推荐-概率论自测题

合集下载

概率论自测题解

概率论自测题解

《概率论》课程自测题及其解答自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P .三、判断题(正确的打“√”,错误的打“ ”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少? 六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率. 七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品 分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的 零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.自测题解答(第一章)一、解:1. 由交集的定义可知,应选(B ) 2. 由事件间的关系及运算知,可选(A )3. 基本事件总数为48C ,设A 表示“恰有3个白球”的事件,A 所包含的基本事件数为15C =5,故P (A )=485C ,故应选(D )。

概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。

4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a ab -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭. 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ; (C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。

4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为YX1 2 31 61 91 181 231α β则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。

概率论与数理统计自测题

概率论与数理统计自测题

, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P 〔A 〕>0,P 〔B 〕>0,那么以下各式中错误的选项是......〔 〕 A .0)|(=B A P B .P 〔B |A 〕=0 C .P 〔AB 〕=0D .P 〔A ∪B 〕=12.设A ,B 为两个随机事件,且P 〔AB 〕>0,那么P 〔A|AB 〕=〔 〕 A .P 〔A 〕 B .P 〔AB 〕 C .P 〔A|B 〕 D .13.设随机变量X 在区间[2,4]上服从均匀分布,那么P{2<X<3}=〔 〕 A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5} D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 那么常数c 等于〔 〕A .-1B .21-C .21D .1 5.设二维随机变量〔X ,Y 〕的分布律为那么A .0.3 B .0.5 C .0.7 D .0.86.设随机变量X 服从参数为2的指数分布,那么以下各项中正确的选项是〔 〕 A .E 〔X 〕=0.5,D 〔X 〕=0.25 B .E 〔X 〕=2,D 〔X 〕=2 C .E 〔X 〕=0.5,D 〔X 〕=0.5 D .E 〔X 〕=2,D 〔X 〕=47.设随机变量X 服从参数为3的泊松分布,Y~B 〔8,31〕,且X ,Y 相互独立,那么D 〔X-3Y-4〕=〔 〕A .-13B .15C .19D .238.D 〔X 〕=1,D 〔Y 〕=25,ρXY =0.4,那么D 〔X-Y 〕=〔 〕 A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是〔 〕 A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被承受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被承受的概率10.设总体X 服从[0,2θ]上的均匀分布〔θ>0〕,x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,那么θ的矩估计θˆ=〔 〕A .x 2B .xC .2xD .x 21 1A 2.D 3.C4.D5.A6.A7.C8.B9.C10.B二、填空题11.设事件A 与B 互不相容,P 〔A 〕=0.2,P 〔B 〕=0.3,那么P 〔B A ⋃〕=____________. 12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,那么这两颗棋子是不同色的概率为____________.13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,那么飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,那么第二次取到的是正品的概率为____________. 15.设随机变量X~N 〔1,4〕,标准正态分布函数值Φ〔1〕=0.8413,为使P{X<a}<0.8413,那么常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,那么P{X ≥1}=____________. 17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E 〔X 〕=1,那么x=____________. 18.设随机变量X 的分布律为那么D 〔X 〕=____________.19.设随机变量X 服从参数为3的指数分布,那么D 〔2X+1〕=____________. 20.设二维随机变量〔X ,Y 〕的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x那么P{X ≤21}=____________. 21.设二维随机变量〔X ,Y 〕的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x 那么当y>0时,〔X ,Y 〕关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N 〔μ,σ2〕,x 1,x 2,x 3为来自X 的样本,那么当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12. 351813.0.7 14. 0.9 15. 3 16.323117.71018.1 19.9420.2121. ye - 25. 41三、计算题26.设二维随机变量〔X ,Y 〕的分布律为 试问:X 与Y 是否相互独立?为什么?因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅====所以X ,Y 独立。

概率论试题 超高含金量

概率论试题 超高含金量

自10(内E)测题题号一二三四五六七八九十总分得分一、填空题(共10空,每空2分,共20分)答题须知:本题答案必须写在如下表格中,否则不给分。

小题号 1 2 3 4 5 6 7 8 9 10 答案1.设A和B是两个随机事件。

试表示以下事件:A和B中至少有一个发生__________;A发生但B不发生______________。

2.设A与B是互斥的两个随机事件,已知P(A)=0.2,P(B)=0.7。

则P(A∪B)= _____________ ________;P(AB)=___________ _ __ _________。

3.设A和B相互独立的两个随机事件,已知 P(A)=0.4,P(B)=0.2,则P(A|B)=____________ __________;P(A-B)=___________ ___________。

4.设随机变量X的数学期望E(X)=3,方差D(X)=4。

则E(2X+3)=__________ __ ________;D(2X-3)=____________ ___________。

5.设随机变量X服从标准正态分布,已知P(X<0.5)=0.69。

则P(|X|<0.5)=_________ ___________;P(X<−0.5)=_______ __ ___________。

二、单选题(共10小题,每小题2分,共20分)答题须知:本题答案必须写在如下表格中,否则不给分。

小题号 1 2 3 4 5 6 7 8 9 10答案1. A 与B 是两个随机事件,若AB=φ,则称这两个随机事件是( )。

(A) 对立; (B) 独立;(C)互斥; (D) 相容。

2. 函数sin x 在以下哪个区间上可以作为随机变量的密度函数?( )(A) 02π⎡⎤⎢⎣⎦,⎥; (B) []0π,; (C) 302π⎡⎤⎢⎥⎣⎦,; (D)[]02π,. 3. 设F(x)是随机变量X 的分布函数,则F(x)具有性质( )。

概率论测试题

概率论测试题

其中X 与Y相互独立
求:E( X 3Y ), D( X 3Y ),
E[( X Y )2 ], E(Z 2 2Z 4)
3、设( X , Y )~N (1, 1, 4, 4, 0.5), Z X Y , 求: XZ
4、写出切比雪夫不等式的定理内容
1某型号火炮的命中率为08现有一架敌机即将入侵如果欲以9993从装有10个白球和6个黑球的袋中取出一球不知是什么颜色且没有放回然后再次从袋中随机取两个球结果均为白球问首次取出的是白球的概率是多少
1、某型号火炮的命中率为0.8, 现有一架敌机即将入侵, 如果欲以 99.9 % 的概率击中它,则需配备此型号火炮多少 门?
5、如图所示电路中,开关 a、b、c、d 打开或关闭的 概率均为1/2,且相互独立 求(1)灯亮的概率。
(2)已见灯亮,开关a与b 同时关闭的概率。
1、在区间(-1, 2)上随机取一个数 X,试写出 X 的概率密
度函数,并求出 P( X 0) 的值。
2、设随机变量X 的分布律为
X -2 P 1/3
1、(X,Y)的联合分布律为
已知:P(Y 1 | X 1) 0.5
求:(1)a,b 的值
XY
1
-1 0.1
0 a
1 0.2
(2)X, Y 的边缘分布律
(3) P( X 1 | Y 1)
(4)判断X,Y是否相互独立
2 0.1 0.2 b
2、 已知 ( X, Y ) 服从圆域 x2 + y2 r2 上的均匀分布,
-1
0
1
1/3 1/4 1/12
求:随机变量 X 1 的分布函数
3、设在一次概率考试中,学生的成绩服从N(75,225), 满分为100分,共有200名学生参加考试。求这次考试中 不及格(小于60分)的人数,以及70到80的人数。

概率论与数理统计学习自测练习8

概率论与数理统计学习自测练习8

3.281 3.276 3.278 3.286 3.279 3.278 3.284 3.279 3.280 3.279
假设直径长度服从正态分布,大修后直径长度的方差不变,在显著性水平α = 0.05 下,问
产品的规格是否有变化?
3. 某车间生产铜丝.生产一向比较稳定,其折断力服从正态分布,今从产品中随机地 抽取 10 根检验折断力,得数据如下(单位:kg):
H0 :σ 2 ≤ C ,显著性水平α = 0.05 ,则下列说法中正确的是(

(A)如果生产正常,则检验结果也认为生产是正常的概率等于 0.95 (B)如果生产不正常,则检验结果也认为生产是不正常的概率等于 0.95 (C)如果检验结果认为生产正常,则生产确实正常的概率等于 0.95 (D)如果检验结果认为生产不正常,则生产确实不正常的概率等于 0.95
(5)设总体 X 服从正态分布 N (µ,σ 2 ) , µ 为未知参数,样本 X1, X 2 ,L, X n 的方差
2
PDF created with pdfFactory trial version
为 S 2 ,对于待检验假设 H0 :σ ≥ 2 ; H1 :σ < 2 ,关于显著性水平α 的拒绝域是( )
自测练习题 B
1. 选择题(在题中所给的 4 个选项中只有一项是正确的,把正确答案的代号填到题后 的括号中)
(1)在假设检验中,设 H0 是待检验的原假设,则犯第一类错误指的是(

(A) H0 为真时接受 H0
(B) H0 不真时接受 H0
(C) H0 不真时拒绝 H0
(D) H0 为真时拒绝 H0
3
PDF created with pdfFactory trial version

概率论的自测题

概率论的自测题

1. 进行独立重复试验,每次成功的概率为p ,令X 表示直到出现第m 次成功为止所进行的
试验次数,求X 的分布律
2. 设某国每对夫妇的子女数X 服从参数为λ的泊松分布,且知一对夫妇有不超过1个孩子的
概率为3e -2.求任选一对夫妇,至少有3个孩子的概率
3. 2 向[0,1]区间随机抛一质点,以X 表示质点坐标.假定质点落在[0,1]区间内任一子区间
内的概率与区间长成正比,求X 的分布函数
4. 2.设随机变量X 服从(0,2)上的均匀分布,则随机变量Y=X 2在(0,4)内的密度函数
为f Y (y)=
5. 设随机变量X 服从参数为(2,p )的二项分布,随机变量Y 服从参数(3,p )的二项分布,若95}1{=≥X P ,则P{Y ≥1}=
6. 设随机变量X~N (2,σ2),且P (2<X<4)=0.3,则P(X<0)=_______
已知随机变量X 的概率密度为⎪⎩⎪
⎨⎧<<--=others x x x f 012)1(92)(求:Y=1-X 2的概率密度
7. 一种电子元件的使用寿命X(小时)服从正态分布N(100,152),某仪器上装有3个这种元
件,三个元件损坏与否是相互独立的.求:使用的最初90小时内无一元件损坏的概率(在90以内都算是坏的概率)
.
9.某公路桥每天第一辆汽车过桥时刻为T ,设[0,t]时段内过桥的汽车数X t 服从参数为λt 的泊松分布,求T 的概率密度(感觉很重要挺难的样子~
会变成了指数分布)
10.长途汽车起点站于每时的10分、25分、55分发车,设乘客不知发车时间,于每小时的任意时刻随机地到达车站,求乘客候车时间超过10分钟的概率(这个会循环的)。

概率论第二章自测题答案与提示

概率论第二章自测题答案与提示

03
重点与难点解析
重点概念解析
概率
描述随机事件发生的可能性大小,取值 范围在0到1之间,其中0表示不可能事
件,1表示必然事件。
期望值
描述随机变量取值的平均水平,计算 公式为E(X)=x1p1+x2p2+…+xnpn

独立性
若两随机事件之间没有相互影响,则 称它们是独立的。
方差
描述随机变量取值分散程度,计算公 式为D(X)=E(X^2)-[E(X)]^2。
难点问题解析
如何判断随机事件的独立性
通过计算事件之间的联合概率来判断,如果联合概率等于各事件概率的乘积,则两事件独立。
如何计算随机变量的期望值和方差
期望值通过将每个可能取值的概率乘以该取值得到,方差则通过计算每个取值的平方与相应概率的乘积后求和, 再减去期望值的平方得到。
易错点解析
混淆概率与频率
件,事件A包含1个基本事件,因此$P(A) = frac{1}{3}$。
03
填空题3
答案为$2$。此题考查数学期望的计算公式,$E(X) = sum x_i p_i$,
其中$x_i$是随机变量X的可能取值,$p_i$是对案为$frac{1}{4}$。此题考查概率的加法公式,$P(A cup B) = P(A) + P(B) - P(A cap B)$。
选择题3
正确答案为D。此题考查独立性的定义,若事件 A和B独立,则$P(AB) = P(A)P(B)$。
填空题解析与提示
01
填空题1
答案为$frac{1}{2}$。此题考查概率的基本性质,事件A和B是对立事件,
因此$P(A) = 1 - P(B)$。
02
填空题2

概率论自测题

概率论自测题

第一章 自测题 一、填空题(每小题2分,共计10分)1.概率()P A 是刻划____________________ ___的指标.2.实际推断原理的内容是 .3.设,,A B C 分别代表甲,乙,丙命中目标,则ABC 表示 .4.将红、黄、蓝3个球随机的放入4个盒子中,若每个盒子的容球数不限,则有三个盒子各放一个球的概率是 .5.设,A B 为随机事件,已知().,().().0705, 03P A P B P A B ==-=,则()P AB = ;()P B A -= .二、是非题(每小题2分,共计20分)1.( )从一批产品中随机抽取100件,发现5件次品,则该批产品的次品率为5%.2.( )若事件,A B 为对立事件,则A 与B 互斥,反之不真.3.( )对于事件,A B ,若()0P AB =,则A 与B 互斥.4.( )在古典概型的随机试验中,()0P A =当且仅当A 是不可能事件.5.( )若0()1P B <<且()(|)P A P A B =,则()(|)P A P A B =.6.( )设A 与B 是两个概率不为零的互不相容事件,则()()()P AB P A P B =.7.( )对于事件,,A B C ,若()()()()P ABC P A P B P C =,则()()()P AB P A P B =.8.( )设随机事件,,A B C 相互独立,则A 与BC 相互独立.9.( )设()0P C >且()()()P AB C P A C P B C =,则()()()P AB P A P B =. 三、选择题(每小题2分,共计10分)1.某学生参加两门外语考试,设事件i A ={第i 门外语考试通过} (i =1,2),则事件{两门外语考试至少有一门没通过}可以表示为( ). (A) 12A A ; (B )1212A A A A ; (C )12A A ; (D )12A A2.设事件,,A B C 满足关系式ABC A =,则关系式的意义是( ).(A )当A 发生时,B 或C 至少有一个不发生; (B )当A 发生时,B 和C 必定都不发生; (C )当B 和C 都不发生时,A 必定发生; (D )当B 或C 至少有一个不发生时,A 必定发生. 3.设事件,A B 满足()1P A B =,则( ).(A )A B ⊃;(B )B A ⊃;(C )()0P B A =;(D )()()P AB P B =. 4.设0()1,0()1P A P B <<<<,且()()1P A B P A B +=,则( ). (A )A 、B 互斥; (B )A 、B 独立; (C )A 、B 不独立; (D )A 与B 互逆.5.设,,A B C 是三个相互独立的事件,且0()1P C <<,则下列四对事件中,不独立的是( ). (A )A B 与C ;(B )A C 与C ;(C )A B -与C ;(D )AB 与C .四、计算1. (10分)设事件,A B 满足()0.6,()0.5,()0.2P A P B P AB ===,求(),()P A B P B A .2. (5分)已知事件,A B 满足()()P AB P AB =,且()P A p =,求()P B .3. (5分)10个运动队平均分成两组预赛,计算最强的两个队被分在同一组内的概率.4. (10分)某医院用某种新药医治流感,对病人进行试验,其中34的病人服此药,14的病人不服此药,五天后有70%的病人痊愈.已知不服药的病人五天后有10%可以自愈.(1)求该药的治愈率;(2)若某病人五天后痊愈,求他是服此药而痊愈的概率.5. (10分)甲袋中有两个白球,四个黑球,乙袋中有四个白球,两个黑球.现在掷一均匀硬币,若得正面就从甲袋中连续摸n 次球(取后放回),若得反面就从乙袋中摸n 次.若已知摸到的n 个球全是白球.求这些球是从甲袋中取出的概率.6. (10分)12个乒乓球中3个旧的,9个新的.第一次比赛时取出三个用完后放回,第二次比赛时又取出三个.求第二次取出的三个中有两个新球的概率.五、(10分)几何概型的样本空间S 与随机事件,A B 如图所示, 试证,A B 相互独立.第一章 自测题参考答案一、填空题(每小题2分,共计10分)1.概率()P A 是刻划 一次试验随机事件A 发生的可能性很小 ___的指标.2.实际推断原理的内容是 一次试验小概率事件一般不会发生 .3.设,,A B C 分别代表甲,乙,丙命中目标,则ABC 表示 甲、乙、丙至少一人没命中目标 .4.将红、黄、蓝3个球随机的放入4个盒子中,若每个盒子的容球数不限,则有三个盒子各放一个球的概率是3433!4C .5.设,A B 为随机事件,已知().,().().0705, 03P A P B P A B ==-=,则()P AB = 0.4 ;()P B A -= 0.1 .二、是非题(每小题2分,共计20分)1.( ⨯ )从一批产品中随机抽取100件,发现5件次品,则该批产品的次品率为5%.2.( √ )若事件,A B 为对立事件,则A 与B 互斥,反之不真.3.( ⨯ )对于事件,A B ,若()0P AB =,则A 与B 互斥.4.( √ )在古典概型的随机试验中,()0P A =当且仅当A 是不可能事件.5.( √ )若0()1P B <<且()(|)P A P A B =,则()(|)P A P A B =.6.( ⨯ )设A 与B 是两个概率不为零的互不相容事件,则()()()P AB P A P B =.7.( ⨯ )对于事件,,A B C ,若()()()()P ABC P A P B P C =,则()()()P AB P A P B =.8.( √ )设随机事件,,A B C 相互独立,则A 与BC 相互独立.9.( ⨯ )设()0P C >且()()()P AB C P A C P B C =,则()()()P AB P A P B =. 三、选择题(每小题2分,共计10分)1.某学生参加两门外语考试,设事件i A ={第i 门外语考试通过} (i =1,2),则事件{两门外语考试至少有一门没通过}可以表示为( D ). (A) 12A A ; (B )1212A A A A ; (C )12A A ; (D )12A A2.设事件,,A B C 满足关系式ABC A =,则关系式的意义是( A ).(A )当A 发生时,B 或C 至少有一个不发生; (B )当A 发生时,B 和C 必定都不发生; (C )当B 和C 都不发生时,A 必定发生; (D )当B 或C 至少有一个不发生时,A 必定发生.3.设事件,A B 满足()1P A B =,则( D ).(A )A B ⊃;(B )B A ⊃;(C )()0P B A =;(D )()()P AB P B =. 4.设0()1,0()1P A P B <<<<,且()()1P A B P A B +=,则( B ). (A )A 、B 互斥; (B )A 、B 独立; (C )A 、B 不独立; (D )A 与B 互逆.5.设,,A B C 是三个相互独立的事件,且0()1P C <<,则下列四对事件中,不独立的是( B ). (A )A B 与C ;(B )A C 与C ;(C )A B -与C ;(D )AB 与C .四、计算1. (10分)设事件,A B 满足()0.6,()0.5,()0.2P A P B P AB ===,求(),()P A B P B A .解 ()()()0.3P AB P B P AB =-=,()()()()0.60.50.30.8P A B P A P B P AB =+-=+-=. ()()()0.2P AB P A P AB =-=, ()()0.5()P BA P B A P A ==. (另法:通过()()0.2,()0.8,()()()()0.3P AB P A B P A B P AB P A P B P A B =⋃=∴⋃=∴=+-⋃= 也可计算. )2. (5分)已知事件,A B 满足()()P AB P AB =,且()P A p =,求()P B . 解 ()()1()P AB P A B P A B ==-1()()()()P A P B P AB P AB =--+=()1P B p =-.3. (5分)10个运动队平均分成两组预赛,计算最强的两个队被分在同一组内的概率.解 385102C p C =(分成的两组是可区分的, 如A 组和B 组).4. (10分)某医院用某种新药医治流感,对病人进行试验,其中34的病人服此药,14的病人不服此药,五天后有70%的病人痊愈.已知不服药的病人五天后有10%可以自愈.(1)求该药的治愈率;(2)若某病人五天后痊愈,求他是服此药而痊愈的概率. 解 (1)设 A =(服药),B =(痊愈).()()()()()()()P B P AB P AB P A P B A P A P B A =+=+31()0.10.744P B A =⨯+⨯=, ()0.9P B A =. (2)27()28P A B =.5. (10分)甲袋中有两个白球,四个黑球,乙袋中有四个白球,两个黑球.现在掷一均匀硬币,若得正面就从甲袋中连续摸n 次球(取后放回),若得反面就从乙袋中摸n 次.若已知摸到的n 个球全是白球.求这些球是从甲袋中取出的概率.解 设A =(硬币掷得正面)=(甲袋中连续摸n 次球),B =(摸到的n 个球全是白球).11()()()()123()1112()()()()()12()()2323nnn n P A P B A P AB P A B P B P A P B A P A P B A ⨯====++⨯+⨯. 6. (10分)12个乒乓球中3个旧的,9个新的.第一次比赛时取出三个用完后放回,第二次比赛时又取出三个.求第二次取出的三个中有两个新球的概率.解 设i A =(第一次取出i 个新球) (0,1,2,3)i =,B =(第二次取出的三个中有两个新球).333003212121122132139339843975966333333331212121212121212()()()()()0.455i i i i i i i P B P A B P A B P A P B A C C C C C C C C C C C C C C C C C C C C C C =======⨯+⨯+⨯+⨯=∑∑(本题设i A =(第一次取出i 个旧球) (0,1,2,3)i =也可以.)五、(10分)几何概型的样本空间S 与随机事件,A B 如图所示, 试证,A B 相互独立.证明 只要证()()P A P A B =(本题利用独立性的定义式也可证明). ()()()()a b c c P A a b c d c d +⨯==+⨯++,()()()()P AB a c cP A B P B a c d c d⨯===⨯++,所以,A B 相互独立.第二章自测题(每题10分)(时间60分钟)1、设随机变量X 的分布函数为 ()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=41421211213210200x x x x xx x F 试求下列概率:⑴.{}1=X P ; ⑵.⎭⎬⎫⎩⎨⎧<<121X P ; ⑶.{23}P X ≤≤;⑷.{}4<X P ; ⑸.{}2≥X P .2、假设在一次考试中,5名男同学与5名女同学的成绩各不相同.现将这10名同学的成绩按大小进行排列,令X 表示女同学得到的最高名次,试求X 的分布律.3、在一次试验中,设事件A 发生的概率为p()10<<p ,现将此试验独立、重复地进行下去,直至A 与A 都发生为止.设X 表示所需要的试验次数,试求X 的分布律.4、问常数A 取什么值时,数列() ,,,54341=⎪⎭⎫⎝⎛k A k是离散型随机变量X 的分布律?5、一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 6、设连续型随机变量X 的密度函数为()()+∞<<∞-=-x Aex f x试求:⑴.常数A ;⑵.X 的分布函数;⑶.{}41<<-X P .7、设电子元件的电阻X (单位:Ω)服从正态分布()4.1050,N ,现检查15个同类型的电子元件,求这15个元件中至少有两个元件的电阻大于55Ω的概率是多少? 8、设连续随机变量ξ的分布函数为()arctan,()xF x a b x a=+-∞<<+∞ (1)、求系数a 、b ;(2)、P (-2<ξ<2); (3)、 概率密度f (x ).9、设随机变量X 的密度函数⎪⎩⎪⎨⎧<<--=其它012)1(92)(x x x f X求:Y=X 2的概率密度10、假设一部机器在一年内发生故障的概率为 ,机器发生故障时全天停止工作,若一周 个工作日里无故障,可获利润 万元,发生一次故障仍可获利润 万元;发生二次故障所获利润 万元;发生三次或三次以上故障就要亏损 万元,求一周内可获利润的分布律。

概率论与数理统计第四章自测题

概率论与数理统计第四章自测题

概率论与数理统计第四章自测题《概率论与数理统计》第四单元自测题时间:120分钟,卷面分值:100分一、填空题:(每空2分,共12分)得分1.设随机变量X与Y,方差D(X)=4,D(Y)=9,相关系数XY=,则D(3X-2Y)= 。

2.已知随机变量X~N(0, 2)(>0),Y在区间[0,3]σ上服从均匀分布,如果D(X-Y)=2,则X与Y的相关系数XY= 。

3.二维随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=D(Y)=1,X与Y的相关系数XY=-1/2,则当a= 时,随机变量aX+Y与Y相互独立。

4.设随机变量X~N(0, 4),Y服从指数分布,其概率密度函数为1210 ()200xe xf xx->=?≤,,,,如果Cov(X, Y)=-1,Z=X-aY,Cov(X, Z)=Cov(Y, Z),则a= ,此时X与Z的相关系数为XZ= 。

5.设随机变量X在区间(-1, 2)上服从均匀分布,随机变量-100010XY XX>==<,,,,,,则方差D(Y)= 。

6.设随机变量X服从参数为2的泊松分布,用切比雪夫不等式估计P{X-24}。

二、单选题:(每题2分,共12分)得分1.随机变量X, Y和X+Y的方差满足D(X+Y)=D(X)+D(Y),该条件是X与Y( )。

(A)不相关的充分条件,但不是必要条件;(B)不相关的必要条件,但不是充分条件;(C)独立的必要条件,但不是充分条件;(D)独立的充分必要条件。

2.若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有( )。

(A) X与Y一定相互独立; (B) X与Y一定不相关;(C) D(XY)=D(X)D(Y); (D) D(X-Y)=D(X)-D(Y)。

3.设随机变量X与Y独立同分布,记随机变量U=X+Y,V=X-Y,且协方差Cov存在,则U和V必然( )。

(A) 不相关;(B) 相互独立;(C) 不独立;(D) 无法判断。

概率论与数理统计第二章自测题答案与提示

概率论与数理统计第二章自测题答案与提示

解:F ( x ) = ∫ 6t (1 − t )dt = ( 3t − 2t ) = 3 x 2 − 2 x 3 1 F ( y ) = P (Y = 2 X + 1 ≤ y ) = P ( X ≤ ( y − 1)) 2 1 1 ( y −1 ) 1 2 3 2 ( y −1 ) 2 6t (1 − t )dt = ( 3t − 2t ) =∫ = ( y − 1) 2 (4 − y ) 0 0 4 3 ′( y ) = 4 ( y − 1)( 3 − y ) 1 < y < 3 f ( y) = F 0 其它
0 1 1 2
( 2)0 ≤ x < 1时,F ( x ) = ∫ 1 ≤ x < 2时,F ( x ) = ∫
x −∞
x
−∞
f ( t )dt = ∫
1 0
x
0
x2 (1 − t )dt = x − . 2
x 1
f ( t )dt = ∫ (1 − t )dt + ∫
x2 ( t − 1)dt = − x +1 2
概率作业第二章自测题
一、填空题 1 1.设离散型随机变量 X的分布律为 P ( X = k ) = 5 A( ) k ( k = 1,2,L) 2 则A = _______ . 1 答案与提示: 答案与提示: 。 5
ax + b 0 < x < 1 2.已知随机变量 X的密度为: f ( x ) = 的密度为: 其它 0 1 且P ( X > ) = , 则a = _____, b = ______ . 2 8 1 1 1 5 答案与提示: 提示: 答案与提示: a = 1, b = . 提示: (ax + b )dx = 1, ∫1 (ax + b )dx = ∫0 2 8 2

概率论自测练习题(含答案)

概率论自测练习题(含答案)

学院 班级 姓名 学号期末自测练习题一一、选择题(本大题4小题,每小题3分,共12分). 1.对于任意事件A 和B ,若()0P AB =,则( ).(A) AB =∅ (B)AB =∅(C) ()()0P A P B =(D)(()0P AB P A -=2.设随机变量()2~,X N μσ,则随着σ的增大,概率()P X μσ-<( ).(A) 单调增加 (B)单调减少 (C) 保持不变(D)增减性不能确定3.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =,则( ).(A) ()()()D XY D X D Y = (B)()()()D X Y D X D Y +=+ (C) X 和Y 相互独立(D)X 和Y 不相互独立4.随机变量X 的方差存在,并且有不等式()2()39P X E X -≥≤,则一定有( ).(A) ()2D X = (B)()2D X ≠ (C) ()7()39P X E X -<<(D)()7()39P X E X -<≥二、填空题(本大题4小题,每小题3分,共12分).1.设随机变量~(0,1)X N ,2~()Y n χ,且X 与Y 相互独立,则随机变量~T= .2.随机变量X 和Y 的相关系数为0.9,若0.4Z X =-,则Y 和Z 的相关系数YZ ρ= .3.设随机变量X 与Y 相互独立,X 服从12p =的01-分布,Y 服从13p =的01-分布,则方程220t Xt Y ++=中t 有相同实根的概率为 .4.设随机变量X 的密度函数为,10;(),01;0,c x x f x c x x +-<<⎧⎪=-<<⎨⎪⎩其他.则常数c = .三、计算题(本大题8分).两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,加工出来的零件放在一起,并且已知第一台机床加工的零件数量是第二台机床加工的零件数量的两倍,求(1)任意取出一个零件,这个零件是合格品的概率;(2)如果取出的这个零件是废品,求它是第二台机床加工的概率.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品只数. (1)求X 的分布律;(2)求()E X ;(3)求()D X .五、计算题(本大题8分).随机变量X 的概率密度为()22,0;1()0,0.X x x f x x π⎧>⎪+=⎨⎪≤⎩ 求随机变量ln Y X =的概率密度.设二维连续型随机变量(,)X Y 的联合密度为sin(),0,0;(,)220,A x y x y f x y ππ⎧+≤≤≤≤⎪=⎨⎪⎩其他.求(1)常数A ;(2)4P X Y π⎛⎫+< ⎪⎝⎭;(3)边缘密度函数()X f x ,()Y f y ;(4)判别随机变量X 与Y 的独立性.设随机变量X 的分布函数为330,;()1,x a F x a x a x <⎧⎪=⎨-≥⎪⎩,求()E X ,()D X ,23E X a ⎛⎫- ⎪⎝⎭,23D X a ⎛⎫- ⎪⎝⎭.八、计算题(本大题10分).将一枚硬币连续投掷三次,X 表示在三次中出现正面的次数,Y 表示三次中出现正面次数与反面次数之差的绝对值. (1)写出X 和Y 的联合分布律;(2)求()P X Y =.已知总体X 的概率密度1e ,0;(;)0,0.xx f x x θθθ-⎧>⎪=⎨⎪≤⎩(参数0θ>),12,,,nX X X 为X 的一容量为n 的样本,求θ的极大似然估计量.十、计算题(本大题8分).某厂生产的一批滚珠的直径()2~,2.6X N μ,现抽样100个,测得样本平均值11.2x =cm ,问这批滚珠的平均直径能否认为是12cm ?(0.05α=,21.96Z α=)学院 班级 姓名 学号期末自测练习题二一、选择题(本大题4小题,每小题3分,共12分).1.设,A B 是两个互不相容的事件,()0P A >,()0P B >,则一定有( ).(A) ()1()P A P B =- (B)(|)0P A B = (C) ()|1P A B =(D)()0P AB =2.若函数()y f x =是随机变量X 的概率密度函数,则一定有( ).(A) ()f x 的定义域为[0,1] (B)()f x 的值域为[0,1] (C) ()0f x ≥(D)()f x 在(,)-∞+∞上连续3.设随机变量X 与Y 相互独立,其概率分布为则下列式子正确的是( ).(A) X Y = (B)()0P X Y ==(C) 1()2P X Y ==(D)()1P X Y ==4.样本1234,,,X X X X 取自正态分布总体X ,()E X μ=为已知,2()D X σ=未知,则下列随机变量中不能作为统计量的是( ).(A) 114ni i X X ==∑(B)142X X μ+-(C)()2211nii XX σ=-∑(D)()22113ni i S X X ==-∑二、填空题(本大题4小题,每小题3分,共12分).1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差为 .2.一颗均匀的骰子重复掷10次,设X 表示出现3点的次数,则X 服从的分布为 .3.设随机变量X 服从参数为2的泊松分布,用契比雪夫不等式估计有()|2|4P X -≥ .4.假设总体X 服从正态分布()2,N μσ,12,,,n X X X 是来自总体X 的一个样本,则有~n X . 三、计算题(本大题10分).有两个箱子,第一个箱子有3个白球,2个红球;第二个箱子有4个白球,4个红球. 现从第一个箱子中随机地取1个球放到第二个箱子里,再从第二个箱子中随机地取1个球,求:(1)第二个箱子中取出的球为白球的概率;(2)已知从第二个箱子中取出的是白球,则从第一个箱子中取出的球是白球的概率为多少?四、计算题(本大题8分).设连续型随机变量X 的概率密度函数为e ,0;()0,0.x X x f x x -⎧≥=⎨<⎩求Y =的概率密度函数.五、计算题(本大题12分).设二维随机变量(,)X Y 的联合概率密度为e ,0;(,)0,y a x y f x y -⎧<<=⎨⎩其他.求(1)常数a ;(2)(1)P X Y +≤;(3),X Y 的边缘概率密度函数()X f x ,()Y f y ;(4)判断,X Y 是否相互独立.六、计算题(本大题12分).将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,求,X Y 的联合分布律,并计算()P X Y .设长方形的高~(0,1)X U ,周长为定值2,求长方形面积A 的数学期望与方差.八、计算题(本大题12分).总体X 分布律为其中θ(01θ<<)为未知参数. 已知取得的样本值为1231,2,1x x x ===,求θ的矩估计值和最大似然估计值.X 1 2 3P2θ 2(1)θθ-2(1)θ-设某种清漆的9个样品,其干燥时间(以小时计)分别为6.0,5.7,5.8,6.5,7.0,6.3,5.6,6.1,5.0. 若干燥时间服从正态分布()2,Nμσ,求μ的置信水平为0.95的置信区间. (0.0251.96Z=,0.025(8) 2.306t=)十、证明题(本大题6分).设ˆθ是参数θ的无偏估计量,且()ˆ0Dθ>. 证明:2ˆθ不是2θ的无偏估计量.学院 班级 姓名 学号期末自测练习题三一、选择题(本大题4小题,每小题3分,共12分).1.设A 表示事件“甲种产品滞销或乙种产品畅销”,则其对立事件A 为( ).(A) 甲种产品畅销或乙种产品滞销 (B) 甲种产品畅销且乙种产品滞销 (C) 甲种产品畅销 (D) 乙种产品滞销2.设,A B 为任意两个事件,则使()()()P A C P A P C -=-成立的事件C 可以是( ).(A) C A = (B)C A B =(C) C A B =-(D)C B A =-3.若随机变量,X Y 满足()()D X Y D X Y +=-,则一定有( ).(A) X 与Y 相互独立(B)X 与Y 不相关(C) ()0D Y =(D)()()0D X D Y =4.设总体~(3,16)X N ,1216,,,X X X 是来自总体X 的一个样本,X 为样本均值,则( ).(A) 3~(0,1)X N - (B)4(3)~(0,1)X N -(C)3~(0,1)4X N -(D)3~(0,1)16X N - 二、填空题(本大题4小题,每小题3分,共12分).1.设()P A a =,()P B b =,()P A B c +=,则()P AB = .2.若离散型随机变量X 的概率分布为3()4nP X n a ⎛⎫== ⎪⎝⎭ (0,1,2,n = ),则常数a = .3.随机变量~(1,16)X N -,则(52)P X -<<= .((0.75)0.7734Φ=,(1)0.8413Φ=)4.若随机变量X 的期望()E X 和方差()D X 都存在,常数0a >,则用切比雪夫不等式估计有()1X E X P a ⎛-⎫>≤ ⎪⎝⎭.三、计算题(本大题10分).设8支枪中有3支未经试射校正,5支已经试射校正. 一射手用校正过的枪射击时,中靶概率为0.8;而用未校正过的枪射击时,中靶概率为0.3. 今从8支枪中任取一支进行射击,求(1)命中靶的概率;(2)若靶已命中,求所用的枪是已校正过的概率.连续型随机变量X 的分布函数0,;()arcsin ,;1,.x a x F x A B a x a a x a <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩(常数0a >). 求(1)A 和B 取何值时,分布函数连续;(2)随机变量X 的概率密度函数;(3)方程22016a t Xt ++=有实根的概率.五、计算题(本大题10分).随机变量X 的概率密度为22,0;()0,.xx f x ππ⎧<<⎪=⎨⎪⎩其他 求sin Y X =的概率密度.二维随机向量(,)X Y 的联合概率密度为e ,0;(,)0,.y C y x f x y ⎧<<=⎨⎩其他 (1)求常数C ;(2)求(12,11)P X Y -<<-<<;(3)求()X f x ,()Y f y ;(4)判断,X Y 的独立性.设(,)X Y 的联合分布律为(1)求X 的分布律,并计算()E X ,()D X ;(2)求Z XY =的分布律,并计算()E Z .八、计算题(本大题10分).总体X 的概率密度为36(),0;()0,.x x x f x θθθ-⎧<<⎪=⎨⎪⎩其他 12,,,n X X X 是取自X 的简单随机样本. (1)求θ的矩估计量ˆθ;(2)求ˆθ的期望()ˆE θ,方差()ˆD θ;(3)讨论ˆθ的无偏性.九、计算题(本大题8分).129,,,X X X 是来自正态总体()2~,0.9X N μ的简单随机样本,样本均值5x =,求参数μ的置信度为0.95的置信区间.(0.025 1.96Z =,0.025(8) 2.31t =,0.025(9) 2.26t =).学院 班级 姓名 学号期末自测练习题四一、选择题(本大题4小题,每小题3分,共12分).1.当事件A 与B 同时发生时,事件C 必发生,则下列结论正确的是( ).(A) ()()P C P AB = (B)()()P C P A B = (C) ()()()1P C P A P B ≥+-(D)()()()1P C P A P B ≤+-2.设123,,X X X 是来自总体()2,N μσ的一个样本,其中μ为已知,2σ为未知,则下列不是统计量的为( ).(A) 312e X X X +(B)122X X μ+- (C) ()123max ,,X X X(D)()22212321XX X σ++3.设随机变量,X Y 独立同分布,记,U X Y V X Y =-=+,则U 和V ( ).(A) 不独立 (B)独立 (C) 相关系数不为零 (D) 相关系数为零4.设随机变量,X Y 相互独立,它们的分布律分别为则下列式子正确的是( ).(A) X Y = (B)()1P X Y == (C) 5()9P X Y ==(D)()0P X Y ==二、填空题(本大题4小题,每小题3分,共12分).1.设~(1,16)X N -,则(11)P X ->= .(其中(0.75)0.7734,(0.25)0.5987Φ=Φ=)2.设k 在[2,5]-上服从均匀分布,则关于y 的一元二次方程24420y ky k +++=有实根的概率为 .3.在区间(0,1)中随机地取两数,则两数之和小于0.8的概率为 . 4.若随机变量X 的期望()E X ,方差()D X 都存在,常数0b >,则由切比雪夫不等式有()()P X E X b ->≤ . 三、计算题(本大题10分).某厂有甲,乙,丙三台机床生产,各自的次品率分别为4﹪,4﹪,2﹪,又知它们分别生产产品总数的20﹪,30﹪,50﹪,将这些产品混在一起,(1)求从中任取一件产品是正品的概率;(2)若取到的一件为正品,问它是甲机床产品的概率有多大?已知随机变量X 的概率密度为0;e ,()0.0,x x f x x ->⎧=⎨≤⎩ 求随机变量e X Y =的概率密度().Y f y五、计算题(本大题10分).已知随机变量()2~1,3X N ,()2~0,4Y N ,且X 与Y 的相关系数为1.2XY ρ=-设32X YZ =+,求(),()E Z D Z .二维随机向量(,)X Y 的联合概率密度为(1)e ,0,0;(,)0,.x y Cx x y f x y -+⎧>>=⎨⎩其他(1)求常数C ;(2)求边缘概率密度函数()X f x ,()Y f y ;(3)判断,X Y 的独立性;(4)求(01,01)P X Y <<<<.一整数X随机地在2,3,4三个整数中取一个值,另一个整数Y随机地在2~X X Y的联合分布律.中取一值,试求(,)八、计算题(本大题11分).设某种电子元件的寿命T服从参数λ的指数分布.今测得10个元件的失效时间为1050,1100,1080,1200,1300,1250,1340,1060,1150,1150. 求λ的极大似然估计值.九、计算题(本大题8分).设总体X的方差为1,根据来自总体X的容量为100的简单随机样本,测得样本均值5x=,求数学期望的置信度为95%的置信区间.(0.0251.96Z=)学院 班级 姓名 学号期末自测练习题五一、选择题(本大题4小题,每小题3分,共12分).1.设,A B 为两个事件,则下列事件运算关系中正确的是( ).(A) ()()A B A B A = (B)()A B B A -= (C) A B B A -=-(D)A B A B =2.离散型随机变量X 的分布律为()n P X n p ==(1,2,n = ),则常数p =( ).(A) 14 (B)13 (C) 12(D)233.连续型随机变量X 服从指数分布()E λ,密度函数为e ,0;()0,0.x x f x x λλ-⎧≥=⎨<⎩ 则X 的数学期望()E X ,方差()D X 分别为( ).(A) ,λλ (B)2,λλ (C)11,λλ(D)211,λλ4.设总体分布为()2,N μσ,其中μ为已知,2σ为未知,12,,,n X X X 为从这一总体中抽取的容量为n 的简单随机样本,则下列不是统计量的是( ).(A) 211n i i X n =∑(B)2211ni i X σ=∑ (C)21()nii Xμ=-∑(D)1min i i nX ≤≤二、填空题(本大题4小题,每小题3分,共12分).1.已知()P A B a = ,()P B b =,则()P AB = .2.设K 在[2,5]-上服从均匀分布,则方程24420y Ky K +++=无实根的概率为 .3.若~(1,16)X N -,则()4P X <= .((1.25)0.8944Φ=,(0.75)0.7734Φ=)4.若随机变量X 的方差为4,则根据契比雪夫不等式有估计()()4P X E X -≥≤ . 三、计算题(本大题10分).某人下午5:00下班,他所积累的资料表明: 到家时间 5:35~5:395:40~5:445:45~5:495:50~5:54 迟于5:54乘地铁到家的概率0.10 0.25 0.45 0.15 0.05 乘汽车到家的概率0.30 0.35 0.20 0.10 0.05某日他抛一枚硬币决定乘地铁还是乘汽车. (1)求他5:45~5:49之间到家的概率;(2)若他是5:45~5:49之间到家的,求他是乘地铁回家的概率.某种产品共5件,其中有2件次品,3件正品,从中任取3件,设X 表示取出的3件产品中次品的个数,求(1)X 的分布律;(2)X 的分布函数()F x ;(3)期望()E X ;(4)方差()D X .某仪器装有三只独立工作的同型号电子元件,其寿命(单位:小时)都服从同一指数分布,密度函数6001e ,0;()6000,0.xx f x x -⎧>⎪=⎨⎪≤⎩求在仪器使用的最初200小时内,至少有一只电子元件损坏的概率α.六、计算题(本大题10分).已知随机变量X 服从[1,3]上的均匀分布,求2Y X =的概率密度.已知(,)X Y 的联合概率密度为,01,01;(,)0,.Axy x y f x y ≤≤≤≤⎧=⎨⎩其他 求(1)常数A ;(2)(1)P X Y +<;(3)()X f x ,()Y f y ;(4)判断,X Y 的独立性.八、计算题(本大题8分).设总体X 的概率密度为1,01;(;)0,.x x f x θθθ-⎧<<=⎨⎩其它 其中θ为未知参数,且0θ>. 求θ的矩估计.设有来自正态总体()2~,0.9X N μ的容量为9的简单随机样本,测得样本均值5x =,求未知参数μ的置信度为0.95的置信区间.(0.025 1.96Z =)十、证明题(本大题6分).设事件A 与B 相互独立,证明:A 与B 相互独立.期末自测练习题一一、1.D 2.C 3.B 4.D 二、1.()t n 2.0.9 3.124.1三、(1)0.973(2)0.25 四、(1)分布律(2)14()35E X =(3)52()175D X = 五、22e ()(e 1)yY yf y π=+ 六、(1)12A =(2)144P X Y ππ⎛⎫⎫+<=- ⎪⎪⎝⎭⎭(3)1(sin cos ),0;()220,X x x x f x π⎧+≤≤⎪=⎨⎪⎩其他1(sin cos ),0;()220,Y y y y f y π⎧+≤≤⎪=⎨⎪⎩其他(4)X 与Y 不独立 七、()E X 32a =,()D X 234a =,23E X a ⎛⎫- ⎪⎝⎭0=,23D X a ⎛⎫- ⎪⎝⎭213a = 八、(1)(2)1()2P X Y ==九、11ˆn i i x n θ==∑十、不能认为这批滚珠的平均直径为12cm期末自测练习题二一、1.B 2.C 3.C 4.C 二、1.44 2.1~10,6X B ⎛⎫⎪⎝⎭3.18≤4.2(,)N μσ三、(1)2345(2)1523四、22e ,0;()0,0.y Y y y f y y -⎧≥⎪=⎨<⎪⎩ 五、 (1)1a = (2)112(1)12ee P X Y --+≤=-+(3)e ,0;()0,0.x X x f x x -⎧>=⎨≤⎩,1e ,0;()0,0.y Y y f y y -⎧->=⎨≤⎩(4),X Y 不相互独立 六、1()2P X Y <=七、1()6E A =,1()180D A = 八、矩估计值15ˆ(3)26x θ=-=,极大似然估计值5ˆ6θ= 九、(5.558,6.442) 十、略期末自测练习题三一、1.B 2.C 3.B 4.A 二、1.c b -2.143.0.6147 4.2()D X a三、(1)4980(2)4049四、 (1)12A =,1B π=(2);()()0,.a x a f x F x -<<'==⎩其他(3)23五、01;()0,.Y y f y <<=⎩其他六、解 (1)1C =(2)1(12,11)12e P X Y --<<-<<=-(3)e ,0;()0,0.x X x f x x ⎧<=⎨≥⎩,e ,0;()0,0.y Y y y f y y ⎧-<=⎨≥⎩(4),X Y ∴不独立 七、(1)5()3E X =,()D X 29=(2)()3E Z =八、(1)矩估计量ˆ2X θ=(2)ˆ()E θθ=,21ˆ()5D nθθ= (3)ˆ2X θ=是参数θ的无偏估计量 九、(4.412,5.588) 期末自测练习题四 一、1.C2.D 3.D 4.C 二、1.0.82532.473.8254.2()D X b三、(1)0.97(2)0.2四、21,1;()0,1.Y y yf y y ⎧>⎪=⎨⎪≤⎩五、1()3E Z =,()3D Z =六、(1)1C =(2)e ,0;()0,0.x X x f x x -⎧>=⎨≤⎩,21,0;(1)()0,0.Y y y f y y ⎧>⎪+=⎨⎪≤⎩(3),X Y 不独立(4)211(01,01)e e 12P X Y --<<<<=-+七、八、1ˆ1168λ= 九、(4.804,5.196) 期末自测练习题五一、1. A 2. C 3. D 4. B 二、1.a b -2.373.0.66784.14三、(1)0.325(2)913四、(1)(2)0,0;1,01;10()7,12;101, 2.x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)() 1.2E X =(4)()0.36D X =五、11e --六、19;()0,.Y y f y ≤≤=⎩其他七、(1)4A =(2)(1)P X Y +<16=(3)2,01;()0,.X x x f x ≤≤⎧=⎨⎩其他,2,01;()0,.Y y y f y ≤≤⎧=⎨⎩其他 (4),X Y 相互独立八、矩估计为ˆ1x x θ=- 九、(4.412,5.588) 十、略。

概率论第二章自测题及参考答案

概率论第二章自测题及参考答案

第二章自测题(每题10分)(时间60分钟)1、设随机变量X 的分布函数为 ()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=41421211213210200x x x x xx x F 试求下列概率:⑴.{}1=X P ; ⑵.⎭⎬⎫⎩⎨⎧<<121X P ; ⑶.{23}P X ≤≤;⑷.{}4<X P ; ⑸.{}2≥X P .2、假设在一次考试中,5名男同学与5名女同学的成绩各不相同.现将这10名同学的成绩按大小进行排列,令X 表示女同学得到的最高名次,试求X 的分布律.3、在一次试验中,设事件A 发生的概率为p()10<<p ,现将此试验独立、重复地进行下去,直至A 与A 都发生为止.设X 表示所需要的试验次数,试求X 的分布律. 4、问常数A 取什么值时,数列() ,,,54341=⎪⎭⎫⎝⎛k A k是离散型随机变量X 的分布律?5、一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大?6、设连续型随机变量X 的密度函数为()()+∞<<∞-=-x Aex f x试求:⑴.常数A ;⑵.X 的分布函数;⑶.{}41<<-X P .7、设电子元件的电阻X (单位:Ω)服从正态分布()4.1050,N ,现检查15个同类型的电子元件,求这15个元件中至少有两个元件的电阻大于55Ω的概率是多少? 8、设连续随机变量ξ的分布函数为()arctan,()xF x a b x a=+-∞<<+∞ (1)、求系数a 、b ;(2)、P (-2<ξ<2); (3)、 概率密度f (x ).9、设随机变量X 的密度函数⎪⎩⎪⎨⎧<<--=其它012)1(92)(x x x f X求:Y=X 2的概率密度10、假设一部机器在一年内发生故障的概率为,机器发生故障时全天停止工作,若一周个工作日里无故障,可获利润万元,发生一次故障仍可获利润万元;发生二次故障所获利润万元;发生三次或三次以上故障就要亏损万元,求一周内可获利润的分布律。

概率自测答案

概率自测答案

概率自测答案随机现象单选题(共1题,每题100分)1 . 下面哪一个不属于随机现象?()。

A.一天内进入某超市的顾客数;B.一颗麦穗上长着的麦粒数;C.新产品在未来市场的占有率;D.太阳从东方升起参考答案:D随机试验单选题(共1题,每题100分)1 . 下列哪一个不属于随机试验的特征?()∙ A.可以在相同的条件下重复的进行.∙ B.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果.∙ C.进行一次试验之前不能确定哪一个结果会出现. D. 试验的结果可以预知。

参考答案:D样本空间单选题(共1题,每题100分)1 . 将一枚硬币抛掷三次,对应的样本空间是下列哪一个?()A. S={H,T}B.S={0,1,2,3}C.S={HH,TT}D.S={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}参考答案:D随机事件,事件之间的关系单选题(共1题,每题100分)1 . 下列事件是必然事件的是()∙ A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上∙ B.打开电视体育频道,正在播放NBA球赛∙ C.射击运动员射击一次,命中十环 D.若a是实数,则|a|≥0参考答案:D事件的运算律单选题(共1题,每题100分)1 . 下列等式哪一个是正确的?()A..B..C..D..参考答案:C频率单选题(共1题,每题100分)1 ..∙ A.掷一枚正六面体的骰子,出现1点的概率∙ B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率∙ C.抛一枚硬币,出现正面的概率∙ D.任意写一个整数,它能被2整除的概率参考答案:B概率的定义单选题(共1题,每题100分)1 ..A. P(A∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A)参考答案:A概率的性质(二)单选题(共1题,每题100分)1 . 设A, B为两事件,则P(A-B)等于( )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)参考答案:C等可能概型单选题(共1题,每题100分)1 . 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是()A..B..C..D..参考答案:C基本计数原理单选题(共1题,每题100分)1 . 在6件产品中,有2件次品,任取两件都是次品的概率是( )A..B..C..D..参考答案:D等可能概型计算(二)单选题(共1题,每题100分)1 . 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是()A..B..C..D..参考答案:C条件概率单选题(共1题,每题100分)1 ..A.P(A∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D.P(B-A)=P(B)-P(A)参考答案:A乘法定理单选题(共1题,每题100分)1 ..A. 0.75B. 0.6C.0.82D.0.85参考答案:C全概率公式单选题(共1题,每题100分)1 . 有三个罐子,1号装有2 红 1 黑球 , 2号装有3 红 1 黑球,3号装有 2 红 2 黑球. 某人从中随机取一罐,再从中任意取出一球,则取得红球的概率为()。

自测题一及答案

自测题一及答案

4.在区间(0, 1)上随机地取两个数,“两数之和小于 6/5”的概率为 【解】设用 X, Y 分别表示随机抽取的两个数,则 0<X<1, 0<Y<1, 于是(X, Y)取值的样本空间是以边长为 1 的正方形区域,而事件 A 所对应的图形部分如图所示,
自测题一及参考答案 3/9
6/5
《概率论》精品课程建设资料
《概率论》精品课程建设资料
《概率论》自测题一
时间:150分钟;卷面分值:100分 一、单项选择题(每题2分,共12分) 1.设A, B为任意二事件,与A∪B=B不等价的是( (A) AB;(B) B A ;(C) A B =;(D) A B=。 2.A, B为两个随机事件,且P(B)>0, P(AB)=1,则必有( )。 (A) P(A∪B)>P(A);(B) P(A∪B)>P(B);(C) P(A∪B)=P(A);(D) P(A∪B)=P(B)。 3.设A, B, C是三个相互独立的随机事件,且0<P(C)<1, 0<P(A)<1,则下列四对事件中不相 互独立的是( )。 (A) A B 与C;(B) AC 与 C ;(C) A-B 与 C ;(D) AB 与 C 。 4.设A, B, C是三个事件两两相互独立,则A, B, C三事件相互独立的充要条件是( )。 (A) A与BC独立;(B) AB与A∪C独立;(C) AB与AC独立;(D) A∪B与A∪C独立。 A2={掷第二次出现正面}; 5.将一枚硬币独立地掷两次,引进事件A1={掷第一次出现正面}; )。 A3={正、反面各出现一次};A4={正面出现两次},则事件( (B) A2, A3, A4相互独立; (A) A1, A2, A3相互独立; (C) A1, A2, A3两两相互独立;(D) A2, A3, A4两两相互独立。 6.设 A, B 为任意二事件,则( )正确。 (A) 若AB,则A, B一定独立;(B) 若AB,则A, B有可能独立; (C) 若AB=,则A, B一定独立;(D) 若AB=,则A, B一定不独立。 二、填空题(每题2分,共12分) 1.设A, B是两个随机事件,则P(( A ∪B)(A∪B)(A∪ B )( A ∪ B ))= 。 )。

概率论与数理统计自测题50题

概率论与数理统计自测题50题

概率论与数理统计自测题50题(成都信息工程学院暑期重修)1. 设随机试验E 对应的样本空间为S 。

与其任何事件不相容的事件为 , 而与其任何事件相互独立的事件为 ;设有P (A|B )=1, 则A 、B 两事件的关系为 ;设E 为等可能型试验,且S 包含10个样本点,则按古典概率的定义其任一基本事件发生的概率为 。

2. 随机事件A 与B 互不相容,且P (A )>P (B )>0,则A . P(A)=1-P(B)B .P(AB)=P(A)P(B)C .P(A ∪B)=1D .1AB P )=(3.设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有A . P(A ∪B)=P (A )B .B A ⊃C .P (A )=P (B )D .P (AB )=P (A )4.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为A .2242B .2412C C C .24A 2! D .4!2!5.某人连续向一目标射击,每次命中目标的概率为3/4,他连续射击直到命中为止,则射击次数为3的概率是A .343)(B .41432⨯)(C .43412⨯)(D .22441C )( 6.已知随机变量X 的概率密度为fx(x),令Y =-2X ,则Y 的概率密度(y)f Y 为A .2f (-2y)xB .x y f (-)2C .1y -f (-)x 22D .x 1y f (-)227.如果函数{x , a x bf(x)0 , x a x b ≤≤=<>或是某连续随机变量X 的概率密度,则区间[a,b]可以是A .[0,1]B .[0.2]C .[20,]D .[1,2]8.下列各函数中是随机变量分布函数的为 A .+∞<<∞+=x ,x 11(x)21-F B .20, x 0F (x)x ,x 01x⎛ ≤= >⎝+C .+∞<<∞=x ,-e (x )F -x 3D .+∞<<∞+=x arctgx,-2143(x)F 4π 9.设二维随机向量(X ,Y )的联合分布列为则P {X =0}=A . 1/12B .2/12C .4/12D .5/1210.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=A . 3B .6C .10D .1211.设φ(x )为标准正态分布函数,{i 1A X i 1,2,,1000,A ==L ,事件发生; 事件不发生;,且P(A)=0.8,X 1,X 2,…,X 100相互独立。

概率论 自测题

概率论 自测题

2008-2009(2)概率统计课程第一次自测题说明:1.包含内容:随机事件的关系与运算;概率的性质;条件概率、全概率公式;事件的相互独立性、伯努利试验.2.完成时间:70分钟.3.题目中68%标准水平(基本要求),18%较高水平(用*号表示),14%高水平(历届研究生入学考试题目,用**号表示)一、计算:(第1-4题每题14分)1. 事件A 与B 的概率分别为1/3,1/2 ,试求下列三种情况下()P AB 的值:(1) A 与B 互不相容(互斥); ()1(2);(3)8A B P AB ⊂=. (答案:1/2,1/6,1/8)2. ,()0.7,()0.4,().A B P A B P A P B ⋃==设相互独立且求(答案:1/2) 3(01),42p p <<.某人向同一目标独立重复射击,每次射中目标的概率为求此人第次射击恰好第次命中目标的概率.(答案:26(1)p p -)45321.袋中有个球,其中有个红球,个白球,现每次取个无放回地抽取两次,求第二次取到红球的概率.(答案:3/5)5.(20分) 玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1、0.1,顾客购买时,售货员随意取一箱,顾客随机查看4只,若无残次品,则买下,否则退回,试求:(1)顾客买下该箱玻璃杯的概率α;(2) *顾客买下的一箱玻璃中,确实无残次品的概率β.解:(1){}0,1,2i A i i ==一箱中含有只残次品;{4}B =从一箱中,随机查看只,无残次品4419180112442020(|)1,(|),(|)A A P B A P B A P B A A A ===, 31161615()()(|)0.810.10.1202019i i i P B P A P B A α=⨯===⨯+⨯+⨯⨯∑120.880.10.9419=+⨯≈.(2)00031()()0.81(|)0.8510.94()(|)i ii P BA P A P A B P A P B A β=⨯===≈∑ . 二、证明:(24分)1. * (10分)当随机事件A 与B 同时发生时,事件C 发生,则()()()1P C P A P B ≥+-.2. ** (14分)设A,B 是任意两个事件, A 的概率 不等于0和1,证明:P (B | A ) = P (B | A )是事件 A,B 独立的充要条件.。

概率论与数理统计第二章自测题答案与提示

概率论与数理统计第二章自测题答案与提示
方向
为了更好地备考,我将关注以下几个方向:深入理解概率论的基本概念和性质;掌握条件概率的计算 方法;熟悉常用随机变量的期望和方差的计算公式;提高解决实际问题的能力。同时,我也会注重培 养自己的逻辑思维和分析能力,以便更好地应对各种考试挑战。
THANKS
感谢观看
通过具体例题,解析如何运用概 率的基本性质和计算方法,解决 复杂的概率计算问题。
随机变量分布题
通过具体例题,解析如何运用随 机变量的性质和分布函数,解决 随机变量分布的问题。
随机变量变换题
通过具体例题,解析如何运用随 机变量的变换方法,解决随机变 量变换的问题。
04
自测题答案总结与反思
答案总结
要点一
填空题答案及解析
填空题1答案:0.6
01
输标02入题
解析:此题考查概率的计算,根据概率的基本性质, 互斥事件的概率和为1,因此$P(A) + P(B) = 1$,解 得$P(A) = 0.6$。
03
解析:此题考查随机变量的期望和方差的计算,根据 期望和方差的定义,随机变量X的期望$E(X) = sum x_i p_i$,方差$D(X) = sum (x_i - E(X))^2 p_i$。
概率论与数理统计第二章 自测题答案与提示
• 自测题答案 • 题目解析与提示 • 重点与难点解析 • 自测题答案总结与反思
01
自测题答案
选择题答案及解析
选择题1答案:B 选择题2答案:C 选择题3答案:D
解析:此题考查概率的基本性质,事件A和B的并集概 率等于它们概率之和减去它们的交集概率,即$P(A cup B) = P(A) + P(B) - P(A cap B)$。
建议
为了提高自己的理解和应用能力,我建议在未来的学习中更加注重基础知识的掌握,多做一些练习题来加深对概 念的理解。同时,我也应该学会如何将理论知识应用于实际问题中,提高自己的分析和解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》单元自测题第一章 随机事件与概率专业 班级 姓名 学号一、填空题:1.设,是随机事件,,,,则_____________,_____________;2.设,是随机事件,,,,则__________;3.在区间)1,0(中随机地取两个数,则两数之和小于1的概率为___________;4.三台机器相互独立运转,设第一、第二、第三台机器发生故障的概率依次为0.1,0.2,0.3,则这三台机器中至少有一台发生故障的概率为_____________;5.设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于,则事件A 在每次试验中出现的概率为____________。

二、选择题:1.以表示事件“甲种产品畅销,乙种产品滞销”,则对立事件为( ) ()“甲种产品滞销,乙种产品畅销”; ()“甲、乙产品均畅销”; ()“甲种产品滞销或乙种产品畅销”; ()“甲种产品滞销”。

2.设,为两个事件,则下面四个选项中正确的是( ) () ; (); (); ()。

3.对于任意两事件与,与不等价的是( ) () ; (); () ; ()。

4.设,,,则有( ) () 事件与互不相容; () 事件与互逆; ()事件与相互独立; ()。

三、计算题:1.已知30件产品中有3件次品,从中随机地取出2件,求其中至少有1件次品的概率。

A B 7.0)(=A P 5.0)(=B P 3.0)(=-B A P =)(AB P =)(A B P A B 4.0)(=A P 3.0)(=B P 1.0)(=AB P =)(B A P 2719)(A P A A A B C D A B A )()()(B P A P B A P +=⋃B )()()(B P A P AB P =C )()()(A P B P A B P -=-D )((1)(AB P B A P -=⋃A B B B A =⋃A B A ⊂B A B ⊂C φ=B A D φ=B A 6.0)(=A P 8.0)(=B P 8.0)|(=A B P A A B B A B C A B D A B ⊂2.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.3.某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项都做的概率为0.19。

求:⑴已知他已投入基金,再购买股票的概率是多少?⑵已知他已购买股票,再投入基金的概率是多少?4.某人钥匙掉了,落在宿舍中的概率40%,这种情况下找到的概率为0.85;落在教室的概率为35%,这种情况下找到的概率为20%;落在路上的概率为25%.这种情况下找到的概率为10%,试求此人能找到钥匙的概率。

5.发报台分别以概率0.6和0.4发出信号“*”和“-”;由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“-”;同样,当发出信号“-”时,收报台分别以概率0.9和0.1收到信号“-”和“*”.求:⑴收报台收到信号“*”的概率;⑵当收报台收到信号“*”时,发报台确是发出信号“*”的概率。

《概率论与数理统计》单元自测题第二章 随机变量及其分布专业 班级 姓名 学号一、填空题:1.已知随机变量只能取四个数值,其相应的概率依次为,,,,则____________;2.设随机变量,且,则=_____________;3.设随机变量的分布函数为 则 ; 4.设随机变量,随机变量,若,则___;5.设随机变量的分布函数为,则的密度函数为____________。

二、选择题:1.如下四个函数那个是随机变量的分布函数( )(); (); (); ()。

2.设,则( )X 2,1,0,1-c 21c 43c 85c81=c X )(~λP }2{}1{===X P X P λX ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x =>)3(X P X B ~),2(p Y B ~),3(p 95}1{=≥X P =≥}1{Y P X )2arctan 2(1)(xx F +=ππX X A ⎪⎩⎪⎨⎧≥<≤--<=.22,0292,20)(x x x x F B ⎪⎩⎪⎨⎧≥<≤<=.1,0sin ,00)(ππx x xx x F C ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<=.21,20sin ,00)(ππx x xx x F D ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=.211,21041,00)(x x x x x F X )2,3(~2N =<<}51{X P(); (); (); ()。

3.已知,则随的增大,是( )()单调增加; ()单调减少; ()保持不变; ()非单调变化。

4.设随机变量,则方程有实根的概率为( ) (); ()1; (); ()。

三、计算题:1.袋中有5个球,分别编号1,2,…,5,从中同时取出3个球,用X 表示取出的球的最小号码,试求:⑴ X 的分布律;⑵ 。

2.设随机变量X 的密度函数为试求:⑴ 常数;⑵X 的分布函数;⑶A )1()5(Φ-ΦB 1)1(2-ΦC 1)21(21-ΦD )41()45(Φ-ΦX ),(~2σμN σ}|{|σμ<-X P A B C D X )6,1(~U 012=++Xt t A 54B C 32D 52}2{≤X P =)(x f ⎩⎨⎧<<.,0,0,2其它A x x A }2321{<<-X P3.某人上班所需的时间X (单位:),已知上班时间是,他每天出门,求:⑴ 某天迟到的概率;⑵ 一周(以5天计)最多迟到一次的概率。

4.设随机变量试求:⑴ 的分布律;⑵ 的分布律。

5.已知服从上均匀分布,求的概率密度。

)100,30(~N min 30:850:7X 12+-=X Y )sin(2X Z =X ]1,0[13+=X Y6.设随机变量X 服从参数1=λ的指数分布,求随机变量的函数Xe Y =的密度函数)(yf Y 。

《概率论与数理统计》单元自测题第三章 多维随机变量及其分布专业 班级 姓名 学号一、填空题:1.设二维随机变量),(Y X 的联合分布律为则____________,___________; 2.设二维随机变量),(Y X 的联合分布律为则、应满足的条件为_____________,若X 与Y 相互独立,则= _______,=_______;3.设二维随机变量),(Y X 服从区域G 上的均匀分布,G 由曲线和所围成,则),(Y X 的联合密度函数为________________________;4.设随机变量X ),(~211σμN ,Y ),(~222σμN ,且X 与Y 相互独立,则),(Y X 服从___________________;5.设随机变量X 与Y 相互独立,且均服从区间上的均匀分布,则 _____________。

二、选择题:1.设二维随机变量),(Y X 的联合密度函数为==}2{X P =-=}1{Y P αβαβ2x y =x y =)1,0(=>}1),{max(Y X P则常数为( )()12; ()3; ()4; ()7。

2.设随机变量X 服从区间上的均匀分布,服从参数为3的指数分布,且X 与Y 相互独立,则),(Y X 的联合密度( )();();();()。

3.设二维随机变量),(Y X ),,,,(~222121ρσσμμN ,则( ) () 服从正态分布; ()服从正态分布; ()X 及Y 均服从正态分布; ()服从正态分布。

4.设随机变量X 与Y则( ) () 1; () 0; (); ()。

5.设随机变量X 与Y 相互独立,其分布函数分别为、则的分布函数( )(); ();(); ()。

=),(y x f ⎩⎨⎧>>+-.,0,0,0,)43(其它y x Ae y x A A B C D )3,0(Y =),(y x f A ⎪⎩⎪⎨⎧><<=-,,0,0,30,31),(3其它y x y y x f y B ⎩⎨⎧><<=-,,0,0,30,),(3其它y x e y x f y C ⎩⎨⎧><<=-,,0,0,30,3),(3其它y x e y x f y D ⎩⎨⎧>>=-,,0,0,3,),(3其它y x e y x f y A Y X +B Y X -C D Y X ⋅==}{Y X P A B C 21-D 21)(x F X )(y F Y ),min(Y X Z ==)(z F Z A )()(1z F z F Y X ⋅-B )()(z F z F Y X ⋅C )](1[)](1[1z F z F Y X -⋅--D )](1[)](1[z F z F Y X -⋅-三、计算题:1.10件产品中有2件一级品,7件二级品,1件次品.从中任取3件,用X 表示其中的一级品数,用Y 表示其中的二级品数,试求:⑴ 的联合分布律;⑵ 关于X 及Y 的边缘分布律;⑶ 判断X 与Y 是否独立。

2.设),(Y X 的联合密度函数为求:⑴ 关于X 及Y 的边缘密度;⑵ ;⑶ 判断X 与Y 是否独立。

),(Y X =),(y x f ⎩⎨⎧<<<<.,0,10,0,8其它y y x xy }1{≤+Y X P3.设二维随机变量),(Y X 的分布律求以下随机变量的分布律:⑴;⑵.4.设X 和Y 是两个相互独立的随机变量,其概率密度分别为)(x f X ,)(y f Y 求:⑴ ;⑵ 随机变量Y X Z +=的概率密度.⎩⎨⎧≤≤=.,0,10,1其它x ⎩⎨⎧>=-.,0,0,其它y e y }{X Y P <5.设随机变量X 与Y且.试求:⑴ ),(Y X 的联合分布律;⑵判断X 与Y 是否独立。

1}0{==XY P《概率论与数理统计》单元自测题第四章 随机变量的数字特征专业 班级 姓名 学号一、填空题:1.设随机变量相互独立,其中)6,0(~1U X ,)4,0(~2N X ,)3(~3P X ,则_____________,_____________;2.设随机变量)(~λE X ,则_____________;3.已知随机变量),(~p n B X ,且,,则二项分布中的参数____________,____________;4.设和相互独立,且,,则 _____________;5.设随机变量的分布函数为 则___________。

相关文档
最新文档