巧妙而简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。

莱布尼兹对微积分的研究始于31岁,那时他在巴黎任外交官,有幸结识数学家、物理学家惠更斯等人。

在名师指导下系统研究了数学著作,1673年他在伦敦结识了巴罗和牛顿等名流。

从此,他以非凡的理解力和创造力进入了数学前沿阵地莱布尼兹在从事数学研究的过程中,深受他的哲学思想的支配。

他的著名哲学观点是单子论,认为单子是“自然的真正原子......事物的元素”,是客观的、能动的、不可分割的精神实体。

牛顿从运动学角度出发,以“瞬”(无穷小的“0”)的观点创建了微积分。

他说dx和x相比,如同点和地球,或地球半径与宇宙半径相比。

在其积分法论文中,他从求曲线所围面积积分概念,把积分看作是无穷小的和,并引入积分符号∫,它是把拉丁文Summa的字头S拉长。

他的这个符号,以及微积分的要领和法则一直保留到当今的教材中。

莱布尼兹也发现了微分和积分是一对互逆的运算,并建立了沟通微分与积分内在联系的微积分基本定理,从而使原本各处独立的微分学和积分学成为统一的微积分学的整体。

莱布尼兹是数学史上最伟大的符号学者之一,堪称符号大师。

他曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动,”正象印度--阿拉伯数字促进算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。

欧洲大陆的数学得以迅速发展,莱布尼兹的巧妙符号功不可灭。

除积分、微分符号外,他创设的符号还有商“a/b”,比“a:b”,相似“∽”,全等“≌”,并“∪”,交“∩”以及函数和行列式等符号。

莱布尼茨数学故事

莱布尼茨数学故事

莱布尼茨数学故事
今天给你讲个莱布尼茨的数学故事。

莱布尼茨啊,那可是个超级聪明的家伙。

他就像一个数学世界里的探险家,到处寻找数学的宝藏。

你知道微积分吧?莱布尼茨对微积分的创立可是有着巨大的功劳呢。

据说啊,他就像一个充满创意的发明家,在研究各种数学问题的时候,突然就像被灵感之神敲了脑袋一样,想到了微积分里那些超级厉害的概念。

他研究数学的时候特别痴迷,就像我们玩游戏入迷了一样。

他整天都在捣鼓那些数字、符号和方程式。

有一次,他为了算出一个复杂的数学结果,把自己关在房间里好几天。

周围的人都觉得他是不是走火入魔了,可他自己却乐在其中。

莱布尼茨还特别喜欢和其他数学家交流想法。

他就像一个热情的分享者,到处写信给其他学者,说:“我发现了一个超酷的数学东西,咱们来聊聊呗。

”他的那些信件里充满了各种数学的奇思妙想,就像传递着数学世界的神秘密码。

而且啊,莱布尼茨的数学思维特别跳跃。

他能从一个看似普通的数学现象一下子联想到一个非常深奥的理论。

就好比我们看到一只小蚂蚁在地上爬,他就能想到整个蚂蚁王国的运作模式一样神奇。

他的这些数学成果对后来的科学发展影响可大了。

就像给科学家们打造了一把超级厉害的钥匙,让他们能够打开很多之前无法打开的科学大门。

比如说在物理学里研究物体的运动、天文学里计算星球的轨道之类的,要是没有莱布尼茨的数学贡献,那些科学家们可能还得在黑暗里摸索好久呢。

这就是莱布尼茨,一个充满传奇色彩的数学大神。

莱布尼茨重要数学发现

莱布尼茨重要数学发现

莱布尼茨重要数学发现数学作为一门科学,一直以来都在不断发展和演变。

在历史的长河中,有许多数学家做出了重要的贡献,其中莱布尼茨(Gottfried Wilhelm Leibniz)是一个不可忽视的名字。

莱布尼茨在数学领域做出了众多重要的发现,其中包括微积分和二进制数制等。

1. 微积分微积分是数学的重要分支,研究函数的变化和变化率。

莱布尼茨是微积分的创始人之一,他独立地发展出了微积分的基本理论。

莱布尼茨的微积分主要包括微分学和积分学两个部分。

在微分学中,莱布尼茨引入了微分的概念,并提出了微分法则。

他的微分法则规定了如何求导数,以及导数的基本性质。

莱布尼茨的微分法则成为了微积分理论的基础,为后来的研究和应用提供了重要的依据。

在积分学中,莱布尼茨发展出了积分的概念,并提出了积分法则。

他的积分法则规定了如何求不定积分和定积分,以及积分的基本性质。

莱布尼茨的积分法则为解决定积分方程和曲线下面积的计算提供了重要的方法。

微积分的发现和应用使数学的研究范围得到了拓展,也为物理学、工程学等应用科学提供了重要的工具和理论支持,对科学和技术的发展产生了深远影响。

2. 二进制数制除了微积分,莱布尼茨还发现了二进制数制,这是一种数学计数系统,仅使用两个数字0和1来表示数值。

二进制数制是信息技术的基础,广泛应用于计算机科学和电子工程领域。

莱布尼茨在其著作《二进制算术的发明》中详细描述了二进制数制的原理和运算方法。

他认为,使用二进制数制可以简化计算过程,并且能够更好地与逻辑运算相结合。

莱布尼茨的二进制数制成为了现代计算机以及其他数字化设备的基础,并在信息科学和通信技术中发挥着重要作用。

莱布尼茨还利用二进制数制的性质,提出了布尔代数的概念,为逻辑推理和电路设计提供了基础。

布尔代数在计算机科学和电子工程中得到广泛应用,成为了现代数字电路和计算机系统设计的重要工具。

总结莱布尼茨作为一位杰出的数学家,在微积分和二进制数制等领域做出了重要的数学发现。

数学之星追寻数学领域的杰出人物

数学之星追寻数学领域的杰出人物

数学之星追寻数学领域的杰出人物数学作为一门严密的科学,拥有许多杰出的学者和专家,他们在数学领域做出了卓越的贡献。

这些数学之星,以其深厚的理论造诣和创新的思维方式,引领着数学的发展和进步。

本文将追寻数学领域中的杰出人物,探索他们的卓越成就和贡献。

一、莱布尼茨:微积分之父数学之星莱布尼茨,被誉为微积分之父,他在17世纪发现了微积分的基本原理,为现代数学的发展奠定了基础。

莱布尼茨用他创造性的思维和独立发现的方式,将微积分从几何学中解放出来,并建立了微积分的基本概念和符号体系。

他对微积分的研究不仅在数学领域有重大影响,还在物理、工程学以及其他领域发挥了巨大作用。

二、高斯:数学天才的代表数学之星高斯,无疑是数学领域最重要的人物之一。

高斯在数学的各个领域都取得了卓越的成就,特别是在代数、数论和概率论方面。

他发现了数论中的很多重要定理和规律,提出了高斯消元法等重要数学方法,并对概率论的基本概念进行了系统的研究。

高斯的成就不仅在于数学的严密性和深度,更在于他的创新思维和对问题的深入剖析。

三、爱因斯坦:数学与物理的结合数学之星爱因斯坦,虽然他主要是物理学家,但他在数学领域的贡献却是不可忽视的。

爱因斯坦凭借他非凡的智慧和深邃的数学思维,提出了狭义相对论和广义相对论等革命性的物理理论。

这些理论中涉及了大量的数学运算和推导,如流形、张量等数学工具成为了研究物理现象的重要基础。

爱因斯坦的数学成就展示了数学与物理之间的紧密联系。

四、图灵:计算机科学的奠基人数学之星图灵,被誉为计算机科学的奠基人,他的工作对计算机科学和人工智能产生了深远的影响。

图灵提出了图灵机的概念,定义了计算的概念和可计算性问题,并建立了计算机科学的理论基础。

他的工作不仅扩展了数学的范围,还为计算机科学的发展打下了坚实基础,并在推动现代科技革命中起到了重要作用。

五、佩雷尔曼:百年难题的解答者数学之星佩雷尔曼,是当代数学界最引人注目的人物之一。

他通过自己的研究和努力,证明。

莱布尼茨

莱布尼茨

莱布尼茨莱布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德国历史上著名的哲学家、数学家,被誉为十七世纪的亚里士多德,是历史上少有的通才。

以下是对莱布尼茨的详细介绍:一、生平背景•出生地与家庭:莱布尼茨出生于德国东部名城莱比锡,父亲是哲学教授,虽然去世很早,但给莱布尼茨留下了丰富的藏书。

母亲则接替了父亲对莱布尼茨进行启蒙教育。

•教育经历:八岁时,莱布尼茨进入尼古拉学校,学习拉丁文、希腊文、修辞学、算术、逻辑、音乐以及《圣经》、路德教义等。

他的博学多才和深厚的知识基础为日后的学术成就奠定了坚实的基础。

二、主要成就与贡献1. 数学领域•微积分:莱布尼茨与英国的牛顿分别独立发明了微积分,而且他所使用的微积分的数学符号被更广泛的使用。

莱布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。

•二进制:莱布尼茨对二进制的发展做出了重要贡献,二进制在计算机时代得到了广泛应用。

2. 哲学领域•认识论:莱布尼茨通过把天赋观念转化为人的认识能力,改进了理性主义认识论,同时反对了经验主义认识论。

他认为心灵既不像笛卡尔所说具有天赋自明的观念,也不像洛克所说是一块空无所有的白板,而是一块有纹路的大理石,必须经过艺术家的雕琢才能形成生动的现实形象。

•单子论:莱布尼茨的身心关系(单子论)认为世界万物的最基本元素是单子,单子是不可分的最基本单位,它带有物质特征但不同于物理上的原子,是精神性实体。

人类的身体与心灵的基本元素也是单子。

他认为单子各自独立,彼此不相沟通,但在运作时不紊乱,而且遵循一定的法则。

支配单子之间的法则是神创造的。

•预定和谐:莱布尼茨认为身体单子与心灵单子各自运作,彼此间互不干扰,但两者永远保持和谐。

这是由神预先安排创造的,称为预定和谐。

•乐观主义:莱布尼茨的乐观主义哲学观认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。

3. 其他领域•莱布尼茨在政治学、法学、伦理学、神学、历史学、语言学等诸多方向都留下了著作,是名副其实的多领域学者。

莱布尼茨创立微积分的故事

莱布尼茨创立微积分的故事

莱布尼茨创立微积分的故事摘要:一、莱布尼茨简介二、莱布尼茨与微积分的创立1.时代背景2.莱布尼茨与牛顿的竞争与合作3.微积分的基本原理三、莱布尼茨微积分的影响1.数学领域的变革2.物理学、工程学等领域的应用四、莱布尼茨的其他贡献1.计算机科学领域的预见2.逻辑学、哲学方面的研究五、总结与启示正文:一、莱布尼茨简介戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716),德国哲学家、数学家,被誉为“计算机科学之父”。

他在数学、物理、哲学等多个领域取得了卓越成就,与牛顿、巴洛克艺术三巨匠并列。

二、莱布尼茨与微积分的创立1.时代背景在17世纪,欧洲科学正处于变革时期。

伽利略、开普勒等科学家为物理学和数学的发展奠定了基础。

莱布尼茨正是在这样的背景下,开始了他的科学研究。

2.莱布尼茨与牛顿的竞争与合作莱布尼茨与英国科学家牛顿(Isaac Newton)几乎同时独立发现了微积分原理。

两人之间曾存在激烈的竞争,但最终承认彼此的成果,并合作完成了微积分的体系化。

3.微积分的基本原理莱布尼茨提出了微积分的基本原理,包括微分和积分两部分。

微分学研究函数在某一点的变化率,而积分学研究求解曲线下的面积。

这两个概念的提出,为数学和自然科学的发展提供了强大工具。

三、莱布尼茨微积分的影响1.数学领域的变革莱布尼茨的微积分理论,使数学研究从静态变为动态,为后来的微分方程、概率论、泛函分析等数学分支的发展奠定了基础。

2.物理学、工程学等领域的应用微积分的出现,为物理学、工程学等领域的研究提供了强大的数学工具。

例如,牛顿的运动定律、万有引力定律等,都可以通过微积分进行精确求解。

四、莱布尼茨的其他贡献1.计算机科学领域的预见莱布尼茨研究了二进制系统,并预见了计算机科学的发展。

他的著作《计算机与算盘》被誉为计算机科学的奠基之作。

2.逻辑学、哲学方面的研究莱布尼茨在逻辑学和哲学领域也取得了重要成果。

德国哲学家莱布尼茨生平简介

德国哲学家莱布尼茨生平简介

德国哲学家莱布尼茨生平简介戈特弗里德·威廉·莱布尼茨(GottfriedWilhelmLeibniz,1646年7月1日-1716年11月14日),德国哲学家、数学家,历史上少见的通才,被誉为十七世纪的亚里士多德。

下面是小编为大家整理的德国哲学家莱布尼茨生平简介,希望大家喜欢!莱布尼茨简介莱布尼茨简介是这样介绍他的:莱布尼茨是德国著名的数学家,他是公开微积分方法的第一人,并且符号被流行运用。

而比莱布尼茨先使用微积分的是牛顿。

莱布尼茨生于1646年,在他79岁的时候逝世。

莱布尼茨在中年阶段身体素质急剧下降,智力严重衰退,而健康出现危机的最严重的一次是莱布尼茨去了意大利以后。

莱布尼茨在五十岁的时候就开始研究古代中国。

在莱布尼茨幼小的时候,他就展露自己的聪明才智了。

在他十三岁的时候,就像其他小朋友读小说一样轻轻松松地就能读懂艰涩难懂的论文了。

他提出了无穷小的微积分计算的方法,并且发表了比伊萨克·牛顿爵士手稿早三年的研究成果,但是伊萨克·牛顿爵士却说自己是第一个发现这些研究成果的。

莱布尼茨懂得取悦宫廷的人并且从中得到知名人士的帮助。

斯宾诺莎的哲学给了莱布尼茨很多启发,也教会他很多,虽然他不赞同斯宾诺莎的观念。

他曾经服务于汉诺威宫廷,也许是与牛顿有矛盾,所以在乔治一世成为英格兰国王时没有被邀请。

随后他的影响力渐渐的下降了,直到后来没有人再关注他,他就是在这种被人忽视的情况下逝世的。

在莱布尼茨死后,他的好友也就是他生平最为敬重的人伯.方特纳尔为他撰写生平事迹。

莱布尼茨一生都未曾结婚,本来在他50岁的时候想要结婚的,但是女方却说还需要一段时间,因此他们一直没有成婚,以上便是莱布尼茨简介。

莱布尼茨哲学思想莱布尼茨非常熟悉古罗马古希腊哲学,并且熟悉他所处的时代的哲学学说以及一些科技成就。

在那个充满哲学气息的时代,莱布尼茨也孕育了属于自己的莱布尼茨哲学思想。

他有一套单子论,他认为没有人解决“一”与“多”的哲学问题,不管是古希腊罗马的学者也好,还是笛卡尔、洛克、培根等人都没有完全阐释清楚这个问题。

多才多艺的数学大师—莱布尼茨

多才多艺的数学大师—莱布尼茨

多才多艺的数学大师—莱布尼茨莱布尼茨和牛顿都是公认的微积分创始人,但由于一些原因,莱布尼茨的知名度并不如牛顿。

我们纵观莱布尼茨的一生,发现他在众多领域中都有卓越的贡献,这些领域除了数学之外,还包括物理、政治、历史、法律、文学、哲学、宗教等等。

莱布尼茨在他的那个时代,当之无愧是样样皆通、多才多艺的大师。

同时,他的思想和成就也影响深远,直至今日。

1646年7月1日,莱布尼茨出生于德国莱比锡的一个书香门第,父亲是莱比锡大学的伦理学教授。

在这样良好的氛围中,莱布尼茨从小就显露出非凡的天赋。

而相较于学校里枯燥的学习,莱布尼茨更喜欢待在家里自学。

通过自学,他很快就掌握了拉丁文和希腊语,还从父亲的藏书中找到了对历史的浓厚兴趣。

15岁时,莱布尼茨进入莱比锡大学主修法律,同时学习历史和哲学。

在这里,莱布尼茨逐渐接触到了伽利略和笛卡尔等人的著作,他们的著作与前人注重思辨和逻辑不同,更多的是通过数学来进行分析,这给了莱布尼茨耳目一新的感觉,于是他又开始学习更多的数学,尤其是几何学,因为欧式几何严密的体系深深引发了莱布尼茨对数学的兴趣。

大约在这个时候,一种“普遍数学”的想法在莱布尼茨头脑中开始形成,他想利用数字和符号来进行思考,从而摆脱语言的不确定性。

他觉得笛卡尔重视代数方法是很正确的,但他也认为代数不应仅仅局限在表示数量关系上,还可以用在逻辑推理上,以代数运算代替推理过程。

为此他连夜将自己的想法写了下来,完成了一篇名为《论组合的艺术》的论文。

经过进一步的研究,莱布尼茨获得了一些今天逻辑代数中的结果,而且直接或间接地提出了“逻辑和”、“逻辑积”、“空集”和“包含”等一系列重要概念。

莱布尼茨也意识到自己想法的不成熟,将自己的论文戏称为“学童论文”。

但事实上,莱布尼茨已经可以看做数理逻辑学的创始人。

莱布尼茨关于法律的博士论文深受当局赏识,于是他得以进入政府工作,然而这也恰恰为其悲剧性的人生结尾埋下了祸根。

作为王公贵族的官员,莱布尼茨疲于奔命,完成各种意义不大的任务,大部分时间都在路上,很多时候只能在马车里写下他的想法。

数学天才——莱布尼兹的贡献

数学天才——莱布尼兹的贡献

数学天才——莱布尼兹的贡献导读:本文数学天才——莱布尼兹的贡献,仅供参考,如果觉得很不错,欢迎点评和分享。

数学天才——莱布尼兹的贡献作者:木瓜莱布尼兹(1646-1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。

他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。

一、生平事迹莱布尼兹出生于德国东部莱比锡的一个书香之家,父亲是莱比锡大学的道德哲学教授,母亲出生在一个教授家庭。

莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。

莱布尼兹因此得以广泛接触古希腊罗马文化,阅读了许多着名学者的着作,由此而获得了坚实的文化功底和明确的学术目标。

15岁时,他进了莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利略、等人的着作,并对他们的着述进行深入的思考和评价。

在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。

17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。

20岁时,莱布尼兹转入阿尔特道夫大学。

这一年,他发表了第一篇数学论文《论组合的艺术》。

这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。

这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。

莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。

从1671年开始,他利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界信息、与人进行思想交流的一种主要方式。

在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的着作。

1673年,莱布尼兹被推荐为英国皇家学会会员。

此时,他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。

1676年,他到汉诺威公爵府担任法律顾问兼图书馆馆长。

精品初中历史 数学家莱布尼茨 (1)

精品初中历史 数学家莱布尼茨 (1)

数学家莱布尼茨戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德国哲学家、数学家,历史上少见的通才,被誉为十七世纪的亚里士多德。

他本人是一名律师,经常往返于各大城镇,他许多的公式都是在颠簸的马车上完成的,他也自称具有男爵的贵族身份。

莱布尼茨在数学史和哲学史上都占有重要地位。

在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微积分的数学符号被更广泛的使用,莱布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。

莱布尼茨还对二进制的发展做出了贡献。

在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。

他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。

莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。

莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。

1646年7月1日,戈特弗里德·威廉·莱布尼茨出生于神圣罗马帝国的莱比锡,祖父三代人均曾在萨克森政府供职,父亲是Friedrich Leibnütz,母亲是Catherina Schmuck。

长大后,莱布尼茨名字的拼法才改成“Leibniz”,但是一般人习惯写成“Leibnitz”。

晚年时期,他的签名通常写成“von Leibniz”,以示贵族身份。

莱布尼茨死后,他的作品才公诸于世,作者名称通常是“Freiherr [Baron] G. W. von Leibniz.”,但没有人确定他是否确实有男爵的贵族头衔。

莱布尼茨的父亲是莱比锡大学的伦理学教授,在莱布尼茨6岁时去世,留下了一个私人的图书馆。

12岁时自学拉丁文,并着手学习希腊文。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

莱布尼茨莱布尼茨数学微积分 1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列0,1,4,9 16,…的性质,例如它的第一阶差为1,3,5,7,…,第二阶差则恒等于2,2,2,…等.他注意到,自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为 1+3+5 +7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列.1672年,惠更斯给莱布尼茨出了一道他自己正同别人竞赛的题目:求三角级数(1,3,6,10,…)倒数的级数之和莱布尼茨圆满地解决了这一问题,他是这样计算的:初次成功激发了他进一步深入钻研数学的兴趣.通过惠更斯,他了解到B.卡瓦列里(Cavalieri)、I.巴罗(Barrow)、B.帕斯卡(Pascal)、J.沃利斯(Wallis)的工作.于是,他开始研究求曲线的切线以及求平面曲线所围图形的面积、立体图形体积等问题.1674年,他学习R.笛卡儿(Descartes)几何学,同时对代数性发生了兴趣.这一时期,他检索了已有的数学文献.对于当时数学界密切关注的切线问题和求积问题,莱布尼茨在前人的基础上提出了一个普遍方法.这个方法的核心是特征三角形(characteristic triangle).在帕斯卡、巴罗等人讨论过的特征三角形的基础上,他建立了由dx,dy和PQ(弦)组成的特征三角形.其中dx,dy的意义是这样的:在他1666年“论组合术”中所考虑的序列中,用dx表示相邻的序数之差,dy表示两个相邻项值之差,然后在数列项的顺序中插入若干dx,dy,于是过渡到了任意函数的dx,dy.特征三角形的两条边就是任意函数的dx,dy;而PQ 则是“P和 Q之间的曲线,而且是T点的切线的一部分”.如图1,T是曲线y=f(x)上的一点,dx,dy分别是横坐标、纵坐标的差值.利用这个特征三角形,他很快就意识到两个问题:(1)曲线的切线依赖于纵坐标的差值与横坐标的差值(当这些差值变成无穷小时)之比.通过考虑图1中△PQR和△STU,发现△PQR∽△STU,从而有dy/dx=Tu/Su.也就是说,曲线y上过T点的切线的斜率是dy/dx.(2)求积(面积)依赖于横坐标的无限小区间的纵坐标之和或无限窄矩形之和.有了这些思想,他很快就推导出了一大批新结论.用他自己的话说就是,从特征三角形出发,“毫不费力,我确立了无数的定理”.根据莱布尼茨留下的遗稿可以判定,他是在1673年建立起特征三角形思想的.他将图1中特征三角形的斜边PQ用“dS”表示,这样特征三角形又称为微分三角形(differential triangle)如图2,其中 ds2=dx2+dy2.利用特征三角形,莱布尼茨早在1673年就通过积分变换,得到了平面曲线的面积公式这一公式是从几何图形中推导出来的,经常被他用来求面积.1673—1674年,他给出了求一条曲线y=y(x)绕x轴旋转一周所形成的旋转体的表面积A的公式同时,他还给出了曲线长度公式在求面积问题方面,莱布尼茨深受卡瓦列里“线由无穷多个点构成,面由无穷多条线构成”思想的影响,认为曲线下的面积是无穷多的小矩形之和.1675年10月29日,他用“∫”代替了以前的和符号“Omn”(“∫”是Sum 和)的第一个字母“s”的拉长),用∫ydx表示面积,在这份手稿中,他还从求积出发,得到了分部积分公式1676年11月,他得出了公式其中n是整数或分数(n≠-1).莱布尼茨的积分方面的工作是与微分方面的工作交叉进行的.由于研究巴罗的著作,以及引入特征三角形,莱布尼茨越来越强烈地意识到,微分(主要是导数、求切线)与积分(求和)必定是相反的过程.在1675年10月29日的手稿中,他就注意到,面积被微分时必定给出长度,因此他开始探讨“∫”的运算(积分)和“d”的运算(微分)之间的关系,认识到要从y回到dy,必须做出y的微差或者取y 的微分.经过这种不充分的讨论,他断定一个事实:作为求和的过程的积分是微分的逆.这样,莱布尼茨就第一次表达出了求和(积分)与微分之间的关系.莱布尼茨于1675—1676年给出了微积分基本定理(后来又称为牛顿-莱布尼茨公式)(A为曲线f下的图形的面积,图3.)于1693年给出了这个定理的证明.以前,微分和积分作为两种数学运算、两类数学问题,是分别地加以研究的.卡瓦列里、巴罗、沃利斯等许多人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果是孤立、不连贯的.虽然他们已开始考虑微分和积分之间的关系,然而只有莱布尼茨和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者的内在的直接联系:微分和积分是互逆的两种运算.而这正是建立微积分学的关键所在.只有确立了这一基本关系,才能在此基础上构建系统的微积分学.并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则.莱布尼茨于1684年10月发表在《教师学报》(Acta erudito-rum)上的论文,题目是“一种求极大值与极小值和求切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算”(Nova Methodus pro Maximis et Minimis,itemque tangentibus,quae necfractas,necirrationales quantitates moratur,et singularepro illisCalculi genus),在数学史上被公认为是最早发表的微积分文献.早在1677年7月11日前后及11月左右,莱布尼茨明确定义了dy为函数微分,给出了dy的演算规则:“如果a是给定的常数,则da=0,dax=adx;加法和减法 v=z—y+w+x,dv=dz-dy+dw+dx;乘法 y=vx,dy=vdx+xdv在1676—1677年的手稿中,他利用特征三角形分析了曲线切线的变化情况:对于曲线v=v(x),当dv与dx之比为无穷大时,切线垂直于坐标轴(x轴).当dv与dx之比等于0时,切线平行于x轴,当dv=dx≠0时,则切线与坐标轴成45°角,他指出,对于曲线v,当dv=0时,“在这个位置的v,明显地就是极大值(或极小值)”,他详细讨论了当dv<0,而变成dv=0后又dv<0时取极大值,反之则取极小值的情形.他还给出了拐点——曲线的凹凸情况发生变法的条件是d2v=0.以后,莱布尼茨具体求出了各种各样复杂函数的微商(导数).1686年,给出了对数函数,指数函数的微商.1695年求出了y=xx的微商dy=xx(1+lnx),等等.他引入了n阶微分的符号dn,并且给出了高阶微分的“莱布尼茨法则”:其中n!=1×2×3×…×(n-1)×n.莱布尼茨在积分方面的成就,后来比较集中地写在1686年5月发表在《教师学报》上的一篇论文中,题为“潜在的几何与不可分量和无限的分析”(De Geometria recondita et Analysi Indivisi-bilium atque Infinitorum).品中出现了积分符号.同年,他引入了空间曲线的“密切”(osculating)这一术语,并给出了曲率ρ公式:其中R为曲率半径.1692年和1694年,他给出了求一族曲线 f(x,y,α)=0(α为曲线族参数)包络的普遍方法:在中消去α.实际上,用微积分方法研究几何在微积分奠基者(牛顿、莱布尼茨等)那里已经开始了.切线、包络等几何问题在莱布尼茨手中是与微积分连在一起的.无穷级数在微积分的早期研究中,有些函数如指数函数等超越函数的处理相当困难,然而人们发现,若用它们的级数来处理,则非常有成效.因此,无穷级数从一开始就是莱布尼茨、牛顿等人微积分工作的一个重要部分.有时使用无穷级数是为了计算一些特殊的量,如莱布尼茨曾用无穷级数表达式计算π(圆周率).在求面积的过程中,通过无穷级数表示圆在第一象限的面积,他得到了π的一个十分漂亮的表达式(图4):1673年左右,他独立地得到了sinx,cosx和arctgx等函数的无穷级数展开式.还得到了圆面积和双曲线面积的具体展开式,并且将这些展开式与反正切、余割、正弦函数、自然对数函数、指数函数联系起来了.他经常利用级数展开式研究超越函数.有时还将多项式定理用于分式函数或超越函数的展开式.无穷级数展开式,得到了如下的式子:误的.直到1734—1735年,L.欧拉(Euler)才得到在1713年10月25日写给约翰•伯努利(John Bernoulli)的信中,莱布“莱布尼茨判别法”,但他当时的证明却错了.在考虑级数还相当混乱.微分方程微分方程在微积分创立之初就为人们所关注.1693年,莱布尼茨称微分方程为特征三角形的边(dx,dy)的函数.在微分方程方面,他进行了一系列工作.其中有些工作是十分独特的.1691年,他提出了常微分方程的分离变量法,解决了形如型方程的求解问题.方法是,先写成然后两边积分.这一年,他还提出了求解一次齐次方程的方法:因此经过这种变换,原来的一次齐次方程就变成了1694年,他证明了把一阶线性常微分方程y′+P(x)y=Q(x)化成积分方程的正确方法,他的方法使用了因变量替换.同时,他还给出了(y′)2+p(x)y′+q(x)=0的解法.1694年,他和约翰•伯努利引进了找等交曲线或曲线族的问题,并求出了一些特殊问题的解.1696年,他证明了,利用变量替换z=y1-n,可以将伯努利方程变换x=P11u+P12v,y=P21u+P22v可以将微分方程a00+a10x+(a01+a11x)y′=0进行简化.通过求解微分方程,莱布尼茨解决了许多具体问题.例如,1686年,他解决了这样的问题:求一条曲线,使得一个摆沿着它作一次完全振动,都用相等的时间,而无论摆所经历的弧长怎样(即等时问题).他指出,证明,并认识到了圆函数、三角函数的超越性,弄清了许多超越函数的基本性质.此外,他还考虑过概率方程.这一时期,他还求出了十分重要的曳物线方程:1691年,他给出了自达•芬奇(L.Da Vinci)时代就考虑过的悬链线(catenary,这个名称是莱布尼茨给出的)方程为1696年,约翰•伯努利提出了著名的最速降线问题:求从一给定点到不是在它垂直下方的另一点的一条曲线,使得一质点沿这条曲线从给定点P1下滑所用的时间最短(图5);其中摩擦和空气阻力都忽略.这是约翰•伯努利向全欧洲数学家发出的挑战.1697年,莱布尼茨和I.牛顿(Newton)、G.F.A.洛比达(L’Hospital)、约翰•伯努利分别解决了最速降线问题,指出这是由方程表示的上凹的旋轮线,并由此开始了变分法的研究.数学符号、代数莱布尼茨在微积分方面的贡献突出地表现在他发明了一套适用的符号系统.1675年引入dx表示x的微分,“∫”表示积分,ddv,dddy表示二阶、三阶微分.1695年左右用dmn表示m阶微分.他比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一.他自觉地和格外慎重地引入每一个数学符号,常常对各种符号进行长期的比较研究,然后再选择他认为最好的、富有启示性的符号.他创设的符号还有此外还有对数符号、函数符号、行列式符号等等.很多符号的普遍使用与他的提倡和影响密切相关.他还引入了“函数”(function)、“常量”(constant quantity)、变量”(variate)、“参变量”(para-meter)等术语.在代数学方面,莱布尼茨不仅强调引入符号的重要性,而且还讨论了负数、复数的性质,认为复数的出现是无害的,断言复数的对数是不存在的,为此曾在当时的数学界掀起了一场关于负数、虚数的对数之争论.在研究复数时,他还得出过这样的结论:共轭复数的和是实数用一般的复数表示.他把虚数看作是存在(being)与非存在(not-being)的中介.在1678年以前,莱布尼茨就开始了对线性方程组、行列式的研究,对消元法从理论上进行了探讨.在1693年4月28日致洛比达的信中他提出了行列式概念:“我引进方程:此处,在两个数码中,前者表示此数所属的方程式,后者代表此数所属的字母(未知数).”这样,他创设了采用两个数码的系数记号,相当于现在的aik,为矩阵和行列式一般理论的发展提供了方便的工具.二进位制莱布尼茨发明二进位制的时间,大约是在1672—1676年的巴黎时期.1679年3月15日,莱布尼茨写了题为“二进位算术”(De I’arthmetique binaire)的论文.文中对二进位制进行了相当充分的讨论,与十进位制进行了比较:给出了将二进位数改写成十进位制数的法则:1011000(二进位制)写成十进位制数就是26+0+24+23+0+0+0=64+16+8=88.下面就是1679年3月15日手稿的一页(见183页).莱布尼茨不仅完整地解决了二进位制的表示问题,而且给出了正确的二进位制加法与乘法规则.例如,他给出以下这类实例:1695年5月莱布尼茨与鲁道夫•奥古斯特(Rudolphus Au-gustus)大公的一次谈话中,大公对他的二进位制非常感兴趣,认为一切数都可由0与1创造出来这一点,为基督教《圣经》所讲的创世记提供了依据.这是因为唯一完美的上帝是从无到有创造了世界,这与一切数的根源来自0与1的这种体系是对应的.莱布尼茨由此激起热情,试图以大公的这一想法来争取人们对他的二进位制的关注.1697年他在致大公的信函中,就将他创造设计的象征二进位制的纪念章图章当作新年礼品奉献给大公.纪念章正面是大公图象,背面的设计是这样的(见图7):水面上笼罩着一片黑暗,顶部光芒四射——象征创世的故事;中间排列着二进位、十进位制数字对照表,两侧是加法与乘法的实例.莱布尼茨希望能用二进位制证明圆周率π的超越性.1701年,莱布尼茨将自己的二进制数表给了法国在中国的传教士白晋(F.J.Bouvet),同时又将自己关于二进制的论文送交巴黎科学院,但要求暂不发表.同年11月白晋把宋代邵雍(1011—1077)的伏羲六十四卦次序和伏羲六十四方位两个图给了莱布尼茨.莱布尼茨对白晋提供的材料欣慰异常,发现中国古老的易图可以解释成0—63的二进制数表.莱布尼茨因为从二进制数学理解了六十四卦图(邵雍的六十四卦方圆图,图8)而高兴地说:“几千年来不能很好被理解的奥秘由我理解了,应该让我加入中国籍吧!”1703年,他将修改补充的论文“关于仅用0与1两个记号的二进制算术的说明,并附其应用以及据此解释古代中国伏羲图的探讨”(Explication de l’arthmetique binaire,quise sent des seuls caracteres 0 et 1,avec des remarques Surson utilite,et Sur ce quelle donne Le Sens des aneiennes fi-gures Chinoises Fohy,1703)再送巴黎科学院,要求公开发表.自此二进制公之于众了.根据上述历史事实,表明莱布尼茨并不是受易图的启发而发明二进制的,而是他发现了易图结构可以用二进制数学予以解释.应该说,莱布尼茨的二进制数学能被用来理解古老的中国文化.自他发现了二者之间的这种关系后,在世界范围内兴起了对易学的数理研究,使人们对易学的兴趣日增.莱布尼茨所进行的计算机设计,程序自动化、程序设计的思想,再加上二进制,为计算机的现代发展奠定了坚实的基础.尽管莱布尼茨本人为计算机的设计、二进制的发明感到自豪,但他却没有将二进制用于计算机,没有使二者结合起来.在当时条件下,一个二进位制的机器只会增加技术上的困难,只有随着电子技术的发展,人们才能将二者有效地结合起来.那种认为他是为计算机而引进二进位制的说法是违背历史事实的.逻辑学莱布尼茨的逻辑学研究包括两个方面:数理逻辑与形式逻辑.数理逻辑莱布尼茨决心构造一门基本学科,这门学科在某些方面象数学,但也包括传统逻辑中一些尚未发展的研究内容.他注意到了传统逻辑与数学的共性,发现逻辑及其词项、命题和三段论与代数中的字母、方程式和变换,具有某种形式上的相似,因此他决心把逻辑表示成一种演算,这种演算研究非数量的抽象关系或形式关系,他曾称之为普遍数学.他希望建立一种哲学语言(lingua philosophica)或普遍语言(characteristica universalis),这种语言不仅有助于思想交流,而且有利于思想本身.莱布尼茨力图发明一种对概念进行演算的理论,使得概念也能象数一样进行代数演算.1679年,莱布尼茨开始进行了这方面的研究.他的思想是:每一个简单的词项用一个素数表示,每一个合成词项用素数乘积来表示.如用3表示“能思维的”,7表示动物,人是能思维的动物则可用21表示,写成21=3.7.一个全称肯定命题,如果主项的数能被谓项的数整除,则该命题为真.1686年,莱布尼茨发展了关于概念相等和概念包含的理论,其中引入了词项a,b,c,…,运算符号—(non,表示“非”).四个关系利用这种演算,他成功地将亚里士多德的四种类型的一般命题,表示成了符号公式形式,从而使得用符号表示逻辑命题成为可能.他所考虑的方案和表达方式是:莱布尼茨认为,有可能构造一种符号系统,这种系统可以作内涵的解释也可以作外延的解释.1690年他已经引入了概念的加、减法,用以表示逻辑概念演算及逆运算.他用表示逆运算,例如A—B=C,当且仅当A=B+C,且B和C没有共同的东西.意义.以此为基础,他建立了一套全新的理论体系.他的体系要点主要是公式及一套关于词项、命题的定义与演算规则,如A=B的定义:词项是同一的或一致的,就是说它们能在任何地方,以一个代之以另外一个而不改变任何命题的真值.A=B表示A和B是同一的.这种体系在逻辑上是从未有过的,直到约一个世纪以后才由G.布尔(Boole)重新给出.可惜的是,莱布尼茨没有发展和写出系统的著作,只留下了大批手稿,其中还有许多是断简残篇,但D.希尔伯特(Hilbert)依然说:“数理逻辑的思想首先是莱布尼茨明显说出的.”而这种数理逻辑还仅仅只是莱布尼茨符号语言的一部分.莱布尼茨符号语言的理想是,使一切推理过程、思维过程、争论过程都像数学一样能够计算,甚至能够交给机器完成.为此,他做了很多工作.形式逻辑莱布尼茨在形式逻辑方面的主要工作是,关于判断的分析理论,在此基础上的复合概念理论和关于偶然命题的理论,以及“充足理由律”的提出.他不相信一切论证都可以纳入三段论式,因为他了解到条件论证和析取论证不能还原为三段论形式.对于形式证明,他承认经院哲学争论中使用三段论可能堕落为蠢笨迂腐的学究,但他认为不能没有形式化,否则就会丧失严格性.但对亚里士多德的推崇妨碍了他在这方面取得更大的成就.区分和研究两类真理:理性的真理(必然性命题)与事实的真理(偶然性命题)是莱布尼茨整个科学思想体系特别是他的哲学认识论的核心内容.从逻辑方面他又把必然真理分成原始的真理和推理的真理,并且指出:“推理的真理是必然的,它们的反面是不可能的,事实的真理是偶然的,它们的反面是可能的.”他又认为推理是建立在两大原则上的:(1)矛盾原则,凭着这个原则,我们判定包含矛盾者为假,与假的相对立和相矛盾者为真;(2)充足理由原则,凭着这个原则,任何一件事如果是真实的或实在的,任何一个陈述如果是真的,就必须有一个为什么这样而不那样的充足理由,也许这些理由常常不知道.因此他在逻辑学中引入了“充足理由律”,使之成为与传统的同一律、矛盾律、排中律相并列的一条基本思维定律.物理学、力学、光学1671年,莱布尼茨写下了《物理学新假说》(Hypothesisphysica noua),其中包括两个部分:具体运动原理(Theoriamotus Concreti),是奉献给伦敦英国皇家学会的;抽象运动原理(Theoria motus Abstracti),是奉献给巴黎科学院的.他的具体原理是试图从较简单现象的角度来解释最重要的复杂现象的一种假说,这种原理建立在以太的相对循环的基础上,以太则是通过围绕地球的最初组成状态的物质才起作用的.他认为物体的全部内聚力依靠构成这些物体的微粒的运动,运动的起因是以太微粒的碰撞,它是物体的全部特性的终极原因.莱布尼茨的抽象原理来源于他对连续体的研究和对运动定律的看法,他认为物质的微粒完全处于静止状态时,对一个运动着的物质不存在阻力,只有当微粒构成部分的内在运动时,物体才具有阻力或内聚力.他认为,运动着的物体,不论多么微小,它将带着处于完全静止状态的物体的部分一起运动.他的物理学研究计划是:根据一个审慎的计划和规模,进行某些实验,借以在其上建立一个稳定的和论证的物理学堡垒.他的最终的奋斗目标是为物理学建立一个类似欧氏几何的公理系统.莱布尼茨在物理学上最重要的工作是对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型.1686年,莱布尼茨在《教师学报》上发表了反对笛卡儿关于力的度量的文章“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”(Breuis demonstratio erroris memorabilis Cartesii et aliorum circa Legem naturae),提出了运动的量的问题,从而开始了与笛卡儿学派关于运动度量的长期争论,并发展成了力学中的两个派别.莱布尼茨指出,如果只用动量(mv,m为物体质量,v为物体运动速度)度量运动,那么“力”(mv2)在自然界不断增加或减少时,就会导致动量(mv)不守恒,因此他认为动量(mv)不能做为运动的度量单位.他把力分为“死力”和“活力”,“死力”是静止物体的“压力”或“拉力”,这种力是外来的,其度量是物体的质量和物体由静止状态到运动状态时具有的速度的乘积,即动量mv.“活力”(vis viva)是内在于物体的力,是物体的真运动.在他看来,“活力”应该由物体的质量和该物体所能上升的高度来测量(mh),按照伽利略落体定律,莱布尼茨成功地计算出高度h与速度v的平方成正比,“活力”保持不变m1v21=m2v22.因此,1695年他正式称mv2为“活力”(vis viva),并以mv2作为运动的度量单位,动能的概念就这样被引入到物理学中来了.这是他在《教师学报》上发表的“动力学实例”(Specimen dynamium)中提出的,这篇论文是莱布尼茨力学的结晶,包含了他的大部分研究成果.莱布尼茨第一次认为“活力”mv2是物理学上的终极因,因而可以转化为各种各样的形式,同时还第一次认为mv2的守恒是一个普遍的物理原理,这样他就有充分的理由证明“永动机是不可能”这样的观点.究竟应该以mv2,还是以mv,作为运动的量度,经过长达半个世纪的争论,直到1743年J.R.达朗贝尔(d’Alembert)指出两者都是正确的,不过各自所着眼的角度不同罢了,争论才平息.莱布尼茨反对牛顿的绝对时空观,与牛顿的学生S.克拉克(Clarke)进行了长时期的辩论.在莱布尼茨看来,时空与运动、物质是密不可分的,认为“没有物质也就没有空间,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样.可是这些东西虽有区别,却是不可分离的”.这些思想后来引起了A.爱因斯坦(Einstein)等人的关注.在材料力学方面,莱布尼茨支持马里奥特关于梁受力性质的思想.1684年,他在“固体受力的新分析证明”(Demonstratonsnovae de Resistentia Solidorum)一文中指出,纤维是可以延伸的,它们的拉力与伸长成正比.因此,他提出将胡克定律F=-kx应用于单根纤维,这一假说后来在材料力学中被称为马里奥特-莱布尼茨理论.在光学方面,莱布尼茨利用微积分中的求极值方法,推导出了折射定律:。

相关文档
最新文档