平行四边形全章知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形全章知识点整理

【知识脉络】

【基础知识】 Ⅰ. 平行四边形 (1)平行四边形性质

1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形. 2)平行四边形的性质(包括边、角、对角线三方面) :

A

B

D

O

C

边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等; 角:③平行四边形的两组对角分别相等; 对角线:④平行四边形的对角线互相平分.

【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.

(2)平行四边形判定

1)平行四边形的判定(包括边、角、对角线三方面):

A

B

D

O

C

边:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; 角:④两组对角分别相等的四边形是平行四边形; 对角线:⑤对角线互相平分的四边形是平行四边形.

2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.

3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一

半.

4)平行线间的距离:

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间

的距离。两条平行线间的距离处处相等。

Ⅱ. 矩形 (1)矩形的性质

1)矩形的定义:有一个角是直角的平行四边形叫做矩

形.

2)矩形的性质:

①矩形具有平行四边形的所有性质; ②矩形的四个角都是直角; ③矩形的对角线相等;

④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点

.

A

B

(2)矩形的判定 1)矩形的判定:

①有一个角是直角的平行四边形是矩形; ②对角线相等的平行四边形是矩形; ③有三个角是直角的四边形是矩形. 2)证明一个四边形是矩形的步骤:

方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;

方法二:若一个四边形中的直角较多,则可证三个角为直角. 3)直角三角形斜边中线定理:(如右图) 直角三角形斜边上的中线等于斜边的一半.

Ⅲ. 菱形 (1)菱形的性质

1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质:

①菱形具有平行四边形的所有性质; ②菱形的四条边都相等;

③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点.

1)菱形的判定:

①有一组邻边相等的平行四边形是菱形; ②对角线互相垂直的平行四边形是菱形; ③四条边都相等的四边形是菱形.

2)证明一个四边形是菱形的步骤:

方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”;

方法二:直接证明“四条边相等”.

Ⅳ. 正方形 (1)正方形的性质

1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形. 2)正方形的性质:

正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②

四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角. 3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是

对称中心. (2)正方形的判定 1)正方形的判定:

①有一组邻边相等且有一个角是直角的平行四边形是正方形; ②有一组邻边相等的矩形是正方形;

③对角线互相垂直的矩形是正方形;

④有一个角是直角的菱形是正方形;

⑤对角线相等的菱形是正方形;

⑥对角线互相垂直平分且相等的四边形是正方形.

相关文档
最新文档