微积分的基本公式

合集下载

微积分基本公式

微积分基本公式

微积分公式D x sinh -1(ax)=221x a + cosh -1(ax)=221ax - tanh -1(a x)= 22a a x -coth -1(a x)=22a a x -- sech -1(a x )= 22x a x a -- csch -1(a x )=22xa x a+-⎰ sinh -1 x dx = x sinh -1 x-21x ++ C ⎰ cosh -1 x dx = x cosh -1 x-12-x + C⎰ tanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ C ⎰ coth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C⎰ sech -1 x dx = x sech -1 x- sin -1 x + C ⎰ csch -1 x dx = x csch -1 x+ sinh -1 x + Csin 3θ=3sin θ-4sin 3θ cos3θ=4cos 3θ-3cos θ →sin 3θ= ¼ (3sin θ-sin3θ) →cos 3θ=¼(3cos θ+cos3θ)sin x = j e e jx jx 2-- cos x = 2jxjx e e -+sinh x = 2x x e e -- cosh x = 2xx e e -+正弦定理:αsin a= βsin b =γsin c =2R余弦定理: a 2=b 2+c 2-2bc cos αb 2=a 2+c 2-2ac cos βc 2=a 2+b 2-2ab cos γsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ½(α+β) cos ½(α-β)sin α - sin β = 2 cos ½(α+β) sin ½(α-β) cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) =⎰∞t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi ΖζzetaΞξxiΧχkhi a bcαβγ R倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;1 000 000 000 000 000 000 000 000 10 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0、1 10-1 deci d 分,十分之一0、01 10-2 centi c 厘(或写作「厘」),百分之一0、001 10-3 milli m 毫,千分之一0、000 001 10-6 micro ? 微,百万分之一0、000 000 001 10-9 nano n 奈,十亿分之一0、000 000 000 001 10-12 pico p 皮,兆分之一0、000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0、000 000 000 000 000 001 10-18 atto a 阿0、000 000 000 000 000 000 001 10-21 zepto z0、000 000 000 000 000 000 000 001 10-24 yocto y。

微积分计算公式

微积分计算公式

微积分计算公式微积分是研究可以量化连续变化的数学分支,主要包括积分、微分及函数的求导、求积等内容。

与其他的数学学科不同的是,微积分把求解过程和求解结果联系在一起,其结果可以表示为一个方程,即公式。

微积分公式是这一学科的核心内容,也是最重要的知识点,正确的掌握和应用公式是这一学科取得成功的关键所在。

首先,最基本的微积分公式,也就是微分的基本公式,是:f′(x)=limh→0f(x+h)f(x)h 。

这个公式表明,函数 f(x)点 x的导数,等于函数在点 x+h的取值与函数在点 x的取值的差值,除以此时的h。

在这个基本的微分公式之上,还有一些常用的微分公式,例如:微分 y= ax n公式为:Dy=nax n1 。

积分也是微分的一个重要方面,其最基本的公式是:∫f(x)dx=F(x)+C这里 F(x)示函数 f(x)积分,C示积分常数。

积分是用来求取函数的积分面积,而积分公式是进行函数求积的基本公式。

此外,还有许多其它的常用的微积分公式,例如积分微分公式,椭圆积分公式,余弦积分公式等。

积分微分公式是将微分操作和积分操作结合起来的公式,椭圆积分公式是根据椭圆来求解函数积分的公式,余弦积分公式是使用余弦函数求解函数积分的公式。

此外,微积分还有一种特殊情况,也是其重要分支,即积分变换。

积分变换是把分析问题变换成数学模型,并使用积分来求解这些模型的解决方案的一种方法。

积分变换的基本思想是,根据原始问题,利用积分的运算建立合适的模型,并解决这些模型,从而得到最终的结果。

总之,以上就是微积分中常用的公式。

对于学习微积分,要牢记这些公式,并熟练应用在实际的问题中,才能取得更好的学习成果。

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

微积分公式大全

微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。

1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。

1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。

微积分的公式大全

微积分的公式大全

微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。

2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。

-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。

-函数有界,且极限存在,则函数必定有极大值和极小值。

3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。

- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。

- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。

- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。

四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。

2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。

- 幂函数的导数:d/dx(x^n) = nx^(n-1)。

- 指数函数的导数:d/dx(e^x) = e^x。

- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。

-三角函数的导数:- d/dx(sin(x)) = cos(x)。

- d/dx(cos(x)) = -sin(x)。

- d/dx(tan(x)) = sec^2(x)。

-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。

- d/dx(arccos(x)) = -1/√(1-x^2)。

- d/dx(arctan(x)) = 1/(1+x^2)。

微积分的基本公式

微积分的基本公式

微积分的基本公式微积分是数学中的一个分支,主要研究连续变化的对象,如函数、曲线和曲面等。

微积分的基本公式是应用广泛且重要的数学工具,包括导数、积分、微分方程等。

下面将对微积分的基本公式进行详细介绍。

一、导数导数是微积分中的基本概念之一,用于描述函数在其中一点上的变化率。

导数的定义如下:对于函数y = f(x),其在特定点x处的导数表示为f'(x)或dy/dx,定义为函数曲线在该点处的切线斜率。

导数的几何意义是函数曲线在其中一点的切线斜率的极限值。

导数的基本公式包括:1.常数导数公式:如果f(x)=k,其中k是常数,则f'(x)=0。

2. 幂函数导数公式:对于f(x) = x^n,其中n是实数,则f'(x) = nx^(n-1)。

3.指数函数导数公式:对于f(x)=e^x,其中e是自然对数的底,则f'(x)=e^x。

4. 对数函数导数公式:对于f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。

5. 三角函数导数公式:对于f(x) = sin(x),则f'(x) = cos(x);对于f(x) = cos(x),则f'(x) = -sin(x)。

二、积分积分是微积分中的另一个基本概念,用于计算曲线下面的面积或者曲线长度。

积分的定义如下:对于函数y = f(x),其在区间[a, b]上的积分表示为∫f(x)dx,定义为区间[a, b]上函数曲线与x轴之间的面积。

积分的基本公式包括:1. 不定积分公式:如果F(x)是f(x)的一个原函数,则∫f(x)dx =F(x) + C,其中C是常数。

这是积分的基本公式,也称为不定积分。

2. 定积分公式:如果f(x)是在区间[a, b]上连续函数,且F(x)是其原函数,则∫[a, b]f(x)dx = F(b) - F(a),其中F(a)表示F(x)在点a处的值,F(b)表示F(x)在点b处的值。

微积分基本公式

微积分基本公式

duv = udv + vdu
duv = uv = udv + vdu → udv = uv - vdu cos2θ-sin2θ=cos2θ cos2θ+ sin2θ=1 cosh2θ-sinh2θ=1 cosh2θ+sinh2θ=cosh2θ
Dx
sinh-1(
x a
)=
1 a2 x2

1
pkqx
f(x1, x2, …, xm-1)=
Multinomial
n! x1! x 2 !... x m !
p x1 1
p2
x2
...
pm
xm
npi
Geometric
pqx-1
npq npi(1-pi)
动差母函数 m(t)
q+pet (q+ pet)n
三项 (p1et1+ p2et2+ p3)n
商数关系: tanθ= sin ; cotθ= cos
cos
sin
平方关系: cos2θ+ sin2θ=1; tan2θ+ 1= sec2θ; 1+ cot2θ= csc2θ
順位高 順位低
;
顺位高 d
顺位低
;
0* = 1 * = = 0* 1 = 0


00
顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数
平均差(Average Deviatoin)
变异数(Variance)
n
n
(Xi X)2
(Xi X )2
1
or 1
n
n 1
标准差(Standard Deviation)

微积分基本公式

微积分基本公式

微积分公式tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1Γ(x) = ⎰∞0t x-1e -t d t = 2⎰∞0t 2x-12t e-d t = ⎰∞)1(ln tx-1d tβ(m , n ) =⎰10x m -1(1-x)n -1d x =2⎰20sin π2m -1x cos 2n -1xd x = ⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音Α α alpha Ι ιiota Ρ ρrho Β β beta Κ κ kappa Σ σ, ? sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi Θθtheta Ππpi Ω ω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1商数关系: tan θ= θθcos sin ; cot θ= θθsin cos平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;0*? =∞1 *? = ∞∞= 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值 几何平均数(Geometric mean) 调和平均数(Harmonic mean) 平均差(Average Deviatoin)变异数(Variance)nX Xni21)(-∑ or1)(21--∑n X Xni标准差(Standard Deviation)nX Xni21)(-∑ or1)(21--∑n X Xni分配 机率函数f (x ) 期望值E(x )变异数V(x )动差母函数m (t )1 000 000 000 000 000 000 000 000 10 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y。

16个微积分公式

16个微积分公式

16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。

下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。

一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。

这是因为常数函数在任意点的斜率都是0。

2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。

3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。

4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。

5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。

二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。

计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。

2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。

计算不定积分可以使用导数和积分的基本公式。

三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。

2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。

3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。

4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。

5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。

6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。

7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。

8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。

求解微分方程可以通过积分的方法来得到解析解。

9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。

微积分入门基本公式例题

微积分入门基本公式例题

微积分入门基本公式例题微积分是数学中的一个重要分支,它涉及到函数的极限、连续性、导数、积分等概念。

以下是一些微积分的基本公式及其例题:1.导数的基本公式导数描述了函数值随自变量变化的速率。

基本的导数公式包括:(1) 常数导数:f'(x) = 0,其中f(x)是一个常数;(2) 正比例函数导数:f'(x) = k,其中f(x) = kx;(3) 幂函数导数:f'(x) = nx^(n-1),其中f(x) = x^n;(4) 对数函数导数:f'(x) = 1/x,其中f(x) = ln x;(5) 三角函数导数:f'(x) = cos x,其中f(x) = sin x;以及f'(x) = -sin x,其中f(x) = cos x。

例题:求f(x) = 3x^2 + 5x + 2的导数。

解:根据幂函数导数的公式,f'(x) = 2*3x + 5 = 6x + 5。

2.积分的基本公式积分是微分的逆运算,它可以用来计算曲线下面积、求解定积分等。

基本的积分公式包括:(1) 常数积分:∫ a dx = ax + C,其中a是常数;(2) 正比例函数积分:∫ x dx = x^2/2 + C,其中C是积分常数;(3) 幂函数积分:∫ x^n dx = x^(n+1)/(n+1) + C,其中n是正整数;(4) 对数函数积分:∫ ln x dx = x ln x - x + C,其中C是积分常数;(5) 三角函数积分:∫ sin x dx = -cos x + C,以及∫ cos x dx = sin x + C,其中C是积分常数。

例题:计算∫ (3x^2 + 5x + 2) dx。

解:根据积分的基本公式,∫ (3x^2 + 5x + 2) dx = (3/3) * x^3 + (5/2) * x^2 + 2x + C = x^3 + (5/2)*x^2 + 2x + C。

微积分基本公式

微积分基本公式
1 2 例 3 例 1 计算 x dx . 0
b


1 2 1 x3]1 1 13 1 03 1 x dx [ 0 3 0 3 3 3
3
.
dx 例 4 例 2 计算 1 2 . 1 x 3 解 3 dx [arctanx]1 arctan 3 arctan(1) 1 1 x2 7 ( ) . 3 4 12
提示: x t 2 cos x t 2 设 (x) e dt , 则 (cos x) e dt .
1 1
d (cos x) d (u) du eu 2 ( sin x) sin x ecos2 x . dx du dx
下页
定理2 就是f(x)在[a, b]上的一个原函数.
b
解 这是求由曲线ysin x, 直线x0, x及x轴所围成的曲 边梯形的的面积.
A 0 sin xdx [ cos x] 0 (1) (1) 2 .

下页
例7 汽车以每小时36km速度行驶, 到某处需要减速停车. 设汽车以等加速度a5m/s2刹车. 问从开始刹车到停车, 汽车 走了多少距离? 解 汽车刹车时的初速度为
当汽车停止时, 有 v(t)105t 0, t2(s).
于是从开始刹车到停车汽车所走过的距离为
1 1 22 22 [ 10 [ 10 t t 5 5 t t ]] 10 10(( m m )). . ss 0 v v ( ( t t ) ) dt dt ( 10 ( 10 5 5 t t ) ) dt dt 00 0 0 0 2 2
下页
例7 汽车以每小时36km速度行驶, 到某处需要减速停车. 设汽车以等加速度a5m/s2刹车. 问从开始刹车到停车, 汽车 走了多少距离? 解 汽车刹车时的初速度为

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个微积分是数学的一门重要分支,它主要研究函数的极限、导数、积分等概念和性质。

微积分的基本公式是我们学习和应用微积分的基础,下面将介绍微积分的16个基本公式。

1.1+1=2这是微积分的最基本的公式,表示两个数相加得到另一个数。

2.a*b=b*a这是乘法交换律,表示两个数相乘的结果与顺序无关。

3.a+(b+c)=(a+b)+c这是加法结合律,表示三个数相加的结果与加法的顺序无关。

4.a*(b+c)=a*b+a*c这是乘法分配律,表示一个数与两个数相加的结果等于这个数与每个数相加的结果之和。

5.a-b=-(b-a)这是减法的性质,表示两个数相减的结果与减法的顺序无关。

6.a/b=b/a这是除法的性质,表示两个数相除的结果与除法的顺序无关。

7. (a+b)^2=a^2+2ab+b^2这是二次方的展开公式,表示两个数的和的平方等于它们的平方和加上两倍的乘积。

8. (a-b)^2=a^2-2ab+b^2这是二次方差的公式,表示两个数的差的平方等于它们的平方差减去两倍的乘积。

9.(a+b)*(a-b)=a^2-b^2这是差的平方公式,表示两个数的和与差的乘积等于它们的平方差。

10. (a+b)^3=a^3+3a^2b+3ab^2+b^3这是立方和的展开公式,表示两个数的和的立方等于它们的立方和加上三倍的乘积加上三倍的乘积再加上立方。

11. (a-b)^3=a^3-3a^2b+3ab^2-b^3这是立方差的公式,表示两个数的差的立方等于它们的立方差减去三倍的乘积加上三倍的乘积再减去立方。

12. (a+b)*(a^2-ab+b^2)=a^3+b^3这是立方和的因式分解公式,表示两个数的和与和的平方差的乘积等于它们的立方和。

13. (a-b)*(a^2+ab+b^2)=a^3-b^3这是立方差的因式分解公式,表示两个数的差与差的平方和的乘积等于它们的立方差。

14. (a+b)^n=a^n+na^(n-1)b+(n(n-1)/2)a^(n-2)b^2+...+nb^(n-1)+b^n这是二项式定理,表示两个数的和的n次方等于它们的各种组合的乘积之和。

微积分学基本公式

微积分学基本公式

四、1、0; .
1 2、 . 10
b
5.定积分中值定理
如果函数 f ( x ) 在闭区间[a , b] 上连续,
则在积分区间[a , b] 上至少存在一个点
使 a f ( x )dx f ( )(b a ) .
b

(a b)
积分中值公式
y
f ( )
y=fห้องสมุดไป่ตู้x)
o
a

b
x
三、原函数存在定理
若函数 f (x) 在 [a, b] 上连续,则变 上限定积分
( x )

x
a
f (t )dt
在区间 [a, b] 上可导,且有
d x ( x) f (t )dt f ( x) dx a a x b
变限积分求导: 问:
d ( x) f (t ) d t ? dx a
d ( x) f (t ) d t ? d x ( x)
1 dx. 2 x
例6



1
2
1 dx. 2 x
1

1
2
1 1 1 dx ( ) 2 x x 2 2
例7 计算

2 0
1 cos x dx
2
例7 计算

2 0
1 cos x dx
2 2
解:原式 0 sin x dx
sin x dx ( sin x) dx
一. 定积分的定义
设函数 f ( x ) 在[a , b]上有定义,
1. 分割
a x 0 x1 x 2 x n 1 x n b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分的基本公式共有四大公式: 1.牛顿-莱布尼茨公式,又称为微积分基本公式 2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分 3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关这四大公式构成了经典微积分学教程的骨干,可以说起到提纲挈领的作用,其实如果你学习了外代数,又称为格拉斯曼grassmann代数,用外微分的形式来表达,四个公式就是一个公式,具有统一的形式,其余的导数公式,积分公式,罗尔中值定理,拉格朗日中值定理,柯西中值定理,泰勒级数、麦克劳林展开式,当然也是基石了。

相关文档
最新文档