复合函数求导公式 函数求导法则有哪些
复合函数导数公式及运算法则
复合函数导数公式及运算法则复合函数导数公式及运算法则是以下这些:1、链式法则:若$f\left( x \right)$关于$x$的导数为$f'\left( x \right)$,且$g\left( x \right)$关于$f\left( x \right)$的导数为$g'\left( f\left( x \right)\right)$,则$g\left( f\left( x \right) \right)$关于$x$的导数为$f'\left( x\right)\times g'\left( f\left( x \right) \right)$。
2、乘法法则:若$y=f\left( x \right)\times g\left( x \right)$,则$y$关于$x$的导数为$f'\left( x \right)\times g\left( x \right)+f\left( x \right)\timesg'\left( x \right)$。
3、除法法则:若$y=f\left( x \right)\div g\left( x \right)$,则$y$关于$x$的导数为$\frac{f'\left( x \right)\times g\left( x \right)-f\left( x \right)\timesg'\left( x \right)}{\left[ g\left( x \right) \right]^2}$。
4、指数函数法则:若$y=a^x$(a>0,a 不等于1),则$y$关于$x$的导数为$a^x\cdot \ln\left( a \right)$。
5、指数函数反函数法则:若$y=a^x$(a>0,a 不等于1),则其反函数$y=\ln _ax$的导数关于$x$的导数为$\frac{1}{a^x\cdot \ln\left( a \right)}$。
复合函数求导公式大全 大学复合函数求导法则
复合函数求导公式大全大学复合函数求导法则复合函数如何求导?大学符合函数求导公式有哪些?下文小编给大家整理了复合函数的求导公式及法则,供参考! 复合函数求导公式 复合函数求导法则证法一:先证明个引理 f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0) 证明:设f(x)在x0可导,令H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0 因lim(x->;x0)H(x)=lim(x->;x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0) 所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 因存在极限lim(x->;x0)H(x)=lim(x->;x0)[f(x)-f(x0)]/(x-x0)=lim(x->;x0)f'(x)=H(x0) 所以f(x)在点x0可导,且f'(x0)=H(x0) 引理证毕。
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0) 证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)。
复合函数导数公式及运算法则
复合函数导数公式及运算法则1.基本公式:设有两个函数$f(x)$和$g(x)$,它们的复合函数为$h(x)=f(g(x))$。
那么$h(x)$的导数可以表示为:$$\frac{{dh}}{{dx}} = \frac{{df}}{{dg}} \cdot\frac{{dg}}{{dx}}$$或者可以写成简洁的形式:$$h'(x) = f'(g(x)) \cdot g'(x)$$这个公式是复合函数导数的基本公式,也是后续运算法则的基础。
2.反函数法则:设有函数$y=f(x)$,如果$f(x)$的反函数存在且可导,那么反函数$f^{-1}(x)$的导数可以表示为:$$(f^{-1})'(x) = \frac{1}{{f'(f^{-1}(x))}}$$3.乘积法则:设有两个函数$f(x)$和$g(x)$,它们的乘积为$h(x) = f(x) \cdot g(x)$。
那么$h(x)$的导数可以表示为:$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$这个公式可以直接应用于两个或多个函数的乘积的导数运算。
4.商法则:设有两个函数$f(x)$和$g(x)$,它们的商为$h(x) =\frac{{f(x)}}{{g(x)}}$。
那么$h(x)$的导数可以表示为:$$h'(x) = \frac{{f'(x) \cdot g(x) - f(x) \cdotg'(x)}}{{(g(x))^2}}$$这个公式可以用于计算两个函数的商的导数。
5.复合函数的高阶导数:复合函数的高阶导数是指对复合函数进行多次求导的结果。
根据基本公式,我们可以计算复合函数的高阶导数。
例如,对于三次导数,我们可以应用基本公式三次,得到如下的表达式:$$h''(x) = [f'(g(x)) \cdot g'(x)]' = f''(g(x)) \cdot(g'(x))^2 + f'(g(x)) \cdot g''(x)$$类似地,我们可以计算更高阶的导数。
复合函数导数公式及运算法则
复合函数导数公式及运算法则复合函数导数公式极其运算法则同学们还记得吗,如果不记得了,请往下看。
下面是由小编为大家整理的“复合函数导数公式及运算法则”,仅供参考,欢迎大家阅读。
复合函数导数公式.常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
复合函数求导公式有哪些
复合函数求导公式有哪些复合函数的求导公式有哪些呢?想来绝大部分的人都不知道,为了满足大家的好奇心。
下面是由小编为大家整理的“复合函数求导公式有哪些”,仅供参考,欢迎大家阅读。
复合函数求导公式有哪些链式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数。
所谓的复合函数,是指以一个函数作为另一个函数的自变量。
如设f(x)=3x,g(x)=3x+3,g(f(x))就是一个复合函数,并且g′(f(x))=9。
要注意f(x)的自变量x与g(x)的自变量x之间并不等同。
链式法则(chain rule)若h(a)=f[g(x)]则h'(a)=f'[g(x)]g'(x)链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。
"拓展阅读:复合函数的奇偶性复合函数中只要有偶函数则复合函数为偶函数,如一奇一偶为偶;若只有奇函数则复合函数为奇函数,无论奇数个还是偶数个,如两奇仍为奇。
1、f(x)*g(x)*h(x)这种相乘的复合函数。
奇函数的个数是偶数,复合函数就是偶函数。
奇函数的个数是奇数,复合函数就是奇函数。
2、f(g(h(x)))这种多层的复合函数。
函数中的有偶数,复合函数就是偶函数。
函数中的没有偶数,奇函数的个数是偶数,复合函数就是偶函数。
函数中的没有偶数,奇函数的个数是奇数,复合函数就是奇函数。
复合函数的单调性的判断方法复合函数单调性就2句话:2个函数(或多个)都递增或者都递减那么复合函数就是单调递增函数2个函数一个递增一个递减那么复合函数就是单调递减函数简单记法:负负得正,正在得正,负正得负。
3.3 复合函数求导法则
解: y [ f ( e x ) ] e
x
f (x)
f ( e )[ e
xfBiblioteka (x) xf (x)]
f ( x )
f ( e ) e e
x
f ( e )e
f (x)
y f (sin
2
x ) f (cos
2
x ), 求 y .
2 2 key : y f (sin x )2 sin x cos x f (cos x )2 sin x cos x
sin 1 x
, 2) y arcsin
2
, 3) y arctan
x a
2
1 x
tan
6
2x
tan 3 x , 5) y
a arccos ( x 0 , a 0) x
作业:P71 1(1)(2)(4)(5);2(2)(3)(4)(7)(8) 选做:3;5
x x0
f ( u 0 ) g ( x 0 ) f [ g ( x 0 )] g ( x 0 )
(3 4)
写成导函数的形式为
dy dx
简写为
( f [ g ( x )] ) f [ g ( x )] g ( x ) dy dx dy du du dx
e
x
x
sin
2 x , 求 y
x
x
) sin
2x e
(sin
cos
2 x )
2x (
2
( x ) sin
sin
2x e
x
x
2 x )
e
e
复合函数求导公式运算法则
复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。
2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。
3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。
4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。
5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。
7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。
8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。
下面通过实际例子来说明复合函数求导公式的运算法则。
例子1:求函数y=(2x+1)^3的导数。
解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。
复 合 函 数 的 求 导 法 则
练习 求下列函数的导数
y = e3x (A)1.
3x 3x 3x 解:y ′ = ( e ) ′ = e ( 3 x ) ′ = 3 e
y = cos( x 3 ) (A)2.
2 3 3 3 3 解:y ′ = (cos x ) ′ = − sin x ( x ) ′ = − 3 x sin x
(B)3. y = e 解: y ′ = e
2x ′ 1 所以 yx = yu ⋅ ux = ⋅ (−2x) = 2 u x −1
′
′
(A) 例3 求函数 y = cos 2 x 的导 数 2 解:设 y = u 则 u = cos x
因为 所以
′ ′ yu = 2u, ux = −sinx
′ ′ ′ yx = yu ⋅ ux = 2u(−sin x) = −2cosx sin x = −sin2x
′ y u = 5u 4 , u ′ = 3, x
′ x y′ = yu ⋅ u′ = 5u4 ×3 = 5(3x + 2)4 ×3 =15(3x + 2)4 所以 x
2 (B) 例2 求函数 y = ln(1 − x ) 的导数
解:设 因为
y = ln u
则
u = 1− x2
′ 1 ′ yu = , u x = −2 x, u
x π (B) 例5 求 y = ln tan( + ) 的导数。 的导数。 2 4
x π 解: 设 y = ln u , u = tan v, v = + 2 4
由
y ′ = f ′ ( u ) ⋅ φ ′( v ) ⋅ ϕ ′( x ) 得
x π ′ = (lnu)′ ⋅ (tanv)′ ⋅ ( + )′ y 2 4
复合函数求导法则.
1 2 ( x 2 1) 1 x x 1 x 1 x 2 2 2 2 2 x 1 x x 1 x 1 2 2 1 1 2 x x 1 x 1 2 2 x 1 2 x x2 1
2
2x 1
(2)两个以上的函数复合,也有相应的类似结论。如三个函数
z f (t ), t g ( y), y h( x), 则有
dz dz dt dy f ( g (h( x))) f (t ) g ( y)h( x) dx dt dy dx
【3-3-6】
4、法则应用举例 例1 解:
2
2 x 1
2
1 2 x 1
2
x
2
x2 1
【3-3-16】
(5) y (1 2 x) ( x 0)
1 x
1 ln(1 2 x ) y (1 2 x) ln(1 2 x) (1 2 x) x x 2x ln(2 x 1) 1 2x 1 x (1 2 x) 2 x 1 2 x (2 x 1) ln(2 x 1) x (1 2 x) 2 x (2 x 1)
【3-3-5】
y f [ g ( x0 x)] f [ g ( x0 )] 0,(x 0)
即( f [ g ( x)])
x x0
0,因此此时法则结论亦成立
3、法则使用中应注意的问题
(1) f [ g ( x)] 与f [ g ( x)]的区别
前者是对x求导数, 后者是对g ( x) u求导数
复合函数求导公式有哪些
复合函数求导公式有哪些复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);2、设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);拓展:1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠�0�1,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为: y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为 T1*T2,任一周期可表示为k*T1*T2(k属于R+).4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′例1.y=Ln(x^3),Y=Ln(u),U=x^3,y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)=(3x^2)/Ln(x^3)]例2.y=cos(x/3),Y=cosu,u=x/3由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3复合函数性质是什么复合函数的性质由构成它的函数性质所决定,具备如下规律:(1)单调性规律如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.(2)奇偶性规律若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.。
复合函数求导法则有哪些呢
复合函数求导法则有哪些呢复合函数的求导法则同学们清楚吗,如果不清楚,快来小编这里瞧瞧。
下面是由小编为大家整理的“复合函数求导法则有哪些呢”,仅供参考,欢迎大家阅读。
复合函数求导法则有哪些呢Y=f(u),U=g(x),则y′=f(u)′*g(x)′例1.y=Ln(x^3),Y=Ln(u),U=x^3,y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)=(3x^2)/Ln(x^3)]例2.y=cos(x/3),Y=cosu,u=x/3由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3拓展阅读:求导公式运算法则是什么运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
导数也叫导函数值,又名微商,是微积分中的重要基础概念。
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
复合函数求导公式有哪些
复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。
复合函数求导法则公式
复合函数求导法则公式1.链式法则:链式法则是用于求解复合函数导数的基本法则。
设y=f(u),u=g(x)为两个可导函数,且y=f(u)和u=g(x)均是一对一函数,则复合函数y=f(g(x))的导数可以通过链式法则求得。
链式法则的公式为:dy/dx=dy/du * du/dx其中,dy/du表示函数y=f(u)对u的导数,du/dx表示函数u=g(x)对x的导数。
例如,设y=sin(x^2),我们需要求解dy/dx。
首先,令u=x^2,y=sin(u),则dy/du=cos(u)=cos(x^2)。
其次,求解du/dx=2x。
最后,根据链式法则,dy/dx=dy/du * du/dx = cos(x^2) * 2x = 2x*cos(x^2)。
2.乘积法则:乘积法则用于求解两个函数乘积的导数。
设y=u*v为两个可导函数的乘积,则乘积函数y=u*v的导数可以通过乘积法则求得。
乘积法则的公式为:dy/dx = u * dv/dx + v * du/dx例如,设y=x*sin(x),我们需要求解dy/dx。
根据乘积法则,将u=x,v=sin(x)代入上述公式,dy/dx = x * cos(x) + sin(x)。
3.商规则:商规则用于求解两个函数的商的导数。
设y=u/v为两个可导函数的商,则商函数y=u/v的导数可以通过商规则求得。
商规则的公式为:dy/dx = (v * du/dx - u * dv/dx) / v^2例如,设y=(x^2+1) / x,我们需要求解dy/dx。
根据商规则,将u=x^2+1,v=x代入上述公式,dy/dx = ((x) * (2x) - (x^2+1) * (1)) / (x^2)^2 = (x^2 - 1) / x^4小结:复合函数求导法则包括链式法则、乘积法则和商规则。
链式法则适用于求解复合函数的导数,乘积法则适用于求解两个函数乘积的导数,商规则适用于求解两个函数的商的导数。
复合函数求导公式16个
复合函数求导公式16个求导是微积分中的一个重要概念,是用来确定函数在其中一点的变化率的工具。
而复合函数则是由多个函数组合而成的新函数,其求导过程相对复杂一些。
下面将介绍16个常见的复合函数求导公式。
1.设有函数y=f(u),u=g(x),则y=f(g(x))。
对这个复合函数求导,可以使用链式法则。
链式法则给出了复合函数求导的一个基本公式:(dy/dx) = (dy/du) * (du/dx)这个公式表示,对于复合函数y=f(g(x)),其导数等于f'(g(x))*g'(x)。
2.平方函数的链式法则:设有函数y=f(u)=u^2,u=g(x),则y=f(g(x))=g(x)^2、求导的结果为:(dy/dx) = 2 * g(x) * g'(x)3.倒数函数的链式法则:设有函数y=f(u)=1/u,u=g(x),则y=f(g(x))=1/g(x)。
求导的结果为:(dy/dx) = -g'(x) / (g(x))^24.指数函数的链式法则:设有函数y=f(u)=e^u,u=g(x),则y=f(g(x))=e^(g(x))。
求导的结果为:(dy/dx) = g'(x) * e^(g(x))5. 对数函数的链式法则:设有函数y=f(u)=ln(u),u=g(x),则y=f(g(x))=ln(g(x))。
求导的结果为:(dy/dx) = g'(x) / g(x)6. 正弦函数的链式法则:设有函数y=f(u)=sin(u),u=g(x),则y=f(g(x))=sin(g(x))。
求导的结果为:(dy/dx) = g'(x) * cos(g(x))7. 余弦函数的链式法则:设有函数y=f(u)=cos(u),u=g(x),则y=f(g(x))=cos(g(x))。
求导的结果为:(dy/dx) = -g'(x) * sin(g(x))8. 正切函数的链式法则:设有函数y=f(u)=tan(u),u=g(x),则y=f(g(x))=tan(g(x))。
复合函数求导法则
复合函数求导法则复合函数是由两个或多个函数构成的函数,形式为f(g(x)),其中g(x)是一个函数,f(u)是一个与u相关的函数。
在求复合函数的导数时,我们可以使用复合函数求导法则,该法则有三个部分:链式法则,反链式法则和迭代法则。
1.链式法则:链式法则适用于复合函数f(g(x)),其中g(x)是一个内层函数,f(u)是一个外层函数。
链式法则的公式如下:[f(g(x))]'=f'(g(x))*g'(x)例如,我们考虑函数f(u) = sin(u^2),其中g(x) = x^2、我们先计算g'(x),然后计算f'(u),最后使用链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x)=2x接下来,计算f'(u)如下:f'(u) = cos(u^2) * 2u最后,使用链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(g(x))*g'(x)= cos((x^2)^2) * 2(x^2)= cos(x^4) * 2x^2所以,f(g(x)) = sin(x^4) 的导数为 cos(x^4) * 2x^22.反链式法则:反链式法则适用于复合函数f(g(x)),其中g(x)是一个外层函数,f(u)是一个内层函数。
反链式法则的公式如下:[f(g(x))]'=f'(u)*u'例如,我们考虑函数f(u) = u^3,其中g(x) = sin(x)。
我们可以直接计算出g'(x)和f'(u),然后使用反链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x) = cos(x)接下来,计算f'(u)如下:f'(u)=3u^2最后,使用反链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(u)*u'= 3(sin(x))^2 * cos(x)= 3sin^2(x) * cos(x)所以,f(g(x)) = sin^3(x) 的导数为 3sin^2(x) * cos(x)。
复合函数的求导法则公式
复合函数的求导法则公式复合函数是由两个或多个函数组合成的一个函数,求导时需要运用复合函数的求导法则公式。
下面将详细介绍复合函数的求导法则公式。
1. 基本公式设函数y=f(u),u=g(x),则复合函数 y=f[g(x)] 的导数为:$$ \\frac {\\mathrm{d} y}{\\mathrm{d} x}=\\frac {\\mathrm{d}y}{\\mathrm{d} u} \\cdot \\frac {\\mathrm{d} u}{\\mathrm{d} x}=f'(u)g'(x) $$其中,$f'(u)$表示函数f(u)对u的导数,$g'(x)$表示函数g(x)对x的导数。
例如,设 $f(u) = u^2$,$g(x) = 3x +1$,则$$ y=f[g(x)]=f(3x+1)=(3x+1)^2 $$根据复合函数的求导法则公式,可得:$$ \\frac{\\mathrm{d} y}{\\mathrm{d}x}=\\frac{\\mathrm{d}y}{\\mathrm{d}u}\\cdot \\frac{\\mathrm{d} u}{\\mathrm{d}x}=2u\\cdot3=6(3x+1) $$所以,$y' = \\frac{\\mathrm{d} y}{\\mathrm{d}x} = 6(3x+1)$。
2. 链式法则复合函数的求导法则也可以用链式法则表示为:$$ \\frac {\\mathrm{d} y}{\\mathrm{d} x}=\\frac {\\mathrm{d}y}{\\mathrm{d} u} \\cdot \\frac {\\mathrm{d} u}{\\mathrm{d} x}=\\frac {\\mathrm{d} y}{\\mathrm{d} u_1} \\cdot \\frac {\\mathrm{d}u_1}{\\mathrm{d} u_2} \\cdot \\frac {\\mathrm{d} u_2}{\\mathrm{d}x}=\\frac {\\mathrm{d} y}{\\mathrm{d} u_1} \\cdot \\frac {\\mathrm{d}u_1}{\\mathrm{d} u_2} \\cdot \\frac {\\mathrm{d} u_2}{\\mathrm{d}u_3}\\cdot \\frac {\\mathrm{d} u_3}{\\mathrm{d} x}=\\cdots $$其中,$u_1,g^{(1)}(x)$表示通过一次代换得到的新函数,$u_2,g^{(2)}(x)$表示通过第二次代换得到的新函数,$u_3,g^{(3)}(x)$表示通过第三次代换得到的新函数,$\\cdots$表示通过n次代换得到的新函数,$y=f(u)$。
复合函数求导公式16个
复合函数求导公式16个在微积分中,复合函数是指由两个或多个函数构成的函数。
求复合函数的导数是微积分中的一个重要概念。
下面将介绍复合函数求导的16种常见公式。
1.线性函数复合如果y是x的线性函数,z是y的线性函数,即 $y=ax+b$ ,$z=cy+d$, 那么z是x的线性函数,即 $z=acx+(ad+bc)$。
2.指数函数复合如果y是x的指数函数,即$y=a^x$,z是y的指数函数,即$z=a^y$,那么z是x的指数函数,即$z=a^{a^x}$。
3.对数函数复合如果y是x的对数函数,即 $y=\log_a(x)$ ,z是y的对数函数,即 $z=\log_a(y)$ ,那么z是x的对数函数,即$z=\log_a(\log_a(x))$。
4.幂函数复合5.反三角函数复合如果y是x的反三角函数,即 $y=\sin^{-1}(x)$ ,z是y的反三角函数,即 $z=\sin^{-1}(y)$ ,那么z是x的反三角函数,即$z=\sin^{-1}(\sin^{-1}(x))$。
6.反双曲函数复合如果y是x的反双曲函数,即 $y=\sinh^{-1}(x)$ ,z是y的反双曲函数,即 $z=\sinh^{-1}(y)$ ,那么z是x的反双曲函数,即$z=\sinh^{-1}(\sinh^{-1}(x))$。
7.三角函数复合如果y是x的三角函数,即 $y=\sin(x)$ ,z是y的三角函数,即$z=\sin(y)$ ,那么z是x的三角函数,即 $z=\sin(\sin(x))$。
8.双曲函数复合如果y是x的双曲函数,即 $y=\sinh(x)$ ,z是y的双曲函数,即$z=\sinh(y)$ ,那么z是x的双曲函数,即 $z=\sinh(\sinh(x))$。
9.反函数复合如果y是x的反函数,即$y=f^{-1}(x)$,z是y的反函数,即$z=f^{-1}(y)$,那么z是x的反函数,即$z=f^{-1}(f^{-1}(x))$。
复合函数导数的基本公式14个
复合函数导数的基本公式14个下面是复合函数导数的14个基本公式:1.链式法则链式法则是求解复合函数导数的基本方法。
设函数y=f(u)和u=g(x),则复合函数y=f(g(x))的导数dy/dx等于dy/du乘以du/dx,即(dy/dx)=(dy/du)(du/dx)。
2.反函数法则如果函数y=f(x)的反函数存在,则反函数y=f^(-1)(x)的导数为1/f'(f^(-1)(x))。
3.乘积法则设函数y=u(x)v(x),其中u(x)和v(x)是关于x的函数,则函数y的导数dy/dx等于u'(x)v(x)+u(x)v'(x),即(dy/dx)=(u'(x)v(x))+(u(x)v'(x))。
4.商法则设函数y=u(x)/v(x),其中u(x)和v(x)是关于x的函数,且v(x)不等于0,则函数y的导数dy/dx等于(u'(x)v(x)-u(x)v'(x))/(v(x))^2,即(dy/dx)=(u'(x)v(x)-u(x)v'(x))/(v(x))^25.幂函数法则设函数y=u(x)^n,其中u(x)是关于x的函数,n是常数,则函数y的导数dy/dx等于n(u(x))^n-1*u'(x),即(dy/dx)=n(u(x))^n-1*u'(x)。
6.指数函数法则设函数y=a^u(x),其中a是常数,u(x)是关于x的函数,则函数y的导数dy/dx等于a^u(x)ln(a)*u'(x),即(dy/dx)=a^u(x)ln(a)*u'(x)。
7.对数函数法则设函数y=log_a(u(x)),其中a是常数,u(x)是关于x的函数,则函数y的导数dy/dx等于1/(u(x)ln(a))*u'(x),即(dy/dx)=1/(u(x)ln(a))*u'(x)。
8.双曲函数法则设函数y=sinh(u(x)),其中u(x)是关于x的函数,则函数y的导数dy/dx等于u'(x)cosh(u(x)),即(dy/dx)=u'(x)cosh(u(x))。
复合函数求导法则公式
复合函数求导法则公式复合函数求导法则是指在求解一个函数的导数时,若这个函数可以表示为另外两个函数的复合,那么可以通过复合函数求导法则来简化求导的过程。
复合函数指的是由两个或多个函数通过相互嵌套来构成的函数,例如:f(g(x))。
下面是复合函数求导法则的公式:1. 链式法则公式链式法则是复合函数求导中最常用的方法,它用于求解形如f(g(x))的复合函数的导数。
具体地说,设f和g都是可导的函数,则f(g(x))的导数为:(f(g(x)))' = f'(g(x)) * g'(x)其中,f'(g(x))表示f对g(x)的导数,g'(x)表示g对x的导数。
链式法则可以看作是微元法在函数中的应用,它是通过链式的推导而得出的。
实际上,链式法则可以推广到一般的复合函数上,即:(f1(f2(...fn(x)..)))' = f1'(f2(...fn(x)..)) * f2'(f3(...fn(x)..)) * ... * fn-1'(fn(x)) * fn'(x)其中,f1、f2、...、fn为可导函数,'表示求导,()表示括号内的函数作为整体。
链式法则的推导可以用微元法来证明。
假设有一个函数y=f(u)和另一个函数u=g(x),则y的微元(dy)可以表示为:dy = f'(u) * du根据微元法,dy是y对x的导数,因此:dy/dx = dy/du * du/dx = f'(u) * g'(x)将u=g(x)带入,得到:(dy/dx) = (f(g(x)))' = f'(g(x)) * g'(x)2. 乘积法则公式乘积法则是用于求解两个可导函数f(x)和g(x)的乘积的导数。
具体地说,设f(x)和g(x)都是可导函数,则f(x)g(x)的导数为:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)乘积法则的推导可以用微元法或是导数定义的极限来证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数求导公式函数求导法则有哪些
对于高中生来说,想要学好数学,就要了解公式。
函数是高中数学的一个难点,那幺,符合函数公式有哪些呢?下面和小编一起来看看吧!
1 复合函数求导公式有哪些1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为
Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其
中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范
围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数怎幺求导复合函数的导数等于原函数对中间变量的导数乘以中间变量对自变量的导数。
举个例子来说:F(x)=In(2x+5),这个函数就是个复合函数,设u=2x+5,则u。