数学初中竞赛 数与式 专题训练(含答案)
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
数学初中竞赛 数与式 专题训练(含答案)
数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( )A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( )A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( )A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3B .(a +1)(a 2﹣a +1)=a 3+1C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+275.已知x =﹣,则x 3+12x 的算术平方根是( ) A .0B .2C .D .2 6.如果,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( )A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( )A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( )A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( )A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( )A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( )(1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3(2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 . 14.已知互不相等的实数a ,b ,c 满足,则t = . 15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = .18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解: x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7=(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4)=(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解;(2)拓展:把代数式x 2+2xy ﹣3y 2因式分解:当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0,∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50.故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018)=[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0=0∴2a =0故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc=[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c )=(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ).故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确;故选:D .5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。
数学竞赛试题及答案初中
数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
数学奥林匹克竞赛训练题:代数部分(1)集合、数与式
数学奥林匹克竞赛训练题:代数部分(1)集合、数与式B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016 已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017 对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018 设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019 求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020 证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021 求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029 求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程. B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j ≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程.B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.把n2个互不相等的实数排成下表:a11,a12,…,a1na21,a22,…,a2n…a n1,a n2,…,a nn取每行的最大数得n个数,其中最小的一个是x;再取每列的最小数,又得n个数,其中最大的一个是y,试比较x n与y n的大小.【题说】1982年上海市赛二试题2【解】设x=a ij,y=a pq,则a ij≥a iq≥a pq所以x≥y.(1)当n是奇数时,x n≥y n.(2)当n是偶数时(i)如果x≥y≥0,则x n≥y n;(ii)如果0≥x≥y,则x n≤y n;(iii)如果x≥0≥y,则当x≥-y时,x n≥y n;当x≤-y时,x n≤y n.B1-032对任意实数x、y.定义运算x*y为:x*y=ax+by+cxy其中a、b、c为常数,等式右端运算是通常的实数的加法和乘法.现已知1*2=3,2*3=4,并且有一个非零实数d,使得对于任意实数x,都有x*d=x,求d的值.【题说】1985年全国联赛一试题2(4).原题为填空题.【解】由所设条件,有1*2=a+2b+2c=3 (1)2*3=2a+3b+6c=4 (2)x*d=ax+bd+cxd=(a+cd)x+bd=x(3)由(3)得a+cd=1 (4)B d=0 (5)因d≠0,故由(5)式得b=0.再解方程(1)及(2),得a=5,c=-1,最后由(4)式得d=4.B1-033计算下式的值:【题说】第五届(1987年)美国数学邀请赛题14.注意324=4³34.【解】x4+4y4=(x2+2y2)2-(2xy)2=[(x2+2y2)-2xy][(x2+2y2)+2xy]=[(x-y)2+y2][(x+y)2+y2]。
数学初中竞赛 数和式 专题训练(含答案)
数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( )A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( )A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( )A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3B .(a +1)(a 2﹣a +1)=a 3+1C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+275.已知x =﹣,则x 3+12x 的算术平方根是( ) A .0B .2C .D .2 6.如果,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( )A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( )A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( )A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( )A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( )A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( )(1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3(2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 . 14.已知互不相等的实数a ,b ,c 满足,则t = . 15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = .18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解: x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7=(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4)=(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解;(2)拓展:把代数式x 2+2xy ﹣3y 2因式分解:当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0,∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50.故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018)=[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0=0∴2a =0故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc=[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c )=(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ).故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确;故选:D .5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。
2024全国初中数学竞赛试题
1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)
16.(2021·全国·九年级竞赛)分解因式: (c a)2 4(b c)(a b) . 【答案】 (a c 2b)2 【详解】解法一 原式 (c2 2ca a2 ) 4(ab b2 ac bc) (c2 2ca a2 ) (4ab 4bc) 4b2 (a c)2 4b(a c) (2b)2 (a c 2b)2 . 解法二 原式 [(c b) (a b)]2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 [(c b) (a b)]2 (a c 2b)2 .
17.(2021·全国·九年级竞赛)分解因式: x2 (x a)2 a2x2 a2 (x a)2 . 【答案】 (x2 ax a2 )2 【详解】解法一 原式 [x2 (x a)2 a2 (x a)2 ] a2x2 (x2 a2 )(x a)2 a2 x2 (x2 a2 )(x2 2ax a2 ) a2 x2 (x2 a2 )2 2ax(x2 a2 ) (ax)2 (x2 a2 ax)2 (x2 ax a2 )2 . 解法二 原式 x2[(x a)2 a2 ] a2 (x a)2 x2 (x2 2ax 2a2 ) a2 (x a)2 (x2 )2 2x2 a(x a) [a(x a)]2 [x2 a(x a)]2 (x2 ax a2 )2 .
4.(2021·全国·九年级竞赛)
1
1
的值为( ).
4 59 30 2 3 66 40 2
A.无理数 【答案】D
B.真分数
C.奇数
D.偶数
【详解】原式
1
1
4 (5 2)2 25 2 3 32 3 (5 2)2 25 2 4 42
数学竞赛初中试题及答案
数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
初三竞赛数学试题及答案
初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 若a、b、c是三角形的三边长,且满足a²+b²+c²=ab+ac+bc,则该三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知a、b、c是实数,且a+b+c=0,那么下列式子中一定成立的是()A. ab+bc+ca=0B. (a+b)(b+c)(c+a)=0C. a²+b²+c²=ab+bc+caD. a³+b³+c³=3abc3. 一个等腰三角形的两边长分别为6和8,那么这个三角形的周长是()A. 16B. 20C. 22D. 244. 已知x²-3x+1=0,那么x³-5x+1的值为()A. 0B. 1C. -4D. -85. 一个数的平方根是2和-2,那么这个数是()A. 4B. -4C. 0D. 26. 已知一个二次函数y=ax²+bx+c(a≠0),其图像开口向上,且与x轴有两个交点,那么下列说法正确的是()A. a>0,b²-4ac>0B. a<0,b²-4ac>0C. a>0,b²-4ac<0D. a<0,b²-4ac<07. 一个圆的半径为r,那么这个圆的面积是()A. πrB. πr²C. 2πrD. 2πr²8. 已知一个等差数列的首项为a,公差为d,那么这个数列的第n项是()A. a+(n-1)dB. a-(n-1)dC. a+ndD. a-nd9. 已知一个等比数列的首项为a,公比为q,那么这个数列的第n项是()A. aq^(n-1)B. aq^nC. a/q^(n-1)D. a/q^n10. 已知一个函数y=f(x),那么下列说法正确的是()A. f(a)=f(b) 则a=bB. f(a)≠f(b) 则a≠bC. f(a)=f(b) 则a≠bD. f(a)≠f(b) 则a=b二、填空题(每题4分,共20分)11. 已知一个三角形的三边长分别为3、4、5,那么这个三角形的面积是_________。
初二数竞赛试题及答案
初二数竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 9 或 -9D. 813. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是:A. 5B. 6C. 7D. 84. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断5. 以下哪个是二次方程的解:A. x = 1/2B. x = 2C. x = -3D. x = 0二、填空题(每题2分,共10分)6. 一个数的立方等于-27,这个数是_________。
7. 如果一个数的绝对值是5,那么这个数可以是_________。
8. 一个数的倒数是1/4,那么这个数是_________。
9. 一个数的平方根是4,那么这个数是_________。
10. 一个数的平方根是-4,那么这个数是_________。
三、解答题(每题5分,共20分)11. 解方程:2x + 3 = 11。
12. 证明:如果一个三角形的两边分别为a和b,且a < b,那么这个三角形的周长不可能是偶数。
13. 计算:(2x + 3)(x - 4)。
14. 一个圆的半径是5厘米,求它的面积。
四、证明题(每题5分,共10分)15. 证明:直角三角形的斜边的平方等于两直角边的平方和。
16. 证明:如果一个数的平方是正数,那么这个数本身是正数或负数。
五、综合题(每题10分,共10分)17. 一个班级有40名学生,其中20名男生和20名女生。
如果随机抽取一名学生,求以下概率:A. 抽到男生的概率。
B. 抽到女生的概率。
C. 如果已经知道抽到的是男生,那么这名男生是班长的概率。
答案:一、选择题1. A2. C3. A4. A5. D二、填空题6. -37. ±58. 49. 1610. 无实数解三、解答题11. 解:2x + 3 = 11,2x = 8,x = 4。
初中数学竞赛试题及答案pdf
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
竞赛初中数学试题及答案
竞赛初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. ±93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/3D. 5/45. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 125π6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -4D. 47. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 6x^2 + 11x - 6 = 0D. x^4 - 1 = 09. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 1410. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。
12. 一个数的立方根是2,这个数是______。
13. 一个数的倒数是2,这个数是______。
14. 一个数的绝对值是8,这个数可以是______。
15. 如果一个数的平方是16,那么这个数是______。
16. 一个圆的直径是10,它的半径是______。
17. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边是______。
18. 一个数的平方是25,这个数是______。
19. 一个数的立方是-125,这个数是______。
20. 如果一个数的绝对值是-5的相反数,这个数是______。
三、解答题(每题10分,共50分)21. 解方程:2x + 5 = 13。
初中数字竞赛试题及答案
初中数字竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于16,这个数是?A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 计算下列哪个表达式的结果是负数?A. 3 - (-2)B. -3 + 2C. 5 × (-1)D. 0 ÷ (-2)答案:C4. 哪个分数是最简分数?A. 4/8B. 6/9C. 5/10D. 3/5答案:D5. 下列哪个图形的周长最长?A. 边长为3的正方形B. 边长为4的正方形C. 半径为2的圆D. 边长为5的正方形答案:D6. 一个数加上它的相反数等于?A. 0B. 1C. 2D. -1答案:A7. 哪个数是3的倍数?A. 7B. 9C. 10D. 11答案:B8. 一个数除以它自己(除了0)的结果是?A. 0B. 1C. -1D. 无法确定答案:B9. 哪个数是质数?A. 4B. 6C. 9D. 7答案:D10. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题2分,共20分)1. 一个数的立方等于-8,这个数是____。
答案:-22. 一个数的平方根等于2,这个数是____。
答案:43. 一个数的倒数是1/3,这个数是____。
答案:34. 一个数的相反数是-5,这个数是____。
答案:55. 一个数的绝对值是3,这个数可能是____或____。
答案:3,-36. 一个数的平方是25,这个数是____或____。
答案:5,-57. 一个数除以3的商是4,这个数是____。
答案:128. 一个数的1/2等于3,这个数是____。
答案:69. 一个数的3倍加上2等于11,这个数是____。
答案:310. 一个数的4倍减去6等于10,这个数是____。
答案:4三、解答题(每题10分,共50分)1. 计算:(-3) × (-2) + 5 ÷ (-1) - 4答案:-22. 解方程:2x - 3 = 7答案:x = 53. 计算:(-1/2) × (-4) ÷ (-2) + 3答案:14. 解方程:3x + 5 = 14答案:x = 35. 计算:(-3)² - 4 × (-2) + 7答案:23。
数学初中竞赛数与式专题训练
1. 已知 100 个整数 a1,a2,a3,· · · ,a100 满足下列条件:a1 = 1,a2 = −|a1 + 1|, a3 = −|a2 + 1|,· · · a100 = −|a99 + 1|,则 a1 + a2 + a3 + · · · + a100 =( B )
A .0
B .-50
C .100
D .-100
2. a 为绝对值小于 2019 的所有整数的和,则 2a 的值为( D )
A .4036
B .4038
C .2
D .0
3. 多项式 a3 − b3 + c3 + 3abc 有因式( B )
A .a + b + c
B .a − b + c
C .a2 + b2 + c2 − bc + ca − ab
第1页
A .0
B .2
C .4
D .6
9. 如果实数 a 满足:−2014 < a < 0,则 |x − a| + |x + 2014| + |x − a + 2014| 的最小值 是( A )
A .2014
B .a + 2014
C .4028
D .a + 4028
10. 现有一列数 a1,a2,a3,· · · ,a2008,a2009,a2010,其中 a2 = −1,a31 = −7,a2010 = 9,且满足任意相邻三个数的和为相等的常数,则 a1 + a2 + a3 + · · · + a98 + a99 + a100 的值为( D )
初中数字竞赛试题及答案
初中数字竞赛试题及答案1. 计算下列表达式的值:(a) 3x + 2y = 7(b) 5x - y = 11解:将方程 (a) 乘以 5,方程 (b) 乘以 3,得到:15x + 10y = 3515x - 3y = 33相减得:13y = 2,所以 y = 2/13。
将 y 的值代入方程 (a) 得:3x + 2(2/13) = 7,解得 x = 3。
答案:x = 3,y = 2/13。
2. 一个数的三倍加上另一个数的两倍等于 60,如果第一个数是第二个数的两倍,求这两个数。
解:设第一个数为 x,第二个数为 y,则有:3x + 2y = 60x = 2y将 x = 2y 代入第一个方程得:3(2y) + 2y = 60,解得 y = 6。
则 x = 2y = 12。
答案:第一个数是 12,第二个数是 6。
3. 一个两位数,十位数字是 x,个位数字是 y,如果这个数加上 9 后,个位数字和十位数字互换,求 x 和 y 的值。
解:设这个两位数为 10x + y,根据题意有:10x + y + 9 = 10y + x9x - 9y = -9x - y = -1因为 x 和 y 都是 0 到 9 之间的整数,所以 x = 4,y = 5。
答案:x = 4,y = 5。
4. 一个班级有 45 名学生,其中男生人数是女生人数的两倍,求男生和女生各有多少人。
解:设女生人数为 x,则男生人数为 2x。
根据题意有:x + 2x = 453x = 45x = 15则男生人数为 2x = 30。
答案:男生有 30 人,女生有 15 人。
5. 一个三位数,它的百位数字是 a,十位数字是 b,个位数字是 c,如果这个数加上 198 后,百位数字、十位数字和个位数字都增加了 1,求这个三位数。
解:设这个三位数为 100a + 10b + c,根据题意有:100a + 10b + c + 198 = 100(a+1) + 10(b+1) + (c+1)100a + 10b + c + 198 = 100a + 100 + 10b + 10 + c + 189 = 10 + cc = 89 - 10 = 79因为 c 是个位数,所以 c = 9。
七年级下册数学竞赛题和经典题含解答共10题
七年级下册数学竞赛题和经典题含解答共10题1. 题目:甲、乙两个正整数的和是300,差是120,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 300 (方程1)x - y = 120 (方程2)解方程组得到甲的数x = 210,乙的数y = 90。
2. 题目:某数的4倍减去该数的2倍等于30,求这个数。
解答:设这个数为x。
根据题意,我们可以得到以下方程:4x - 2x = 30化简得到2x = 30解方程得到x = 153. 题目:一个正整数加上自身的平方等于140,求这个正整数。
解答:设这个正整数为x。
根据题意,我们可以得到以下方程:x + x²= 140化简得到x²+ x - 140 = 0解方程得到x = 10 或x = -14,由题目要求为正整数,所以x = 10。
4. 题目:一个三位数加上它的逆序数等于1333,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:100x + 10y + z + 100z + 10y + x = 1333化简得到101x + 20y + 101z = 1333由于101为质数,所以x和z只能为1,y只能为6。
解方程得到x = 1,y = 6,z = 1,所以这个三位数为161。
5. 题目:甲、乙两个数的和是90,差是20,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 90 (方程1)x - y = 20 (方程2)解方程组得到甲的数x = 55,乙的数y = 35。
6. 题目:某个三位数的百位数是7,个位数是2,且各位上的数字之和是13,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:x = 7 (百位数是7)z = 2 (个位数是2)x + y + z = 13 (各位上的数字之和是13)代入得到7 + y + 2 = 13解方程得到y = 4所以这个三位数为742。
宁波中考数学竞赛试题及答案
宁波中考数学竞赛试题及答案试题一:代数基础题目:已知a、b、c为实数,且满足a+b+c=6,a^2+b^2+c^2=14,求a^3+b^3+c^3的值。
解题思路:1. 利用已知条件,将a^3+b^3+c^3转化为已知条件的形式。
2. 应用立方和公式:a^3+b^3+c^3 = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca) + 3abc。
答案:由题目条件,我们有:a^3+b^3+c^3 = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca) + 3abc= 6(14 - ab - bc - ca) + 3abc由于(a+b+c)^2 = a^2+b^2+c^2 + 2(ab+bc+ca),我们可以得到:36 = 14 + 2(ab+bc+ca)ab+bc+ca = 11将ab+bc+ca的值代入上面的公式:a^3+b^3+c^3 = 6(14 - 11) + 3abc = 36 + 3abc由于我们没有abc的值,我们无法直接求出a^3+b^3+c^3的确切值。
但是,我们可以利用题目条件进一步分析。
由于a、b、c是实数,且a+b+c=6,我们可以假设a、b、c的值,然后根据a^2+b^2+c^2=14来验证这些值是否满足条件。
例如,如果a=1, b=2, c=3,那么a^2+b^2+c^2=1+4+9=14,满足条件。
此时,a^3+b^3+c^3=1+8+27=36。
试题二:几何问题题目:在直角三角形ABC中,∠C=90°,AC=6,BC=8,求AB的长度。
解题思路:1. 应用勾股定理求解直角三角形的斜边长度。
答案:根据勾股定理,AB^2 = AC^2 + BC^2AB^2 = 6^2 + 8^2AB^2 = 36 + 64AB^2 = 100AB = √100 = 10试题三:函数与方程题目:若f(x) = 2x - 5,求f(3)的值。
解题思路:1. 将x=3代入函数f(x)中求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( ) A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( ) A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( ) A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3 B .(a +1)(a 2﹣a +1)=a 3+1 C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+27 5.已知x =﹣,则x 3+12x 的算术平方根是( )A .0B .2C .D .26.如果,p ,q 是正整数,则p 的最小值是( )A .15B .17C .72D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( ) A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( ) A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( ) A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( ) A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( ) (1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3 (2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0 B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 .14.已知互不相等的实数a ,b ,c 满足,则t = .15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = . 18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解:x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7 =(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4) =(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解; (2)拓展:把代数式x 2+2xy ﹣3y 2因式分解: 当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|, ∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0, ∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50. 故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018) =[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0 =0 ∴2a =0 故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc =[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c ) =(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ). 故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确; 故选:D . 5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。