小学三年级奥数-巧数图形
三年级奥数--第六讲--巧数图形(三)
新速度教育三年级奥数
第六讲——巧数图形(三)
1. 温故知新。
2. 无规则图形的数法:分类法。
从小到大,从左到右,从上到下数。
3. 请小朋友们数一数下列图形有多少个。
4. 巧数图形在实际生活中的应用。
5. 有10个小朋友,每2个人照一张合影,一共要照多少张照片? 思路导航:这道题可以用数线段的方法来解答。
6.分析:根据题意,画出线段图,每一个点代表一个小朋友:
从图上可以看出,第1个小朋友要与其余9个小朋友合影,要照9张照片;第2个小朋友还要与其余8个小朋友合影,再照8张照片……以此类推,第9个小朋友只要再与1个小朋友合影,再照1张照片。
所以,一共要照9+8+7+6+5+4+3+2+1=45张照片。
I H G
F E D C B
A
1098743
10.小朋友们,我们一起来练一练吧!!
1,三年级有6个班,每两个班要比赛拔河一次,这样一共要组织多少场比赛?
2,有红、黄、蓝、白四只气球,如果每两只气球扎成一束,共有多少种不同的扎法?
3,有1——6六个数字,能组成多少个不同的两位数?
4,数一数下图有多少个三角形。
三年级奥数巧数图形(供参考)
第2讲 巧数图形知识要点同学们,我们经常会遇到数图形的问题,对于较复杂的图形,经常会出现数重复或数漏掉的错误。
怎样才能不重复也不遗漏地数出图形的个数呢?这节课,我们将一起来寻找好的方法。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
精典例题例1: 数出下图中有多少条线段?模仿练习数一数,每种图形有多少个?有( )条线段 有( )个三角形 有( )个角 有( )个长方形 有( )个正方形 例2: 数出图中共有多少个三角形?模仿练习数一数,每幅图里有多少个三角形?(1) (2)有( )个三角形 有( )个三角形例3:下面的图形中有多少个三角形?(第九届中国青少年数学论坛趣味数学解题技能展示大赛试题)模仿练习数一数,图中共有几个正方形?(2010武汉明心数学资优生水平测试题)精典例题例4: 数出下图中有多少个长方形?多少个正方形?从短的线段入手,再两条两条拼接起来数,你发现规律了吗?还能用刚才的方法来数吗?三角形很多,可以尝试按三角形的方向和大小尝试分类数。
前面学习的数长方形的方法还有用吗?怎么能用上呢?模仿练习1.数一数,图中有多少个长方形?2.数一数图中有多少个正方形?家庭作业1.数一数每幅图里面图形的个数(能计算的写出算式)。
(1)(2)有()条线段有()个角2.右图中有多少个三角形?3.图中有多少个长方形?(把你的想法分享给你的爸爸妈妈听,你能教会他们吗?分享后让爸爸妈妈给你打星,最多5颗星)4.数一数,右图中有多少个正方形?5.数一数,其中共有多少个包含“”的三角形?(2011年“陈省身杯”国际青少年数学邀请赛试题)。
巧数图形详细讲解小学三年级奥数课件
拓展18、下面图形中有多少个正方形,多少个三角形?
有1个正方形。8个三角形。 有1正方形。8个三角形。
第25页/共35页
拓展19、下面二图形叠加后有多少个正方形,多少个三角
形?
+
二图形共有2个正方 形,16个三角形
二图叠加后新增8个正方形,新增三角形:16+12=28个
二图叠加后总共有2+8=10个正方形,16+28=44个三角形。
个
设想大 长方形消失 则有15+10-1=24个
还原大长方形则增4
个
总共24+4总= 共282个8个
第32页/共35页
谢谢使用
第33页/共35页
知识回顾 Knowledge Review
第34页/共35页
感谢您的观看。
第35页/共35页
பைடு நூலகம்
练习1、数线段
1 23 4
5
67
共 7+6+5+4+3+2+1=28 条线段
第2页/共35页
• 例2、下面图中有几个长方形?
数一数:
总计: 5+4+3+2+1=15
单个
5
2个组合 4
3个组合 3
4个组合 2
5个组合 1
总计
15
可见,整齐单排长方形个数的算法与线段计算相同。
第3页/共35页
例3.数出图中共有多少三角形。
拆除2条红线和蓝绿线后有三角 形 14个 2条红线返回后增加6个三角形
绿线返回后增加10个三角形
蓝线返回后增加14个三角形
还可以这样数: 单个三角形 16个 2个三角形组合16个 4个三角形组合8个
巧数图形详细讲解小学三年级奥数(课堂PPT)
知识回顾 Knowledge Review
总共:10+10+4= 24 个
Page 19
拓展12:数出下图中所有三角形的个数。
(3+2+1)×55=25
5个 5个
小五边形外侧组合三角形有(3+2+1)×5-5=25个三角形。 以大五边形边为底边的等腰三角形有5个。 以小五边形顶角为顶角的等腰三角形有5个。
总共:25+5+5= 35 个。
Page 20
5个组合 1
总计
15
可见,整齐单排长方形个数的算法与线段计算相同。
Page 4
例3.数出图中共有多少三角形。
A
三角形个数: 4+3+2+1=10
1 2 34
B C DE F
数三角形有时也可以用数线段的方法;有的图形要用 编号数图形的方法,还有的图形先要分成几部分分别 去数,再考虑几部分拼合起来看看有没有产生新三角 形。
巧数图形
Page 1
白汀水
例1、数线段
31542
共5+4+3+2+1= 15条线段
Page 2
练习1、数线段
1 23 4
5
67
共 7+6+5+4+3+2+1=28 条线段
Page 3
例2、下面图中有几个长方形?
数一数:
总计: 5+4+3+2+1=15
单个
5
2个组合 4
3个组合 3
4个组合 2
Page 22
拓展15. 数一数,图中有多少个长方形?
三年级奥数第11次课:巧数图形(学生版)
【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。
学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。
谢谢使用!!!】
巧数图形
一、考点、热点回顾
1、一类有趣的图形问题:数出某种图形的个数。
2、由于图形千变万化,错综复杂,所以要想准确地数出其中包含的某种图形的个数,还真需要动点脑筋。
3、有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。
二、典型例题
例1、数出下图中共有多少条线段。
例2 、下列各图形中,三角形的个数各是多少?
例3、下列图形中各有多少个三角形?
例4、右图中有多少个三角形?
例5、数出左下图中锐角的个数。
例6、在下图中,包含“*”号的长方形和正方形共有多少个?
三、习题巩固
1、下列图形中各有多少条线段?
2、下列图形中各有多少个三角形?
3、下列图形中,各有多少个小于180°的角?
4、下列图形中各有多少个三角形?
5、下列图形中各有多少个长方形?
6、下列图形中,包含“*”号的三角形或长方形各有多少?
7、下列图形中,不含“*”号的三角形或长方形各有几个?
四、习题练习
1、数出下图中一共有多少条线段?
2、数一数,下图中共有多少个角?
O
A
D B
C
A
B C D E
4、数一数,下图中共有多少个长方形?
5、数一数,下图中共有多少个正方形?
7、数一数,下图中有多少个角?
9、数一数,下图中共有多少个长方形?
10、数一数,下图中共有多少个正方形?。
小学三年级奥数-数图形个数
二、精讲精练
• 【例题1】数出下图中有多少条线段?
A B C D
【思路导航】方法一:我们可以采用以线段左端点分类 数的方法。以A点为左端点的线段有:AB、AC、AD 3 条;以B点为左端点的线段有:BC、BD 2条;以C点为 左端点的线段有:CD 1条。所以,图中共有线段 3+2+1=6(条)。 方法二:把图中线段 AB、BC、CD看做基本线段来数, 那么,由1条基本线段构成的线段有:AB、BC、CD 3条; 由2条基本线段构成的线段有:AC、BD 2条;由3条基本 线段构成的线段有:AD 1条。所以,图中一共有 3+2+1=6(条)线段。
• 方法三:我们发现,要数出图中三角形的个数,只需 数出线段 AD中包含几条线段就可以了,即3+2+1=6( 个)。所以图中共有6个三角形。
练习3:
• 数出图中共有多少个三角形? A • (1)
B C D
E
F
• ( 2)
A
GH I G B C D E
K
F
A
B
• 【例题4】数出下图中有多少个长方形?
练习1:
• (1)数出下图中有多少条线段?
Aபைடு நூலகம்B C D E
• (2)数出下图中有几个长方形?
A
• 【例题2】数出图中有几个角?
O
B C D
方法一:以OA为一边的角有:∠AOB、∠AOC、 ∠AOD 3个;以OB为一边的角还有: ∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1 个。所以,图中共有角3+2+1=6(个)。 方法二:把图中∠AOB、∠BOC、∠COD看做基本角来 数,那么,由1个基本角构成的角有:∠AOB、∠BOC、 ∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。所以,图 中一共有3+2+1=6(个)角。
小学三年级奥数之难点:巧数图形
小学三年级奥数之难点:巧数图形李正堂—2008—12—25 图形问题说来一直是三年级的一个难点,很多学生第一次接触这种题型的时候总是喜欢去数,可是如果只仅仅是靠数,我相信那不是你所想要的,大家一定要学会在掌握规律的同时学会分析。
下面我们一起来剖析一些题目,希望对大家有些帮助:【铺垫】:【分析】:具体推理过程不详述,大家一定要记住:总的长方形数目解答过程:宽的基本线段数3,长的基本线段数2(1+2+3)×(1+2)=18所以共有18个长方形【巩固】:【分析】:方法很清楚,也很明确,关键是它是一个不规则图形,可以先将该图分为两部分:通过图形可以帮助我们理解:第一个图形中有长方形(1+2+3+4)×(1+2+3+4)=100个第二个图形中有长方形(1+2)×(1+2+3+4+5+6)=63个而它们重复的图形中有长方形(1+2)×(1+2+3+4)=30个所以原图中共有:100+63-30=133个长方形【拓展】含有两个★在内的由小正方形组成的长方形(含正方形)共有_____个【分析】:采用间接的方法也许会比较困难,不妨采用直接法进行求解。
(1)两层的情况长为2个正方形边长:1长为3个正方形边长:22层的情况长为4个正方形边长:3 共12个长为5个正方形边长:3长为6个正方形边长:2长为7个正方形边长:1(2)三层的情况三层的情况有两种,所以只需要考虑一种情况就可以求解了:长为2个正方形边长:1长为3个正方形边长:23层的情况长为4个正方形边长:3 共12个(2个)长为5个正方形边长: 3长为6个正方形边长:2长为7个正方形边长:1三层的情况共有12×2=24个(3)4层的情况长为2个正方形边长:1长为3个正方形边长:24层的情况长为4个正方形边长:3 共12个(2个)长为5个正方形边长: 3长为6个正方形边长:2长为7个正方形边长:1四层的情况共有12×2=24个(4)5层的情况长为2个正方形边长:1长为3个正方形边长:25层的情况长为4个正方形边长:3 共12个长为5个正方形边长:3长为6个正方形边长:2长为7个正方形边长:1所以总共有12+24+24+12=72个【总结】我想大家通过这样的讲解也可以找到一些规律了,分了层之后其实边长分法都一样,所以只需要看宽的情况,宽的情况(层的情况)共有(1+2+2+1)=6种情况,故总共有6×12=72大家一定要学会采用适当的方法进行求解!。
三年级奥数—数图形
DO D C B A 三年级奥数训练——数图形姓名:思路导航:同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形等,那么就必须要有顺序、有条理地数,从中发现规律,以便得到正确的结果。
要正确地数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
经典例题:例题1 数出下面图中有多少条线段?练 习 一数出下图中各有多少条线段?例题2 数出下图中有几个角。
练 习 二数出下图中有几个角?B ACB AO E D C BA DBC A例题3 数出下面图中共有多少个三角形。
练 习 三数出下面图中共有多少个三角形。
例题4 数出下图中有多少个长方形。
练 习 四数出下图中有多少个长方形。
例题5 有10个小朋友,每2个人照一张合影,一共要照多少张照片?D C B A O ED C BA I H G F E D C BA练 习 五三年级有6个班,每两个班要比赛拔河一次,这样一共要组织多少场比赛?课堂练习1、数出下图中有几个角。
2、数出下图中有几个三角形?3、数出下面图中共有多少个三角形。
4、数出下图中有多少个正方形。
5、有1——6六个数字,能组成多少个不同的两位数?E D C B AO 课外练习1、数出下图中各有多少条线段?2、数出下图中有几个角?3、数出下面图中共有多少个三角形。
4、数出下图中有多少个长方形。
5、有红、黄、蓝、白四只气球,如果每两只气球扎成一束,共有多少种不同的扎法?。
小学三年级奥数巧数图形知识点与习题教学内容
第11讲巧数图形数出某种图形的个数是一类有趣的图形问题。
由于图形千变万化,错综复杂,所以要想准确地数出其中包含的某种图形的个数,还真需要动点脑筋。
要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。
例1数出下图中共有多少条线段。
分析与解:我们可以按照线段的左端点的位置分为A,B,C三类。
如下图所示,以A为左端点的线段有3条,以B为左端点的线段有2条,以C为左端点的线段有1条。
所以共有3+2+1=6(条)。
我们也可以按照一条线段是由几条小线段构成的来分类。
如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有3条,由两条小线段构成的线段有2条,由三条小线段构成的线段有1条。
所以,共有3+2+1=6(条)。
由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。
例2 下列各图形中,三角形的个数各是多少?分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。
由前面数线段的方法知,图(1)中有三角形1+2=3(个)。
图(2)中有三角形1+2+3=6(个)。
图(3)中有三角形1+2+3+4=10(个)。
图(4)中有三角形1+2+3+4+5=15(个)。
图(5)中有三角形1+2+3+4+5+6=21(个)。
例3下列图形中各有多少个三角形?分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。
以AB为底边的三角形ABC中,有三角形1+2+3=6(个)。
以ED为底边的三角形CDE中,有三角形1+2+3=6(个)。
所以共有三角形6+6=12(个)。
这是以底边为标准来分类计算的方法。
它的好处是可以借助“求底边线段数”而得出三角形的个数。
我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。
三年级奥数--第四讲--巧数图形(一)教学教材
新速度教育三年级奥数
第四讲——巧数图形(一)
1. 小故事:
晚饭过后,妈妈给小小出了一道“试眼力”的题目:数数窗户上一共有多少个正方形。
小小一看,立即回答:“窗户上一共有6个正方形。
”妈妈笑了,爸爸在一旁也笑了,小小给弄了个“丈二和尚莫不着头脑”。
小朋友,你知道小小的爸爸妈妈为什么笑吗?小小数得难道不对吗?如果不对,那么窗户上究竟有几个正方形呢?下面我们就一起来研究数图形的问题。
2.
3. 数出下图中有几条线段。
数一数,找规律。
D C B A
4. 5. 方法:如果线段有N 段的话,就一共有1+2+3..+N 段。
(1)B A F (2)E B A
4. 数出下图中有几个角。
数一数,找规律。
D C
B
A
O E D C B A O
6. 7. 方法:如果有N 个最小的角,就一共有1+2+3+..+N 个角。
8.
9. 数出下图中有几个三角形。
数一数,找规律。
10.
11.
12.
13. 方法:如果有N 个最小的三角形,就一共有1+2+3+..+N 个三
角形。
15.
16. 想一想,如果换成全都是长方形,结果会怎样呢?
18.方法:如果有N个最小的长方形,就一共有1+2+3+..+N个长方形。
19.
20.
21.
23.
24.总结:线段,角,简单的三角形组合(只有一层),简单的长
方形组合(只有一层)。
计算数量的方法都是1+2+3+..+N。
26.
28.
29.练一练:
(3)(4)(5)。
小学三年级奥数-数图形个数
C
D
【思路导航】数图中有多少个长方形和数三角形的方法
一样,长方形是由长、宽两对线段围成,线段 CD上有
3+2+1=6(条)线段,其中每一条与AC中一条线段对应,
分别作为长方形的长和宽,这里共有6×1=6(个)长方
形,而AC上共有2+1=3(条)线段也就有6×3=18(个)
长方形。它的计算公式为:
长方形的总数=长边线段的总数×宽边线段的总数
• 方法三:我们发现,要数出图中三角形的个数,只需 数出线段 AD中包含几条线段就可以了,即3+2+1=6( 个)。所以图中共有6个三角形。
练习3:
• 数出图中共有多少个三角形?
• (1)
A
B CD E F
• (2)
A
K GH I G B CD E F
A
B
• 【例题4】数出下图中有多少个长方形?
A
B
O
C
• (2)
A
Hale Waihona Puke BOCD
E
P
• 【例题3】数出右图中共有多少个三角形?
AB C D
【思路导航】方法一:我们可以采用按边分类数的方法。 以PA为边的三角形有:△PAB、△PAC、△PAD、3个; 以PB为边的三角形还有:△PBC、△PBD 2个;以PC为 边的三角形还有:△PCD 1个。所以,图中共有三角形 3+2+1=6(个)。 方法二:把图中三角形 △PAB、△PBC、△PCD看做基 本三角形来数,那么,由1个基本三角形构成的三角形有: △PAB、△PBC、△PCD 3个;由2个基本三角形构成的 三角形有: △PAC、△PBD 2个;由3个基本三角形构成 的三角形有:△PAD 1个。所以,图中一共有3+2+1=6 (个)三角形。