实变函数论习题集选解

合集下载

第三版实变函数论课后答案1

第三版实变函数论课后答案1

习题二 (p18)1. 用解析式给出)(1,1-和)(,-∞∞ 之间的一个11-对应。

解:)(1,1x ∀∈- ,令()tan 2x x πϕ= ,则())(,x ϕ∈-∞∞,且()'22012x x πϕπ=>⎛⎫+ ⎪⎝⎭,故ϕ严格单调于)(1,1-,1lim x→±=±∞, 所以()tan 2x x πϕ= 为)(1,1-和)(,-∞∞ 之间的一个11-对应。

2.证明只需a b <就有)()(,~0,1a b 。

证明:)(,x a b ∀∈,令()x ax x bϕ-=-,则())(0,1x ϕ∈,且显然为11-对应。

第三节习题(P20)1. 证明平面上坐标为有理数的点构成一可数集合。

证明:将全体有理数排成一列 12,n r r r ,则平面上的有理点)({}1,;,jj Q Q r s r Q s Q A ∞=⨯=∈∈= ,其中)({},;1,2,jijAr r i n == 为可列集,故作为可数个j A 的并1j j Q Q A ∞=⨯= 为可数集。

(第20页定理5)。

3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ.事实上,∀ n 阶有理数()()120,,,,ni n i i n i X x a x a Q a a a ==∈∑ 令与之对应,这一对应显然是11-的,即0,m mm Q Q Q Q ∀⨯⨯=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用归纳法,设k kQ Q Q Q =⨯⨯是可数集,,待证1k k Q Q Q +=⨯是可数集,.将Q 中的点排成一列12,,m γγγ ,将k Q 中的点排成一列12,,m l l l , 则11k kj j Q Q Q A ∞+==⨯= ,其中(){},,,1,2,3,j i j A l i j γ== 显然为可数集,故11k j j QA ∞+== 也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多项式{}0n n ∞= 全体阶有理多项式作为可数集的并也是可数集.P24 习题1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为 ()12,,,,n Q r r r = . []0,1全体无理数的集合为 R,则[] 0,1Q R = . 由于 Q是一可数集合, R 显然是无穷集合(否则[]0,1为可数集, Q R 是可数集,得矛盾).故从P21定理7得 [] 0,1Q R R = . 所以 R=ℵ, R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P . 则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤, 而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞== .任取一,0,z f P m ∈∃≥有,z m f P∈. f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=也是至多可数集.又{},1;1,2,n N nx n ∀∈+= 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.(P29)2.设1nR R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂.表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.3.设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()()()22000000,f t tp p tx x ty y ρ==-+-()22222000011t x y t x y =-+=-+则()f t 是[]0,1上的连续函数,()220001f x y =+≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈ 所以(){}020,t p N p E p δη∈- 由习题1的结论知'02p E ∈,所以(){}'222,;1E x y x y =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .第二章第二节习题(P35)1.证明点集F 为闭集的充要条件是F F =.证明:因为'F F F = ,若F 为闭集,则'F F ⊂所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂从而F 为闭集.P42第四节习题1. 证明全体有理数所构成的集合不是G δ集,即不能表成可数多个开集的交. 证明:设1R 上全体有理数为{}123,,,,n r r r r Q =. 则一个{}n r 作为单点集是闭集,所以{}1i i Q r ∞== 是F δ集,但要证Q 不是G δ集,则不容易.这里用到:Baire 定理,设nE R ⊂是F δ集,即1k k E F ∞== .k F ()1,2,k = 是闭集,若每个k F 皆无内点,则E 也无内点(最后再证之)反证设{};1,2,i Q r i == 为G δ集,即1i i Q G ∞== ,(i G 为开集,1,2,i = )1R 上的单调函数的全体所组成的集合的势为c =ℵ.证明:任取1R 上的单调函数f ,则其间断点至多可数个,设其无理数的间断点,为12,,,,m x x x (可为有限)设1R 中的有理数为{}12,,,,,n Q r r r f =∀∈令 ()()()()()()()()(){}21111,,,,,,,,i i i i f x f x r f r x f x r f r R ϕ=⊂ .则()f ϕ为2R 中可数集.若,f g ∈,使()()f g ϕϕ=,则()()(),i i x f x f ϕ∀∈存在()()(),jjx g x g ϕ∈使()()()(),,i i j j x f x x g x =所以 () (),i j i jx x f x g x ==, 从而()(),i i i x Q f r g r ∀∈=.f ∀的无理数间断点i x ,i x 也是g 的无理数间断点,且()()i i g x f x =.反过来也是的,g ∀的无理间断点,i x 也是f ,的无理数间断点,且()()i i g x f x =.故()()f g ϕϕ=表明f 与g 在有理点重合,无理间断点相同,且在无理间断点的值.所以f g =于1R ,所以ϕ是11-的.利用下面结论:Claim :任何其有连续势的集合的全体可数子集所构成的族的势为连续势. 知:c ≤ .另一方面()(){},0,1c c f x x c c ==+∈≤ 证毕.Lemma :设为,X Y 两集合,:X Y ϕ→是一个满射,则Y X ≤.即存在X 的一个子集,A A Y .证明:因为ϕ为满射,()(){}1,;,y Y y x x X x y ϕϕ-∀∈=∈=≠∅ 且,,y z Y y z ∈≠时必有()()11y z ϕϕ--=∅ .令(){}1;y y Y ϕ-Γ=∈,则由选择公理存在一个集合X ,它由Γ中每一个集合()1y ϕ-中恰取一个元素而形成,显 ,X X a X ⊂∀∈,存在唯一一个y Y ∈,使()1a y ϕ-∈.所以 X 与Y 是对等的,故Y X ≤.证毕.选择公理:若Γ是由互不相交的一些非空集合所形成的集合族,则存在集合X ,它由该族的每一个集合中恰取一个元素而形成.2. 证明[]0,1上全体无理数所作成的集合不是F δ集.证明:设[]0,1上全体无理数所作成的集合是 ,则[]0,1Q =- ,(Q 为1R上全体有理数的集合)若 为F δ集,则存在闭集,1,2,i F i = 使1i i F ∞== .所以[]10,1cc i i Q F ∞=== 为G δ集.[][]{}{}110,10,1i k i k Q F r ∞∞==⎛⎫== ⎪⎝⎭ ,{}k r ,i F 为闭集,{}k r 无内点. 1i i F ∞== 显为内点.所以i F 无内点.这说明[]0,1无内点(Baire 定理)得矛盾. 证毕.P452. 证明任何闭集都可表成可数多个开集的交.证明:设F 为任一闭集. ,n N ∀由本节第一题知()1;,n U p d p F n ⎧⎫=<⎨⎬⎩⎭为开集,且(),1,2,n F U n ⊂= ,从而有1n n F U ∞=⊂ .下证1n n F U ∞=⊂ ,这只用证1n n U F ∞=⊂ ,1n n p U ∞=∀∈ .反证设p F ∉则c p F ∈,故从F 为闭集知c F 为开集.故0δ∃>使(),cN P F δ⊂.从而有(),,q F d p q δ∀∈≥(否则(),d pqδ≥(),cq N P F δ⇒∈⊂cq F F ⇒∈=∅矛盾) 这说明()(),inf ,q Fd p F d p q δ∈=≥.另一方面,1n n p U ∞=∈ 表明,n n p U ∀∈,从而有()1,p F nρ=.令n →∞知(),0p F ρ=. 这与(),0d p F δ≥>矛盾. 所以p F ∈,从而1n n p U ∞=∈ 得证.P57第三章第2节习题2.证明:若E 有界,则m E *<∞.证明:若nE R ⊂有界,则存在一个开区间(){}120,,;n M n E R I x x x M x M ⊂=-<< .(0M >充分大)使M E I ⊂.故()()()111inf ;2n nn n m n n i m E I E I I M M M ∞∞*===⎧⎫=⊂≤=--=<+∞⎨⎬⎩⎭∑∏ .P682.举例说明定理6的结果对任m T *=∞的T 可以不成立.解:令[][]1,,,n A n T R =∞==-∞∞,则121n n A A A A +⊃⊃⊃11,0n n n n E A m A ∞∞==⎛⎫==∅= ⎪⎝⎭()()()0m T E m E m ***==∅=而()()lim lim n n n n m T A mA **→∞→∞==∞6Th m T *∴<∞中是必需的.3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*)证明:若()m A B =∞ ,则,A B A B ⊂()()()0,,m A B m A m B ⇒==∞=∞()()()()m A B m A B m A m B ∴∞=+=++∞ 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+-注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+- A 可测()()()()()c m B m A B m A B m A B m B A =+=+-()()()(),m A B m B A m B m A B ∴<∞-=- ()()()()m A B m A m B m A B ∴=+-P1032..证明当()f x 既是1E 上又是2E 上的非负可测函数时,()f x 也是12E E ⋃ 上的非负可测函数证明:显然()0f x ≥于1E ,且()0f x ≥于2E 表明()0f x ≥于12E E ⋃ 又1a R ∀∈,{}{}{}1212|()|()|()E E x f x a E x f x a E x f x a ⋃>=>⋃>由于f 在1E ,2E 上分别可测,{}1|()E x f x a >和{}2|()E x f x a >均为可测集,从而由P61推论2,{}{}12|()|()E x f x a E x f x a >⋃>={}12|()E E x f x a ⋃>为可测集,再由P101Th1知f 在12E E ⋃上可测或直接用P104Th4的证明方法.3.设mE <+∞,()f x 是E 上几乎处处有限的非负可测函数,证明对0ε>,都有闭集F E ⊂,使(\)m E F ε<,而在F 上()f x 是有界的证明:令{}0|()0E E x f x ==,{}|()E E x f x E ∞∞==,由条件f 在E 上几乎处处有限,0mE ∞=.由()f x 可测于E 上知,{}{}0|()0|()0E E x f x E x f x =≥⋂≤是可测集(P103Th2,P64Th4可测集的交仍可测)令{};0()E E x f x +=<<+∞,1;()k A E x f x k k ⎧⎫=≤≤⎨⎬⎩⎭,则 {}1;()\;()k A E x f x k E x f x k ⎧⎫=≤<⎨⎬⎩⎭可测,1k k E A +∞+== ,且1k k A A +⊂由P64Th5 ()lim k k m E mA +→+∞=,而mE <+∞,则()m E +<+∞故0ε∀>,0k ∃使00()2k m E mA ε+≤-<,而0k A E +⊂故0(\)2k m E A ε+<由0E ,0k A 可测,∃闭集01k F A ⊂,01(\)8k m A Fε<,∃闭集00F E ⊂使00(\)8m E F ε<令10F F F =⋃,则F 为闭集,且在F 上00()f x k ≤≤由于E F ∞⋂=∅,00\\(\)E F E E E F E E E F ∞+∞+=⋃⋃=⋃⋃ 又000001\\(\)(\)E E F E E F F E F E F +++⋃=⋃⋃⊂⋃ 而0011\(\)(\)k k E F E A A F ++⊂⋃,故00(\)(\)m E F mE m E E F F ∞+≤+⋃⋃0010(\)(\)m E F m E F +≤++ 001(\)(\)882842k k m E A m A F εεεεεεε+≤++≤++=+<证毕.7.设()f x 是1R 可测集E 上的单调函数,证明()f x 在E 上可测.证明:不妨设()f x 在E 上单调不减,即12,x x E ∀∈,若12x x <,则12()()f x f x ≤1a R ∀∈,我们来证明[|()]E x f x a =≤是可测集,这样由本节定理2知()f x 可测于E (P103).若1a R ∈使得[|()]a E x f x a ≤=∅ ,则显然a E 可测若1a R ∈使得a E ≠∅,此时若令0sup a y E =,则要么0y =+∞,要么0y <+∞(1) 若0y =+∞,则,M a M M y E ∀∃<∈,故,x x E M ∀∈∃使x M a y x E >∈, 由()f x 在E 上单调不减,我们有()()x M f x f y a ≤≤,即a E E E ⊂⊂,从而a E E =为可测集(2) 若0y <+∞,则要么0y E ∈,要么0y E ∉若0y E ∈,则0()f y a ≤,此时0(,)x E y ∀∈⋂-∞,0,x a x y E x y y ∃∈<<,由()f x 单调不减于E 知,()()x f x f y a≤< 故0(,)a E y E ⋂-∞⊂,而0a y E ∈,从而有00(,](,]a E y E E y ⋂-∞⊂⊂⋂-∞,故0(,]a E E y =⋂-∞为可测集. 若0y E ∈,而0()f y a >,0a y E ∉,则0(,)x y E ∀∈-∞⋂,0,x a x y E x y y ∃∈<<0x x y y <<,()()x f x f y a ≤<则00(,)(,)a y E E y E -∞⋂⊂⊂-∞⋂ 即0(,)a E y E =-∞⋂为可测集.若0y E∉,则0a y E ∉,同样可证0(,)a E E y E =⋂-∞⋂可测.若()f x 单调不增,则()f x -在E 上单调不减,从而可测,故(())()f x f x --=在E 上可测.P1082.设mE <+∞,(),1,2,n f x n = 都是E 上的几乎处处有限的可测函数,并且lim ()()n n f x f x →+∞= .a e ,|()|f x <+∞ .a e ,必有E 的可测集序列{}n E ,使1n n E E +⊂,1,2,n = ,lim n n mE mE →+∞=,而在每一n E 上{}()m f x 都一致收敛于零.证明:由于mE <+∞,{}1()n n f x +∞=可测于E 且几乎处处有限,l i m ()(n n f x f x →+∞=,|()|f x <+∞ .a e ,由Egoroff 定理:1,,,()\()n nmnn n N e E m e f x fE E e n∀∈∃⊂<=可测集一致收敛于可测 令1nn i i E F ==,则()mfx f 一致收敛于n E显然12n E E E E ⊂⊂⊂⊂⊂ n N∀∈,()(\)n n mE m E m E E =+,而mE <+∞,()n m E mE ≤<+∞故10(\)nn nm E m E m E Em e n≤-≤=< 则lim n n mE mE →+∞= 证毕.P112. §3习题1.若E 是有界可测集,()f x 在E 上几乎处处有限 ,则()f x 在E 上可测的充要条件是有一串在整个空间上连续的函数()n x Φ ,使 l i m()()n n x f x →∞Φ= .a e 于E证明:充分性是显然的,()n x Φ在1R 上连续,从而是可测的,及几乎处处有限,也必在E 上可测必要性:由E 有界可测,()f x 在E 上几乎处处有限,故由Lusin 定理,∃闭集1F E ⊂,1(\)1m E F <,()f x 是1F 上的连续函数,又1E F -有界可测,由Lusin 定理,∃闭集21\F E F ⊂,使121(\\)2m E F F <利用归纳法知,若k F 已选好,则 11\kk ii F E F+=∃⊂ ,111(\\)1ki k i m E F F k +=<+ 且()f x 在1k F +上连续. 由于k ∀,1ki i F = 仍是有界闭集,故由P116Th2的证明方法知f 可扩充为1R 上的连续函数()n x Φ,()()n x f x Φ=于1ki i F = 上且k ∀,111(\)(\)0kk i i i i m E F m E F k ∞→+∞==≤≤→ ,故1(\)0i i m E F ∞==01ii x F ∞=∀∈ ,00()n n x ∃=使n x F ∈ 则01n i i x F =∈000()()n x f x Φ=且当0()n n x ≥时,0011n niii i x F F ==∈⊂故1000()|()()nii n n F x x f x =Φ=Φ= 故00lim ()()n n x f x →∞Φ= 这就证明了01i i x F E ∞=∀∈⊂ 00lim ()()nn x f x →∞Φ=故从1(\)0i i m E F ∞== 知必要性成立注意:本题的困难在于若直接这样用P116定理2,,n n F E ∀∃⊂,1(\)n m E F n<01()n f C R ∃∈,|()n n F f f x =则n ∀,11(\)(\)0i n i m E F m E F n ∞=≤<→ 则1(\)0i i m E F ∞==01i i x F ∞=∀∈ ,00001,n n i i n x F F =∃∈⊂ ,但直接取()()()n n x f x f x Φ==就不知是否有000()()n x f x Φ=,当0n n >,因仅知当n x F ∈时()()n f x f x =,而()n f x 在n i F -(0i >)时的性质不明,因为没有条件保证1n n F F +⊂ 而我们的前面证明是用到111n n iii i F F +==⊂ ,1()()n n x x f +Φ=Φ=于1ni i F = 上.P117. §4习题1. 设()()n f x f x ⇒于E ,()()n g x g x ⇒于E ,证明:()()()n n f x g x f x g x +⇒+于E证明:0ε∀>,[||()()(()())|][||()()|][||()(2n n n n E x f x g x f x g x E x f x f x E x g x g xεε+-+≥⊂-≥⋃- A B εε⋃(否则,若[||()()(()())|]n n x E x f x g x f x g x ε∈+-+≥,而x A Bεε∉⋃,()c c c x A B A B εεεε∈⋃=⋂|()()||()()|22n n f x f x g x g x εε⇒-<-<|()()(()())||()()||()()|22n n n n f x g x f x g x f x f x g x g x εεεε⇒≤+-+≤-+-<+=矛盾),则[||()()(()())|][||()()|][||()()|]022n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε+-+≥≤-≥+-≥→(()(),()()n n f x f x g x g x ⇒⇒) 从而()()()()n n f x g x f x g x +⇒+2. 设|()|n f x K ≤.a e 于E ,1n ≥,且()()n f x f x ⇒于E ,证明|()|f x K≤.a e 于E 证明:由本节定理2(Riesz 定理)从()()n f x f x ⇒知∃{}()n f x 的子列{}()k n f x 使()lim ()k n k f x f x →∞=.a e 于E设A E ⊂,(\)0m E A =,()()k n f x f x →于A ,从条件|()|k n f x K ≤.a e 于E ,设k n B E ⊂,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上令1()kn k B BA +∞==⋂ ,则B K ⊂,且11(\)()(()(())k k cccccn n k k m E B m E B m E B A m E A B E +∞+∞===⋂=⋂⋃=⋂⋃⋂111()()(\)(\)00k k ccn n k k k m E A m E B m E A m E B +∞+∞+∞===≤⋂+⋂=+=+∑∑∑故(\)0m E B =,,k n x B k B B A ∀∈∀⊂⋂,则|()|k n f x K ≤令k →∞,|()|f x K ≤故x B ∀∈有|()|f x K ≤,从而命题得证 P131第五章1.试就[0,1]上的D i r i c h l e t 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆:()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])100cm Q m Q =⋅⋂+⋅⋂=⋅+⋅=回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰4.证明:若()f x 是E 上的非负函数,()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+= ,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f 可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m == )都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnn EE x f x E E f x dx f x dx f x dx n dx nmE >=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n == ;同理0,(1,2,)m mF m == 故11[|()0]0nmn m mE x f x mE mF+∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|E x f x EE x f x ==->,知()0.f x a e =于E .证毕.6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()m E x f x a m E x g x a≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dx gx dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则 [|()][|()][|()E x f x a E x f x b E x a f x b≥-≥=≤< [|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()m E x g x a m E x g x b m E x a g x b=≥-≥=≤<m N ∀∈,及0,1,2,,21m k =- ,令,1[|()]22m k m mk k E E x f x +=≤<及,2[|()]m m m E E x f x m =≥则2,0mm m kk E E==,,m k E 互不相交同样 ,,21[|()],[|()]22m m k m m m m k k E E x g x E E x g x m +=≤<=≥, 2,0mm m kk E E == , ,m k E 互不相交 令 ~,,2200()(),()()22mmm km km m m E m m m E k k k k x x x x ψχψχ====∑∑,则()m x ψ, ()m x ψ都是非负简单函数,且 (),()m m x x ψψ 均为单调不减关于m ,()()m x f x ψ→, ()()mx g x ψ→ 注意到,,11()[|()][|()]()2222m k m km m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<=故 22,,00()()()()22mmm m m m k m k m m m k k E Ek k x dx m E m E x dx ψψ=====∑∑⎰⎰ 故由Levi 定理知()lim ()lim ()()mm n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则2[|()2]kkk mE x f x +∞=≥<+∞∑ ,故l i m 2[|()2]k kn mE x f x →∞≥=(1)反证设l i m0n n n m e →∞⋅>,则00,,kk N n ε∃>∀∈∃使0k k n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim 0n n n me →∞⋅=10.证明:若非负可测函数()f x 在E 上的积分()E f x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1EE =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n nn n n m B r B r w r r m m→∞→∞=+=+-=若[|||||]m E E x x m =≤,[|||||]m E E x x m =<,则(\)((0,))0m m m E E m B m ≤∂=而()f x 非负可测,故11lim ()lim()lim()()m m m m m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c >另一方面,0lim ()0r F r +→= (当0f M<<有界时,010()()()m rE Frf x d x M m≤=≤≤→⎰) 一般,0ε∀>,()N ε∃,使||3N EEf dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→= 由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n = ;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1nn mE mFmF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n nn n n n mE mFmF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+ 故01(())2n k nn m E FF δ=⋂⋃≥在01n k n n E F F =⋂⋃ 上,01()1f x n ≥+所以0111000()()1111()()(())1112n n kk n k n n n n k n n EE F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰ k →+∞,得0010012n δ≥>+得矛盾,故结论不成立0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()n n f xf x →∞= 并且有0n 使()n Efx dx <+∞⎰,举例说明,当()nEfx dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得l i m ()l i m (nn n n EEs x dx s x dx →∞→∞=⎰⎰,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令nE R⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n E f x dx mE n ==+∞⎰,()0l i m ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰P151 第2节习题1. 设mE <+∞,()f x 在E 上可测且几乎处处有限[;1()]n E E x n f x n =-≤<,0,1,2,n =±±证明:()f x 在E 上可积的充要条件是nn mE+∞-∞<+∞∑证明 ()f x 在E 上可积⇔f 在E 上可积⇔Ef dx <+∞⎰,显然n E 可测(由f 可测)1nnn n EE E f dx f dx f dx +∞==-∞=+⎰⎰⎰1()()nnn n E E f x dx f x dx +∞==-∞=-⎰⎰1()()nnn n E E f x dx f x dx +∞==-∞=-∑∑⎰⎰若Ef dx <+∞⎰,则1(1)n nn n Ef dx n mE nmE +∞==-∞+∞>≥--∑∑⎰011n n n n n n nmE mE n mE +∞+∞===-∞=-+∑∑∑11()n n nn n n n mE m E n mE +∞+∞==-∞=≥-+∑∑ n n mE mE +∞-∞≥-∑则从mE <+∞知nn mE+∞-∞<+∞∑。

实变函数论课后答案第二章2

实变函数论课后答案第二章2

实变函数论课后答案第二章2第二章第二节习题1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂ 从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>,使()(){}00,,;a xx N x x f x a δ∈⊂≥.这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥. 故(){};x f x a ≥是闭集.3.证明任何邻域(),N p δ都是开集,而且()(){}'',;,N p p p p δρδ=<(N 通常称为一闭邻域)证明:()0,p N p δ∀∈,则()00,p p ηρδ≤<()0,Q N p δη∀∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=故()()0,,N p N p δηδ-⊂. 故(),N p δ是开集得证.(){}(){}'''';,,;,n p p p p p p p p ρδρδ∀∈≤∈≤且 n p p → 则 ()(),0,,n n p p p p ρρδ→≤() ()() (),,,,n n n p p p p p p p p ρρρρδ≤+≤+. 令n →∞得 (),0p p ρδ≤+. 故(){}(){}''''';,;,p p p p p p ρδρδ≤⊂≤.表明(){}'';,p p p ρδ≤是闭集.又 (){}'';,p p p p ρδ∀∈≤令 11k px p k k ⎛⎫=+- ⎪⎝⎭, 则() ()111,1,1,1k px p p p p p k k k k ρρρδδ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-≤-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.()()1,,0k x p p p kρρ=→故(),,k k x N p x p δ∈→ 这表明(){}()()''';,,,p p p N p Np ρδδδ≤⊂⊂而()(){}'',;,N p p p p δρδ⊂≤故()(){}(){}()'''',;,;,,N p p p p p p p N p δρδρδδ⊂≤=≤⊂这表明()(){}'',;,N p p p p δρδ=≤.4.设∆是一有限闭区间,()1,2,3,n F n = 都是∆的闭子集,证明如果1n n F ∞==∅ ,则必有正整数N ,使1Nn n F ==∅ .证明:令1n n i i S F == ,则显知11n n n n F S ∞∞=== ,且12n S S S ⊃⊃⊃⊃ (),1i n F i n ∀≤≤为闭集,故n S 也为闭集.下证 N ∃,使1Nn N n F S ===∅ .反证,设,n n S ∀≠∅,则n n x S ∃∈⊂∆,由于∆是有限闭区间,{}n x 是有界点列,若{},1,2,3,n x n = 为无限集合,则由聚点原理{}n x ∃的子列{}00,,kkn n x xx x →∈∆由于12n S S S ⊃⊃⊃⊃故任取,m N k ∈充分大时kkn n m x S S ∈⊂,又m S 为闭集,且0kn m x x S →∈由m 的任意性知,011m n m m x S F ∞∞==∈==∅ 得矛盾. 若{},1,2,3,n x n = 为有限集合,则0n ∃,当()00max ,n n m ≥时,0n n m x x S S =∈⊂,故 011m n m m x S F ∞∞==∈==∅ 得矛盾.所以∃ N ,使得1NN n n S F ===∅ .证毕.设,n E R μ⊂是一族完全覆盖E 的开邻域,则有μ中的(或有限)多个邻域12,,,m N N N ,它们也完全覆盖了E ( Lindelof 定理)证明:设{};,I αμα=∈ΛΛ为某指标集,则E I αα∈Λ⊂ .,x E ∀∈∃ x α∈Λ,使得x x I α∈.由于I Λ是开集,0x δ∃>使(),x N x I δΛ⊂.由有理点在n R 的稠密性易知,存在有理点nx a Q ∈和有理数0x r >,使()(),,x x x x N a r N x I δΛ∈⊂⊂,而n R 中全体以有理点为心,有理数为半径的球作成集合与nQ Q ⨯的一个子集对等,故这些(){},;x x N a r x E ∈至多是一个可数集,从而相应的{};xIx E α∈也是至多可数集.而这些{};xI x E α∈显然为E 的一个开覆盖,因为(),xx x x E x EE N a r I α∈∈⊂⊂因为每一个上述(),x x N a r 包含在某个I α中,故存在至多可数个i I M ∈,使{};i I i ∈Λ成为E 的一个开覆盖.1. 证明nR 中任何开集G 可表成()1ni i G I ∞== 的形式,其中()()()(){}12;,,,,,1,2,3,,n i i in j j j I p p x xx c x d j n ==<<=证明:(注意这里并为要求()ni I 互不相交)设G 为n R 中的任意开集,则0x G ∀∈,由开集的定义,∃一个球形邻域()()000,0x x N x G δδ⊂>,令()00001200,,,;x x x n j x j I x x x x x x n n δδδ⎧⎫==-<<+⎨⎬⎩⎭则显然()000,x xx I N x G δ∈⊂⊂,且x x GG I G ∈⊂⊂ .故x x GG I ∈= ,x I 显然是开区间,也是开集,{},x I x G μ=∈为G 的一个开覆盖.由本节习题5,μ中的至多可数个123,,,,,n I I I I 完全覆盖了G所以1i i G I G ∞=⊂⊂ .所以1i i G I ∞== ,i I 都是开区间.故本题结论得证.2. 试根据B orel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证,设E 为有限无穷点集而无聚点,则'E =∅,从而'E E =∅⊂, 故E 为有界闭集,且任意p E ∈,都是E 的孤立点.故0p δ∃>使(){},p Np E p δ= ,所以(),p p EE N p δ∈⊂.(){},pN p δ形成E 的一个开覆盖,由于E 为有界闭集,由Borel 有界覆盖定理,∃有限个()()11,,,,,m p mp Np N pδδ ,使()1,imip i E Np δ=⊂()(){}111,,iimmmip ip ii i i E E Np E N p p δδ====== .前已知(){},ii p i N p E p δ= .故{}1mi i E p == 为一有限集合,这与E 为有界无穷集矛盾.8. 证明nR 中任意非空开集的基数都是c .证明:∀开集n U R ⊂,显从n U R ⊂知n U R c ≤=.又存在一个点()00,0,,p U N x U δδ∈∃>⊂,()0,N x c δ=, 故()0,U N x c δ≥≥. 所以Berrstein 定理知U c =. 证毕9. 证明对任意n E R ⊂,E 都是n R 中包含E 的最小闭集.证明:任取n E R ⊂,设F 是包含E 的人一闭集,则E F ⊂,''E F ⇒⊂ 所以''E E EF F F =⊂= ,因为F 为闭集 所以''E F F ⊂=,所以E 是n R 中包含E 的最小闭集. 10. 对于1R 定义的实函数()f x ,令()()()'''',lim sup liminfx x x x W f x fx fx δδδδ++→→-<-<=-.证明:对任意的(){}0,;,x W f x εε>≥都是闭集.进而证明()f x 的全体不连续点作成一F δ集.证明:首先 ,当δ单调下降趋于0时,()''sup x x f x δ-<也单调下降趋于某极限(有限或无限)而()''inf x x f x δ-<单调上升地趋于某极限.故()()()'''',lim sup liminfx x x x Wf x fx fx δδδδ++→→-<-<=-是有确切定义的(可为无限值)先证明:()f x 在0x x =连续()0,0W f x ⇔=.证:先设()0,0Wf x =,则()00,0εδε∀>∃>使00δδ<<时()()''''sup infx x x x fx fx δδε-<-<-<所以y ∀满足0y x δ-<时()()()()''''0sup infx x x x fy f x fx fx δδε-<-<-≤-<故f 在0x 处连续.反过来,若()f x 在0x x =处连续,则()0000,,0x εδδε∀>∃=>, 当00y x δδ-<<时,()()0fy f x εε-<-<又()000,x δδδε∀<=,''''''00,,,y y y x y x δδδδδδ∃-<-< 且()()()()'''''''sup ,infx x x x f x fy f y fx δδδδεε-<-<-≤≤+所以()()()()'''00sup x x f x f x fy f x δδεε-<--≤-<()()()()''''infx x f xf x f x f y δδεε-<--+≤-<不等式相加得()()()()''''''''sup inf220lim sup liminf4x x x x x x x x fx fx fx fx δδδδδδεεε++-<-<→→-<-<--≤≤-≤即()00,4,0W f x εε≤≤<任意.所以()0,0Wf x =为证(){}0;,x Wf x ε≥为闭集,只用证(){}0;,x W f x ε<为开集. (){}00;,x x Wf x ε∀∈<必有()0,Wf x ε<所以存在()00,0x δδε=>使()00,δδ∀∈时, ()()()()000sup inf ,2N x N x f f W N x δδδεδ-<()02y N x δ∀∈,由三角不等式,则()()02N y N x δδ⊂.故()()()02,,W f N y Wf N x δδε⎛⎫≤< ⎪⎝⎭所以()()02,lim ,Wf y W f N y δδε+→⎛⎫=< ⎪⎝⎭这说明()(){}02;,N x x Wf x δε⊂<故(){};,x Wf x ε<是开集,从而(){};,x W f x ε≥是闭集.由于()f x 在x 不连续的充要条件是(),0Wf x ≥.所以使x 不连续的点集为表为()11;,k F x Wf x k ∞=⎧⎫=≥⎨⎬⎩⎭. 由于()1,;,k x Wf x k ⎧⎫∀≥⎨⎬⎩⎭是闭集,故F 为一F δ集. 同时我们看出,全体使f 连续的点集是()11;,ck F x Wf x k ∞=⎧⎫=<⎨⎬⎩⎭这是一个G δ集合.推广:(1)对1:n f R R →有一样的结论,只不过在定义(),Wf x 时,'x x -理解为n R 中的距离()';x x ρ,其它完全一样,因为三角不等式对().,.ρ成立, (2)若f 是n R 中的开集,G 到1R 的函数,则同样可定义()(),W f x x G ∀∈,因为当(){}0,;,,x x G W f x εε∀>∈<为开集,(){};,x G Wf x ε∈≥为闭集.f 的不连续点集为()11;,k x G Wf x k ∞=⎧⎫∈≥⎨⎬⎩⎭而f 的不连续点集为()11;,k x Wf x k ∞=⎧⎫<⎨⎬⎩⎭. 11. 于n E R ⊂及实数α,定义()(){}1212,,;,,,n n E x x x x x x E αααα=∈ .证明当E 为开集,00,p E αα≠∀∈,则∃ 0E X ∈,使00p α=XE 开集,0E X ∈,故0δ∃>,使()0,N E δX ⊂.则∀()0,y N αδ∈X ,则yy αα=而0001y y y αδααδαααααX -X --=-X <=.故()0,yN E δα∈X ⊂从而yy E ααα=∈这表明()0,N E αδαX ∈,故E α为开集.若E 为闭集,0α=,则(){}0,0,0E α= 为单点集.当然是闭集,若0α≠,则0,n n p E p p α∈→,则0,,,nn n n n n p p E p p αα=X X ∈=X →表明nn p p αα=X →,而E 为闭集,0n p αX →,故np E α∈,从而0p p E ααα=∈.这说明()'E E αα⊂.从而得知E α为闭集.12. 设()fp 是定义于n R 上的实函数,证明()f p 在n R 上连续的充要条件是对于1R 中任何开集G .()(){}1;fG p f p G -∈ 都是1R 中的开集.证明:设1:n f R R →连续,G 为任一1R 中开集. ()10p fG -∀∈,则()0f p G ∈,由G为开集知,0δ∃>,使()()0,Nf p G ε⊂对上述()00,,0p εδδε>∃=>,使当()0,y N p δ∈时()()0fy f p ε-<故()()()0,fy N f p G ε∈⊂即()1y fG -∈.这说明()()10,N p f G δ-⊂故()1fG -为开集.现设对1R 中任意开集,()1,G fG -为开集,0,ε∀>()()0,Nf p ε是1R中的开集.故()()()1,fN f pε-是开集,而()()()100,p fN f pε-∈.故()()()()00,,f N p Nf p δε⊂所以()()()()00,,,y N p fy N f p δε∀∈∈.()()0fy f p ε-<这说明f 在0p 连续 证毕13. nR 上的实函数()f P 称为是下半连续的,若对任意n P R ∈,都有()()()()()0,lim inf lim inf Q PP Q f P f Q f Q δρδ→→<≤ ,证明()f P 下半连续等价于对任意的实数(){},;P f P αα≤都是n R 中的闭集,也等价于(){};P f P α≤是n R 中的开集.现若f 下半连续,1R α∀∈,若(){}0;P P f P α∈>. 则()()()()000lim inf N P f P f Q δδα→<≤∀()00022f P αεε-<<,()0,0p δδε∃=>使()()()00inf N P f P f Q δαε<-<所以()0,y N P δ∀∈,有()()()()00inf N P f P f Q fy δαε<-<≤.所以()(){}0,;N P P f P δα⊂>.故(){};P f P α>为开集.(从而(){};P f P α>为闭集)f 在nR 上下半连续,0,0nP R ε⇔∀∈∀>,()0,0p δδε∃=>.当()0,P N P δ∈时,()()0f P f P ε-<-. 反过来,若(){}1,;R x f x αα∀∈>为开集.则()(){}000,0,;nP R P x f x f P εε∀∈∀>∈>-由于()(){}0;P f P f P ε>-是开集.所以()0,0P δε∃>使()()(){}00,;P N P P f P f P δε∈⊂>-()0,Q N P δ∀∈有()()0f P f P ε>-,即f 在n R 上下连续,故一个等价性得证.而f 在n R 上下连续(){}1,;R P f P αα⇔∀∈≤是闭集(){};P f P α⇔>是开集.下证(){}1,;R P f P αα∀∈≤()(){},;,nP y P Rf P y ⇔∈≤为闭集.先设(){};P f P α≤为闭集,α任意.所以()()(){},,;;n n n n n P y P y P R f P y ∀∈∈≤,00,n n P P y y →→. 所以0,,N ε∀>∃当n N ≥时0n y y ε≤+. 故(){}0;n P P f P y ε∈≤+,这是闭集. 而(){}00;n P P P f P y ε→⇔≤+ 所以()00f P y ε≤+,()0ε∀>故()00f P y ≤.这表明()()(){}00,,;;n P y P y P R f P y ∈∈≤是闭集.若()(){},;;n P y P R f P y ∈≤是闭集,而(){}0;,n n P P f P P P α∈≤→ 则()()(){},,;;nn P P y P Rf P y α→∈≤,()()0,,n P P αα→.因为()(){},;;n P y P R f P y ∈≤为闭集,故()()(){}0,,;;n P P y P R f P y α∈∈≤ 所以()0f P α≤.这说明(){}0;P P f P α∈≤ 故(){};P f P α≤为闭集. 得证.14. 设,A B 是n R 中的有界闭集,01λ<<,证明()(){}121;,,,n A B x x x x λλ+- 有()()1212,,,,,,,n n y y y A z z z B ∈∈ ,使()1,1,2,i i i x y z i λλ=+-= 为有界闭集.举例说明当,A B 无界时,()1A B λλ+-可以不是闭集. 证明:,A B 有界,故存在 M 使()22212,,n x A B x x x x x x M ρ∀∈==+++≤特别地 i x M ≤.()1x A B λλ∀∈+-,有()1x A B λλ∀∈+-使 ()1i i i x y z λλ=+-,故()1x y z λλ=+-.故()()()111x y z y z M M M λλλλλλ∈+-≤+-≤+-=. 所以01λ≤≤时,()1A B λλ+-也有界.为证()1A B λλ+-为闭集,设()1n x A B λλ∈+-,0n x x →, 则,n n y A z B ∃∈∈使()1n n n x y z λλ=+-.由,A B 有界,()1n x A B λλ∈+-, ,n n y A z B ∈∈,由聚点原理,n y ∃的子列k n y 使0k n y y →,{}k n z 有子列{}k l n z 使0k l n z z →,{}k l n x 有子列{}k li n x 使()0k li nx x i →→∞ 从()1k k k lili li n n n x y z λλ=+- 所以()0001x y z λλ=+-,而,A B 为闭集,故00,y A z B ∈∈.从而有()01x A B λλ=+- 这说明()1A B λλ+-是闭集. 若,A B 不全是有界闭集时,()1A B λλ+-可不为闭集,在2R 上考虑()()(){}11,;,0,,,0;1,2,A x y y R x y x B n n ⎧⎫=∈∈∞=⎨⎬⎩⎭=-= B 是全由孤立点组成的集合,显然为闭集,但无界. 任取(),n n x y A ∈,若()()100,,n n x y x y R →∈, 则00,x y 为有限数,故从01n n y y x =→知00x ≠ 所以00010,x y x >=这说明()00,x y A ∈,故A 为闭集合,显然 0x +→时,1y x =→∞,故A 无界. 但1122A B +都不是闭集.取()1,0,,n B n A n ⎛⎫-∈∈ ⎪⎝⎭ 则()111111,0,0,22222n p n n A B n n⎛⎫⎛⎫=-+=∈+ ⎪ ⎪⎝⎭⎝⎭. 显然()0,0n p →,但()110,022A B ∉+. 因为若()110,022A B ∈+,则()0001,0,,n B x A x ⎛⎫∃-∈∈ ⎪⎝⎭使 ()()0001110,0,,022x n x ⎛⎫=+- ⎪⎝⎭故00011,0x n x =≥=得矛盾 所以1122A B +不是闭集.。

《实变函数》习题库参考答案

《实变函数》习题库参考答案

《实变函数》习题库参考答案《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ?),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。

满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-?--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ?知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由+∞<="" 4、(="" b="" m="" ma="" p="" √="" 。

从而移项可得结论。

="" 知,+∞<-+∞理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数,从而再其和集上也是可测函数。

5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。

6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。

[法二]:可建立一个映射==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合,1,,31,21,1,0n 到集合 ,1,,31,21,1n 的一一映射。

7、( √ )理由:由B A ?知A A B B )(-=,且φ=-A A B )(,故mA mA A B mmB =+-=)(8、( √ )理由:狄利克莱函数-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。

9、( √ )理由:由于E E ?Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。

实变函数引论课后习题解答

实变函数引论课后习题解答

习题4.21.设A 是]1,0[=E 中的不可测集, ⎩⎨⎧∈-∈=,\]1,0[,;,)(A x x A x x x f 试问:f 与||f 在E 上是否可测? 答 f 不可测,但f 可测. 事实上,若A ∈0,则A f E =≥]0[不可测. 若A ∉0,则A f E =>]0[不可测. 所以f 不可测。

因为当[0,1]x ∈时,()f x x =,所以||f 在E 连续函数,从而可测.2.证明:若函数f 在可测集1E 及2E 上可测,则函数f 在21\E E 与1E 2E 上也可测. 证明 因为f 在12,E E 上可测,所以12,[],[]a R E f a E f a ∀∈≥≥可测,从而 1212()[][][]E E f a E f a E f a ≥=≥≥可测。

因此,f 在12E E 上可测。

因为 1212(\)[][]\[]E E f a E f a E f a ≥=≥≥,可测,所以f 在12\E E 上可测.3.证明:若函数f R →),(:b a 在任意闭区间),(],[b a a ⊂β上可测,则f 在开区间),(b a 上可测. 证明 因为111(,)[,]n a b a b n n ∞==+-,其中11[,](,)a b a b n n +-⊂,又由题意知:f 在每一个11[,](1,2,)a b n n n +-=上可测,所以由定理4.2.6知:f 在 111[,](,)n a b a b n n ∞=+-=上可测. 4.证明:点集n S R ⊂的特征函数S χ在可测集n E R ⊂上可测当且仅当S E 是可测集. 证明 因为⎩⎨⎧∉∈=,,0;,1)(S x S x x S χ所以R ∈∀a 有 ,1[],01,0.s a E x a E S a E a ∅>⎧⎪≥=<≤⎨⎪≤⎩,, 充分性. 若E S 是可测集,则对任意的a ∈R , []s E a χ≥可测,所以s χ在E 上可测. 必要性. 设s χ在E 上可测,则对任意的a ∈R , []s E a χ≥可测。

实变函数论课后答案1

实变函数论课后答案1

实变函数论课后答案第五章1第无章第一节习题1.试就[0,1]上的D i r i c h le 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆: ()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E 上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])10010c m Q m Q =⋅⋂+⋅⋂=⋅+⋅= 回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰2.证明定理1(iii)中的第一式证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()EEEf x dx f x dxg x dx --≥+⎰⎰⎰下面证明之: 0ε∀>,有下积分的定义,有E 的两个划分1D 和2D 使 1()()2D Es f f x dx ε->-⎰,2()()2D Es g g x dx ε->-⎰此处1()D s f ,2()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时12(()())()DD D D D f x g x dx sf g s f s g s f s g -+≥+≥+≥+⎰()()()()22EEEEf x dxg x dx f x dx g x dx εεε----≥-+-=+-⎰⎰⎰⎰(用到下确界的性质和P125引理1)由ε的任意性,令0ε→,而得(()())()()EEf xg x dx f x dx g x dx ---+≥+⎰⎰⎰3.补作定理5中()Ef x dx =+∞⎰的情形的详细证明证明:令{}|||||m E E x x m =≤,当()Ef x dx =+∞⎰时,()lim ()mm EE f x dx f x dx →∞+∞==⎰⎰0M ∀>,存在00()m m M N =∈,当0m m ≥时,2()lim [()]mmk k E E M f x dx f x dx →∞<=⎰⎰则存在k 使[()][lim ()]lim[()]mmmk n k n k n n E E E M f x dx f x dx f x dx →∞→∞<==⎰⎰⎰lim [()]lim()lim ()mmn k n n n n n E E Ef x dx f x dx f x dx →∞→∞→∞=≤≤⎰⎰⎰(利用[()]mn k E f x dx ⎰有限时的结论,Th5中已详证)由M 的任意性知lim ()()n n EEf x dx f x dx →∞=+∞=⎰⎰ 证毕.4.证明:若()f x 是E 上的非负函数, ()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+= ,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m == )都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnn EE x f x E E f x dx f x dx f x dx n dx nmE >=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n == ;同理0,(1,2,)m mF m == 故11[|()0]0n m n m mE x f x mE mF +∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|()0]E x f x E E x f x ==->,知()0.f x a e=于E .证毕.5.证明:当mE <+∞时,E 上的非负函数的积分()Ef x dx <+∞⎰的充要条件是02[|()2]k k k mE x f x +∞=≥<+∞∑证明:令[|()2],0,1k k E Ex f x k =≥= ,1[|2()2]n n n E E x f x +=≤<,0,1,2,k =[|()1],n i j n E x f x E E E +∞=≥=⋂=∅ 当i j ≠,f 非负,故从mE <+∞知[|()1]0()E x f x f x dx <≤<+∞⎰,而[|0()1][|()1]()()()EE x f x E x f x f x dx f x dx f x dx ≤<≥=<⎰⎰⎰[|()1]()()EE x f x f x dx f x dx ≥<+∞⇔<+∞⎰⎰注意由单调收敛定理和()0f x ≥可测知lim [|()1]lim()()()()()lim ()()n n ni i n i i ni n n i n E E E x f x EE E E f x dx f x dx f x dx x f x dx x f x dxχχ+∞→∞==→∞==→∞≥====⎰⎰⎰⎰⎰00lim ()()lim()lim ()()LeviThn niiii ii n n n n E i i E E E E x f x dx f x dx f x dx f x dxχ==+∞→∞→∞→∞======∑∑⎰⎰⎰⎰ 110022222222[|()2]i i n nnn n n n n i n n n n E dx mE mE mF E x f x +∞+∞+∞+∞+∞++=====≤==≤=≥∑∑∑∑∑⎰所以,若02[|()2]k k k mE x f x +∞=≥<+∞∑,则有[;()1]()E x f x f x dx ≥<+∞⎰则()Ef x dx <+∞⎰,故充分性成立.为证必要性,注意,k i k i i k i kF E mF mE +∞+∞====∑ ,令1{0nkk n k nϕ≥=<若若,则0002[|()2]2222nnnn nn nn nkkkkkn n n k nn k nn k mE x f x mF mE mE mEϕϕ+∞+∞+∞+∞+∞+∞+∞+∞========≥====∑∑∑∑∑∑∑∑100000002122221k knnnnkk k k kk n k n k n k mE mE mE mE ϕ++∞+∞+∞+∞+∞+∞=======-====-∑∑∑∑∑∑∑11(21)222()k k kk k k k k k k k k k mE mE mE mE m E +∞+∞+∞+∞+∞++======-=-=-∑∑∑∑ 0022[[;()1]]2()kk k k k E mE m E x f x f x dx +∞+∞===-≥≤∑∑⎰[|()1]2()2()2()kk E x f x EE f x dx f x dx f x dx +∞=≥==≤<+∞⎰⎰⎰(,[|()1]mE mE x f x <+∞≥<+∞)证毕.注意以上用到正项二重级数的二重求和的可交换性,这可看成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定理的应用.0000nmnm m n n m aa +∞+∞+∞+∞=====∑∑∑∑0000lim lim ()lim ()kkknmnm nm nmk k k m n m n n n aa a d m ad m μμ+∞+∞+∞+∞+∞→∞→∞→∞=========∑∑∑∑∑∑⎰⎰00000lim ()()knm nm nm k n n n m a d m a d m a μμ+∞+∞+∞+∞+∞→∞=======∑∑∑∑⎰⎰μ是1R 上的一个测度(离散的),[[]]1,()#[]m N m A A N μμ∀∈==⋂,N为自然数集,nm a 看成(){nxn a x Na x x N∈=∉当当 ,也可这样设1111,nm nm n m m n a a a b +∞+∞+∞+∞======∑∑∑∑,则,k p N ∀∈111111pppkknmnm nm n m m n m n aa ab +∞=======≤≤∑∑∑∑∑∑,令p →∞,11knm n m a b +∞==≤∑∑,令00,nm n m k a a b +∞+∞==→∞=≤∑∑,同理,b a ≤,则a b =,0000nm nm n m m n a a +∞+∞+∞+∞=====∑∑∑∑,[1,),1(){0i n a i i i nx x n ϕ-≤≤=≥为简单函数,()lim ()n n f x x ϕ→∞=,则()f x 可测6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()]mE x f x a mE x g x a ≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dx gx dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则[|()][|()][|()]E x f x a E x f x b E x a f x b ≥-≥=≤<[|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()]mE x g x a mE x g x b mE x a g x b =≥-≥=≤<m N ∀∈,及0,1,2,,21m k =- ,令,1[|()]22m k m m k k E E x f x +=≤<及 ,2[|()]m m m E E x f x m =≥则2,0mm m k k E E == ,,m k E 互不相交同样 ,,21[|()],[|()]22m m km m m m k k E E x g x E E x g x m +=≤<=≥, 2,0mm m k k E E == ,,m kE 互不相交 令 ~,,2200()(),()()22mmm k m km m m E m m m E k k k k x x x x ψχψχ====∑∑,则()m x ψ, ()mx ψ都是非负简单函数,且 (),()m m x x ψψ 均为单调不减关于m ,()()m x f x ψ→, ()()mx g x ψ→ 注意到,,11()[|()][|()]()2222m k m k m m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<= 故 22,,00()()()()22mmm m m m k m k m m m k k E Ek k x dx m E m E x dx ψψ=====∑∑⎰⎰ 故由Levi 定理知 ()lim ()lim ()()m m n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰ 7.设mE <+∞,()f x 是E 上的有界非负可测函数,0()f x M ≤<,()()()010,1,2,nn n n k g g g M n =<<<== 使 {}()(1)max |1,2,,0()n n i i n n y y i k l n --==→→∞ ,()()()()1[|()],,1,2,,;1,2,3,n n n n n i i i i i n E E x y f x y E i k n ξ-=≤<∈== 证明: ()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰证明:显然,由f 可测于E 知,()n i E 是可测集(1,n i k n N ∀≤≤∈)且()1nk n i i E E == ,又在()n i E 上()()1()n n i i y f x y -≤<表明()()()()1inf ()sup ()n n ii n n i i x E x E y f x f x y -∈∈≤≤≤ 记()()1sup ()nnn ik n D ix E i S f x mE ∈==∑ (大和数),()()1inf ()nn ni k n D i x E i s f x mE ∈==∑ (小和数)则从()f x 有界可测知()f x 在E 上可积(P129Th2),故()()()n n D D E EEs f x dx f x dx f x dx S ---∞<≤==≤<+∞⎰⎰⎰,又从()n n i i E ξ∈知()()()11()sup ()nnn n n ik k nn n D iii D x E i i s f mEf x mE S ξ∈==-∞<≤≤=<+∞∑∑()1()()nn n n nk n n D D i i D D i Es S f x dx f mE S s ξ=-≤-≤-∑⎰,则()(1111|()()|nnnn n k k kn n n nnn niiD D i i i n in i i i Ef x dx f mES s y ymE l mE l mE ξ→∞-===-≤-≤-≤=→∑∑∑⎰(从0n l →知)故()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰ 8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则02[|()2]k k k mE x f x +∞=≥<+∞∑ ,故lim 2[|()2]0k k n mE x f x →∞≥= (1)反证设l i m n n n m e →∞⋅>,则00,,k k N n ε∃>∀∈∃使0kk n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim0n n n me →∞⋅= 9.设()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,对任意的0r >,令[|||||]()()E x x r F r f x dx <=⎰证明:()F r 是(0,)+∞上的连续函数证明:[|||||](0,)E x x r E B r <=⋂显然为可测集;又()f x 在E 上非负可测,故0r ∀>,f 在[|||||]r E E x x r < 上也可测,且0()()rE Ef x dx f x dx ≤≤<+∞⎰⎰,故()F r 是(0,)+∞上有定义的函数1)先设0()f x M ≤≤<+∞于E 上,此时00,0r r ∀>∀>有0000[|||||]0()()()E x r x r r F r r F r f x d ≤<+≤+-=⎰0000[;||||][(0,)\(0,)]MmE x r x r r Mm B r r B r ≤≤<+≤+0000(((0,))\(0,))(()()]0n n n n M m B r r mB r M w r r w r =+=+-→ (当0r →)这里(0,)n n mB r w r =最好是用(0,)(0,)()1nn B r mB r R dx w r ==⎰来看.(下一节!)也可这样看00((0,))(0,)0m B r r mB r +-→,0R r ∀>>{}12(0,)(,,,);n R n i B R I x x x x R R x R ⊂==∈-<< ,而12(,,,);(0,)n r n i nr r Ix x x x R x B r n n ⎧⎫==∈-<<⊂⎨⎬⎩⎭ ,故(0,)\(0,)\R r nB R B r I I⊂((0,)\(0,))(\)()()(2)(2)22()n n n n n n R r R r nnr rm B R B r m I I m I m I R R n n≤=-=-=-得不出结果!则000()()0F r r F r ≤+-→ 当0r <时0000|()()|()()(()()]0n n n n F r r F r F r F r r M w r w r r +-=-+≤-+→则()F r 是连续的对一般可测函数()f x ,令(),()(),()m f x f x Mf x m f x M ≤⎧=⎨>⎩ min((),)f x m =,则0N f ≤可测于E ,且()()N f x f x →于E ,N f 单调不减,故由Levi 定理知lim ()m m EEf dx f x dx →∞=<+∞⎰⎰0,()N εε∀>∃,使0()()[()()]6N N EEEf x dx f x dx f x f x dx ε≤-=-<⎰⎰⎰对上述固定的()N N ε=,[|||||]()()N N E x x r F r f x dx <=⎰是连续于(0,)+∞上的则00(,,())(0,),r N r εεδδ∈+∞∃=0(,)0r εδ=>,当0||r r δ-<时0|()()|3N N F r F r ε-<则当0||r r δ-<时1230000|()()||()()||()()||()()|N N N N N N NF r F r F r F r F r F r F r F r I I I -≤-+-+-=++ 1[|||||][|||||][|||||]|()()||()()||(()())|N N N N E x x r E x x r E x x r I F r F r f x dx f x dx f x f x dx <<<-=-=-⎰⎰⎰[|||||]|(()())||(()())|3N N E x x r Ef x f x dx f x f x dx ε<≤-≤-<⎰⎰20|()()|3N N N I F r F r ε-< ,0300[|||||]|()()||(()())|(()())3N N N N E x x r EI F r F r f x f x dx f x f x dx ε<-=-≤-<⎰⎰则0|()()|F r F r ε-≤从而()F x 在(0,)+∞上连续得证.10.证明:若非负可测函数()f x 在E 上的积分()Ef x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1E E =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n n n n n m B r B r w r r mm→∞→∞=+=+-= 若[|||||]m E E x x m =≤,0[|||||]m E E x x m =<,则0(\)((0,))0m m m E E m B m ≤∂=而()f x 非负可测,故011lim ()lim ()lim()()m m mm m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c >另一方面,0lim ()0r F r +→=(当0f M <<有界时,010()()()((0,))0m r E F r f x dx Mm E Mm B r ≤=≤≤→⎰)一般,0ε∀>,()N ε∃,使||3N E Ef dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→= 由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.11.设mE <+∞,12,,,m E E E 是E 的m 个可测子集,正整数k m ≤,证明:若E 中每一点至少属于k 个i E ,则有i ,使i kmE mE m≥ 证明:反证,设(1,2,,)i i m ∀= 有i kmE mE m<,则由于x E ∀∈,x 至少属于k 个i E ,故1()imE i x k χ=≥∑ (x E ∀∈),而i E E ⊂,故11()()im mi E i i E Em E E x dx k dx kmE χ==⋂=≥=∑∑⎰⎰111()m m mi i i i i kkmE m E E mE mE kmE m===≤⋂=<=∑∑∑得矛盾 所以i ∃使i kmE mE m≥.(徐森林书P242)12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n = ;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1n n mE mF mF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n n n n n n mE mF mF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+故01(())2n k n n m E F F δ=⋂⋃≥在01n k n n E F F =⋂⋃ 上,01()1f x n ≥+ 所以111000()()1111()()(())1112n n kk n k n n n n k n n E E F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰k →+∞,得0010012n δ≥>+得矛盾,故结论不成立 0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立13.设mE <+∞,()f x 是E 上的有界非负可测函数,证明有[0,]mE 上的非负单调不增函数()g y 使对任意常数a 都有[|()][|0m Exfx am E y y m E g ya≥=≤≤≥,进而证明[0,]()()EmE f x dx g y dy =⎰⎰证明:1s R ∀∈,令()[|()|]f s mx f x s μ=>且{}*()inf 0|()f f t s s t μ=>≤,显然*()f t 是[0,)+∞上的非负单调不增函数,因为12t t ∀>,{}{}20|()0|()ff s s t s s t μμ>≤⊂>≤,从而**21()()f t f t ≥注意{}|()()f f s s ημημ⊂≤,从而*(())ff s s μ≤ (1)又由Levi 定理知()f s μ是右连续的121,,n n n n s s s s s s s s +∀→>≥≥≥≥≥ ,则{}{}1||()|||()|n n x f x s x f x s +>⊂>11[||()|][||()|]lim ()lim [||()|]lim ()lim ()n n f n n x f x s x f x s n n n n R R s m x f x s y dy y dy μχχ>>→∞→∞→∞→∞=>==⎰⎰1[||()|]()[||()|]()x f x s f R y dy m x f x s s χμ>==>=⎰,0,()n f n t s s tμ∀∃>≤,*()n s f t →,故从()f s μ右连续知*(())lim ()f f n n f t s t μμ→∞=≤ 即*(())f f t tμ≤(2)令**()[|()]f s m t f t s μ=>,则从*f 非增,知{}**()sup 0|()f s t f t s μ=>>(3)事实上*0()f t s μ∀≤<,则***,(),(),()f t t t s f t s f t s μ'''∃<<>>,则{}***[0,][0,()]0;()[0,()]f f t s t f t s s μμ⊂⊂>>⊂,故{}**0|()[0,()]f t f t s s μ>>=故{}**sup 0|()()f t f t s s μ>>=从(1)*(())f f s s μ≤知*()()f f s s μμ≥,从(3)若*()f t s μ>,则:*()f t s≤由(2)*()(())f f s f t t μμ≤≤ (注意f μ单调不增!) 由*()f t s μ>之任意性知*()()f f s s μμ≤,所以*()()f f s s μμ=即*[|()][|()][|()]mE x f x s m x f x s m t f t s >=>=>1a R∀∈ 111[|()][[|()]]lim [[|()]]n n mE x f x a m E x f x a m E x f x a n n+∞→∞=≥=>-=>-***111lim [;()][[;()]][,()]n n m t f t a m t f t a m t f t a n n +∞→∞==>-=>-=≥ 注意:t mE >时*()0f t ≡,故当0a >时*[|()][0,]t f t a mE ≥⊂*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥当0a ≤时,[|()]m x f x a mE ≥=*[|0,()][|0]m x t mE f t a m t t mE mE ≤≤≥=≤≤=.所以有*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥. 令*()()g t f t =即证明了本题的第一部分.记[0,],mE I mI mE ==则且[|()][|()]mE x f x a mI y g y a ≥=≥[|()][|()][|()][|()]m x f x a mE m x f x a mI mI y g y a mI y g y a <=-≥=-≥=<故b a ∀<,有[|()][|()][|()][|()]mE x f x a mE x f x b mE x b f x a mI y b g y a <-<=≤<=≤<14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()nn fxf x →∞= 并且有0n 使0()n Ef x dx <+∞⎰,举例说明,当()n Ef x dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得lim ()lim ()n n n n E Es x dx s x dx →∞→∞=⎰⎰ ,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令n E R ⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n Ef x dx mE n==+∞⎰, ()0lim ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰15.设()f x 是可测集E 上的非负可测函数,如果对任意m N ∀∈,都有[()]()mEEf x dx f x dx =<+∞⎰⎰ 则()f x 几乎处处等于一可测集合的示性函数.证明:令0[|()0]E E x f x ==,1[|()1]E E x f x ==,[|()1]E E x f x ∞=>,[|0()1]E E x f x =<<,则 01E E E E E ∞=⋃⋃⋃ 由于()f x 非负可测,故[()]m f x (m N ∀∈)也非负可测,故由Fatou 引理知lim[()]lim[()]lim [()]()m m m m m m E E EEmE f x dx f x dx f x dx f x dx ∞∞→∞→∞→∞∞⋅=≤≤=<+∞⎰⎰⎰⎰故0mE ∞=,从而有11[()][()]()()m m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰而在1E 上()1f x =,故 11()[()]()()m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰由0f ≥,且()Ef x dx <+∞⎰知1()E f x dx <+∞⎰,故 [()]()m E Ef x dx f x dx =⎰⎰,即 (()[()])0m Ef x f x dx -=⎰,而()[()]0m f x f x ->于 E上(m ∀),由此可知 0mE=(本节第4题)(Lemma :若0g >可测于可测集E 上,()0Eg x dx =⎰,则0mE =证明:令11[|()],[|()1]1k F E x g x F E x g x k k ∞=≤<=≥+,则 1k k E F F +∞∞=⎛⎫=⋃ ⎪⎝⎭,k N∀∈1()()0,01k k k F EmF g x dx g x dx mF k ≤≤==+⎰⎰ 0()()0,0F EmF g x dx g x dx mF∞∞∞≤≤≤==⎰⎰则10k k mE mF mF +∞∞==+=∑)由此可知,111()0.cE f x a e E ⎧=⎨⎩,于上 ,于上 所以对几乎处处x E ∈有1111()()0E x E f x x x E χ∈⎧==⎨∉⎩, ,16.证明:如果()f x 是E 上的可测函数,则对于任意常数0a >都有 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ [|()]exp ()a EmE x f x a e f x dx -≥≤⎰ 证明: [||()|]|()||()|[||()|]EE x f x a f x dx f x dx amE x f x a ≥≥≥≥⎰⎰则 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ 又若x E ∈,则()()f x a f x a e e ≥⇔≥,故[|()][|exp ()]a E x f x a E x f x e ≥=≥,从而由前一部分结果知[|()][|exp ()][||exp ()|]a a mE x f x a mE x f x e mE x f x e ≥=≥=≥ |exp ()|exp ()a a EEe f x dx e f x dx --≤=⎰⎰17.证明;如果()f x 是1R 上的非负可测函数,则对任意实数,,,,,0a b c t a b c <>,都有[,][,]1()()a b ca t cb t f cx t dx f x dx c +++=⎰⎰证明:1)若()()E f x x χ=,(E 为1R 上任一可测集),则结论成立,这里1()0E x Ex x E χ∈⎧=⎨∉⎩, , 此时[,][,]111()([,])ca t cb t ca t cb t f x dx dx m E ca t cb t c c c++++==⋂++⎰⎰ 而[,][,][,][|]()()([,][|])E a b a b a b x cx t E f cx t dx cx t dx dx m a b x cx t E χ⋂+∈+=+==⋂+∈⎰⎰⎰([,][])E tm a b c-=⋂[][]1,,c E t E t m a b m c a b c c c c ⎡⎤⎡⎤⎛-⎫⎛-⎫⎛⎫⎛⎫==⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦[][][][]11,,m ca cb E t m ca cb E t t c c ⎡⎤⎡⎤=-=-+⎣⎦⎣⎦ []()[],11,ca t cb t m ca t cb t E f x dx c c ++⎡⎤=++=⎣⎦⎰ 2)由内积的线性性质,当()f x 为简单函数时,结论也成立。

(完整版)实变函数论课后答案第一章3

(完整版)实变函数论课后答案第一章3

实变函数论课后答案第一章3(p20-21)第一章第三节1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为°()12,,,,nQ r r r =L L . []0,1全体无理数的集合为°R,则[]°°0,1Q R =U . 由于°Q 是一可数集合,°R 显然是无穷集合(否则[]0,1为可数集,°°Q R U 是可数集,得矛盾).故从P21定理7得 []°°°0,1QR R =U :. 所以°R=ℵ,°R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P .则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤,而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞==U .任取一,0,z f P m ∈∃≥有,z m f P ∈.f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=U至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=UU也是至多可数集.又{},1;1,2,n N nx n ∀∈+=L 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.3. 证明如果a 是可数基数,则2ac =.证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数()()()10A A An n An n n A ϕϕϕ=∈⎧⎪=⎨=∉⎪⎩当当{}2N A N ∀∈@的子集所构成的集令()()()0.1,2A A J A x ϕϕ==L则()()0,1J A x =∈若()()J A J B =,则()(),1,2,A B n n n ϕϕ=∀=L故A B =(否则()()0000,10A B n A n B n n ϕϕ∃∈∉⇒=≠=)故2N与()0,1的一个子集对等(()20,1N≤)另一方面,()0,1x ∀∈.令±{};,x A r r x r R =≤∈ (这里±0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠x A 是±0R 这一与N 对等的集合的子集. 故()0,1与±0R 的全体子集组成的集合的一个子集对等(()±00,1R ≤的全体子集组成集的势,即()()0,120,1N≤≤)也就与2N的一个子集对等. 由Berrstein 定理()0,12N:所以2ac =.4. 证明如果A B c =U ,则,A B 中至少一个为c . 证明:E A B c ==U ,故不妨认为(){},;01,01E x y x y =<<<<,,A B 为E 的子集.若存在x ,01x <<使得(){},;01x A E x y y ⊃=<<.则由于x E c =(显然()0,1x E :) 故A c ≥,而,A E A E c ⊂≤=. 由Berrsrein 定理A c =.若,01,x x x E A ∀<<⊄,则从x E E A B ⊂=U 知(){},;01x B E B x y y =<<≠∅I I所以(),x x y B ∃∈,则显然(){},;01xx y x <<具有势c故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕5. 设F 是[]0,1上全体实函数所构成的集合,证明2cF =证明:[]0,1∀的子集A ,作A 的示性函数()10A x Ax x A ϕ∈⎧=⎨∉⎩则映射()A A x ϕa规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一个对应,且若A ,B ⊂[]0,1使得()()[],0,1A B x x x ϕϕ=∀∈成立 则必有A B = 所以[]0,12与F 的一个子集对等.反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,fA 是f 在2R中的图象,是2R 中的一个子集.且若,f g F ∈,使f g A A =则[]0,1t ∀∈,()(),f g t f t A A ∈= 表明[]10,1t ∃∈使()()()()11,,t f t t g t =()()1,,t t f t g t t ⇒==∀故f g =.所以F 与2R 的全体子集所组成的集合的一个子集对等,故从[]20,1R :知[]20,122R F ≤=即F 与[]0,12的一个子集对等.所以由Berstein 定理[]0,122c F ==.。

实变函数练习及答案

实变函数练习及答案

实变函数练习及答案实变函数练习及答案一、选择题1、以下集合,()是不可数集合。

.A 所有系数为有理数的多项式集合; .B [0,1]中的无理数集合;.C 单调函数的不连续点所成集合; .D 以直线上互不相交的开区间为元素的集。

2、设E 是可测集,A 是不可测集,0mE =,则EA 是().A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。

3、下列说法正确的是().A ()f x 在[,]a b L —可积?()f x 在[,]a b L —可积; .B ()f x 在[,]a b R —可积?()f x 在[,]a b R —可积;.C ()f x 在[,]a b L —可积?()f x 在[,]a b R —可积; .D ()f x 在(],a +∞R —广义可积?()f x 在[,]a b L —可积4、设{}n E 是一列可测集,12......,n E E E 则有() .A 1()lim n n n n m E mE ∞→∞=>; .B 1()lim n n n n m E mE ∞→∞==;.C 1()lim n n n n m E mE ∞→∞==; .D 以上都不对。

5、()()\\\A B C A B C =成立的充分必要条件是().A A B ?; .B B A ?; .C A C ?; .D C A ?。

6、设E 是闭区间[]0,1中的无理点集,则().A 1mE =; .B 0mE =; .C E 是不可测集; .D E 是闭集。

7、设mE <+∞,(){}nf x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}nf x 几乎处处收敛于()f x 是(){}n f x 依测度收敛于()f x 的().A 必要条件; .B 充分条件; .C 充分必要条件; .D 无关条件。

8、设()f x 是E 上的可测函数,则().A ()f x 是E 上的连续函数; .B ()f x 是E 上的勒贝格可积函数; .C ()f x 是E 上的简单函数; .D ()f x 可表示为一列简单函数的极限。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x

(
A λ
'

Bλ'
)

(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .


An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=

n=1
An
(相应地)
lim
n→∞
=

n=1
An
.

证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞

lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=

m=1
Am

另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯

A,
B
的任何子集
F
(

实变函数论及泛函分析课后答案

实变函数论及泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1n a x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1,使}1)(|{na x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数习题解答(胡适耕版)

实变函数习题解答(胡适耕版)

作映射:
⎧ ⎪ g ( x ) x ∈ A1 f ( x ) = ⎨ −1 , ⎪ ⎩ g ( x ) x ∈ A2
容易验证 f ( x )是双射,且 ∀x ∈ A, f ( x ) ≠ x且f
( f ( x) ) = x .
45.设| B | ≤ | A |=| A × A | , | A | ≥ ω ,则| A U B |=| A |. 证 因为 A = A × A ,所以 A 为无限集,任取 A 中不同的两点 a1 , a2 ,
n
2) ∀ x0 ∈ Ac , f n → χ A ( n → ∞ ),故 f n ( x0 ) → χ A ( x0 ) = 0 ( n → ∞ ). ∴ ∃N > 0, 当 n>N 时,有 f n ( x0 ) > 1 / 3 . ∴ x0 ∉ lim X ( f n ≥ 1/ 2)
n
∴ lim X ( f n ≥ 1/ 2) = A
令 B ={x1, x 2, … xi …},则 B ⊂ A 且 B 为无限集, 但 ∀ i , B I Ani={x1 , x2, … xi }为有限集,这与已知条件矛盾.
∴假设不成立,即 A 含于某个 An 中. 42.设 f :2x → 2x,当 A ⊂ B ⊂ X 时 f (A) ⊂ f (B ),则存在 A ⊂ X 使 f ( A )= A . 证
m1 , 这与 m2 ∈ Z 矛盾,所以假设不成立,即: lim An =Z. n n m 2) ∀ x ∈Q,则 ∃ m,n ∈Z, 使得 x= n m m⋅ n m ⋅ nk = 2 = …= k +1 =… n n n
n
∴x=
∴x ∈ An k ,(k=1,2…),从而 x ∈ lim An

实变函数题库集答案

实变函数题库集答案

实变函数试题库及参考答案 本科一、题1.设,A B 为集合,则()\A B B =A B (用描述集合间关系的符号填写)2.设A 是B 的子集,则A ≤B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是闭集 4.有限个开集的交是开集 5.设1E 、2E 是可测集,则()12m E E ≤12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E =07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是可测集,则称()f x 在E 上可测8.可测函数列的上极限也是可测函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A ⊃A (用描述集合间关系的符号填写)12.设{}211,2,A k k =-=,则A =a (其中a 表示自然数集N 的基数)13.设nE ⊂,如果E 中没有不属于E ,则称E 是闭集14.任意个开集的并是开集15.设1E 、2E 是可测集,且12E E ⊂,则1mE ≤2mE 16.设E 中只有孤立点,则*m E =017.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤<⎣⎦是可测,则称()f x 在E 上可测18.可测函数列的下极限也是可测函数19.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x ⇒()()f x g x 20.设()n x ϕ是E 上的单调增收敛于()f x 的非负简单函数列,则()Ef x dx =⎰()lim nEn x dx ϕ→∞⎰21.设,A B 为集合,则()\A B B ⊃B22.设A 为有理数集,则A =a (其中a 表示自然数集N 的基数) 23.设nE ⊂,如果E 中的每个点都是内点,则称E 是开集24.有限个闭集的交是闭集 25.设nE ⊂,则*m E ≥026.设E 是n中的区间,则*m E =E 的体积27.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≤⎣⎦是可测集,则称()f x 在E 上可测28.可测函数列的极限也是可测函数29.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()n f x ⇒()g x30.设()n f x 是E 上的非负可测函数列,且单调增收敛于()f x ,由勒维定理,有()Ef x dx =⎰()lim n En f x dx →∞⎰31.设,A B 为集合,则()\B A B A =A B32.设A 为无理数集,则A =c (其中c 表示自然数集[]0,1的基数) 33.设nE ⊂,如果E 中没有不是内点的点,则称E 是开集34.任意个闭集的交是闭集 35.设nE ⊂,称E 是可测集,如果nT ∀⊂,()**m T m TE =+()*c m T E36.设E 是外测度为零的集合,且F E ⊂,则*m F =0 37.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x a f xb ⎡⎤≤<⎣⎦是可测,(a b ≤)则称()f x 在E 上可测38.可测函数列的上确界也是可测函数39.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒()()f x g x40.设()()n f x f x ⇒,那么由黎斯定理,(){}n f x 有子列()k n f x ,使()()k n f x f x →..a e 于E 41.设,A B 为两个集合,则__c A B AB -.(等于)42.设nE R ⊂,如果E 满足E E '⊆(其中E '表示E 的导集),则E 是闭.43.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i)(a,b)G ⊆ (ii),a G b G ∉∉ 44.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 答案:≥ 45.设12,E E 为可测集, 2mE <+∞,则1212(\)__m E E mE mE -. 答案:≥ 46.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是可测集E 上的可测函数.47.设0x 是E (R ⊆)的内点,则*__0m E . 答案>48.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ⇒∈,则由____黎斯__定理可知得,存在{}()n f x 的子列{}()kn fx ,使得.()()()k a en f x f x x E →∈.49.设()f x 为可测集E (nR ⊆)上的可测函数,则()f x 在E 上的L 积分值不一定存在且|()|f x 在E 上不一定L 可积. 50.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有界变差函数.51.设,A B 为集合,则___(\)A B B A A 答案=52.设n E R ⊂,如果E 满足0E E =(其中0E 表示E 的内部),则E 是开集53.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ⊆且,a G b G ∉∉,则(,)a b 必为G 的构成区间 54.设{|2,}A x x n n ==为自然数,则A 的基数=a (其中a 表示自然数集N 的基数) 55.设,A B 为可测集,B A ⊆且mB <+∞,则__(\)mA mB m A B - 答案 =56.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是可测集 57.若()E R ⊆是可数集,则__0mE 答案=58.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ⇒ x E ∈不一定成立59. 设()f x 为可测集()nE R ⊆上的非负可测函数,则()f x 在E 上的L 积分值一定存在60.若()f x 是[,]a b 上的有界变差函数,则()f x 必可表示成两个递增函数的差(或递减函数的差) 多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( AB )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则(ABD )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则(ABC )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数5.设nE ⊂,如果E 至少有一个内点,则( BD )A *m E 可以等于0B *0m E >C E 可能是可数集DE 不可能是可数集6.设nE ⊂是无限集,则( AB )A E 含有可数子集B E 不一定有聚点C E 含有内点DE 是无界的7.设()f x 是E 上的可测函数,则( BD )A 函数()f x 在E 上可测B ()f x 是非负简单函数列的极限C ()f x 是有界的D ()f x 在E 的可测子集上可测8.设()f x 是[],a b 上的连续函数,则( ABD )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积,且()()()()[],ba ab R f x dx L f x dx =⎰⎰C ()f x 在[],a b 上L 可积,但()()()()[],b a a b R f x dx L f x dx ≠⎰⎰D ()f x 在[],a b 上有界9.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ⎧⎪=⎨⎪⎩为中有理数为中无理数,则( BCD )A ()D x 几乎处处等于1B ()D x 几乎处处等于0C ()D x 是非负可测函数 D ()D x 是L 可积函数10.设nE ⊂,*0m E =,则( ABD )A E 是可测集B E 的任何子集是可测集C E 是可数集DE 不一定是可数集11.设nE ⊂,()10E cx Ex x E χ∈⎧=⎨∈⎩,则( AB ) A 当E 是可测集时,()E x χ是可测函数 B 当()E x χ是可测函数时,E 是可测集 C 当E 是不可测集时,()E x χ可以是可测函数D 当()E x χ是不是可测函数时,E 不一定是可测集12.设()f x 是(),a b 上的连续函数,则(BD )A ()f x 在(),a b 上有界B ()f x 在(),a b 上可测C ()f x 在(),a b 上L 可积D ()f x 在(),a b 上不一定L 可积13.设()f x 在可测集E 上L 可积,则(AC )A ()f x +,()f x -都是E 上的非负可积函数B ()f x +和()f x -有一个在E 上的非负可积C ()f x 在E 上L 可积D ()f x 在E 上不一定L 可积14.设nE ⊂是可测集,则( AD )A c E 是可测集B mE <+∞C E 的子集是可测集DE 的可数子集是可测集15.设()()n f x f x ⇒,则( CD )A ()n f x 几乎处处收敛于()f xB ()n f x 一致收敛于()f xC ()n f x 有子列()n f x ,使()()n f x f x →..a e 于ED ()n f x 可能几乎处处收敛于()f x16.设()f x 是[],a b 上有界函数,且L 可积,则(BD )A ()f x 在[],a b 上黎曼可积B ()f x 在[],a b 上可测C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上不一定连续17. 设{[0,1]}E =中的无理点,则(CD)(A )E 是可数集 (B )E 是闭集 (C )E 中的每个点均是聚点 (D )0mE > 18. 若E (R ⊆)至少有一个内点,则(BD )(A )*m E 可以等于0 (B )*0m E = (C )E 可能是可数集 (D )E 不可能是可数集 19.设[,]E a b ⊆是可测集,则E 的特征函数()E x χ是(ABC ) (A )[,]a b 上的符号函数 (C )E 上的连续函数(B )[,]a b 上的可测函数 (D )[,]a b 上的连续函数 20. 设()f x 是[,]a b 上的单调函数,则(ACD )(A )()f x 是[,]a b 上的有界变差函数 (B )()f x 是[,]a b 上的绝对连续函数 (C )()f x 在[,]a b 上几乎处处收敛 (D )()f x 在[,]a b 上几乎处处可导 21.设{[0,1]}E =中的有理点,则( AC )(A )E 是可数集 (B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点 22.若()E R ⊆的外测度为0,则( AB )(A )E 是可测集 (B )0mE =(C )E 一定是可数集 (D )E 一定不是可数集23.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ⇒∈,则下列哪些结果不一定成立( ABCD )(A )()Ef x dx ⎰存在 (B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈ (D )lim ()()n EEn f x dx f x dx →∞=⎰⎰24.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( AD ) (A )()()f x L E +∈与()()f x L E -∈至少有一个成立 (B )()()f x L E +∈且()()f x L E -∈ (C )|()|f x 在E 上也有L -积分值 (D )|()|()f x L E ∈三、单项选择1.下列集合关系成立的是( A )A ()\B A A =∅ B ()\A B A =∅ C ()\A B B A = D ()\B A A B =2.若nR E ⊂是开集,则( B )A E E '⊂B 0E E =C E E =DE E '=4.设(){}n f x 是E 上一列非负可测函数,则( B )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰D ()()lim lim n nE E n n f x dx f x →∞→∞≤⎰⎰5.下列集合关系成立的是( A )A c c A A αααα∈Λ∈Λ⎛⎫=⎪⎝⎭ B ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ C ccA A αααα∈Λ∈Λ⎛⎫=⎪⎝⎭ D ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭6.若n R E ⊂是闭集,则( C )A E E '=B E E '⊂C E E '⊂D 0E E =7.设E 为无理数集,则( C )A E 为闭集B E 是不可测集C mE =+∞D 0mE = 9.下列集合关系成立的是(B )A c c A A αααα∈Λ∈Λ⎛⎫=⎪⎝⎭ B ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ C ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ D cc cA A αααα∈Λ∈Λ⎛⎫=⎪⎝⎭ 10.设n R E ⊂,则( A )A E E ⊃B E E '⊂C E E '⊂DE E =11.设P 为康托集,则( B )A P 是可数集B 0mP =C P 是不可数集D P 是开集 13.下列集合关系成立的是( A )A 若AB ⊂则c c B A ⊂ B 若A B ⊂则c c A B ⊂C 若A B ⊂则A B B =D 若A B ⊂则A B B =14.设nR E ⊂,则( A )A ()E E = B 0E E ⊃ C E E '⊂ D E E '⊂15.设(){},001E x x =≤≤,则( B )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集16.设()f x ,()g x 是E 上的可测函数,则( B )A ()()E x f x g x ⎡⎤≥⎣⎦不一定是可测集B ()()E x f x g x ⎡⎤≠⎣⎦是可测集C ()()E x f x g x ⎡⎤≤⎣⎦是不可测集D ()()E x f x g x ⎡⎤=⎣⎦不一定是可测集17.下列集合关系成立的是(A )(A )(\)A B B A B = (B )(\)A B B A =(C )(\)B A A A ⊆ (D )\B A A ⊆18. 若()n E R ⊆是开集,则 ( B )(A )E 的导集E ⊆ (B )E 的开核E = (C )E E = (D )E 的导集E = 19. 设P 的康托集,则(C)(A )P 为可数集 (B )P 为开集 (C )0mP = (D )1mP =20、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则 ( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数 21.下列集合关系成立的是( A ) (A )()()()AB C A B A C = (B )(\)A B A =∅(C )(\)B A A =∅ (D )A B A B ⊆22. 若()n E R ⊆是闭集,则 ( B )(A )0E E = (B )E E = (C )E E '⊆ (D )E E '= 23. 设Q 的有理数集,则( C )(A )0mQ > (B )Q 为闭集 (C )0mQ = (D )Q 为不可测集24.设E 是n R 中的可测集,()f x 为E 上的可测函数,若()0Ef x dx =⎰,则 ( A )(A )在E 上,()f x 不一定恒为零 (B )在E 上,()0f x ≥ (C )在E 上,()0f x ≡ (D )在E 上,()0f x ≠ 四、判断题1. 可数个闭集的并是闭集. ( × )2. 可数个可测集的并是可测集. ( √ )3. 相等的集合是对等的. ( √ )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( √ )5. 可数个F σ集的交是F σ集. ( × )6. 可数个可测函数的和使可测函数. ( √ )7. 对等的集合是相等的. (× )8. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x =的x 全体是零测集. ( × ) 9. 可数个G σ集的并是G σ集. ( √ )10. 零测集上的函数是可测函数. ( √ ) 11. 对等的集合不一定相等. ( √ ) 12. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是零测集.( √ ) 13. 可数个开集的交是开集 ( × ) 14. 可测函数不一定是连续函数. ( √ ) 15. 对等的集合有相同的基数. ( √ )16. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体的测度大于0 ( × ) 17. 可列个闭集的并集仍为闭集 ( × ) 18. 任何无限集均含有一个可列子集 ( √ ) 19. 设E 为可测集,则一定存在G σ集G ,使E G ⊆,且()\0m G E =. ( √ ) 20. 设E 为零测集,()f x 为E 上的实函数,则()f x 不一定是E 上的可测函数( × ) 21. 设()f x 为可测集E 上的非负可测函数,则()()f x L E ∈ ( × ) 22. 可列个开集的交集仍为开集 (× ) 23. 任何无限集均是可列集 ( × ) 24. 设E 为可测集,则一定存在F σ集F ,使F E ⊆,且()\0m E F =. ( √ ) 25. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:∀实数a 都有()E x f x a ⎡≥⎤⎣⎦是可测集( √ )26. 设()f x 为可测集E 上的可测函数,则()Ef x dx ⎰一定存在. ( × )五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A的基数大于A 的基数.2. 简述点集的边界点,聚点和内点的关系.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点. 3. 简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4. [],a b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 5. 简述集合对等的基本性质.答:A A ;若A B ,则B A ;若A B ,且B C ,则A C . 6. 简述点集的内点、聚点、边界点和孤立点之间关系.答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成. 7. 可测集与开集、G σ集有什么关系?答:设E 是可测集,则0ε∀>,∃开集G ,使G E ⊃,使()\m G E ε<,或∃ G σ集G ,使G E ⊃,且()\0m G E =. 8. [],a b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数. 9. 简述证明集合对等的伯恩斯坦定理. 答:若AB B *⊂,又B A A *⊂,则A B10. 简述1R 中开集的结构.答: 设G 为1R 中开集,则G 可表示成1R 中至多可数个互不相交的开区间的并. 11. 可测集与闭集、F σ集有什么关系?答:设E 是可测集,则0ε∀>,∃闭集F E ⊂,使()\m E F ε<或∃ F σ集F E ⊂,使()\0m E F =.12. 为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.13. 简述连续集的基数大于可数集的基数的理由.答:连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数. 14. 简述nR 中开集的结构.答:nR 中开集可表示成可数个互不相交的半开半闭区间的并 15. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系? 答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ⇒.反之不成立,但不论mE <+∞还是mE =+∞,(){}n f x 存在子列(){}k n f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.16. 为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微.17. 简述无穷多个开集的交集是否必为开集?答:不一定,如[]1111,11,1n n n +∞=⎛⎫---+=- ⎪⎝⎭18. 可测集E 上的可测函数与简单函数有什么关系?答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式. 19. [],a b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差. 20. 简述无穷多个闭集的并集是否必为闭集? 答:不一定 如()1111,11,1n n n +∞=⎡⎤---+=-⎢⎥⎣⎦21. 可测集E 上的可测函数与连续函数有什么关系?答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数 22. [],a b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰.3. 设()[]2sin 0,1\xx P f x x x P ∈⎧=⎨∈⎩,P 为康托集,求()[]0,1f x dx ⎰. 解:因为0mP =,所以()2,.f x x a e =于[]0,1于是()[][]20,10,1f x dx x dx =⎰⎰而2x 在[]0,1上连续,所以[]()31221000,11|33x x dx R x dx ===⎰⎰ 因此()[]0,113f x dx =⎰.4. 设()()[]22sin ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰. 解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222sin 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰5. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰. 解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰6. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰7. 设()[]3sin 0,1\xx P f x xx P⎧∈⎪=⎨∈⎪⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以(),.f x x a e =于[]0,1 于是()[][]0,10,1f x dx xdx =⎰⎰而x 在[]0,1上连续,所以[]()2121000,11|22x xdx R x dx ===⎰⎰ 因此()[]0,112f x dx =⎰. 8. 求()()0,ln limcos xn n x n e xdx n -→∞+⎰.解:令()()()()0,ln cos xn n x n f x x e x nχ-+= 显然()n f x 在()0,+∞上可测,且()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=⎰⎰ 因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤∀∈+∞=不难验证()()ln n x n g x n+=,当n 足够大时,是单调递减非负函数,且 ()lim 0n n g x →∞=,所以()()()()()()0,0,0,ln limlim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==⎰⎰⎰()0,00dx +∞==⎰由勒贝格控制收敛定理()()0,lim0n n f x dx →∞+∞=⎰故()()0,ln limcos 0xn n x n e xdx n -→∞+=⎰.9. 设()[][]101001x D x x ⎧⎪=⎨⎪⎩为,上的有理点为,上的无理点,求()[]01D x dx ⎰,.证明 记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==∅,120,1mE mE ==,且()1210E E D x χχ=+,所以()[]120,1100D x dx mE mE =+=⎰.10 求()0ln limcos xn x n e xdx n+∞-→∞+⎰. 证明 易知()ln limcos 0xn x n e x n-→∞+=对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤设()ln ()x y f y y +=,0y >,则()2ln ()yx y x yf y y -++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥); 又()ln 1limlim 0n n x n n x n→∞→∞+==+,由Levi 单调收敛定理得()()000ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===⎰⎰⎰,即()ln ()x n L E n+∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===⎰⎰⎰11. 设()[]230,1xx P f x xx P⎧∈⎪=⎨∈-⎪⎩,其中P 为康托集,求()[]01f x dx ⎰,.解:因为P 为康托集,故0mP =,[]()0,1\1m P = 所以()[]320,1P P f x x x χχ-=+ 所以()[][]()2330,10,1f x dx x mP x m P x=+-=⎰12. 求()[]22,0,11n nxf x E n x ==+,求()lim n n Ef x dx →∞⎰.解:易知:[]()22lim00,11n nxx n x →∞=∈+令()()2221,1n nx f x g x n x x==+, 则()()()22232222222221110111n nx n x nx n x nx g x f x nx nx x n x x x n x n x+-+--=-==≥+++ 所以()()[]()00,1,1n f x g x x n ≤≤∈≥ 又因为()g x 在[]0,1上Lebesgue 可积, 所以由控制收敛定理,得 22lim 001n E Enxdx dx n x →∞==+⎰⎰七、证明题1.证明集合等式:(\)A B B A B =证明(\)()c A B B A B B =()()()c c A B A B B A BB B A B ===2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而cF 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m E F mE mF mF ===+=+,故1mF =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰6.证明集合等式:\(\)A A B A B =证明 \(\)()(())()c c cc c cA AB AA B A A B A A B ===()()c AA AB A B ==7.设12,A A 是[0,1]的可测子集,且121mA mA +>,则12()0m A A >证明 因为12[0,1],[0,1]A A ⊂⊂,所以12[0,1]A A ⊂,于是12()[0,1]1m A A m ≤=另一方面,121122[\()]A A A A A A =,所以()12112211221122()[\()][\()]()m A A m A A A A m A A A mA mA m A A mA ==+=-+ 于是121212()()0m A A mA mA m A A =+->8.设()f x 是定义在可测集nE R ⊂上的实函数,n E 为E 的可测子集(1,2,n =),且1n n E E ∞==,则()f x 在E 上可测的充要条件是()f x 在每个n E 上可测 证明 对任何实数a ,因为11[|()][|()]([|()])n nn n E x f x a E x f x a E E x f x a ∞∞==>=>=>所以()f x 在E 上可测的充要条件是对每个1,2,n =,()f x 在每个n E 上可测9.设()f x 是E 上的可测函数,则对任何常数0a >,有()[|()]af x EmE x f x a e e dx -≥≤⎰证明 因为()f x 在E 上可测,所以()f x e是非负可测函数,于是由非负可测函数积分性质,()()[|()][|()]a f x f x E x f x a E x f x a Ee dx e dx e dx ≥≥≤≤⎰⎰⎰而[|()][|()]a a E x f x a e dx e mE x f x a ≥=⋅≥⎰,所以 ()[|()]af x EmE x f x a ee dx -≥≤⎰10.设()f x 是E 上的可积函数,{}n E 为E 的一列可测子集,mE <+∞,如果lim n n mE mE →∞= 则lim()()nE En f x dx f x dx →∞=⎰⎰证明 因()f x 在E 上L -可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|Af x dx ε<⎰,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是|()()||()|nnEE E E f x dx f x dx f x dx ε--=<⎰⎰⎰,即 lim()()nE En f x dx f x dx →∞=⎰⎰11.证明集合等式:()\(\)(\)A B C A C B C =证明 ()\()()()(\)(\)c c c AB C A B C A C B C A C B C ===12.设nE R ⊂是零测集,则E 的任何子集F 是可测集,且0mF =证明 设F E ⊂,*0m E =,由外测度的单调性和非负性,*00m F mE ≤≤=,所以 *0m F =,于是由卡氏条件易知F 是可测集13.设(),(),(),()n n f x g x f x g x 是E 上几乎处处有限的可测函数,且()()n f x f x ⇒,()()n g x g x ⇒,则()()()()n n f x g x f x g x +⇒+.证明 对任何正数0σ>,由于|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+- 所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n E x f x f x E x g x g x σσ⊂-≥-≥于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞故()()()()n n f x g x f x g x +⇒+ 14.设(),()f x g x 是E 上L -E 上也是L -可积的证明 因(),()f x g x 是E 上L -可积,所以|()|,|()|f x g x 在E 上L -可积,从而 |()||()|f x g x +L -可积,|()||()|f x g x ≤=+E 上L -可积15.设()f x 是可测集E 上的非负可测函数,如果()0Ef x dx =⎰,则()0.f x a e =于E证明 反证,令[|()0]A E x f x =>,则由()f x 的可测性知,A 是可测集.下证0mA =,若不然,则0mA >由于11[|()0][|()]n A E x f x E x f x n ∞==>=≥,所以存在1N ≥,使1[|()]0mE x f x d N≥=> 于是11[|()][|()]111()()[|()]0EE x f x E x f x NNdf x dx f x dx dx mE x f x N N N N≥≥≥≥=≥=>⎰⎰⎰因此()0Ef x dx >⎰,矛盾,故()0.f x a e =于E16.证明等式:\()(\)(\)A B C A B A C =证明 \()()()()()(\)(\)c cc c c A BC A B C A B C A B A C A B A C ====17.设nE R ⊂是有界集,则*m E <+∞.证明 因为E 是有界集,所以存在开区间I ,使E I ⊂由外测度的单调性,**m E m I ≤,而*||m I I =<+∞(其中||I 表示区间I 的体积),所以*m E <+∞18.1R 上的实值连续函数()f x 是可测函数证明 因为()f x 连续,所以对任何实数a ,{|()}x f x a >是开集,而开集为可测集,因此()f x 是可测函数 19.设mE <+∞,函数()f x 在E 上有界可测,则()f x 在E 上L -可积,从而[,]a b 上的连续函数是L -可积的 证明 因为()f x 在E 上有界可测,所以存在0M >,使|()|f x M <,x E ∈,|()|f x 是非负可测函数,由非负可测函数的积分单调性,|()|EEf x dx Mdx M mE <=⋅<+∞⎰⎰故|()|f x 在E 上L -可积,从而()f x 在E 上L -可积 因为[,]a b 上的连续函数是有界可测函数,所以L -可积的 20.设()n f x (1,2,n =)是E 上的L -可积函数,如果lim|()|0nn E n f x dx →∞=⎰,则()0n f x ⇒证明 对任何常数0σ>,[|()|][|()|]|()|n n n E x f x mE x f x f x dx σσσ≥⋅≥≤⎰所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dx σσσ≥≥≤⎰1|()|0()nEf x dx n σ≤→→∞⎰因此 ()0n f x ⇒ 21. 证明集合等式 :()()()\\\A B C A C B C =.证明 ()()()()()()\\\c c c A B C A B C A C BC A C B C ===22. 设[]{}00,1E =中的有理点,则0E为可测集且00mE =.证明 因为0E 为可数集,记为{}012,,,n E r r r =,0ε∀>,取()11,1,2,22n n n n n I r r n εε++⎛⎫=--= ⎪⎝⎭显然 01n n E I +∞=⊂,所以0011102n n nn n n E I m E I εε+∞+∞+∞*===⊂≤≤==∑∑,让0ε→,得00m E *=.n T R ∀∈,由于()()00c T TE T E =所以()()00c m T m TE m T E ***≤+.又00,0c TE T m E *⊆=,所以()()()000c c m T m TE m T E m T E ****≥=+.故()()00c m T m TE m T E ***=+故0E 为可测集,且00mE =23. 证明:1R 上的实值连续函数()f x 必为1R 上的可测函数证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的连续函数,故()f x 是[],a b 上的连续函数,记[],F a b =,由()f x 在F 上连续,则(),M m m M ∃<,使()m f x M ≤≤,则显然易证,()1,R F f αα∀∈≥是闭集,即()f x 为[],a b 上的可测函数,由,a b 的任意性可知,()f x 是1R 上的可测函数.24. 设()()f x L E ∈,{}n E 为E 的一列可测子集,mE <+∞ ,如果lim n n mE mE →∞=,则()()limnn E Ef x dx f x dx →∞=⎰⎰.证明 因()f x 在E 上L 可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|Af x dx ε<⎰,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是\|()()||()|nnEE E E f x dx f x dx f x dx ε-=<⎰⎰⎰,即lim ()()nE En f x dx f x dx →∞=⎰⎰25. 证明集合等式 :()()()\\\A B C A B A C =.证明()()()()()()()\\\ccc ccA B C A BC ABC A BACA B A C ====26. 设1E R ⊆,且0m E *=,则E 为可测集.证明 nT R ∀∈,由于()()n c T R T TE T E ∀∈=所以()()c m T m TE m T E ***≤+.又,0c TE T m E *⊆=,所以()()()c c m T m TE m T E m T E ****≥=+.故()()c m T m T E m T E ***=+所以E 为可测集27. 证明:1R 上的单调函数()f x 必为可测函数.证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的单调函数,不妨设()f x 为单调增函数,故()f x 是[],a b 上的单调增函数,即()()121212,,,x x E x x f x f x ∀∈<≤,则1R α∀∈,有1) 当()sup x E f x α∈≤时,();E xf x α⎡>⎤=∅⎣⎦2) 当()inf x E f x α∈>时,();E x f x E α⎡>⎤=⎣⎦3) 当()()inf sup x E x E f x f x α∈∈≤<时,必有10x ER ∈,使 ()()000,f x f x αα+>≤或()()000,0f x f x αα+≥-<.由()f x 的单调增知,()0(),E xf x E x α⎡>⎤=+∞⎣⎦或[)0,E x +∞. 在所有情况下,()E x f x α⎡>⎤⎣⎦都可测.即()f x 是[],a b 上的可测函数.由由,a b 的任意性可知,()f x 是1R 上的可测函数. 28. 设()f x 为可测集nE R ⊆上的可测函数,则()()f x L E ∈的充要条件()()f x L E ∈. 证明 必要性 若()()f x L E ∈,因为()()()f x f x f x +-=+,且()()f x L E ∈所以()(),E E f x dx f x dx +-⎰⎰中至少有一个是有限值, 故()()()EE E f x dx f x dx f x dx +-=+⎰⎰⎰ 即()()f x L E ∈充分性 若()()f x L E ∈因为()()()f x fx f x +-=-,且()()f x L E ∈ 所以()(),E E f x dx f x dx +-⎰⎰中至少有一个是有限值,故()()()E E E f x dx f x dx f x dx +-=-⎰⎰⎰,即()()f x L E ∈.。

实变函数论作业部分习题解(参考)

实变函数论作业部分习题解(参考)

《实变函数论》作业部分习题解(参考)说明:1. 本题解是视频课体置的全部习题,只是作业1~作业4的部分习题。

2.题序为“章——节——题号”作业1(第一章~第二章)1-1-1 证明(B —A ) A=B 的充要条件是A ⊂B.证:必要性显然,事实上A 为B 的子集,因而A ⊂B. 充分性:由A ⊂B 知B-A ⊂B ,所以(B-A ) A ⊂B. 但(B-A ) A ⊃B 恒成立,于是得证. 1-1-2 证明A-B=A BC证:B A x -∈∀,即A x ∈且B x ∈,亦即c B x A x ∈∈且,于是c B A x ∈.再c B A x ∈∀ ,即A x ∈且c B x ∈. 亦即B x A x ∈∈且,边就是B A x -∈.综上述得证. 1-1-3 证明定理4中的(3),(4),定理6中第二式。

证:定理4(3):00,λλλλB x B x ∈∈∀∧∈使必存在 ,从而0λA x ∈,当然有 ∧∈∈λλA x ,又,由上述c x ∈显然成立. 证毕.定理4(4):∈∀x 左边,必存在000λλλB A x ∈有, 由0λA x ∈,当然有 ∧∈∈λλ0A x ,由0λB x ∈,当然有 ∧∈∈λλB x . 所以∈x 右边. 再∈∀x 右边,则 ∧∈∈λλA x 或 ∧∈∈λλB x ,由 ∧∈∈λλA x ,则存在某λ使λA x ∈,又由 ∧∈∈λλB x ,也存在某λλB x ∈使,从而λλB A x ∈,故 ∧∈∈λλλ)(B A x =左边. 综上述,命题得证 定理6(第二式):∈∀x 左边,解 ∧∈∈λλA x ,必存在某λ使λA x ∈,即cA x λ∈,从而 ∧∈∈λλcA x 显然成立.再,∈∀x 右边,存在某λ使cA x λ∈,即λA x ∈,当然满足 ∧∈∈λλA x ,即有cA x )( ∧∈∈λλ综上述,得证.1-1-4 证明(A-B ) B=(A B )—B 的充要条件是B=φ. 证:充分性显然,现证必要性:用反证法,若φ≠B ,则可令B x ∈,从而)(B A B x -∈ .但由题设又有B B A x -∈)( 推到B x ∈产生矛盾证毕.1-2-1 用解析式给出(-1,1)和(),+∞-∞之间的一个1-1对应。

实变函数论习题集选解

实变函数论习题集选解

实变函数论习题集选解《实变函数论》习题选解一、集合与基数1.证明集合关系式:(1))()()()(B D C A D C B A --?---Y ;(2))()()()(D B C A D C B A Y I I -=--;(3)C B A C B A Y )()(-?--;(4)问)()(C B A C B A --=-Y 成立的充要条件是什么?证(1)∵cB A B A I =-,cc c B A B A Y I =)((对偶律),)()()(C A B A C B A I Y I Y I =(交对并的分配律),∴)()()()()()(D C B A D C B A D C B A c c cc cY I I I I I ==---第二个用对偶律)()()()()()(B D C A D B C A D B A C B A c c c c c --=?=Y I Y I I I Y I I 交对并分配律.(2))()()()()()(c c c cD B C A D C B A D C B A I I I I I I I ==--交换律结合律)()()()(D B C A D B C A c Y I Y I I -==第二个用对偶律.(3))()()()()(C A B A C B A C B A C B A c ccc I Y I Y I I I ===--分配律C B A C B A c Y Y I )()(-=?.(4)A C C B A C B A ??--=-)()(Y . 证必要性(左推右,用反证法):若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?;但C B A x Y )(-∈,从而左边不等式不成立,矛盾!充分性(右推左,显然):事实上,∵A C ?,∴C C A =I ,如图所示:故)()(C B A C B A --=-Y .2.设}1 ,0{=A ,试证一切排列A a a a a n n ∈ ),,,,,(21ΛΛ所成之集的势(基数)为c .证记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别,]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf ,即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.3.证明:整系数多项式的全体是可列的(可数的).证对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++=Λ2210对应于一个序列:n a a a a ,,,,210Λ,而每个)0(n i a i ≤≤取自可数集N N Z Y Y }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合Y N∈=n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .证首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,∴ ]1 ,0[C ≤R ,即]1 ,0[C c ≤;另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E ΛΛ的基数c E =,为证c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数]1 ,0[I Q 排列成ΛΛ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在ΛΛ,,,,21n r r r 处的值ΛΛ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:)(lim )(k n k r f x f ∞→=.现在,作映射E C →]1 ,0[:?,)),(,),(),(()(21ΛΛαn r f r f r f x f ,则?是单射,而集E C f r f r f r f A n ?∈=}]1 ,0[)),(,),(),({(21ΛΛ是全体实数列E 的一个子集,故]1 ,0[C ~E A ?,即c C ≤]1 ,0[.综上可知:c C =]1 ,0[.附注①若?=21A A I ,?=21B B I ,又1f :1A ~1B ,2f :2A ~2B .则存在f :21A A Y ~21B B Y ;假如21A A ?,21B B ?,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?解若?=21A A I ,?=21B B I ,令∈∈=,),(,),()(2211A x x f A x x f x f 则)(x f 就是21A A Y 到21B B Y 的一一对应.若21A A ?,21B B ?,则12A A -与12B B -之间不一定存在一一对应.例如:} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211ΛΛΛΛΛΛn B A n B n A ====,),3 ,2( 1:1Λα=+n n n f ,),2,1( :2Λα=n n n f ,则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.②几个常见的一一对应:(ⅰ)) ,(b a ~R ,()) ,( , tan )(2b a x x f a b ax ∈-?=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x xxx f ;(ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为ΛΛ , , , ,21n r r r ,而]1 ,0[中的有理数排列为ΛΛ , , , , ,1 ,021n r r r .作其间的对应f 如下:>====+,中无理数时是当当当当)1 ,0(, ),2( ,,,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意这种)(x f 一定不是连续的(为什么?).(ⅲ)N N ?~N ,()N N ?∈-=-),( , )12(2),(1j i j j i f i .这是因为任一自然数均可唯一表示为q n p=2(p 非负整数,q 正奇数),而对非负整数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c F 2=. 证ο1.c F 2≥;设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即?-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记}]1 ,0[{?=E E M ,}]1 ,0[)({?=X E x E χ,则M ~X ,c M 2==X .而F ?X ,从而有F ≤X ,即F c ≤2. ο2.cF 2≤.对每一F x f ∈)(,有平面上一点集}]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记})({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而cB 2=,从而有cF G F 2≤=.综合ο1,ο2立知 cF 2=.附注此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ??,而A ~C ,则B ~C (此结果更便于应用).5.试证任何点集的内点全体组成的集是开集.证设集F 的内点集为0F (称为F 的内部),下证0F 为开集.F x ∈?,由内点的定义,存在x 的邻域F I x x x ?=),(βα.现作集Y Fx x I G ∈=,则显然G 为开集,且G F.另一方面,对任意G y ∈,存在0x I ,使得F I y x ?∈0,所以,y 为F 的内点,即0F y ∈,也就是说0F G ?.综上有G F =0为开集. 6.开映射是否连续?连续映射是否开?解开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[Λ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而Y +∞-∞==n n P P ,Y +∞-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{(Λ=k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )现在R 上定义函数 ??∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k kk k Λπ 则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (k k k k k k a b b a b b ------βπαπ;若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f 的不连续点.又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)1 ,0[非开非闭.7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '.解 P E ='.分以下三步:①设Cantor 集为P ,其补集(或叫余集)为G ,则ΛY Y Y ),(),(),(989792913231=G . 考察]1 ,0[中的点的三进制表示法,设 =,2,0i a ??2,1,0i b (Λ ,3 ,2 ,1=i ).由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设ΛΛn a a a y 21.0=;当G x ∈时,可设ΛΛ2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有ΛΛΛ0200.021n a a a y =右;对于G 的构成区间的左端点左y 有ΛΛΛ20222.021n a a a y =左.由此可见,G E ?,且当E z ∈时,有ΛΛΛ111.0)(2121n a a a y y z =+=右左.②下证Cantor 集P 中的点都是E 的极限点:对P y ∈?,由于ΛΛn a a a y 21.0=,取E z k ∈,则ΛΛΛ111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而k k k k k y z 3131********1++≤-+++Λ,故,0 ,0>?>?N ε当N k >时,有ε<="" p="">1,即ε<-y z k ,∴)( ∞→→k y z k ,即E y '∈.③下证G x ∈?,有E x '?.事实上,有两种情况:10.若E x ∈,则只能是G 的构成区间的中点,即ΛΛΛ111.021na a a x =.由Cantor集的构造知:对)( x z E z ≠∈?,都有 n x z 31-,所以,E x '?; 20.若E x ?且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ΛΛΛ,于是,E z ∈?,有m x z 31>-,所以,E x '?. 故G 中的点不属于E '.综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证?≠∞=I 1k k E .证用反证法:若=∞=I1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞=∞=Y I ,从而} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列),且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c kΛ=,使得] ,[1b a E nk ck ?=Y ,即()] ,[\] ,[1b a E b a n k k ==Y . ∴ ] ,[\] ,[1b a E b a nk k ==I,从而?==I nk k E 1,故?=n E ,矛盾!附注更一般地,若非空闭集套}{n E :ΛΛn E E E 21满足0sup )(,??→?-=∞→∈n E y x n y x E nρ,则存在唯一的I∞=∈10n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”)证由n E 非空,取) ,3 ,2 ,1( Λ=∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+?n n E E ,所以,) ,2 ,1 ,0( Λ=?∈++mE E x n m n m n ,从而0)(sup ,??→?=-≤-∞→∈+n n E y x n m n E y x x x nρ,由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n ??→?∞→.又由n E 为闭集立知n E x ∈0,从而I ∞=∈10n n E x .存在性得证.下证唯一性:若另有I∞=∈10n n E y ,则) ,2 ,1( 00Λ=∈n E y x n 、,而0)(00→≤-n E y x ρ,所以,00x y =.这就证明了唯一性.9.若] ,[)(b a C x f ∈,则()αα≥∈?f E , R 为闭集.证只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( Λ=∈n E x n ,满足0lim x x n n=;又由于诸] ,[ b a E x n ?∈以及)(x f 的连续性,从而有] ,[ ,)(0b a x x f n ∈≥α 以及α≥=)(lim )(0n nx f x f .这就证明了E x ∈0.9*.若在],[b a 上,)()(lim x f x f n n=,记}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,证明:()Y ∞=∞→+=11lim )(k kn n E E αα. 证一方面,当)(αE x ∈时,α>)(x f ?, k ?使得kx f 1)(+>α,即kn nx f 1)(lim +>α, N ??当N n >时,kn x f 1)(+>α()()Y ∞=∞→∞→+∈?+∈?111lim lim k kn n kn n E x E x αα. 另一方面,()Y ∞=∞→+∈11lim k kn n E x αk ??,使()k n n E x 1lim +∈∞→α, N ??当N n >时,()k n E x 1+∈α. 即 kn x f 1)(+>α(N n >)k n nx f x f 1)(lim )(+≥=?α,α>?)(x f ,从而)(αE x ∈. 综上可得 ()Y ∞=∞→+=11lim )(k kn n E E αα. 10.每一个闭集是可数个开集的交集.证设F 为闭集,作集) ,2 ,1( }),( {1Λ=<=n F x x G nn ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证:I nn G F =.事实上,由于对任意N ∈n 有n G F ?,故有Inn G F ?;另一方面,对任意Inn G x ∈0,有) ,2 ,1( ),(010Λ=<≤n F x nρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G nn ?I .综上可知:I nn G F =.附注此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.证可有两种证法(很麻烦):一种是反证法,即若Y nn F b a I ==) ,(0,其中}{n F 为两两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但Y nn F x ?0,从而得出矛盾;另一种证法是:记) ,(b a =?,证明下述更强的结果:若}{n F 为含于?内的任一组两两互不相交的闭集列,则Y nn F -的势(基数)等于连续势c ,从而立知不可能有Y nn F b a ==?) ,(.取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且100000] ,[ , F b a I b b a a ?=<≤<.又记) ,( , ) ,(0201b b a a =?=?(非空),则有两种情况:①若)2 , 1( 2=?∞=i F n n i Y I中至少有一个空集,比如 21?=?∞=Y I n n F ,而=0111I F I I ,所以, 11?=?∞=Y In n F , 11-?∞=Y n n F .因此,c F nn=?≥-1Y .问题得证.②)2 , 1( 1=?∞=i F n n i Y I均不为空集,对)2 , 1( =?i i ,在Λ , ,32F F 中存在最小的下标)(1i n 使?≠?i n i F I )(1,显然,2},min{)2(1)1(11≥=n n n 以及)(1, , ,00i n F b b a a ?,从而i n i n i i F F ?=?I I )(1)(1为含于开区间i ?内的闭集,对此闭集仿上作出两个闭区间)2 ,1( )(1=i I i ,它们满足:(ⅰ))2(1)1(10 , ,I I I 互不相交;(ⅱ)Y Y YY 21121)(101===??i i n i i i i F F I I .对在?中挖去)2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )(N k N k I Λ=,它们满足:(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ΛΛ==互不相交;(ⅱ)Y Y Y YY 111121)(0)]([+====??N i i n i i N n j j n F F I I N n(因为1+≥N n N ).在开区间?中挖去闭区间) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ΛΛ==后余下的12+N 个开区间中,如果至少有一个开区间比如0i ?与Y 2+≥N n n F 的交为空集,则由(ⅱ)知与Y ∞=1n n F 的交也为空集,从而c F i nn=?≥-0Y .问题得证.若不然,则这12+N 个开区间均与Y 2+≥N n n F 相交,重复上述步骤得到一列闭区间} ,{)(0j n I I ,再利用完备集的结构定理可知它关于] ,[b a 的余集为非空完备集,又在(ⅱ)中令∞→N ,得Y Y YY ∞=∞==?1121)(0)]([i i n j j n F I I n所以,集Y ∞=-1) ,(i i F b a 的势(基数)等于连续势c .附注①我们知道:可数个闭集的并集不一定是闭集,而此题结果又说明了“开区间(是开集)却不能表示成可数个互不相交的闭集的并集”,所以又引出了σF -集. ②任何闭区间不可能表示成可数个疏集的并集(提示:用反证法,若Y ii F b a =],[,其中),2,1(Λ=i F i 为疏集,可构造一闭区间套,则导出矛盾!)12.证明:用十进位小数表示]1 ,0[中的数时,其用不着数字7的一切数成一完备集.证对]1 ,0[中的任一数x 均可表示为) ,2 ,1 },9 , ,2 ,1 ,0{( 101ΛΛ=∈=∑∞=k a a x k k k k(x的这种表示法不一定唯一),而如此表示的级数其值都在]1 ,0[内. 记G 表示]1 ,0[中数的十进位可能表示101∑∞=k k ka 中必有某一个7=k a 的那些数的全体,从而只要证明G 关于]1 ,0[的余集G P -=?]1 ,0[为完备集.作开区间()1081070,=δ,),2 ,1( 10810 , 1071011111ΛΛ=++=+=+=∑∑n a a n n k k k n n k k k aa nδ其中n a a ,,1Λ为不等于7而小于10的非负整数.显见这些开区间为]1 ,0[中可数无穷个无公共端点的互不相交的开区间,其内点用十进位数表示时至少有一个7=n a ,而端点用十进位数表示时可使所有7≠k a .作这些开区间的并集记为U ,则U 为开集,且根据完备集的结构定理知U 关于]1 ,0[的余集为一完备集,于是,只要证明U G =即可.由U 的定义显见G U ?;另一方面,若G x ∈,则在x 的所有可能的十进位表示101∑∞=k k ka 中均必有一个7=n a ,且不妨设此n 为满足等式的最小整数即11,,-n a a Λ均不等于7.首先证明下述两种情况不能发生:①) ,2 ,1( 0Λ++==n n m a m ,此时x 表示区间11-n a a Λδ的左端点,它有另一十进位表示:∑∑+≥-=++11110910610n i in n i iia ,在此表示中一切7≠n a ,因此x 不可能是这种情况;②) ,2 ,1( 7Λ++==n n m a m ,此时x 表示区间11-n a a Λδ的右端点,它有另一十进位表示:n n i i ia 1081011+∑-=,在此表示中一切7≠n a ,因此x 也不可能是这种情况.由此可知U x n aa ?∈-11Λδ.综上所证可知U G =.证毕!附注①c P =;②P 在]1 ,0[中不稠密(因?=)7.0 , 28.0(I P ).13.试在]1 ,0[上定义一个函数,它在任一有理点不连续,但在任一无理点连续.解①设∑∞=1n n a 为一收敛的正级数,因]1 ,0[上全体有理数可数,故可记为},,,,{21ΛΛn r r r Q =.对]1 ,0[∈?x ,定义函数∑<=xr n n a x f )(,其中和式是对x r n <的那些相应的n a 求和.则)(x f 为]1 ,0[上单调递增函数且在无理点连续,有理点不连续其跃度为000)()(n n n a r f r f =--+. 事实上,因为对任意x y >,0)()(≥=-∑<≤y r x n n a x f y f ,所以,)(x f 为增函数;又记}{y r x r E n n y x <≤=,当x 为无理数时,?=+→y x xy E lim ,所以,)()0(x f x f =+. 同理可证)()0(x f x f =-,所以,)(x f 在无理点连续;当x 为有理数0n r 时,有0lim n y x x y r E =+→,所以,0)()0(n a x f x f =-+,且此时类似亦有)()0(x f x f =-(0n r x =),从而 000)()(n n n a r f r f =--+0>. ②微积分中熟知的Riemann 函数≥==中无理数,为,,互素正整数]1,0[0),,( ,)(1x q p q p x x R p q p亦为所求函数.附注①不存在]1 ,0[上这样的函数,它在每一有理点连续,而在每一无理点不连续;(提示:只要证任何在]1 ,0[中有理点连续的函数)(x f ,至少在一个无理点上连续.可利用闭区间套定理).②设B A ,为非空不交闭集(可无界),则存在) ,()(∞+-∞∈C x f 满足:1)(0≤≤x f ,且当A x ∈时,0)(=x f ,而当B x ∈时,1)(=x f ;(提示:),( , ),(),(),()(+∞-∞∈+=x B x A x A x x f ρρρ,其中),(A x ρ为点x 到集A 的距离.再证分子连续,分母大于0连续,从而)(x f 连续.而满足条件显然) 更一般地,此结果可推广到n 个非空不交闭集上:设),,2,1(n k A k Λ=为n 个非空不交闭集,?连续函数)(x f 使得k A x ∈时,k C x f =)((k C 为常数,n k ,,2,1Λ=),则=∈====∑∑. ,),(1),(,,,2,1 , ,)(111Y Λn k k nk k nk kk k k A x A x A x C n k A x C x f ρρ即可. 二、勒贝格(Lebesgue )测度1.设1E 、2E 均为有界可测集,试证()()212121E E m mE mE E E m I Y -+=.证因1E 、2E 可测,则21E E I 可测,212E E E I -可测,且)()(212212E E m mE E E E m I I -=-.又由()?=-2121E E E E I I ,得()()()2121212121E E m mE mE E E E m mE E E m I I Y -+=-+=.2.试证可数个零测度集的并仍是零测度集.证设Y Λ∞====1, ,2 ,1 ,0n n n E E n mE ,则E 可测,且有0011=≤???? ??=≤∑∞=∞=n n n n mE E m mE Y ,∴ 0=mE .3.设有两个开集21G G 、,且21G G ?,那么是否一定有21mG mG <?解不一定成立.例:)2 ,1()1 ,0(1Y =G ,)2 ,0(2=G ,则21G G ?,但212mG mG ==.4.对任意开集G ,是否一定有mG G m =成立?解不一定.例:对]1 ,0[中的所有有理数} , , , ,{21ΛΛn r r r ,作开集如下:Y ∞=++??? ?+-=12221 ,21n n n n n r r G ,则G 为开集,且2121*11=≤=∑∞=+n n G m mG .但由]1 ,0[?G ,可得1]1 ,0[=≥m G m .故mG G m ≠.5.设n A A A 、、、Λ21是]1 0[,中n 个可测集,且满足11->∑=n mA nk k ,试证01>=I n k k A m .证由1题可知:)()(212121E E m mE mE E E m Y I -+=.又∵]1 ,0[?i A ,∴ 1≤i mA ,n i , ,2 ,1Λ=,而cn i c i ni i A A===Y I 11,∴∑∑====--=-≥?-=???? ??n i i n i ci n i c i n i i mA m mA A m A m 1111)]1 ,0[(111Y I0)1(111>--=+-=∑∑==n mA mA n n i i n i i .(由已知11->∑=n mA nk k )6*.设0*>=q E m ,则对任何) ,0(q p ∈,存在E E ?0,使得p E m =0*(称为“外测度的介值定理”).(以下证明最好能看懂,否则Pass !)证①先设E 是有界集,即] ,[b a E ?,0*>=q E m .令()] ,[**)(x a E m E m x f x I ==,] ,[b a x ∈,则)(x f 是] ,[b a 上单调不减的连续函数.事实上,10.因?==或}{}{a a E E a I ,E b a E E b ==] ,[I ,则0)(=a f ,0)(>=q b f ;当21x x <,且] ,[21b a x x ∈、时,21] ,[] ,[21x x E x a E x a E E =?=I I ,由外测度的单调性,有)(**)(2121x f E m E m x f x x =≤=.所以,)(x f 是] ,[b a 上的单调不减函数.20.因()1112*]),[(***)()(2112x x x x E m x x E E m E m E m x f x f -=-=-I Y()122121],[*],[*x x x x m x x E m -=≤≤I ;同理,当12x x <时,2121)()(x x x f x f -≤-. ∴ 2121)()(x x x f x f -≤-.于是,让1x 为] ,[b a 上任意一点x ,而] ,[2b a x x x ∈?+=,则有x x f x x f ?≤-?+)()(,故当0→?x 时,)()(x f x x f →?+,即] ,[)(ba C x f ∈.②由] ,[)(b a C x f ∈,) ,0(q p ∈?,即)()(b f p a f <<,由闭区间上连续函数的介值定理,] ,[0b a x ∈?,使得p x f =)(0,即()p x a E m =] ,[*0I . ③当E 无界时,令] ,[][n n E E n -=I ,N ∈n ,则n E ][可测,满足ΛΛn E E E ][][][21,且有Y ∞==1][n n E E ,∴ 0*][*lim >>==∞→p q E m E m n n .由极限的保号性,N ∈?0n ,使得p E m n >0][*.记)( ][*00p p E m n >=,而0][n E 为有界集:] ,[] ,[][000n n n n E E n -?-=I .如前两步所证,作函数()] ,[][**)(00x n E m E m x f n x -==I则)(x f 在] ,[0n n -上连续不减,且000)(0)(p n f n f =<=-.由00p p <<,) ,( 00n n x -∈?,使得p x f =)(0,即p E m x =0*.附注若E 可测,0>=q mE ,则 q p p <7.试作一闭集]1 ,0[?F ,使F 中不含任何开区间,但21=mF . 解仿照Cantor 集的方法构造闭集F :第一步:将]1 ,0[作12等份,挖去中央的开区间1)127,125(G =,长度为61;第二步:将余下的两个闭区间]125,0[和]1 ,127[再各12等份,分别挖去中央的开区间2)7259,7255()7217,7213(G =Y ,各长6131?,共长61312??;……第n 步:在余下的12-n 个闭区间中,分别挖去其中央处长为()61131?-n 的开区间,记这12-n个互不相交的开区间之并为n G ,其长度为12-n ()()1326161131--?=??n n ;将这手续无限进行下去,得一串开集ΛΛ,, , , ,321n G G G G . 令Y ∞==1n n G G ,则G 为开集,且G F \]1 ,0[=有与Cantor 集类似的性质:①F 为闭集且是完备集;②F 不含任何开区间(疏集);③F 可测,且由于()21132611132611-===∑∑∞=-∞=n n n n mG mG ,故21211]1 ,0[=-=-=mG m mF . 附注①当第n 次去掉的1 2-n 个开区间的长度为n51时,则32115121525111=--=?-=∑∞=-n n n mF ;②对任何10 ,<<αα,当第n 次去掉的12-n 个开区间的长度为()13131--?n α时,所得开集G 的测度为()ααα-=-?==-∞=--∑111323111231n n mG ,则α=-=mG mF 1,这可作为一般公式来应用.8.试证定义在) ,(∞+-∞上的单调函数的不连续点集至多可数,因而是0测度集.证设)(x f 为) ,(∞+-∞上的单增函数,则间断点必为第一类间断点,即若0x 为)(x f 的间断点,则0)0()0(00>--+x f x f .记}0)0()0({>--+=x f x f x E ,则E x ∈?,))0( ),0((+-x f x f 为y 轴上的一个开区间,每个开区间中可取一有理数x r ,则E 中每个元x 与有理数集中一元x r 相对应,即E 与Q 的一个真子集一一对应,故Q ≤E ,即E 至多可数,故0=mE .9.设N ∈n E n },{为可测集列,且∞<∑∞=1n n mE ,则0lim =??? ??∞→n n E m .证∵∞<∑∞=1n n mE ,∴ , ,0N ?>?ε使ε<∑∞=Nn n mE .而Y I Y ∞=∞=∞=∞→?=Nn n k k n n n n E E E 1lim ,∴ε<≤???? ??≤??? ??∑∞=∞=∞→N n n N n n n n mE E m E m Y lim . 故 0lim =??∞→n n E m .10.试举出一列可测集}{n E ,含在一个有限区间中,而且n n mE ∞→lim 存在,但≠??? ??∞→∞→n n n n E m E m lim li m . 解考察如下集列 ??=+=--=), ,6 ,4 ,2( )1 ,0[),,5 ,3 ,1( ]0 ,1(11ΛΛn n E n n n显然),3,2,1( )2 ,2(Λ=-?n E n .又 ()()]1 ,1[1 ,1 1 ,1 lim 1111111-=+--+--==++∞=∞=I I I Y I 为偶数为奇数n nn n n n n n k k n nE E , }0{}0{lim 11===∞=∞=∞=Y YIn n nk k n n E E .(从而n nE lim 不存在)所以,0lim 2lim =??≠=??? ??∞→∞→n n n n E m E m .虽然n nE lim 不存在,但}{n mE 存在极限:()11lim lim 1=+=nnn nmE . 附注一般,若}{n E 为可测集列,且Y ∞=1n n E 有界,则n n n n mE E m ∞→∞→≤??? ??lim lim ,n n n n mE E m ∞→∞→≥??? ??lim lim .(不妨一证) 11*.设N ∈n En },{为R 中互不相交的点集列,Y ∞==1n n E E,则∑∞=≥1**n n E m E m .证因Y ∞==1n n E E ,且n E 互不相交,则对每个n E ,有σF 型集n F ,使n n E F ?,且n n E m mF *=.∴Y ∞=1n n F 仍为σF 型集.又对于E 的σF 型集E F ?,且E m mF *=.但F F n n ?∞=Y 1,故有∑∞=≥1**n n E m E m .三、可测函数1.证明)(x f 是E 上可测函数的充要条件是:对任一有理数r ,集)(rf E >恒可测.如果集)(r f E =恒可测,问)(x f 是否一定可测?证必要性:显然,∵ 有理数属实数集.充分性:设对任一有理数r ,集)(r f E >恒可测,则对R ∈?α,?有理数列∞=1}{n n r ,α>n r ,使得α=∞→n n r lim .从而Y ∞=>=>1)()(n n r f E f E α为可测集.又如果对任何有理数r ,集)(r f E =恒可测,则f 不一定是可测的.例如:R =E ,F 是E 中的不可测集(它是存在的,尽管不容易构造,教材P65定理2.5.7),对任意F x ∈,3)(=x f ;F x ?,2)(=x f .则对任何有理数r ,?==)(r f E 恒可测,但F f E =>)2(是不可测集,从而f 不可测.2.设)(x f 是E 上的可测函数,F G 、分别为R 中的开集和闭集,试问)(G f E ∈和)(F f E ∈是否可测?这里记号})(:{)(A x f E x A f E ∈∈=∈.答)(G f E ∈和)(F f E ∈均可测. 证令Y ∞==1) ,(n n n b a G ,j i ≠时,?=) ,() ,(j j i i b a b a I,即) ,(n n b a (N ∈n )为开集G 的构成区间.∵)(x f 是E 上的可测函数,∴)(n n b f a E <<是E 中的可测集,从而Y ∞=<<=∈1)()(n n n b f a E G f E 仍为可测集.又对R 中的闭集F ,令F G \R =,则G 为开集.由上面证明可知)(Gf E ∈可测,故)(\)(G f E E F f E ∈=∈仍可测.3.(1)证明:)(lim lim n n n n A S A S -=-∞→∞→;(2)设n A 是下述点集:当n 为奇数时,)1 ,0(1n n A -=;当n 为偶数时,)1 ,(1nn A =.证明:∞=1}{n n A 有极限,并求此极限.证(1))(lim )(lim 111n n k kn n k k n n k k n n n n A S A S A S A S A S -=-=???? ??-=-=-∞→∞=∞=∞=≥∞=∞=∞→I Y Y Y I Y .(2))1 ,0()1 ,0(lim 11===∞=∞=≥∞→II Y k k kn n n n A A ,())1 ,0(1 ,lim 1111=-==∞=∞=≥∞→Y YI k kk k kn n n n A A ,∴ )1 ,0(lim =∞→n n A .4.试作]1 ,0[=E 上的可测函数)(x f ,使对任何连续函数)(x g 有0)(≠≠g f mE .此结果与鲁金(Lusin )定理是否矛盾?解作函数=∞+∈=,0 , ],1 ,0( , )(1x x x f x 则显然)(x f 是]1 ,0[=E 上的可测函数.设)(x g 是]1 ,0[=E 上的任一连续函数,则)(x g 在]1 ,0[=E 上有界,于是,?0>N ,使得N x g ≤)((]1 ,0[∈x ).而在] ,0[1N 上,N x f >)(,所以有]) ,0[( )()(1N x x g x f ∈≠.故0] ,0[)(11>=≥≠NN m g f mE .这就是说,]1 ,0[=E 上任何连续函数)(x g 都有0)(≠≠g f mE .此结果与鲁金定理并不矛盾.事实上,0>?ε,可取闭集 E F ?=]1 ,[2ε,则εε<=2)\(F E m ,而所作的函数)(x f 在F 上显然是连续的.此题也说明鲁金定理结论中的0>ε可任意小,但都0≠.5.设)(x f 是) , (∞+-∞上的连续函数,)(x g 是] , [b a 上的可测函数,试证明:)]([x g f 是可测函数.证R ∈?α,由)(x f 在R 上连续可知:)(α>f R 是开集,设其构成区间为) ,(i i βα (Λ ,2 ,1=i ).于是,N ∈?i,当) ,()(i i x g βα∈时,α>)]([x g f ;反之,若α>)]([x g f ,则必有N ∈i ,使) ,()(i i x g βα∈.所以,()()()Y Y ii i ii i x g E x g E x g f E βαβαα<<=∈=>)() ,()()]([.但由题设:)(x g 在] , [b a 上可测,则()i i x g E βα<<)(可测,故()α>)]([x g f E 可测.6.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f (即f f n→?μ),且在E 上几乎处处有)( )()(N ∈≤n x g x f n .试证在E 上几乎处处有)()(x g x f ≤.证∵ f f n ?→?μ,由黎斯(Riesz )定理,?子列)}({)}({x f x f n n k ?,使f f k n →,a.e.于E (∞→k ),即E E ??0,f f kn →于0E ,且0)(0=-E E m .令()()f f E g f E A k n n n →/>=Y Y ,则()0=→/f f mE k n ;而由题设:g f n ≤,a.e.于E (N ∈n )可知,nn g f mE 2)( ,0εε<>>?(N ∈n ),则有()()()εε=<+><→/+?>≤∑∑∞=∞=1120n n n n n n n g f mE f f mE g f E m mA Y ,即0=mA ,而在A E -上有g f n ≤(0E x ∈?)且f f k n →(0E x ∈?).故)()(lim )(x g x f x f k n k ≤=∞→(0E x ∈?),即)()(x g x f ≤,a.e.于E .7.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,且在E 上几乎处处有)()(1x f x f n n +≤)( N ∈n ,则)(x f n 在E 上几乎处处收敛于)(x f (即f f n →,a.e.于E ).证∵ f f n ?→?μ,由黎斯(Riesz )定理,?子列)}({)}({x f x f n n k ?,使 f f kn →,a.e.于E (∞→k );再由)()(1x f x f n n +≤,a.e.于E ,则必有f f n →,a.e.于E .8.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,而)(x f n ~)(x g n )( N ∈n (称为对等,也即n n g f =,a.e.于E ),则)(x g n 在E 上也依测度收敛于)(x f .证∵ f f n ?→?μ,且n n g f =,a.e.于E ,则0>?ε,()0lim =≥-∞→εf f mE n n 且()0=≠n n g f mE .∵ f f f g f g n n n n -+-≤-,。

《实变函数论》课后答案

《实变函数论》课后答案

Xn c, (0, 0, · · · , 0, x∗ , 0 , · · · ) ∈ / Pn (Dn ), n

Dn < c, Pn (Dn ) ≤ Dn < c, ∀n, ∃x∗ n, ∗ ∗ ∗ (x1 , x2 , · · · , xn , · · ·) ∈ / Dn , (x1 , x2 , · · · , x∗ / n , · · ·) ∈ Dn0 = c, An0 = c.
(ii) Ex 5: {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 ≤ 1} [0, 1) [0, 1]
r ∈[0,1]
f (x) = x2 , X = [−1, 1], Y = [0, 1], A = [0, 1]. {(x, y ) : x2 + y 2 ≤ 1}
n=1
An ∼ [0, 1]∞ .
An
E
ቤተ መጻሕፍቲ ባይዱ

ww ¿À ' · T S Á¿À C õ d WÃX ÃÄ T WX à « Å Æ ÇÈ ' WXÉÊ UV Å« ! "#ËÌ"Í$%')({|12 t vw # 8 u#2v
n→∞
F
lim En = [a, b] \ E .
HGI T P
n→∞
lim fn (x) = χ[a,b]\E (x) =
Ex 4: f : X → Y, A ⊂ X, B ⊂ Y , (i)f −1 (Y \ B ) = f −1 (Y ) \ f −1 (B ); (ii)f (X \ A) = f (X ) \ f (A). (i)

实变函数论课后答案第四章3

实变函数论课后答案第四章3

实变函数论课后答案第四章3第四章第三节习题1.若E 是有界可测集,()f x 在E 上几乎处处有限 ,则()f x 在E 上可测的充要条件是有一串在整个空间上连续的函数()n x Φ ,使lim ()()n n x f x →∞Φ= .a e 于E证明:充分性是显然的,()n x Φ在1R 上连续,从而是可测的,及几乎处处有限,也必在E 上可测必要性:由E 有界可测,()f x 在E 上几乎处处有限,故由Lusin 定理,∃闭集1F E ⊂,1(\)1m E F <,()f x 是1F 上的连续函数,又1E F -有界可测,由Lusin 定理,∃闭集21\F E F ⊂,使121(\\)2m E F F <利用归纳法知,若kF 已选好,则11\kk ii F E F +=∃⊂ ,111(\\)1ki k i m E F F k +=<+且()f x 在1k F +上连续.由于k ∀,1ki i F = 仍是有界闭集,故由P116Th2的证明方法知f 可扩充为1R 上的连续函数()n x Φ,()()n x f x Φ=于1kii F = 上且k ∀,111(\)(\)0kk i i i i m E F m E F k∞→+∞==≤≤→ ,故1(\)0i i m E F ∞==01ii x F ∞=∀∈ ,00()n n x ∃=使0n x F ∈ 则001n i i x F =∈ 000()()n x f x Φ=且当0()n n x ≥时,0011n niii i x F F ==∈⊂故1000()|()()nii n n F x x f x =Φ=Φ= 故00lim ()()n n x f x →∞Φ=这就证明了01i i x F E ∞=∀∈⊂ 00lim ()()n n x f x →∞Φ=故从1(\)0i i m E F ∞== 知必要性成立注意:本题的困难在于若直接这样用P116定理2,,nn F E∀∃⊂,1(\)n m E F n<1()n f C R ∃∈,|()n n F f f x =则n ∀,11(\)(\)0i n i m E F m E F n∞=≤<→ 则1(\)0i i m E F ∞== 01ii x F ∞=∀∈ ,0001,n nii n x F F =∃∈⊂,但直接取()()()nn x f x f x Φ==就不知是否有000()()n x f x Φ=,当0n n >,因仅知当n x F ∈时()()n f x f x =,而()n f x 在n i F -(0i >)时的性质不明,因为没有条件保证1nn F F +⊂而我们的前面证明是用到111nn i i i i F F +==⊂ ,1()()n n x x f +Φ=Φ=于1ni i F = 上.2.证明:有界闭集n E R ⊂上的任何连续函数是有界的 证明:反证,设f 在E 上无界,则n N ∀∈,存在n x E ∈,|()|n f x n>,由E 有界知{}n x 是有界序列,故由聚点原理,存在0nxR∈和{}n x 的子列{}kn x 使得0kn xx → (k →∞)由E 闭知0x E ∈,由f 在E 上连续知,f 在0x 连续0lim|()||lim ()||()|n n n n f x f x f x →∞→∞∞=== 得矛盾故()f x 在E 上有界注:也可用有限覆盖定理证之.。

实变函数论习题集选解

实变函数论习题集选解

《实变函数论》习题选解一、集合与基数1.证明集合关系式:(1))()()()(B D C A D C B A --⊂--- ; (2))()()()(D B C A D C B A -=--; (3)C B A C B A )()(-⊆--;(4)问)()(C B A C B A --=- 成立的充要条件是什么?证 (1)∵cB A B A =-,cc c B A B A =)((对偶律),)()()(C A B A C B A =(交对并的分配律), ∴)()()()()()(D C B A D C B A D C B A c c cc c==---第二个用对偶律)()()()()()(B D C A D B C A D B A C B A c c c c c --=⊆=交对并分配律.(2))()()()()()(c c c cD B C A D C B A D C B A ==--交换律结合律)()()()(D B C A D B C A c-==第二个用对偶律.(3))()()()()(C A B A C B A C B A C B A c ccc ===--分配律C B A C B A c )()(-=⊆.(4)A C C B A C B A ⊆⇔--=-)()( . 证 必要性(左推右,用反证法):若A C ⊄,则C x ∈∃ 但A x ∉,从而D ∀,)(D A x -∉,于是)(C B A x --∉; 但C B A x )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上,∵A C ⊆,∴C C A = ,如图所示:故)()(C B A C B A --=- .2.设}1 ,0{=A ,试证一切排列A a a a a n n ∈ ),,,,,(21所成之集的势(基数)为c .证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n 为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ,令 n a a a a f 21.0)(=,特别,]1 ,0[0000.0)0(∈== f ,]1 ,0[1111.0)1(∈== f ,即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ n a a a ,则f 是一一对应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.3.证明:整系数多项式的全体是可列的(可数的).证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++= 2210对应于一个序列:n a a a a ,,,,210 ,而每个)0(n i a i ≤≤取自可数集N N Z }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合 N∈=n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E 的基数c E =,为证c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数]1 ,0[ Q 排列成 ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在 ,,,,21n r r r 处的值 ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:)(lim )(k n k r f x f ∞→=.现在,作映射E C →]1 ,0[:ϕ,)),(,),(),(()(21 n r f r f r f x f ,则ϕ是单射,而集E C f r f r f r f A n ⊂∈=}]1 ,0[)),(,),(),({(21 是全体实数列E 的一个子集,故]1 ,0[C ~E A ⊂,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.附注 ①若∅=21A A ,∅=21B B ,又1f :1A ~1B ,2f :2A ~2B .则存在f :21A A ~21B B ;假如21A A ⊂,21B B ⊂,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?解 若∅=21A A ,∅=21B B ,令⎩⎨⎧∈∈=,),(,),()(2211A x x f A x x f x f 则)(x f 就是21A A 到21B B 的一一对应.若21A A ⊂,21B B ⊂,则12A A -与12B B -之间不一定存在一一对应.例如:} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211 n B A n B n A ====,),3 ,2( 1:1 =+n n n f ,),2,1( :2 =n n n f ,则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.②几个常见的一一对应:(ⅰ)) ,(b a ~R ,()) ,( , tan )(2b a x x f a b ax ∈-⋅=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x xxx f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为 , , , ,21n r r r ,而]1 ,0[中的有理数排列为 , , , , ,1 ,021n r r r .作其间的对应f 如下:⎪⎪⎩⎪⎪⎨⎧>====+,中无理数时是当当当当)1 ,0(, ),2( ,,,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).(ⅲ)N N ⨯~N ,()N N ⨯∈-=-),( , )12(2),(1j i j j i f i .这是因为任一自然数均可唯一表示为q n p⋅=2(p 非负整数,q 正奇数),而对非负整数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c F 2=. 证 1.c F 2≥;设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即⎩⎨⎧-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记}]1 ,0[{⊂=E E M ,}]1 ,0[)({⊂=X E x E χ,则M ~X ,c M 2==X .而F ⊂X ,从而有F ≤X ,即F c ≤2.2.cF 2≤.对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而cB 2=,从而有cF G F 2≤=.综合 1, 2立知 cF 2=.附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ⊂⊂,而A ~C ,则B ~C (此结果更便于应用).5.试证任何点集的内点全体组成的集是开集.证 设集F 的内点集为0F (称为F 的内部),下证0F 为开集.F x ∈∀,由内点的定义,存在x 的邻域F I x x x ⊆=),(βα.现作集 Fx x I G ∈=,则显然G 为开集,且G F⊆0.另一方面,对任意G y ∈,存在0x I ,使得F I y x ⊆∈0,所以,y 为F 的内点,即0F y ∈,也就是说0F G ⊆.综上有G F =0为开集. 6.开映射是否连续?连续映射是否开?解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[ ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而 +∞-∞==n n P P , +∞-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{( =k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )现在R 上定义函数 ⎪⎩⎪⎨⎧∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k kk k π 则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (kk k k k k a b b a b b ------βπαπ;若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f 的不连续点.又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)1 ,0[非开非闭.7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '.解 P E ='.分以下三步:①设Cantor 集为P ,其补集(或叫余集)为G ,则 ),(),(),(989792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ⎩⎨⎧=,2,0i a ⎪⎩⎪⎨⎧=,2,1,0i b ( ,3 ,2 ,1=i ).由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设n a a a y 21.0=;当G x ∈时,可设 2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有0200.021n a a a y =右;对于G 的构成区间的左端点左y 有 20222.021n a a a y =左.由此可见,G E ⊆,且当E z ∈时,有 111.0)(2121n a a a y y z =+=右左.②下证Cantor 集P 中的点都是E 的极限点:对P y ∈∀,由于 n a a a y 21.0=,取E z k ∈,则 111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而k k k k k y z 3131********1<⋅=++≤-+++ , 故,0 ,0>∃>∀N ε当N k >时,有ε<k 31,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.③下证G x ∈∀,有E x '∉.事实上,有两种情况:10.若E x ∈,则只能是G 的构成区间的中点,即 111.021n a a a x =.由Cantor集的构造知:对)( x z E z ≠∈∀,都有 n x z 31≥-,所以,E x '∉; 20.若E x ∉且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ,于是,E z ∈∀,有m x z 31>-,所以,E x '∉. 故G 中的点不属于E '.综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证∅≠∞= 1k k E .证 用反证法:若∅=∞= 1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞=∞= ,从而} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列),且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c k=,使得] ,[1b a E nk ck ⊇= ,即()] ,[\] ,[1b a E b a n k k == . ∴ ] ,[\] ,[1b a E b a n k k == ,从而∅== nk k E 1,故∅=n E ,矛盾!附注 更一般地,若非空闭集套}{n E : ⊃⊃⊃⊃n E E E 21满足0sup )(,−−→−-=∞→∈n E y x n y x E nρ,则存在唯一的 ∞=∈10n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”) 证 由n E 非空,取) ,3 ,2 ,1( =∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+⊃n n E E ,所以,) ,2 ,1 ,0( =⊂∈++m E E x n m n m n ,从而0)(sup ,−−→−=-≤-∞→∈+n n E y x n m n E y x x x nρ,由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n −−→−∞→.又由n E 为闭集立知n E x ∈0,从而 ∞=∈10n n E x .存在性得证.下证唯一性:若另有 ∞=∈10n n E y ,则) ,2 ,1( 00 =∈n E y x n 、,而0)(00→≤-n E y x ρ,所以,00x y =.这就证明了唯一性.9.若] ,[)(b a C x f ∈,则 ()αα≥∈∀f E , R 为闭集.证 只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( =∈n E x n ,满足0lim x x n n=;又由于诸 ] ,[ b a E x n ⊂∈以及)(x f 的连续性,从而有] ,[ ,)(0b a x x f n ∈≥α 以及 α≥=)(lim )(0n nx f x f .这就证明了E x ∈0.9*.若在],[b a 上,)()(lim x f x f n n=,记}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,证明:() ∞=∞→+=11lim )(k kn n E E αα. 证 一方面,当)(αE x ∈时,α>)(x f ⇒, k ∃使得kx f 1)(+>α,即kn nx f 1)(lim +>α, N ∃⇒当N n >时,kn x f 1)(+>α()() ∞=∞→∞→+∈⇒+∈⇒111lim lim k kn n kn n E x E x αα. 另一方面,() ∞=∞→+∈11lim k kn n E x αk ∃⇒,使()k n n E x 1lim +∈∞→α, N ∃⇒当N n >时, ()k n E x 1+∈α. 即 kn x f 1)(+>α(N n >)k n nx f x f 1)(lim )(+≥=⇒α, α>⇒)(x f ,从而)(αE x ∈. 综上可得 () ∞=∞→+=11lim )(k kn n E E αα. 10.每一个闭集是可数个开集的交集.证 设F 为闭集,作集) ,2 ,1( }),( {1 =<=n F x x G nn ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证: nn G F =.事实上,由于对任意N ∈n 有n G F ⊂,故有 nn G F ⊂;另一方面,对任意 nn G x ∈0,有 ) ,2 ,1( ),(010 =<≤n F x nρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G nn ⊂ .综上可知: nn G F =.附注 此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.证 可有两种证法(很麻烦):一种是反证法,即若 nn F b a I ==) ,(0,其中}{n F 为两两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但 nn F x ∉0,从而得出矛盾;另一种证法是:记) ,(b a =∆,证明下述更强的结果:若}{n F 为含于∆内的任一组两两互不相交的闭集列,则 nn F -∆的势(基数)等于连续势c ,从而立知不可能有nn F b a ==∆) ,(.取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且100000] ,[ , F b a I b b a a ⊃=<≤<.又记) ,( , ) ,(0201b b a a =∆=∆(非空),则有两种情况: ①若)2 , 1( 2=∆∞=i F n n i中至少有一个空集,比如 21∅=∆∞= n n F ,而∅=∆⊂∆0111I F ,所以, 11∅=∆∞= n n F , 11∆⊃-∆∞= n n F .因此,c F nn=∆≥-∆1 .问题得证.②)2 , 1( 1=∆∞=i F n n i均不为空集,对)2 , 1( =∆i i ,在 , ,32F F 中存在最小的下标)(1i n 使∅≠∆i n i F )(1,显然,2},min{)2(1)1(11≥=n n n 以及)(1, , ,00i n F b b a a ∉,从而i n i n i i F F ∆=∆ )(1)(1为含于开区间i ∆内的闭集,对此闭集仿上作出两个闭区间)2 ,1( )(1=i I i ,它们满足:(ⅰ))2(1)1(10 , ,I I I 互不相交; (ⅱ)21121)(101===⊃⊃i i n i i i i F F I I .对在∆中挖去)2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )(N k N k I =,它们满足:(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==互不相交;(ⅱ)111121)(0)]([+====⊃⊃N i i n i i N n j j n F F I I N n(因为1+≥N n N ).在开区间∆中挖去闭区间) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==后余下的12+N 个开区间中,如果至少有一个开区间比如0i ∆与2+≥N n n F 的交为空集,则由(ⅱ)知与 ∞=1n n F 的交也为空集,从而c F i nn=∆≥-∆0 .问题得证.若不然,则这12+N 个开区间均与2+≥N n n F 相交,重复上述步骤得到一列闭区间} ,{)(0j n I I ,再利用完备集的结构定理可知它关于] ,[b a 的余集为非空完备集,又在(ⅱ)中令∞→N ,得∞=∞==⊃1121)(0)]([i i n j j n F I I n所以,集 ∞=-1) ,(i i F b a 的势(基数)等于连续势c .附注 ①我们知道:可数个闭集的并集不一定是闭集,而此题结果又说明了“开区间(是开集)却不能表示成可数个互不相交的闭集的并集”,所以又引出了σF -集. ②任何闭区间不可能表示成可数个疏集的并集(提示:用反证法,若 ii F b a =],[,其中),2,1( =i F i 为疏集,可构造一闭区间套,则导出矛盾!)12.证明:用十进位小数表示]1 ,0[中的数时,其用不着数字7的一切数成一完备集.证 对]1 ,0[中的任一数x 均可表示为) ,2 ,1 },9 , ,2 ,1 ,0{( 101=∈=∑∞=k a a x k k k k(x的这种表示法不一定唯一),而如此表示的级数其值都在]1 ,0[内. 记G 表示]1 ,0[中数的十进位可能表示101∑∞=k k ka 中必有某一个7=k a 的那些数的全体,从而只要证明G 关于]1 ,0[的余集G P -=∆]1 ,0[为完备集.作开区间()1081070,=δ,),2 ,1( 10810 , 1071011111=⎪⎪⎭⎫⎝⎛++=+=+=∑∑n a a n n k k k n n k k k aa nδ其中n a a ,,1 为不等于7而小于10的非负整数.显见这些开区间为]1 ,0[中可数无穷个无公共端点的互不相交的开区间,其内点用十 进位数表示时至少有一个7=n a ,而端点用十进位数表示时可使所有7≠k a .作这些开 区间的并集记为U ,则U 为开集,且根据完备集的结构定理知U 关于]1 ,0[的余集为一 完备集,于是,只要证明U G =即可.由U 的定义显见G U ⊂;另一方面,若G x ∈,则在x 的所有可能的十进位表示101∑∞=k k ka 中均必有一个7=n a ,且不妨设此n 为满足等式的最小整数即11,,-n a a 均不等于7.首先证明下述两种情况不能发生:①) ,2 ,1( 0 ++==n n m a m ,此时x 表示 区间11-n a a δ的左端点,它有另一十进位表示:∑∑+≥-=++11110910610n i in n i iia ,在此表示中一 切7≠n a ,因此x 不可能是这种情况;②) ,2 ,1( 7 ++==n n m a m ,此时x 表示区 间11-n a a δ的右端点,它有另一十进位表示:n n i i ia 1081011+∑-=,在此表示中一切7≠n a ,因此x 也不可能是这种情况.由此可知U x n aa ⊂∈-11δ.综上所证可知U G =.证毕!附注 ①c P =; ②P 在]1 ,0[中不稠密(因∅=)7.0 , 28.0( P ).13.试在]1 ,0[上定义一个函数,它在任一有理点不连续,但在任一无理点连续.解 ①设∑∞=1n n a 为一收敛的正级数,因]1 ,0[上全体有理数可数,故可记为},,,,{21 n r r r Q =.对]1 ,0[∈∀x ,定义函数∑<=xr n n a x f )(,其中和式是对x r n <的那些相应的n a 求和.则)(x f 为]1 ,0[上单调递增函数且在无理点连续,有理点不连续其跃度为000)()(n n n a r f r f =--+. 事实上,因为对任意x y >,0)()(≥=-∑<≤y r x n n a x f y f ,所以,)(x f 为增函数;又记}{y r x r E n n y x <≤=,当x 为无理数时,∅=+→y x xy E lim ,所以,)()0(x f x f =+. 同理可证)()0(x f x f =-,所以,)(x f 在无理点连续;当x 为有理数0n r 时,有0lim n y x x y r E =+→,所以,0)()0(n a x f x f =-+,且此时类似亦有)()0(x f x f =-(0n r x =),从而 000)()(n n n a r f r f =--+0>. ②微积分中熟知的Riemann 函数 ⎪⎩⎪⎨⎧≥==中无理数,为,,互素正整数]1,0[0),,( ,)(1x q p q p x x R p q p亦为所求函数.附注 ①不存在]1 ,0[上这样的函数,它在每一有理点连续,而在每一无理点不连续; (提示:只要证任何在]1 ,0[中有理点连续的函数)(x f ,至少在一个无理点上连续.可利用闭区间套定理).②设B A ,为非空不交闭集(可无界),则存在) ,()(∞+-∞∈C x f 满足:1)(0≤≤x f ,且当A x ∈时,0)(=x f ,而当B x ∈时,1)(=x f ; (提示:),( , ),(),(),()(+∞-∞∈+=x B x A x A x x f ρρρ,其中),(A x ρ为点x 到集A 的距离.再证分子连续,分母大于0连续,从而)(x f 连续.而满足条件显然)更一般地,此结果可推广到n 个非空不交闭集上:设),,2,1(n k A k =为n 个非空不交 闭集,∃连续函数)(x f 使得k A x ∈时,k C x f =)((k C 为常数,n k ,,2,1 =),则⎪⎪⎪⎩⎪⎪⎪⎨⎧∉=∈====∑∑. ,),(1),(,,,2,1 , ,)(111 n k k nk k nk kk k k A x A x A x C n k A x C x f ρρ即可. 二、勒贝格(Lebesgue )测度1.设1E 、2E 均为有界可测集,试证()()212121E E m mE mE E E m -+=.证 因1E 、2E 可测,则21E E 可测,212E E E -可测,且)()(212212E E m mE E E E m -=-.又由()∅=-2121E E E E ,得()()()2121212121E E m mE mE E E E m mE E E m -+=-+=.2.试证可数个零测度集的并仍是零测度集.证 设 ∞====1, ,2 ,1 ,0n n n E E n mE ,则E 可测,且有0011=≤⎪⎪⎭⎫ ⎝⎛=≤∑∞=∞=n n n n mE E m mE ,∴ 0=mE .3.设有两个开集21G G 、,且21G G ⊆,那么是否一定有21mG mG <?解 不一定成立.例:)2 ,1()1 ,0(1 =G ,)2 ,0(2=G ,则21G G ⊂,但212mG mG ==.4.对任意开集G ,是否一定有mG G m =成立?解 不一定.例 :对]1 ,0[中的所有有理数} , , , ,{21 n r r r ,作开集如下:∞=++⎪⎭⎫ ⎝⎛+-=12221 ,21n n n n n r r G ,则G 为开集,且2121*11=≤=∑∞=+n n G m mG .但由]1 ,0[⊇G ,可得1]1 ,0[=≥m G m .故mG G m ≠.5.设n A A A 、、、 21是]1 0[,中n 个可测集,且满足11->∑=n mA nk k ,试证01>⎪⎪⎭⎫ ⎝⎛= n k k A m .证 由1题可知:)()(212121E E m mE mE E E m -+=.又∵]1 ,0[⊆i A ,∴ 1≤i mA ,n i , ,2 ,1 =,而cn i c i ni i A A ⎪⎪⎭⎫⎝⎛=== 11,∴∑∑====--=-≥⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛n i i n i ci n i c i n i i mA m mA A m A m 1111)]1 ,0[(1110)1(111>--=+-=∑∑==n mA mA n n i i n i i .(由已知11->∑=n mA nk k )6*.设0*>=q E m ,则对任何) ,0(q p ∈,存在E E ⊂0,使得p E m =0*(称为“外测度的介值定理”).(以下证明最好能看懂,否则Pass !)证 ①先设E 是有界集,即] ,[b a E ⊆,0*>=q E m .令()] ,[**)(x a E m E m x f x ==,] ,[b a x ∈,则)(x f 是] ,[b a 上单调不减的连续函数.事实上,10.因∅==或}{}{a a E E a ,E b a E E b ==] ,[ ,则0)(=a f ,0)(>=q b f ;当21x x <,且] ,[21b a x x ∈、时,21] ,[] ,[21x x E x a E x a E E =⊆= ,由外测度的单调性,有)(**)(2121x f E m E m x f x x =≤=.所以,)(x f 是] ,[b a 上的单调不减函数.20.因()1112*]),[(***)()(2112x x x x E m x x E E m E m E m x f x f -=-=-()122121],[*],[*x x x x m x x E m -=≤≤ ;同理,当12x x <时,2121)()(x x x f x f -≤-. ∴ 2121)()(x x x f x f -≤-.于是,让1x 为] ,[b a 上任意一点x ,而] ,[2b a x x x ∈∆+=,则有x x f x x f ∆≤-∆+)()(,故当0→∆x 时,)()(x f x x f →∆+,即] ,[)(b a C x f ∈.②由] ,[)(b a C x f ∈,) ,0(q p ∈∀,即)()(b f p a f <<,由闭区间上连续函数的介值定理,] ,[0b a x ∈∃,使得p x f =)(0,即()p x a E m =] ,[*0 . ③当E 无界时,令] ,[][n n E E n -= ,N ∈n ,则n E ][可测,满足⊆⊆⊆⊆n E E E ][][][21,且有 ∞==1][n n E E ,∴ 0*][*lim >>==∞→p q E m E m n n .由极限的保号性,N ∈∃0n ,使得p E m n >0][*.记)( ][*00p p E m n >=,而0][n E 为有界集:] ,[] ,[][000n n n n E E n -⊆-= .如前两步所证,作函数()] ,[][**)(00x n E m E m x f n x -==则)(x f 在] ,[0n n -上连续不减,且000)(0)(p n f n f =<=-.由00p p <<,) ,( 00n n x -∈∃,使得p x f =)(0,即p E m x =0*.附注 若E 可测,0>=q mE ,则 q p p <<∀0 ,,∃可测集E E ⊂1,使p mE =1.7.试作一闭集]1 ,0[⊂F ,使F 中不含任何开区间,但21=mF . 解 仿照Cantor 集的方法构造闭集F : 第一步:将]1 ,0[作12等份,挖去中央的开区间1)127,125(G =,长度为61; 第二步:将余下的两个闭区间]125,0[和]1 ,127[再各12等份,分别挖去中央的开区间2)7259,7255()7217,7213(G = ,各长6131⨯,共长61312⨯⨯; ……第n 步:在余下的12-n 个闭区间中,分别挖去其中央处长为()61131⨯-n 的开区间,记这12-n个互不相交的开区间之并为n G ,其长度为12-n ()()1326161131--⨯=⨯⨯n n ;将这手续无限进行下去,得一串开集 ,, , , ,321n G G G G . 令 ∞==1n n G G ,则G 为开集,且G F \]1 ,0[=有与Cantor 集类似的性质:①F 为闭集且是完备集; ②F 不含任何开区间(疏集); ③F 可测,且由于()21132611132611=-===∑∑∞=-∞=n n n n mG mG , 故21211]1 ,0[=-=-=mG m mF . 附注 ①当第n 次去掉的12-n 个开区间的长度为n51时,则32115121525111=--=⋅-=∑∞=-n n n mF ;②对任何10 ,<<αα,当第n 次去掉的12-n 个开区间的长度为()13131--⋅n α时,所得开集G 的测度为()ααα-=-⋅==-∞=--∑1113231113231n n mG ,则 α=-=mG mF 1,这可作为一般公式来应用.8.试证定义在) ,(∞+-∞上的单调函数的不连续点集至多可数,因而是0测度集.证 设)(x f 为) ,(∞+-∞上的单增函数,则间断点必为第一类间断点,即若0x 为)(x f 的间断点,则0)0()0(00>--+x f x f .记}0)0()0({>--+=x f x f x E ,则E x ∈∀,))0( ),0((+-x f x f 为y 轴上的一个开区间,每个开区间中可取一有理数x r ,则E 中每个元x 与有理数集中一元x r 相对应,即E 与Q 的一个真子集一一对应,故Q ≤E ,即E 至多可数,故0=mE .9.设N ∈n E n },{为可测集列,且∞<∑∞=1n n mE ,则0lim =⎪⎭⎫ ⎝⎛∞→n n E m .证 ∵∞<∑∞=1n n mE ,∴ , ,0N ∃>∀ε使ε<∑∞=Nn n mE .而∞=∞=∞=∞→⊆=Nn n k k n n n n E E E 1lim ,∴ε<≤⎪⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∞=∞=∞→N n n N n n n n mE E m E m lim . 故 0lim =⎪⎭⎫ ⎝⎛∞→n n E m .10.试举出一列可测集}{n E ,含在一个有限区间中,而且n n mE ∞→lim 存在,但⎪⎭⎫ ⎝⎛≠⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m lim lim .解 考察如下集列 ⎪⎩⎪⎨⎧=+=--=), ,6 ,4 ,2( )1 ,0[),,5 ,3 ,1( ]0 ,1(11 n n E n n n显然 ),3,2,1( )2 ,2( =-⊂n E n .又 ()()]1 ,1[1 ,1 1 ,1 lim 1111111-=⎥⎥⎦⎤⎢⎢⎣⎡+--⎥⎥⎦⎤⎢⎢⎣⎡+--==++∞=∞= 为偶数为奇数n nn n n n n n k k n nE E , }0{}0{lim 11 ===∞=∞=∞= n n nk k n n E E .(从而n nE lim 不存在) 所以,0lim 2lim =⎪⎭⎫ ⎝⎛≠=⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m .虽然n nE lim 不存在,但}{n mE 存在极限:()11lim lim 1=+=nnn nmE . 附注 一般,若}{n E 为可测集列,且∞=1n n E 有界,则n n n n mE E m ∞→∞→≤⎪⎭⎫ ⎝⎛lim lim ,n n n n mE E m ∞→∞→≥⎪⎭⎫ ⎝⎛lim lim .(不妨一证) 11*.设N ∈n En },{为R 中互不相交的点集列, ∞==1n n E E,则∑∞=≥1**n n E m E m .证 因 ∞==1n n E E ,且n E 互不相交,则对每个n E ,有σF 型集n F ,使n n E F ⊂,且n n E m mF *=.∴ ∞=1n n F 仍为σF 型集.又对于E 的σF 型集E F ⊂,且E m mF *=.但F F n n ⊂∞= 1,故有∑∞=≥1**n n E m E m .三、可测函数1.证明)(x f 是E 上可测函数的充要条件是:对任一有理数r ,集)(r f E >恒可测.如果集)(r f E =恒可测,问)(x f 是否一定可测? 证 必要性:显然,∵ 有理数属实数集.充分性:设对任一有理数r ,集)(r f E >恒可测,则对R ∈∀α,∃有理数列∞=1}{n n r ,α>n r ,使得α=∞→n n r lim .从而 ∞=>=>1)()(n n r f E f E α为可测集.又如果对任何有理数r ,集)(r f E =恒可测,则f 不一定是可测的.例如:R =E ,F 是E 中的不可测集(它是存在的,尽管不容易构造,教材P65定理2.5.7),对任意F x ∈,3)(=x f ;F x ∉,2)(=x f .则对任何有理数r ,∅==)(r f E 恒可测,但F f E =>)2(是不可测集,从而f 不可测.2.设)(x f 是E 上的可测函数,F G 、分别为R 中的开集和闭集,试问)(G f E ∈和)(F f E ∈是否可测?这里记号})(:{)(A x f E x A f E ∈∈=∈.答 )(G f E ∈和)(F f E ∈均可测. 证 令 ∞==1) ,(n n n b a G ,j i ≠时,∅=) ,() ,(j j i i b a b a ,即) ,(n n b a (N ∈n )为开集G 的构成区间.∵)(x f 是E 上的可测函数,∴)(n n b f a E <<是E 中的可测集,从而∞=<<=∈1)()(n n n b f a E G f E 仍为可测集.又对R 中的闭集F ,令F G \R =,则G 为开集.由上面证明可知)(G f E ∈可测,故)(\)(G f E E F f E ∈=∈仍可测.3.(1)证明:)(lim lim n n n n A S A S -=-∞→∞→;(2)设n A 是下述点集:当n 为奇数时,)1 ,0(1n n A -=;当n 为偶数时,)1 ,(1nn A =.证明:∞=1}{n n A 有极限,并求此极限.证 (1))(lim )(lim 111n n k kn n k k n n k k n n n n A S A S A S A S A S -=-=⎪⎪⎭⎫ ⎝⎛-=-=-∞→∞=∞=∞=≥∞=∞=∞→ .(2))1 ,0()1 ,0(lim 11===∞=∞=≥∞→ k k kn n n n A A ,())1 ,0(1 ,lim 1111=-==∞=∞=≥∞→ k kk k kn n n n A A , ∴ )1 ,0(lim =∞→n n A .4.试作]1 ,0[=E 上的可测函数)(x f ,使对任何连续函数)(x g 有0)(≠≠g f mE .此结果与鲁金(Lusin )定理是否矛盾?解 作函数⎩⎨⎧=∞+∈=,0 , ],1 ,0( , )(1x x x f x 则显然)(x f 是]1 ,0[=E 上的可测函数.设)(x g 是]1 ,0[=E 上的任一连续函数,则)(x g 在]1 ,0[=E 上有界,于是,∃0>N ,使得N x g ≤)((]1 ,0[∈x ).而在] ,0[1N 上,N x f >)(,所以有]) ,0[( )()(1N x x g x f ∈≠.故0] ,0[)(11>=≥≠NN m g f mE .这就是说,]1 ,0[=E 上任何连续函数)(x g 都有0)(≠≠g f mE .此结果与鲁金定理并不矛盾.事实上,0>∀ε,可取闭集E F ⊂=]1 ,[2ε,则 εε<=2)\(F E m ,而所作的函数)(x f 在F 上显然是连续的.此题也说明鲁金定理结论中的0>ε可任意小,但都0≠.5.设)(x f 是) , (∞+-∞上的连续函数,)(x g 是] , [b a 上的可测函数,试证明:)]([x g f 是可测函数.证 R ∈∀α,由)(x f 在R 上连续可知:)(α>f R 是开集,设其构成区间为) ,(i i βα ( ,2 ,1=i ).于是,N ∈∀i ,当) ,()(i i x g βα∈时,α>)]([x g f ;反之,若α>)]([x g f ,则必有N ∈i ,使) ,()(i i x g βα∈.所以,()()() ii i ii i x g E x g E x g f E βαβαα<<=∈=>)() ,()()]([.但由题设:)(x g 在] , [b a 上可测,则()i i x g E βα<<)(可测,故()α>)]([x g f E 可测.6.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f (即f f n−→−μ),且在E 上几乎处处有)( )()(N ∈≤n x g x f n .试证在E 上几乎处处有 )()(x g x f ≤.证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使f f k n →,a.e.于E (∞→k ),即E E ⊂∃0,f f kn →于0E ,且0)(0=-E E m .令()()f f E g f E A k n n n →/⎪⎪⎭⎫⎝⎛>= ,则()0=→/f f mE k n ;而由题设:g f n ≤,a.e.于E (N ∈n )可知,nn g f mE 2)( ,0εε<>>∀(N ∈n ),则有()()()εε=<+><→/+⎪⎪⎭⎫ ⎝⎛>≤∑∑∞=∞=1120n n n n n n n g f mE f f mE g f E m mA , 即0=mA ,而在A E -上有g f n ≤(0E x ∈∀)且f f k n →(0E x ∈∀).故)()(lim )(x g x f x f k n k ≤=∞→(0E x ∈∀),即)()(x g x f ≤,a.e.于E .7.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,且在E 上几乎处处有)()(1x f x f n n +≤)( N ∈n ,则)(x f n 在E 上几乎处处收敛于)(x f (即f f n →,a.e.于E ).证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使 f f kn →,a.e.于E (∞→k );再由)()(1x f x f n n +≤,a.e.于E ,则必有f f n →,a.e.于E .8.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,而)(x f n ~)(x g n )( N ∈n (称为对等,也即n n g f =,a.e.于E ),则)(x g n 在E 上也依测度收敛于)(x f .证 ∵ f f n −→−μ,且n n g f =,a.e.于E ,则0>∀ε,()0lim =≥-∞→εf f mE n n 且()0=≠n n g f mE .∵ f f f g f g n n n n -+-≤-,∴ ()()()εεε≥-≥-⊆≥-f f E f g E f g E n n n n .又()()()()0−−→−≥-≤≥-+≥-≤≥-∞→n n n n n n f f E f f E f g mE f g mE εεεε∴ ()0−−→−≥-∞→n n f g mE ε,即 f g n −→−μ.9.试举例说明:对于叶果洛夫(Egorov )定理,不能加强为除掉一个0测度集外,)(x f n一致收敛于)(x f .解 构造函数列)}({x f n 如下:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-⋅+-<≤<<+==+++++,1 ,0 , ,)1(1, ,1 ,0 ,)2( ,0 ,0 )(111111112121x x x n n x x x n x x f n n n n n n n n 则)(x f n 是]1 ,0[=E 上的连续函数列,必可测,且 )(0)(lim x f x f n n ==∞→于]1 ,0[=E .下面证明:对任一0 ,00=⊂mE E E 时,)}({x f n 在0E E -上不会一致收敛. 取210=ε,无论N 取得多么大,总可取N N n >+=1,令[)02131 ,E A n n -=++,则显然A 非空(为什么?).但A x x f N ∈=+ ,1)(1, A x x f x f x f N N ∈>==-++ ,1)()()(011ε.所以,)}({x f n 在0E E -上不一致收敛.由此可知:叶果洛夫定理不能加强为:除掉一个0测度集外,)(x f n 一致收敛于)(x f .10.几乎处处有限的可测函数列)}({x f n )(x f −→−μ的充要条件是:对任何正数σ和ε,存在N ,当N m N n >> ,时,()εσ<≥-m n f f mE (即它是依测度的Cauchy 列). 证 必要性由)()(x f x f n −→−μ,则N n N >∃>>∀ , ,0 ,0εσ时,()22εσ<≥-f f mE n . 又易知:()()()22σσσ≥-≥-⊂≥-f f E f f E f f E m n m n ,则 ()()()22σσσ≥-+≥-≤≥-f f E f f E f f mE m n m n ,从而当N m N n >> ,时,()εσ<≥-m n f f mE .下证充分性:先找出一个子序列f x f k n k −−→−∞→)}({,a.e.于E .任取数列+∞<>∑∞=1,0 },{i i i i ηηη.由题设条件可知:存在k n ,使得()) ,2 ,1 ; ,2 ,1( 21==<≥-+m k f f mE km n n kk k η,从而可取+∞↑kn ,且有 ()kn n kkk f f mE η<≥-+211.对这串}{kn 作P Q ,:() ∞=∞=≥-=+1211i ik n n kk k f f E Q ,() ∞=∞=<-=-=+1211i ik n n kk k f fE Q E P .令() ∞=≥-=+ik n ni kk k f f E R 211,则 ⊃⊃⊃⊃⊃+121n n R R R R, ∞==1i i R Q .因此,()0lim limlim 211=≤≥-≤=∑∑∞=∞→∞=∞→∞→+ik ki ik n ni i i kk k f f mE mR mQ η,所以,0=mQ .下面证明)}({x f k n 是P 上的收敛基本列.记 () ∞=∞=∞==<-=+11211i ii ik n nA f f E P kk k ,则 ⊂⊂⊂++21i i iA AA .若P x ∈,则存在0i ,使得 ⊂⊂∈+100i i A A x .对任给的0>ε,必有0i i >,使得ε<-121i ,故对一切 ,2 ,1 ,=>m i l ,有 ε<=≤-≤-≤--∞=∞==∑∑∑+++1212111i i j j ij n n m ij n n n n j j j j m l l f f f f f f . 所以,)}({x f kn 在P 上的收敛于)(x f ,其中)( )(lim )(P x x f x f k n k ∈=∞→.显然,f f k n −→−μ,于是,对任何正数σ和ε,存在N ,当N n N n k >> ,时,()22εσ<≥-k n n f f mE ,()22εσ<≥-f f mE kn . 而()⊂>-σf f E n () 2σ≥-k n n f f E ()2σ≥-f f E k n ,所以,当N n >时, ()εσ<>-f f mE n ,即 f f n −→−μ于E .四、Lebesgue 积分1.设)()(x g x f 、都是E 上的可测函数,)()(E L x g ∈,且在E 上几乎处处成立)()(x g x f ≤,问在E 上)(x f 是否一定可积?解 )(x f 未必可积,因)(x f 不一定满足非负性.例如:取]1 ,0[=E ,0)(=x g ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∈-∈-∈-=-.0 ,0 ], ,( ,2, ], ,( ,4],1 ,( ,2)(12121214121x x x x x f n n n 则显然 )()(E L x g ∈,)()(x g x f ≤,但-∞=⋅-=∑⎰∞=1]1 ,0[ 21)2(d )(n n n m x f 不可积. 2.设在Cantor 集P 上定义函数)(x f 为零,而在P 的补集中长为n31的构成区间上定义)(x f 为n (N ∈n ),试证L x f ∈)(,并求积分值. 解 令 n e 为P 的补集G 中长为n 31的各构成区间之并,则 ∞==1n n e G ,n me n n 321-=.令 ⎪⎩⎪⎨⎧-∈=∈==, ]1 ,0[ ,0),, ,2 ,1( ,)(1 n i i i n e x n i e x i x ϕ 则简单函数列)}({x n ϕ满足 )()()()(021x f x x x n ≤≤≤≤≤≤ ϕϕϕ,且 f x n →)(ϕ.∴ 33232lim d )( lim d )( 1111]1 ,0[ ]1 ,0[ =⋅=⋅==∑∑⎰⎰∞=-=-∞→∞→n n n ni i i n n n n i m x m x f ϕ.即 ]1 ,0[L f ∈,且3d )( ]1 ,0[ =⎰m x f .3.设0)(≥x f 为可测函数,令 ⎩⎨⎧>≤=,)( ,0 ,)( ),()]([N x f N x f x f x f N 若若 试证明⎰⎰=EEN Nm x f m x f d )( d )]([ lim .证 由题设知: ≤≤≤≤≤N f f f ][][][021,且 f f N N −−→−∞→][,则由勒维(Levi )定理可知 ⎰⎰=E E N Nm x f m x f d )( d )]([ lim.4.设从]1 ,0[中取n 个可测子集n E E E 、、、 21,假定]1 ,0[中任一点至少属于这n 个子集中的p 个.试证:必有一集,它的测度不小于np.证 令 i E 的特征函数为)(x iE χ,则⎰⎰⎰+++=+++11 01 021d )(d )(d )(21x x x x x x mE mE mE n E E E n χχχp x p x x ni E i =≥⎪⎪⎭⎫⎝⎛=⎰⎰∑=1 0 1 0 1d d )(χ. 令 } , , , m ax {21n mE mE mE mE =,则 1≤mE ,从而 p mE mE mE mE n n ≥+++≥⋅ 21, ∴ npmE ≥.5.勒维(Levi )定理中去掉函数列的非负性假定,结论是否成立?解 Levi 定理中函数列的非负性条件是必要的,不可去,否则结论未必成立.例如: ,2 ,1 ,0 ,0 ],1 ,1[,0 ,)(11=⎩⎨⎧=-∈≠-=n x x x x f nx n , ⎩⎨⎧=-∈≠=,0,0 ],1 ,1[,0 , )(1x x x x f x则 0)(≠x f ,a.e.于]1 ,1[-,且有≤≤≤≤)()()(21x f x f x f n ,)()(lim x f x f n n =∞→.但()+∞=-⎰-01 11d x x n ,故 ⎰-1 1 d )(x x f n 不存在;同理,⎰-11 d )(x x f 也不存在. 因此,Levi 定理不成立.容易证明:若存在)()(E L x g ∈,满足 ≤≤≤≤≤)()()()(21x f x f x f x g n ,则Levi 定理成立(不妨一证).6.设0>mE ,又设E 上的可积函数)()(x g x f 、满足)()(x g x f <,试证⎰⎰<E E m x g m x f d )( d )( .证 ∵ 0)()(>-x f x g ,∴ 由L 积分的单调性(3L )可知0d )]()([d )(d )( ≥-=-⎰⎰⎰E E E m x f x g m x f m x g .(设法去掉等号!) 若0d )()(d )]()([ =-=-⎰⎰E E m x f x g m x f x g ,则由命题3.2.5的(ⅲ)可知0)()(=-x f x g ,a.e.于E ,与)()(x g x f <矛盾!故0d )(d )( >-⎰⎰E E m x f m x g .7.设)(x f 为E 上的可积函数,如果对任何有界可测函数)(x ϕ,都有0d )()( =⎰Em x x f ϕ,则0=f ,a.e.于E ,试证明之.证 由 )(x ϕ的任意性,不妨设⎪⎩⎪⎨⎧=∈<∈->∈=),0( ,0 ),0( ,1),0( ,1 )(f E x f E x f E x x ϕ 则)(x ϕ为E 上的有界可测函数,由题设,应有0d d )()( )0( ==⎰⎰>f E E m f m x x f ϕ.而()()()0d d d d 0 0 0 ==+=⎰⎰⎰⎰>=>f E f E f E E m f m f m f m f ,故由命题3.2.5的(ⅲ)可知:0=f ,a.e.于E .8 设)(x f 为]1 ,0[上的可积函数,若对任何)1 ,0(∈a ,恒有0d )( ),0( =⎰a m x f ,则0=f ,a.e.于]1 ,0[.证 用反证法:设在]1 ,0[上)(x f 不是几乎处处为零,令 )1 ,0(=E ,)0(1>=f E E , )0(2<=f E E ,则21 mE mE 、中至少有一个大于0.不妨设01>mE ,则存在闭集 )1 ,0(1⊂⊂E F ,满足0>mF ,从而0d )( >⎰F m x f .令}sup{ },inf{F x x F x x ∈=∈=βα,则 10<<<βα.现取)1 ,(β∈r ,并令F r G -=) ,0(,则G 为开集.由于对任何)1 ,0(∈a ,恒有0d )( ) ,0( =⎰a m x f ,于是有0d )( ) ,0( =⎰r m x f ,所以,0d )(0d )(d )(d )( ) ,0( <-=-=⎰⎰⎰⎰F F r G m x f m x f m x f m x f . (*)又设 ∞==1) ,(i i i b a G ,其中) ,(i i b a 为互不相交的构成区间,则必存在某个G b a k k ⊂) ,(,使得0d )(),( <⎰k k b a m x f (否则必有0d )( ≥⎰Gm x f 而与(*)式矛盾!).但000d )(d )(d )() ,0( ) ,0( ) ,( =-=-=⎰⎰⎰kkkka b b a m x f m x f m x f ,为此矛盾!故 0=f ,a.e.于]1 ,0[.9.设]) ,([)(b a L x f ∈,试证:对每个N ∈n ,)]([x nf (取整函数)可积且有等式⎰⎰=∞→),( ),( 1d )( d )]([ limb a b a n n m x f m x nf.证 当n k n k x f 1)(+<≤(Z ∈k )时,1)(+<≤k x nf k ,k x nf =)]([,nkn x nf =)]([1. ∴ ][)(1nf x nn =ϕ 为简单函数列,且 )()(lim x f x n n =∞→ϕ. 故 ⎰⎰⎰==∞→∞→),( ) ,( 1),( 1d )(d )]([lim d )]([limb a b a nn b a n n m x f m x nf m x nf.10.设对每个N ∈n ,)(x f n 在E 上可积,f f n →,a.e.于E ,且一致有K m x f En ≤⎰ d )(,K 为常数,则)(x f 在E 上可积.试证明之.证 设()f f E E n →=0,由f f n →于0E ,得 f f n →于0E . 由法都(Fatou )定理,得K m f m f m f En n E n n E≤≤=⎰⎰⎰∞→∞→0d limd lim d .∵ ()00=-E E m ,∴0d 0=⎰-EE m f ,于是有∞<≤=⎰⎰K m f m f E E 0d d ,即 f 在E 上可积,从而 )(x f 在E 上可积.11.设)(x f ,)(x f n (N ∈n )均是E 上的可积函数,f f n →,a.e.于E ,且⎰⎰=∞→EEn n m x f m x f d )( d )( lim.试证:在任意可测子集E e ⊂上,有 ⎰⎰=∞→een n m x f m x f d )( d )( lim .证 由法都(Fatou )定理,有 ⎰⎰⎰∞→∞→≤=en n e n n e m f m f m f d lim d lim d ①;同理有⎰⎰-∞→-≤eE n n eE m f m f d limd ;运用性质若()n n ny x +lim 存在,则()n n n n ny x y x lim lim lim+=+,(*)则有⎰⎰⎰⎰⎰---=-=eE En neE Ee mf m f m f m f m f d d lim d d d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实变函数论》习题选解一、集合与基数1.证明集合关系式:(1))()()()(B D C A D C B A --⊂--- ; (2))()()()(D B C A D C B A -=--; (3)C B A C B A )()(-⊆--;(4)问)()(C B A C B A --=- 成立的充要条件是什么?证 (1)∵cB A B A =-,cc c B A B A =)((对偶律),)()()(C A B A C B A =(交对并的分配律), ∴)()()()()()(D C B A D C B A D C B A c c cc c==---第二个用对偶律)()()()()()(B D C A D B C A D B A C B A c c c c c --=⊆=交对并分配律.(2))()()()()()(c c c cD B C A D C B A D C B A ==--交换律结合律)()()()(D B C A D B C A c-==第二个用对偶律.(3))()()()()(C A B A C B A C B A C B A c ccc ===--分配律C B A C B A c )()(-=⊆.(4)A C C B A C B A ⊆⇔--=-)()( . 证 必要性(左推右,用反证法):若A C ⊄,则C x ∈∃ 但A x ∉,从而D ∀,)(D A x -∉,于是)(C B A x --∉; 但C B A x )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上,∵A C ⊆,∴C C A = ,如图所示:故)()(C B A C B A --=- .2.设}1 ,0{=A ,试证一切排列A a a a a n n ∈ ),,,,,(21所成之集的势(基数)为c .证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n 为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ,令 n a a a a f 21.0)(=,特别,]1 ,0[0000.0)0(∈== f ,]1 ,0[1111.0)1(∈== f ,即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ n a a a ,则f 是一一对应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.3.证明:整系数多项式的全体是可列的(可数的).证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++= 2210对应于一个序列:n a a a a ,,,,210 ,而每个)0(n i a i ≤≤取自可数集N N Z }0{-=,因此,全体n 次整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合 N∈=n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E 的基数c E =,为证c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数]1 ,0[ Q 排列成 ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在 ,,,,21n r r r 处的值 ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:)(lim )(k n k r f x f ∞→=.现在,作映射E C →]1 ,0[:ϕ,)),(,),(),(()(21 n r f r f r f x f ,则ϕ是单射,而集E C f r f r f r f A n ⊂∈=}]1 ,0[)),(,),(),({(21 是全体实数列E 的一个子集,故]1 ,0[C ~E A ⊂,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.附注 ①若∅=21A A ,∅=21B B ,又1f :1A ~1B ,2f :2A ~2B .则存在f :21A A ~21B B ;假如21A A ⊂,21B B ⊂,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?解 若∅=21A A ,∅=21B B ,令⎩⎨⎧∈∈=,),(,),()(2211A x x f A x x f x f 则)(x f 就是21A A 到21B B 的一一对应.若21A A ⊂,21B B ⊂,则12A A -与12B B -之间不一定存在一一对应.例如:} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211 n B A n B n A ====,),3 ,2( 1:1 =+n n n f ,),2,1( :2 =n n n f ,则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.②几个常见的一一对应:(ⅰ)) ,(b a ~R ,()) ,( , tan )(2b a x x f a b ax ∈-⋅=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2∈-=x xxx f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为 , , , ,21n r r r ,而]1 ,0[中的有理数排列为 , , , , ,1 ,021n r r r .作其间的对应f 如下:⎪⎪⎩⎪⎪⎨⎧>====+,中无理数时是当当当当)1 ,0(, ),2( ,,,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).(ⅲ)N N ⨯~N ,()N N ⨯∈-=-),( , )12(2),(1j i j j i f i .这是因为任一自然数均可唯一表示为q n p⋅=2(p 非负整数,q 正奇数),而对非负整数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c F 2=. 证 1.c F 2≥;设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即⎩⎨⎧-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记}]1 ,0[{⊂=E E M ,}]1 ,0[)({⊂=X E x E χ,则M ~X ,c M 2==X .而F ⊂X ,从而有F ≤X ,即F c ≤2.2.cF 2≤.对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而cB 2=,从而有cF G F 2≤=.综合 1, 2立知 cF 2=.附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ⊂⊂,而A ~C ,则B ~C (此结果更便于应用).5.试证任何点集的内点全体组成的集是开集.证 设集F 的内点集为0F (称为F 的内部),下证0F 为开集.F x ∈∀,由内点的定义,存在x 的邻域F I x x x ⊆=),(βα.现作集 Fx x I G ∈=,则显然G 为开集,且G F⊆0.另一方面,对任意G y ∈,存在0x I ,使得F I y x ⊆∈0,所以,y 为F 的内点,即0F y ∈,也就是说0F G ⊆.综上有G F =0为开集. 6.开映射是否连续?连续映射是否开?解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[ ±±=+n n n 上作Cantor 三分集n P ,且令n n P n n G -+=]1 ,[,而 +∞-∞==n n P P , +∞-∞==n n G G ,则G 为开集.又设G 的构成区间为} ,3 ,2 ,1 ), ,{( =k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )现在R 上定义函数 ⎪⎩⎪⎨⎧∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k kk k π 则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (kk k k k k a b b a b b ------βπαπ;若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)(x f 的不连续点.又连续映射未必为开映射.例:2)(x x f =在R 上连续,但开集)1 ,1(-的像为)1 ,0[非开非闭.7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '.解 P E ='.分以下三步:①设Cantor 集为P ,其补集(或叫余集)为G ,则 ),(),(),(989792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ⎩⎨⎧=,2,0i a ⎪⎩⎪⎨⎧=,2,1,0i b ( ,3 ,2 ,1=i ).由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设n a a a y 21.0=;当G x ∈时,可设 2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有0200.021n a a a y =右;对于G 的构成区间的左端点左y 有 20222.021n a a a y =左.由此可见,G E ⊆,且当E z ∈时,有 111.0)(2121n a a a y y z =+=右左.②下证Cantor 集P 中的点都是E 的极限点:对P y ∈∀,由于 n a a a y 21.0=,取E z k ∈,则 111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而k k k k k y z 3131********1<⋅=++≤-+++ , 故,0 ,0>∃>∀N ε当N k >时,有ε<k 31,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.③下证G x ∈∀,有E x '∉.事实上,有两种情况:10.若E x ∈,则只能是G 的构成区间的中点,即 111.021n a a a x =.由Cantor集的构造知:对)( x z E z ≠∈∀,都有 n x z 31≥-,所以,E x '∉; 20.若E x ∉且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ,于是,E z ∈∀,有m x z 31>-,所以,E x '∉. 故G 中的点不属于E '.综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证∅≠∞= 1k k E .证 用反证法:若∅=∞= 1k k E ,则()] ,[\] ,[\] ,[11b a E b a E b a k k k k ==∞=∞= ,从而} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列),且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c k=,使得] ,[1b a E nk ck ⊇= ,即()] ,[\] ,[1b a E b a n k k == . ∴ ] ,[\] ,[1b a E b a n k k == ,从而∅== nk k E 1,故∅=n E ,矛盾!附注 更一般地,若非空闭集套}{n E : ⊃⊃⊃⊃n E E E 21满足0sup )(,−−→−-=∞→∈n E y x n y x E nρ,则存在唯一的 ∞=∈10n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”) 证 由n E 非空,取) ,3 ,2 ,1( =∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+⊃n n E E ,所以,) ,2 ,1 ,0( =⊂∈++m E E x n m n m n ,从而0)(sup ,−−→−=-≤-∞→∈+n n E y x n m n E y x x x nρ,由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n −−→−∞→.又由n E 为闭集立知n E x ∈0,从而 ∞=∈10n n E x .存在性得证.下证唯一性:若另有 ∞=∈10n n E y ,则) ,2 ,1( 00 =∈n E y x n 、,而0)(00→≤-n E y x ρ,所以,00x y =.这就证明了唯一性.9.若] ,[)(b a C x f ∈,则 ()αα≥∈∀f E , R 为闭集.证 只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( =∈n E x n ,满足0lim x x n n=;又由于诸 ] ,[ b a E x n ⊂∈以及)(x f 的连续性,从而有] ,[ ,)(0b a x x f n ∈≥α 以及 α≥=)(lim )(0n nx f x f .这就证明了E x ∈0.9*.若在],[b a 上,)()(lim x f x f n n=,记}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,证明:() ∞=∞→+=11lim )(k kn n E E αα. 证 一方面,当)(αE x ∈时,α>)(x f ⇒, k ∃使得kx f 1)(+>α,即kn nx f 1)(lim +>α, N ∃⇒当N n >时,kn x f 1)(+>α()() ∞=∞→∞→+∈⇒+∈⇒111lim lim k kn n kn n E x E x αα. 另一方面,() ∞=∞→+∈11lim k kn n E x αk ∃⇒,使()k n n E x 1lim +∈∞→α, N ∃⇒当N n >时, ()k n E x 1+∈α. 即 kn x f 1)(+>α(N n >)k n nx f x f 1)(lim )(+≥=⇒α, α>⇒)(x f ,从而)(αE x ∈. 综上可得 () ∞=∞→+=11lim )(k kn n E E αα. 10.每一个闭集是可数个开集的交集.证 设F 为闭集,作集) ,2 ,1( }),( {1 =<=n F x x G nn ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证: nn G F =.事实上,由于对任意N ∈n 有n G F ⊂,故有 nn G F ⊂;另一方面,对任意 nn G x ∈0,有 ) ,2 ,1( ),(010 =<≤n F x nρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G nn ⊂ .综上可知: nn G F =.附注 此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.证 可有两种证法(很麻烦):一种是反证法,即若 nn F b a I ==) ,(0,其中}{n F 为两两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但 nn F x ∉0,从而得出矛盾;另一种证法是:记) ,(b a =∆,证明下述更强的结果:若}{n F 为含于∆内的任一组两两互不相交的闭集列,则 nn F -∆的势(基数)等于连续势c ,从而立知不可能有nn F b a ==∆) ,(.取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且100000] ,[ , F b a I b b a a ⊃=<≤<.又记) ,( , ) ,(0201b b a a =∆=∆(非空),则有两种情况: ①若)2 , 1( 2=∆∞=i F n n i中至少有一个空集,比如 21∅=∆∞= n n F ,而∅=∆⊂∆0111I F ,所以, 11∅=∆∞= n n F , 11∆⊃-∆∞= n n F .因此,c F nn=∆≥-∆1 .问题得证.②)2 , 1( 1=∆∞=i F n n i均不为空集,对)2 , 1( =∆i i ,在 , ,32F F 中存在最小的下标)(1i n 使∅≠∆i n i F )(1,显然,2},min{)2(1)1(11≥=n n n 以及)(1, , ,00i n F b b a a ∉,从而i n i n i i F F ∆=∆ )(1)(1为含于开区间i ∆内的闭集,对此闭集仿上作出两个闭区间)2 ,1( )(1=i I i ,它们满足:(ⅰ))2(1)1(10 , ,I I I 互不相交; (ⅱ)21121)(101===⊃⊃i i n i i i i F F I I .对在∆中挖去)2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )(N k N k I =,它们满足:(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==互不相交;(ⅱ)111121)(0)]([+====⊃⊃N i i n i i N n j j n F F I I N n(因为1+≥N n N ).在开区间∆中挖去闭区间) , ,2 ,1 ; 2 , ,2 ,1( ,)(0N n j I I n j n ==后余下的12+N 个开区间中,如果至少有一个开区间比如0i ∆与2+≥N n n F 的交为空集,则由(ⅱ)知与 ∞=1n n F 的交也为空集,从而c F i nn=∆≥-∆0 .问题得证.若不然,则这12+N 个开区间均与2+≥N n n F 相交,重复上述步骤得到一列闭区间} ,{)(0j n I I ,再利用完备集的结构定理可知它关于] ,[b a 的余集为非空完备集,又在(ⅱ)中令∞→N ,得∞=∞==⊃1121)(0)]([i i n j j n F I I n所以,集 ∞=-1) ,(i i F b a 的势(基数)等于连续势c .附注 ①我们知道:可数个闭集的并集不一定是闭集,而此题结果又说明了“开区间(是开集)却不能表示成可数个互不相交的闭集的并集”,所以又引出了σF -集. ②任何闭区间不可能表示成可数个疏集的并集(提示:用反证法,若 ii F b a =],[,其中),2,1( =i F i 为疏集,可构造一闭区间套,则导出矛盾!)12.证明:用十进位小数表示]1 ,0[中的数时,其用不着数字7的一切数成一完备集.证 对]1 ,0[中的任一数x 均可表示为) ,2 ,1 },9 , ,2 ,1 ,0{( 101=∈=∑∞=k a a x k k k k(x的这种表示法不一定唯一),而如此表示的级数其值都在]1 ,0[内. 记G 表示]1 ,0[中数的十进位可能表示101∑∞=k k ka 中必有某一个7=k a 的那些数的全体,从而只要证明G 关于]1 ,0[的余集G P -=∆]1 ,0[为完备集.作开区间()1081070,=δ,),2 ,1( 10810 , 1071011111=⎪⎪⎭⎫⎝⎛++=+=+=∑∑n a a n n k k k n n k k k aa nδ其中n a a ,,1 为不等于7而小于10的非负整数.显见这些开区间为]1 ,0[中可数无穷个无公共端点的互不相交的开区间,其内点用十 进位数表示时至少有一个7=n a ,而端点用十进位数表示时可使所有7≠k a .作这些开 区间的并集记为U ,则U 为开集,且根据完备集的结构定理知U 关于]1 ,0[的余集为一 完备集,于是,只要证明U G =即可.由U 的定义显见G U ⊂;另一方面,若G x ∈,则在x 的所有可能的十进位表示101∑∞=k k ka 中均必有一个7=n a ,且不妨设此n 为满足等式的最小整数即11,,-n a a 均不等于7.首先证明下述两种情况不能发生:①) ,2 ,1( 0 ++==n n m a m ,此时x 表示 区间11-n a a δ的左端点,它有另一十进位表示:∑∑+≥-=++11110910610n i in n i iia ,在此表示中一 切7≠n a ,因此x 不可能是这种情况;②) ,2 ,1( 7 ++==n n m a m ,此时x 表示区 间11-n a a δ的右端点,它有另一十进位表示:n n i i ia 1081011+∑-=,在此表示中一切7≠n a ,因此x 也不可能是这种情况.由此可知U x n aa ⊂∈-11δ.综上所证可知U G =.证毕!附注 ①c P =; ②P 在]1 ,0[中不稠密(因∅=)7.0 , 28.0( P ).13.试在]1 ,0[上定义一个函数,它在任一有理点不连续,但在任一无理点连续.解 ①设∑∞=1n n a 为一收敛的正级数,因]1 ,0[上全体有理数可数,故可记为},,,,{21 n r r r Q =.对]1 ,0[∈∀x ,定义函数∑<=xr n n a x f )(,其中和式是对x r n <的那些相应的n a 求和.则)(x f 为]1 ,0[上单调递增函数且在无理点连续,有理点不连续其跃度为000)()(n n n a r f r f =--+. 事实上,因为对任意x y >,0)()(≥=-∑<≤y r x n n a x f y f ,所以,)(x f 为增函数;又记}{y r x r E n n y x <≤=,当x 为无理数时,∅=+→y x xy E lim ,所以,)()0(x f x f =+. 同理可证)()0(x f x f =-,所以,)(x f 在无理点连续;当x 为有理数0n r 时,有0lim n y x x y r E =+→,所以,0)()0(n a x f x f =-+,且此时类似亦有)()0(x f x f =-(0n r x =),从而 000)()(n n n a r f r f =--+0>. ②微积分中熟知的Riemann 函数 ⎪⎩⎪⎨⎧≥==中无理数,为,,互素正整数]1,0[0),,( ,)(1x q p q p x x R p q p亦为所求函数.附注 ①不存在]1 ,0[上这样的函数,它在每一有理点连续,而在每一无理点不连续; (提示:只要证任何在]1 ,0[中有理点连续的函数)(x f ,至少在一个无理点上连续.可利用闭区间套定理).②设B A ,为非空不交闭集(可无界),则存在) ,()(∞+-∞∈C x f 满足:1)(0≤≤x f ,且当A x ∈时,0)(=x f ,而当B x ∈时,1)(=x f ; (提示:),( , ),(),(),()(+∞-∞∈+=x B x A x A x x f ρρρ,其中),(A x ρ为点x 到集A 的距离.再证分子连续,分母大于0连续,从而)(x f 连续.而满足条件显然)更一般地,此结果可推广到n 个非空不交闭集上:设),,2,1(n k A k =为n 个非空不交 闭集,∃连续函数)(x f 使得k A x ∈时,k C x f =)((k C 为常数,n k ,,2,1 =),则⎪⎪⎪⎩⎪⎪⎪⎨⎧∉=∈====∑∑. ,),(1),(,,,2,1 , ,)(111 n k k nk k nk kk k k A x A x A x C n k A x C x f ρρ即可. 二、勒贝格(Lebesgue )测度1.设1E 、2E 均为有界可测集,试证()()212121E E m mE mE E E m -+=.证 因1E 、2E 可测,则21E E 可测,212E E E -可测,且)()(212212E E m mE E E E m -=-.又由()∅=-2121E E E E ,得()()()2121212121E E m mE mE E E E m mE E E m -+=-+=.2.试证可数个零测度集的并仍是零测度集.证 设 ∞====1, ,2 ,1 ,0n n n E E n mE ,则E 可测,且有0011=≤⎪⎪⎭⎫ ⎝⎛=≤∑∞=∞=n n n n mE E m mE ,∴ 0=mE .3.设有两个开集21G G 、,且21G G ⊆,那么是否一定有21mG mG <?解 不一定成立.例:)2 ,1()1 ,0(1 =G ,)2 ,0(2=G ,则21G G ⊂,但212mG mG ==.4.对任意开集G ,是否一定有mG G m =成立?解 不一定.例 :对]1 ,0[中的所有有理数} , , , ,{21 n r r r ,作开集如下:∞=++⎪⎭⎫ ⎝⎛+-=12221 ,21n n n n n r r G ,则G 为开集,且2121*11=≤=∑∞=+n n G m mG .但由]1 ,0[⊇G ,可得1]1 ,0[=≥m G m .故mG G m ≠.5.设n A A A 、、、 21是]1 0[,中n 个可测集,且满足11->∑=n mA nk k ,试证01>⎪⎪⎭⎫ ⎝⎛= n k k A m .证 由1题可知:)()(212121E E m mE mE E E m -+=.又∵]1 ,0[⊆i A ,∴ 1≤i mA ,n i , ,2 ,1 =,而cn i c i ni i A A ⎪⎪⎭⎫⎝⎛=== 11,∴∑∑====--=-≥⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛n i i n i ci n i c i n i i mA m mA A m A m 1111)]1 ,0[(1110)1(111>--=+-=∑∑==n mA mA n n i i n i i .(由已知11->∑=n mA nk k )6*.设0*>=q E m ,则对任何) ,0(q p ∈,存在E E ⊂0,使得p E m =0*(称为“外测度的介值定理”).(以下证明最好能看懂,否则Pass !)证 ①先设E 是有界集,即] ,[b a E ⊆,0*>=q E m .令()] ,[**)(x a E m E m x f x ==,] ,[b a x ∈,则)(x f 是] ,[b a 上单调不减的连续函数.事实上,10.因∅==或}{}{a a E E a ,E b a E E b ==] ,[ ,则0)(=a f ,0)(>=q b f ;当21x x <,且] ,[21b a x x ∈、时,21] ,[] ,[21x x E x a E x a E E =⊆= ,由外测度的单调性,有)(**)(2121x f E m E m x f x x =≤=.所以,)(x f 是] ,[b a 上的单调不减函数.20.因()1112*]),[(***)()(2112x x x x E m x x E E m E m E m x f x f -=-=-()122121],[*],[*x x x x m x x E m -=≤≤ ;同理,当12x x <时,2121)()(x x x f x f -≤-. ∴ 2121)()(x x x f x f -≤-.于是,让1x 为] ,[b a 上任意一点x ,而] ,[2b a x x x ∈∆+=,则有x x f x x f ∆≤-∆+)()(,故当0→∆x 时,)()(x f x x f →∆+,即] ,[)(b a C x f ∈.②由] ,[)(b a C x f ∈,) ,0(q p ∈∀,即)()(b f p a f <<,由闭区间上连续函数的介值定理,] ,[0b a x ∈∃,使得p x f =)(0,即()p x a E m =] ,[*0 . ③当E 无界时,令] ,[][n n E E n -= ,N ∈n ,则n E ][可测,满足⊆⊆⊆⊆n E E E ][][][21,且有 ∞==1][n n E E ,∴ 0*][*lim >>==∞→p q E m E m n n .由极限的保号性,N ∈∃0n ,使得p E m n >0][*.记)( ][*00p p E m n >=,而0][n E 为有界集:] ,[] ,[][000n n n n E E n -⊆-= .如前两步所证,作函数()] ,[][**)(00x n E m E m x f n x -==则)(x f 在] ,[0n n -上连续不减,且000)(0)(p n f n f =<=-.由00p p <<,) ,( 00n n x -∈∃,使得p x f =)(0,即p E m x =0*.附注 若E 可测,0>=q mE ,则 q p p <<∀0 ,,∃可测集E E ⊂1,使p mE =1.7.试作一闭集]1 ,0[⊂F ,使F 中不含任何开区间,但21=mF . 解 仿照Cantor 集的方法构造闭集F : 第一步:将]1 ,0[作12等份,挖去中央的开区间1)127,125(G =,长度为61; 第二步:将余下的两个闭区间]125,0[和]1 ,127[再各12等份,分别挖去中央的开区间2)7259,7255()7217,7213(G = ,各长6131⨯,共长61312⨯⨯; ……第n 步:在余下的12-n 个闭区间中,分别挖去其中央处长为()61131⨯-n 的开区间,记这12-n个互不相交的开区间之并为n G ,其长度为12-n ()()1326161131--⨯=⨯⨯n n ;将这手续无限进行下去,得一串开集 ,, , , ,321n G G G G . 令 ∞==1n n G G ,则G 为开集,且G F \]1 ,0[=有与Cantor 集类似的性质:①F 为闭集且是完备集; ②F 不含任何开区间(疏集); ③F 可测,且由于()21132611132611=-===∑∑∞=-∞=n n n n mG mG , 故21211]1 ,0[=-=-=mG m mF . 附注 ①当第n 次去掉的12-n 个开区间的长度为n51时,则32115121525111=--=⋅-=∑∞=-n n n mF ;②对任何10 ,<<αα,当第n 次去掉的12-n 个开区间的长度为()13131--⋅n α时,所得开集G 的测度为()ααα-=-⋅==-∞=--∑1113231113231n n mG ,则 α=-=mG mF 1,这可作为一般公式来应用.8.试证定义在) ,(∞+-∞上的单调函数的不连续点集至多可数,因而是0测度集.证 设)(x f 为) ,(∞+-∞上的单增函数,则间断点必为第一类间断点,即若0x 为)(x f 的间断点,则0)0()0(00>--+x f x f .记}0)0()0({>--+=x f x f x E ,则E x ∈∀,))0( ),0((+-x f x f 为y 轴上的一个开区间,每个开区间中可取一有理数x r ,则E 中每个元x 与有理数集中一元x r 相对应,即E 与Q 的一个真子集一一对应,故Q ≤E ,即E 至多可数,故0=mE .9.设N ∈n E n },{为可测集列,且∞<∑∞=1n n mE ,则0lim =⎪⎭⎫ ⎝⎛∞→n n E m .证 ∵∞<∑∞=1n n mE ,∴ , ,0N ∃>∀ε使ε<∑∞=Nn n mE .而∞=∞=∞=∞→⊆=Nn n k k n n n n E E E 1lim ,∴ε<≤⎪⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∑∞=∞=∞→N n n N n n n n mE E m E m lim . 故 0lim =⎪⎭⎫ ⎝⎛∞→n n E m .10.试举出一列可测集}{n E ,含在一个有限区间中,而且n n mE ∞→lim 存在,但⎪⎭⎫ ⎝⎛≠⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m lim lim .解 考察如下集列 ⎪⎩⎪⎨⎧=+=--=), ,6 ,4 ,2( )1 ,0[),,5 ,3 ,1( ]0 ,1(11 n n E n n n显然 ),3,2,1( )2 ,2( =-⊂n E n .又 ()()]1 ,1[1 ,1 1 ,1 lim 1111111-=⎥⎥⎦⎤⎢⎢⎣⎡+--⎥⎥⎦⎤⎢⎢⎣⎡+--==++∞=∞= 为偶数为奇数n nn n n n n n k k n nE E , }0{}0{lim 11 ===∞=∞=∞= n n nk k n n E E .(从而n nE lim 不存在) 所以,0lim 2lim =⎪⎭⎫ ⎝⎛≠=⎪⎭⎫ ⎝⎛∞→∞→n n n n E m E m .虽然n nE lim 不存在,但}{n mE 存在极限:()11lim lim 1=+=nnn nmE . 附注 一般,若}{n E 为可测集列,且∞=1n n E 有界,则n n n n mE E m ∞→∞→≤⎪⎭⎫ ⎝⎛lim lim ,n n n n mE E m ∞→∞→≥⎪⎭⎫ ⎝⎛lim lim .(不妨一证) 11*.设N ∈n En },{为R 中互不相交的点集列, ∞==1n n E E,则∑∞=≥1**n n E m E m .证 因 ∞==1n n E E ,且n E 互不相交,则对每个n E ,有σF 型集n F ,使n n E F ⊂,且n n E m mF *=.∴ ∞=1n n F 仍为σF 型集.又对于E 的σF 型集E F ⊂,且E m mF *=.但F F n n ⊂∞= 1,故有∑∞=≥1**n n E m E m .三、可测函数1.证明)(x f 是E 上可测函数的充要条件是:对任一有理数r ,集)(r f E >恒可测.如果集)(r f E =恒可测,问)(x f 是否一定可测? 证 必要性:显然,∵ 有理数属实数集.充分性:设对任一有理数r ,集)(r f E >恒可测,则对R ∈∀α,∃有理数列∞=1}{n n r ,α>n r ,使得α=∞→n n r lim .从而 ∞=>=>1)()(n n r f E f E α为可测集.又如果对任何有理数r ,集)(r f E =恒可测,则f 不一定是可测的.例如:R =E ,F 是E 中的不可测集(它是存在的,尽管不容易构造,教材P65定理2.5.7),对任意F x ∈,3)(=x f ;F x ∉,2)(=x f .则对任何有理数r ,∅==)(r f E 恒可测,但F f E =>)2(是不可测集,从而f 不可测.2.设)(x f 是E 上的可测函数,F G 、分别为R 中的开集和闭集,试问)(G f E ∈和)(F f E ∈是否可测?这里记号})(:{)(A x f E x A f E ∈∈=∈.答 )(G f E ∈和)(F f E ∈均可测. 证 令 ∞==1) ,(n n n b a G ,j i ≠时,∅=) ,() ,(j j i i b a b a ,即) ,(n n b a (N ∈n )为开集G 的构成区间.∵)(x f 是E 上的可测函数,∴)(n n b f a E <<是E 中的可测集,从而∞=<<=∈1)()(n n n b f a E G f E 仍为可测集.又对R 中的闭集F ,令F G \R =,则G 为开集.由上面证明可知)(G f E ∈可测,故)(\)(G f E E F f E ∈=∈仍可测.3.(1)证明:)(lim lim n n n n A S A S -=-∞→∞→;(2)设n A 是下述点集:当n 为奇数时,)1 ,0(1n n A -=;当n 为偶数时,)1 ,(1nn A =.证明:∞=1}{n n A 有极限,并求此极限.证 (1))(lim )(lim 111n n k kn n k k n n k k n n n n A S A S A S A S A S -=-=⎪⎪⎭⎫ ⎝⎛-=-=-∞→∞=∞=∞=≥∞=∞=∞→ .(2))1 ,0()1 ,0(lim 11===∞=∞=≥∞→ k k kn n n n A A ,())1 ,0(1 ,lim 1111=-==∞=∞=≥∞→ k kk k kn n n n A A , ∴ )1 ,0(lim =∞→n n A .4.试作]1 ,0[=E 上的可测函数)(x f ,使对任何连续函数)(x g 有0)(≠≠g f mE .此结果与鲁金(Lusin )定理是否矛盾?解 作函数⎩⎨⎧=∞+∈=,0 , ],1 ,0( , )(1x x x f x 则显然)(x f 是]1 ,0[=E 上的可测函数.设)(x g 是]1 ,0[=E 上的任一连续函数,则)(x g 在]1 ,0[=E 上有界,于是,∃0>N ,使得N x g ≤)((]1 ,0[∈x ).而在] ,0[1N 上,N x f >)(,所以有]) ,0[( )()(1N x x g x f ∈≠.故0] ,0[)(11>=≥≠NN m g f mE .这就是说,]1 ,0[=E 上任何连续函数)(x g 都有0)(≠≠g f mE .此结果与鲁金定理并不矛盾.事实上,0>∀ε,可取闭集E F ⊂=]1 ,[2ε,则 εε<=2)\(F E m ,而所作的函数)(x f 在F 上显然是连续的.此题也说明鲁金定理结论中的0>ε可任意小,但都0≠.5.设)(x f 是) , (∞+-∞上的连续函数,)(x g 是] , [b a 上的可测函数,试证明:)]([x g f 是可测函数.证 R ∈∀α,由)(x f 在R 上连续可知:)(α>f R 是开集,设其构成区间为) ,(i i βα ( ,2 ,1=i ).于是,N ∈∀i ,当) ,()(i i x g βα∈时,α>)]([x g f ;反之,若α>)]([x g f ,则必有N ∈i ,使) ,()(i i x g βα∈.所以,()()() ii i ii i x g E x g E x g f E βαβαα<<=∈=>)() ,()()]([.但由题设:)(x g 在] , [b a 上可测,则()i i x g E βα<<)(可测,故()α>)]([x g f E 可测.6.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f (即f f n−→−μ),且在E 上几乎处处有)( )()(N ∈≤n x g x f n .试证在E 上几乎处处有 )()(x g x f ≤.证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使f f k n →,a.e.于E (∞→k ),即E E ⊂∃0,f f kn →于0E ,且0)(0=-E E m .令()()f f E g f E A k n n n →/⎪⎪⎭⎫⎝⎛>= ,则()0=→/f f mE k n ;而由题设:g f n ≤,a.e.于E (N ∈n )可知,nn g f mE 2)( ,0εε<>>∀(N ∈n ),则有()()()εε=<+><→/+⎪⎪⎭⎫ ⎝⎛>≤∑∑∞=∞=1120n n n n n n n g f mE f f mE g f E m mA , 即0=mA ,而在A E -上有g f n ≤(0E x ∈∀)且f f k n →(0E x ∈∀).故)()(lim )(x g x f x f k n k ≤=∞→(0E x ∈∀),即)()(x g x f ≤,a.e.于E .7.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,且在E 上几乎处处有)()(1x f x f n n +≤)( N ∈n ,则)(x f n 在E 上几乎处处收敛于)(x f (即f f n →,a.e.于E ).证 ∵ f f n −→−μ,由黎斯(Riesz )定理,∃子列)}({)}({x f x f n n k ⊆,使 f f kn →,a.e.于E (∞→k );再由)()(1x f x f n n +≤,a.e.于E ,则必有f f n →,a.e.于E .8.设函数列∞=1)}({n n x f 在E 上依测度收敛于)(x f ,而)(x f n ~)(x g n )( N ∈n (称为对等,也即n n g f =,a.e.于E ),则)(x g n 在E 上也依测度收敛于)(x f .证 ∵ f f n −→−μ,且n n g f =,a.e.于E ,则0>∀ε,()0lim =≥-∞→εf f mE n n 且()0=≠n n g f mE .∵ f f f g f g n n n n -+-≤-,∴ ()()()εεε≥-≥-⊆≥-f f E f g E f g E n n n n .又()()()()0−−→−≥-≤≥-+≥-≤≥-∞→n n n n n n f f E f f E f g mE f g mE εεεε∴ ()0−−→−≥-∞→n n f g mE ε,即 f g n −→−μ.9.试举例说明:对于叶果洛夫(Egorov )定理,不能加强为除掉一个0测度集外,)(x f n一致收敛于)(x f .解 构造函数列)}({x f n 如下:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-⋅+-<≤<<+==+++++,1 ,0 , ,)1(1, ,1 ,0 ,)2( ,0 ,0 )(111111112121x x x n n x x x n x x f n n n n n n n n 则)(x f n 是]1 ,0[=E 上的连续函数列,必可测,且 )(0)(lim x f x f n n ==∞→于]1 ,0[=E .下面证明:对任一0 ,00=⊂mE E E 时,)}({x f n 在0E E -上不会一致收敛. 取210=ε,无论N 取得多么大,总可取N N n >+=1,令[)02131 ,E A n n -=++,则显然A 非空(为什么?).但A x x f N ∈=+ ,1)(1, A x x f x f x f N N ∈>==-++ ,1)()()(011ε.所以,)}({x f n 在0E E -上不一致收敛.由此可知:叶果洛夫定理不能加强为:除掉一个0测度集外,)(x f n 一致收敛于)(x f .10.几乎处处有限的可测函数列)}({x f n )(x f −→−μ的充要条件是:对任何正数σ和ε,存在N ,当N m N n >> ,时,()εσ<≥-m n f f mE (即它是依测度的Cauchy 列). 证 必要性由)()(x f x f n −→−μ,则N n N >∃>>∀ , ,0 ,0εσ时,()22εσ<≥-f f mE n . 又易知:()()()22σσσ≥-≥-⊂≥-f f E f f E f f E m n m n ,则 ()()()22σσσ≥-+≥-≤≥-f f E f f E f f mE m n m n ,从而当N m N n >> ,时,()εσ<≥-m n f f mE .下证充分性:先找出一个子序列f x f k n k −−→−∞→)}({,a.e.于E .任取数列+∞<>∑∞=1,0 },{i i i i ηηη.由题设条件可知:存在k n ,使得()) ,2 ,1 ; ,2 ,1( 21==<≥-+m k f f mE km n n kk k η,从而可取+∞↑kn ,且有 ()kn n kkk f f mE η<≥-+211.对这串}{kn 作P Q ,:() ∞=∞=≥-=+1211i ik n n kk k f f E Q ,() ∞=∞=<-=-=+1211i ik n n kk k f fE Q E P .令() ∞=≥-=+ik n ni kk k f f E R 211,则 ⊃⊃⊃⊃⊃+121n n R R R R, ∞==1i i R Q .因此,()0lim limlim 211=≤≥-≤=∑∑∞=∞→∞=∞→∞→+ik ki ik n ni i i kk k f f mE mR mQ η,所以,0=mQ .下面证明)}({x f k n 是P 上的收敛基本列.记 () ∞=∞=∞==<-=+11211i ii ik n nA f f E P kk k ,则 ⊂⊂⊂++21i i iA AA .若P x ∈,则存在0i ,使得 ⊂⊂∈+100i i A A x .对任给的0>ε,必有0i i >,使得ε<-121i ,故对一切 ,2 ,1 ,=>m i l ,有 ε<=≤-≤-≤--∞=∞==∑∑∑+++1212111i i j j ij n n m ij n n n n j j j j m l l f f f f f f . 所以,)}({x f kn 在P 上的收敛于)(x f ,其中)( )(lim )(P x x f x f k n k ∈=∞→.显然,f f k n −→−μ,于是,对任何正数σ和ε,存在N ,当N n N n k >> ,时,()22εσ<≥-k n n f f mE ,()22εσ<≥-f f mE kn . 而()⊂>-σf f E n () 2σ≥-k n n f f E ()2σ≥-f f E k n ,所以,当N n >时, ()εσ<>-f f mE n ,即 f f n −→−μ于E .四、Lebesgue 积分1.设)()(x g x f 、都是E 上的可测函数,)()(E L x g ∈,且在E 上几乎处处成立)()(x g x f ≤,问在E 上)(x f 是否一定可积?解 )(x f 未必可积,因)(x f 不一定满足非负性.例如:取]1 ,0[=E ,0)(=x g ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∈-∈-∈-=-.0 ,0 ], ,( ,2, ], ,( ,4],1 ,( ,2)(12121214121x x x x x f n n n 则显然 )()(E L x g ∈,)()(x g x f ≤,但-∞=⋅-=∑⎰∞=1]1 ,0[ 21)2(d )(n n n m x f 不可积. 2.设在Cantor 集P 上定义函数)(x f 为零,而在P 的补集中长为n31的构成区间上定义)(x f 为n (N ∈n ),试证L x f ∈)(,并求积分值. 解 令 n e 为P 的补集G 中长为n 31的各构成区间之并,则 ∞==1n n e G ,n me n n 321-=.令 ⎪⎩⎪⎨⎧-∈=∈==, ]1 ,0[ ,0),, ,2 ,1( ,)(1 n i i i n e x n i e x i x ϕ 则简单函数列)}({x n ϕ满足 )()()()(021x f x x x n ≤≤≤≤≤≤ ϕϕϕ,且 f x n →)(ϕ.∴ 33232lim d )( lim d )( 1111]1 ,0[ ]1 ,0[ =⋅=⋅==∑∑⎰⎰∞=-=-∞→∞→n n n ni i i n n n n i m x m x f ϕ.即 ]1 ,0[L f ∈,且3d )( ]1 ,0[ =⎰m x f .3.设0)(≥x f 为可测函数,令 ⎩⎨⎧>≤=,)( ,0 ,)( ),()]([N x f N x f x f x f N 若若 试证明⎰⎰=EEN Nm x f m x f d )( d )]([ lim .证 由题设知: ≤≤≤≤≤N f f f ][][][021,且 f f N N −−→−∞→][,则由勒维(Levi )定理可知 ⎰⎰=E E N Nm x f m x f d )( d )]([ lim.4.设从]1 ,0[中取n 个可测子集n E E E 、、、 21,假定]1 ,0[中任一点至少属于这n 个子集中的p 个.试证:必有一集,它的测度不小于np.证 令 i E 的特征函数为)(x iE χ,则⎰⎰⎰+++=+++11 01 021d )(d )(d )(21x x x x x x mE mE mE n E E E n χχχp x p x x ni E i =≥⎪⎪⎭⎫⎝⎛=⎰⎰∑=1 0 1 0 1d d )(χ. 令 } , , , m ax {21n mE mE mE mE =,则 1≤mE ,从而 p mE mE mE mE n n ≥+++≥⋅ 21, ∴ npmE ≥.5.勒维(Levi )定理中去掉函数列的非负性假定,结论是否成立?解 Levi 定理中函数列的非负性条件是必要的,不可去,否则结论未必成立.例如: ,2 ,1 ,0 ,0 ],1 ,1[,0 ,)(11=⎩⎨⎧=-∈≠-=n x x x x f nx n , ⎩⎨⎧=-∈≠=,0,0 ],1 ,1[,0 , )(1x x x x f x则 0)(≠x f ,a.e.于]1 ,1[-,且有≤≤≤≤)()()(21x f x f x f n ,)()(lim x f x f n n =∞→.但()+∞=-⎰-01 11d x x n ,故 ⎰-1 1 d )(x x f n 不存在;同理,⎰-11 d )(x x f 也不存在. 因此,Levi 定理不成立.容易证明:若存在)()(E L x g ∈,满足 ≤≤≤≤≤)()()()(21x f x f x f x g n ,则Levi 定理成立(不妨一证).6.设0>mE ,又设E 上的可积函数)()(x g x f 、满足)()(x g x f <,试证⎰⎰<E E m x g m x f d )( d )( .证 ∵ 0)()(>-x f x g ,∴ 由L 积分的单调性(3L )可知0d )]()([d )(d )( ≥-=-⎰⎰⎰E E E m x f x g m x f m x g .(设法去掉等号!) 若0d )()(d )]()([ =-=-⎰⎰E E m x f x g m x f x g ,则由命题3.2.5的(ⅲ)可知0)()(=-x f x g ,a.e.于E ,与)()(x g x f <矛盾!故0d )(d )( >-⎰⎰E E m x f m x g .7.设)(x f 为E 上的可积函数,如果对任何有界可测函数)(x ϕ,都有0d )()( =⎰Em x x f ϕ,则0=f ,a.e.于E ,试证明之.证 由 )(x ϕ的任意性,不妨设⎪⎩⎪⎨⎧=∈<∈->∈=),0( ,0 ),0( ,1),0( ,1 )(f E x f E x f E x x ϕ 则)(x ϕ为E 上的有界可测函数,由题设,应有0d d )()( )0( ==⎰⎰>f E E m f m x x f ϕ.而()()()0d d d d 0 0 0 ==+=⎰⎰⎰⎰>=>f E f E f E E m f m f m f m f ,故由命题3.2.5的(ⅲ)可知:0=f ,a.e.于E .8 设)(x f 为]1 ,0[上的可积函数,若对任何)1 ,0(∈a ,恒有0d )( ),0( =⎰a m x f ,则0=f ,a.e.于]1 ,0[.证 用反证法:设在]1 ,0[上)(x f 不是几乎处处为零,令 )1 ,0(=E ,)0(1>=f E E , )0(2<=f E E ,则21 mE mE 、中至少有一个大于0.不妨设01>mE ,则存在闭集 )1 ,0(1⊂⊂E F ,满足0>mF ,从而0d )( >⎰F m x f .令}sup{ },inf{F x x F x x ∈=∈=βα,则 10<<<βα.现取)1 ,(β∈r ,并令F r G -=) ,0(,则G 为开集.由于对任何)1 ,0(∈a ,恒有0d )( ) ,0( =⎰a m x f ,于是有0d )( ) ,0( =⎰r m x f ,所以,0d )(0d )(d )(d )( ) ,0( <-=-=⎰⎰⎰⎰F F r G m x f m x f m x f m x f . (*)又设 ∞==1) ,(i i i b a G ,其中) ,(i i b a 为互不相交的构成区间,则必存在某个G b a k k ⊂) ,(,使得0d )(),( <⎰k k b a m x f (否则必有0d )( ≥⎰Gm x f 而与(*)式矛盾!).但000d )(d )(d )() ,0( ) ,0( ) ,( =-=-=⎰⎰⎰kkkka b b a m x f m x f m x f ,为此矛盾!故 0=f ,a.e.于]1 ,0[.9.设]) ,([)(b a L x f ∈,试证:对每个N ∈n ,)]([x nf (取整函数)可积且有等式⎰⎰=∞→),( ),( 1d )( d )]([ limb a b a n n m x f m x nf.证 当n k n k x f 1)(+<≤(Z ∈k )时,1)(+<≤k x nf k ,k x nf =)]([,nkn x nf =)]([1. ∴ ][)(1nf x nn =ϕ 为简单函数列,且 )()(lim x f x n n =∞→ϕ. 故 ⎰⎰⎰==∞→∞→),( ) ,( 1),( 1d )(d )]([lim d )]([limb a b a nn b a n n m x f m x nf m x nf.10.设对每个N ∈n ,)(x f n 在E 上可积,f f n →,a.e.于E ,且一致有K m x f En ≤⎰ d )(,K 为常数,则)(x f 在E 上可积.试证明之.证 设()f f E E n →=0,由f f n →于0E ,得 f f n →于0E . 由法都(Fatou )定理,得K m f m f m f En n E n n E≤≤=⎰⎰⎰∞→∞→0d limd lim d .∵ ()00=-E E m ,∴0d 0=⎰-EE m f ,于是有∞<≤=⎰⎰K m f m f E E 0d d ,即 f 在E 上可积,从而 )(x f 在E 上可积.11.设)(x f ,)(x f n (N ∈n )均是E 上的可积函数,f f n →,a.e.于E ,且⎰⎰=∞→EEn n m x f m x f d )( d )( lim.试证:在任意可测子集E e ⊂上,有 ⎰⎰=∞→een n m x f m x f d )( d )( lim .证 由法都(Fatou )定理,有 ⎰⎰⎰∞→∞→≤=en n e n n e m f m f m f d lim d lim d ①;同理有⎰⎰-∞→-≤eE n n eE m f m f d limd ;运用性质若()n n ny x +lim 存在,则()n n n n ny x y x lim lim lim+=+,(*)则有⎰⎰⎰⎰⎰---=-=eE En neE Ee mf m f m f m f m f d d lim d d d。

相关文档
最新文档