(专升本)数学模拟试卷1
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列四组函数中f(x)与g(x)表示同一函数的是( )A.f(x)=tanx,g(x)=B.f(x)=lnx3,g(x)=3lnxC.f(x)=,g(x)=D.f(x)=ln(x2一1),g(x)=ln(x一1)+ln(x+1)正确答案:B解析:A、D选项中,两函数的定义域不同,C选项中,当x<0时,f(x)≠g(x),B选项中,f(x)=lnx3=3lnx=g(x),定义域均为x>0,故选B.知识模块:函数、极限与连续2.函数f(x)=是( )A.奇函数B.偶函数C.非奇非偶函数D.不能确定奇偶性正确答案:B解析:由于一1<x<1,从而定义域关于原点对称,又f(一x)==f(x),所以函数f(x)为偶函数.知识模块:函数、极限与连续3.= ( )A.B.1C.D.3正确答案:C解析:.知识模块:函数、极限与连续4.极限等于( )A.0B.1C.2D.+∞正确答案:D解析:因该极限属“”型不定式,用洛必达法则求极限.原式=(ex+e-x)=+∞.知识模块:函数、极限与连续5.当x→0时,无穷小x+sinx是比x ( )A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:=2,故选C.知识模块:函数、极限与连续6.=6,则a的值为( )A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1,所以=6.知识模块:函数、极限与连续7.下列四种趋向中,函数y=不是无穷小的为( ) A.x→0B.x→1C.x→一1D.x→+∞正确答案:B解析:知识模块:函数、极限与连续8.设f(x)== ( )A.4B.7C.5D.不存在正确答案:A解析:知识模块:函数、极限与连续填空题9.函数y=ln(lnx)的定义域是_________.正确答案:(1,+∞)解析:y=ln(lnx),所以解得x>1,故函数的定义域为(1,+∞).知识模块:函数、极限与连续10.已知f(x)=2x2+1,则f(2x+1)= _________.正确答案:8x2+8x+3解析:用代入法得f(2x+1)=2(2x+1)2+1=8x2+8x+3.知识模块:函数、极限与连续11.=________.正确答案:解析:令.也可直接利用无穷小量代换.知识模块:函数、极限与连续12.=________.正确答案:e2解析:=e2.知识模块:函数、极限与连续13.设函数f(x)=在x=0处连续,则a=________.正确答案:3解析:因为函数f(x)在x=0处连续,则=a=f(0)=3.知识模块:函数、极限与连续14.设f(x)=在x=0处连续,则常数a与b满足的关系是________.正确答案:a=b解析:函数f(x)在x=0处连续,则有=b,即a=b.知识模块:函数、极限与连续解答题15.已知函数f(x)的定义域是[0,1],求函数f(x+4)的定义域.正确答案:因为f(x)的定义域是[0,1],所以在函数f(x+4)中,0≤x+4≤1,即一4≤x≤一3,所以f(x+4)的定义域为[一4,一3].涉及知识点:函数、极限与连续16.计算.正确答案:函数-x复合而成,利用有理化求得.故.涉及知识点:函数、极限与连续17.求.正确答案:0.∞型,先变形为,再求极限.=1.涉及知识点:函数、极限与连续18.求极限.正确答案:=1.涉及知识点:函数、极限与连续19.求极限.正确答案:原式==一15π2.涉及知识点:函数、极限与连续20.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续21.求.正确答案:涉及知识点:函数、极限与连续22.求极限.正确答案:1一,则有原式=.涉及知识点:函数、极限与连续23.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续24.设f(x)=问a为何值时,f(x)在x=0连续;a 为何值时,x=0是f(x)的可去间断点.正确答案:f(0)=6,(1)若f(x)在x=0处连续,应有2a2+4=一6a=6,故a=一1;(2)若x=0是f(x)的可去间断点,则应有≠f(0),即2a2+4=一6a≠6,故a≠一1,所以a=一2时,x=0是可去间断点.涉及知识点:函数、极限与连续25.证明方程x3+x2+3x=一1至少有一个大于一1的负根.正确答案:令f(x)=x3+x2+3x+1,f(一1)=一2<0,f(0)一1>0,f(x)在(一1,0)上连续,由零点定理知,在(一1,0)内至少存在一点ξ,使得f(ξ)=0,所以方程在(一1,0)内至少有一根,即方程至少有一个大于一1的负根.涉及知识点:函数、极限与连续。
专升本数学模拟试题(一)
一东北数学试题(一)一、选择题:本大题共10个小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1.设,则等于()A. B.C. D.2. 已知为常数,,则等于()A. B. C. D. 03. 已知,则等于()A. B.C. D.4. 已知,则等于()A. B. C. D.5. 已知,则等于()A. B. C. D.6. 设的一个原函数为,则下列等式成立的是()A. B. C. D.7. 设为连续函数,则等于()A. B.C. D.8.广义积分等于 ( )A. B.C. D.9. 设,则等于()A. B. C. D.10. 若事件与为互斥事件,且,则等于()A. 0.3B. 0.4C. 0.5D.0.6二、填空题:本大题共10个小题,每小题4分,共40分,把答案填在题中横线上。
11.设,则 .12. .13.设,则 .14.函数的驻点为 .15.设,则 .16. .17.设,则 .18.若,则 .19.已知,则 .20.已知,且都存在,则 .三、解答题:本大题共8个小题,共70分。
解答应写出推理、演算步骤。
21.(本题满分8分)计算.22. (本题满分8分)设函数,求.23. (本题满分8分)计算.24. (本题满分8分)甲、乙二人单独译出某密码的概率分别为0.6.和0.8,求此密码被破译的概率.25. (本题满分8分)计算.26.(本题满分10分)设函数在点处取得极小值-1,且点(0,1)为该函数曲线的拐点,试求常数.27.(本题满分10分)设函数是由方程所确定的隐函数,求函数曲线,过点(0,1)的切线方程.28.(本题满分10分)求函数在条件下的极值.二 高等数学(二)命题预测试卷(二)1、 选择题(本大题共5个小题,每小题4分,共20分。
)1.下列函数中,当时,与无穷小量相比是高阶无穷小的是( )A. B.C. D.2.曲线在内是( )A.处处单调减小 B.处处单调增加C.具有最大值 D.具有最小值3.设是可导函数,且,则为( )A.1 B.0C.2 D.4.若,则为( )A. B.C.1 D.5.设等于( )A. B.C. D.2、 填空题:本大题共10个小题,10个空,每空4分,共40分6.设,则= .7.设,则 .8.,则 .9.设二重积分的积分区域D是,则 .10.= .11.函数的极小值点为 .12.若,则 .13.曲线在横坐标为1点处的切线方程为 .14.函数在处的导数值为 .15. .三、解答题:本大题共13小题,共90分,解答应写出推理、演算步骤。
[专升本类试卷]河北省专接本考试(数学)模拟试卷1.doc
(B)ex(sin2x-cos2x)
(C)ex(cos2x-sin2x)
(D)exsin2x
10一曲线过点(e,1),且在此曲线上任一点M(x,y)的法线斜率k= ,则此曲线方程为( )
(x
(C)y=ex+xln(lnx)
(D)y= +ln(lnx)
17级数 的收敛区间为________.设z=z(x,y)由方程exy+sin(yz)+xz=0确定,求 ________.
18将直角坐标系下的二重积分化为极坐标系下的二重积分∫02dx =________.2xydx+(x2-y2)dy=0,方程的通解为________.
19 ,则X________。
(A)U中每个向量都有可以由其中其余向量线性表示
(B)U中至少有一个向量可由组中其余向量线性表示
(C)U只有一个个向量可由组中其余向最线性表示
(D)U不包含零向量
二、填空题
15 ________.设y=e5+ln(x+ ),y'=________.
16过点M0(1,1,1)且以a={4,3,2}为方向向量的直线方程某种扩音器系统的单价P(元)与需求量x(套)之间的函数关系为P=-0.02x+400(0≤x≤20000),则边际收入为________.∫f(x)dx=sin2x+C,C为常数,则f(x)=________.
三、解答题
解答时应写出推理、演算步骤。
20已知一质点作变速直线运动,速度函数v(t)= ,试求该质点在1到6这一时间段内运动的位移。
21计算极限 xx.
22计算 dxdy,其中D=x2+y2≤1,y≥0,x≥0.
23设z=f(x+y,xy,x-y),求
24设 求
《高等数学(一)》(专升本)2024年费县全真模拟试题含解析
《高等数学(一)》(专升本)2024年费县全真模拟试题一、单选题(每题4分)1、2、3、方程x=z2表示的二次曲面是()A.球面B.椭圆抛物面C.柱面D.圆锥面4、A.e-1B.e-1-1C.-e-1D.1-e-15、A.2xB.3+2xC.3D.x26、设b≠0,当x→0时,sinbx是x2的( )A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量7、设函数f(x)=COS2x,则f′(x)=().A.2sin2xB.-2sin2xC.sin2xD.-sin2x8、9、()A.0B.2C.2(-1)D.2(1)10、设函数f(x)=(1+x)ex,则函数f(x)()A.有极小值B.有极大值C.既有极小值又有极大值D.无极值二、填空题(每题4分)11、12、13、14、曲线y=x3-6x2+3x+4的拐点为_________.15、16、17、18、19、过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为——.20、三、解答题(每题10分)21、22、23、24、25、设D是由曲线x=1-y2与x轴、y轴,在第一象限围成的有界区域.求:(1)D的面积S;(2)D绕x轴旋转所得旋转体的体积V.26、求曲线y=x3—3x2+2x+1的凹凸区间与拐点.27、参考答案一、单选题(每题4分)1、【正确答案】:A2、【正确答案】:C【试题解析】:3、【正确答案】:C【试题解析】:方程x=z2中缺少坐标y,是以xOy坐标面上的抛物线x=z2为准线,平行于y轴的直线为母线的抛物柱面.所以选C.4、【正确答案】:D【试题解析】:5、【正确答案】:A【试题解析】:由导数的基本公式及四则运算法则,有故选A.6、【正确答案】:D【试题解析】:本题考查了无穷小量的比较的知识点.7、【正确答案】:B【试题解析】:由复合函数求导法则,可得故选B.8、【正确答案】:A【试题解析】:9、【正确答案】:A【试题解析】:本题考查了定积分的性质的知识点.10、【正确答案】:A【试题解析】:【考情点拨】本题考查了函数极值的知识点.【应试指导】二、填空题(每题4分)11、【正确答案】:【试题解析】:【答案】【考情点拨】本题考查了利用换元法求定积分的知识点.【应试指导】12、【正确答案】:【试题解析】:【答案】【考情点拨】本题考查了复合函数的一阶偏导数的知识点.【应试指导】13、【正确答案】:【试题解析】:14、【正确答案】:(2,-6)【试题解析】:本题考查了拐点的知识点.15、【正确答案】:【试题解析】:16、【正确答案】:【试题解析】:17、【正确答案】:【试题解析】:所给问题为计算反常积分的反问题,由于18、【正确答案】:1/3(e3一1)【试题解析】:本题考查了定积分的知识点.19、【正确答案】:【试题解析】:依法线向量的定义可知,所求平面的法线向量n=(1,1,1).由于平面过原点,依照平面的点法式方程可知,所求平面方程为20、【正确答案】:【试题解析】:本题考查了反常积分的知识点.三、解答题(每题10分)21、【试题解析】:22、【试题解析】:所以级数收敛.23、【试题解析】:24、【试题解析】:25、【试题解析】:(1)(2)26、【试题解析】:y'=3x2—6x+2,y''=6x-6,令y''=0,得x=1.当x>1时,y''>0,故(1,+∞)为曲线的凹区间;当x<1时,y''<0,故(-∞,1)为曲线的凸区间.函数的拐点为(1,1).27、【试题解析】:。
专升本数学模拟试题
模拟试卷(一)一. 选择题:本大题共5个小题,每小题4分,共20分。
在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内。
*1. 当x →0时,()f x e xx =--+2321与()g x x =2比较是( ) A. f x ()是较g x ()高阶的无穷小量 B. f x ()是较g x ()低阶的无穷小量C. f x ()与g x ()是同阶无穷小量,但不是等价无穷小量D. f x ()与g x ()是等价无穷小量 解析:()f x g x ex f x g x x x xx x x x x x ()()lim ()()lim lim ==-+=-+=--+-→→→232120023202121,故选C 。
*2. 设函数()()()()f x x x x x =---122003……,则()f '0等于( )A. -2003B. 2003C. -2003!D.2003! 解析:f f x f x x x x x x '()lim()()lim()()()00012200300=--=---→→…… =-⨯-⨯⨯-=-()()()!1220032003…… 选C3. 设{}{} a b =-=112304,,,,,,则向量a 在向量b 上的投影为( ) A.56B. 1C.-56D. -1*4. 设y y 12、是二阶线性常系数微分方程y P y P y "'++=120的两个特解,则c y c y 1122+( ) A. 是所给方程的解,但不是通解 B. 是所给方程的解,但不一定是通解C. 是所给方程的通解D. 不是所给方程的通解解:当y y 12、线性无关时,c y c y 1122+是方程y P y P y "'++=120的通解;当y y 12、线性相关时,不是通解,故应选B 。
*5. 设幂级数ax nn n =∞∑0在x =2处收敛,则该级数在x =-1处必定( ) A. 发散 B. 条件收敛C. 绝对收敛D. 敛散性不能确定解:ax nnn =∞∑0在x =2处收敛,故幂级数的收敛半径R ≥2,收敛区间⊃-()22,,而()()-∈-⊂-122,,R R ,故ax nnn =∞∑1在x =-1处绝对收敛。
专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)
专升本高等数学一(一元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)在x0处不连续,则( )A.f’(x0)必存在B.f’(x0)必不存在C.f(x)必存在D.f(x)必不存在正确答案:B解析:f(x)在x0处不连续,是指连续性的三要素之一不满足,因此C、D都不对,由于可导必连续,则不连续必不可导,所以A不对,故选B.知识模块:一元函数微分学2.设函数f(x)=|x3一1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的( )。
A.充分必要条件B.充分但非必要条件C.必要但非充分条件D.既非充分又非必要条件正确答案:A解析:由φ(1)=0可知即f+’(1)=f -’(1)=0,所以,f’(1)=0.设f(x)在x=1处可导,因为f(1)=0,所以(x2+x+1)φ(x)=3φ(1),知识模块:一元函数微分学3.设函数f(x)在x=0处可导,且f(0)=0,则=( ) A.一2f’(0)B.一f’(0)C.f’(0)D.0正确答案:B解析:由于f(x)在x=0处可导,且f(0)=0,则=f’(0)一2f’(0)=一f’(0).知识模块:一元函数微分学4.若f(x一1)=x2一1,则f’(x)等于( )A.2x+2B.x(x+1)C.x(x一1)D.2x一1正确答案:A解析:因f(x一1)=x2一1=(x—1)(x一1+2),故f(x)=x2+2x,则f’(x)=2x+2.知识模块:一元函数微分学5.函数y=f(x)可导,则y=f{f[f(x)]}的导数为( )A.f’{[f(x)]}B.f’{f’[f’(x)]}C.f’{f[f(x)]}f’(x)D.f’{f[f(x)]}f’[f(x)]f’(x)正确答案:D解析:y’(x)=(f{f[f(x)]})’=f’{f[f(x)]}f’[f(x)]f’(x),故选D.知识模块:一元函数微分学6.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f’(x)<0,则下列结论成立的是( )A.f(0)<0B.f(1)>0C.f(1)>f(0)D.f(1)<f(0)正确答案:D解析:因f’(x)<0,x∈(0,1),可知f(x)在[0,1]上是单调递减的,故f(1)<f(0).知识模块:一元函数微分学7.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f(x)在(a,b) ( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B解析:由题意知,f(x)在(a,b)上单调递增,且f(a).f(b)<0,则由零点定理以及单调性可得y=f(x)在(a,b)内存在唯一零点.知识模块:一元函数微分学8.曲线y=( )A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线,又有铅直渐近线正确答案:D解析:因=1,所以y=1为水平渐近线,又因=∞,所以x=0为铅直渐近线.知识模块:一元函数微分学9.下列函数在给定区间满足罗尔定理条件的有( )A.f(x)=B.y=C.y=xex,[0,1]D.y=x2一1,[一1,1]正确答案:D解析:A选项中,函数在x=5处不连续;B选项中,函数在x=1处不连续;C选项中,y(0)≠y(1);D选项中,函数在[一1,1]连续,在(一1,1)可导,y(-1)=y(1),符合罗尔定理条件,故选D.知识模块:一元函数微分学10.要制作一个有盖铁桶,其容积为V,要想所用铁皮最省,则底面半径和高的比例为( )A.1:2B.1:1C.2:1D.正确答案:A解析:设底面半径为r,高为h,则有V=πr2h,S=2πrh+2πr2=+2πr2,S’(r)=一+4πr=,由于驻点唯一,必是最值点,此时h=,则r:h=1:2.知识模块:一元函数微分学填空题11.设函数y=sin(x一2),则y’’=________.正确答案:一sin(x一2)解析:因为y=sin(x一2),y’=cos(x一2),y’’=一sin(x一2).知识模块:一元函数微分学12.设函数f(x)有连续的二阶导数且f(0)=0,f’(0)=1,f’’(0)=一2,则=_______.正确答案:一1解析:=一1.知识模块:一元函数微分学13.y=y(x)是由方程xy=ey-x确定的函数,则dy=_______.正确答案:解析:方程两边对x求导,注意y是x的函数,有y+xy’=ey-x(y’一1),所以y’=.知识模块:一元函数微分学14.函数y=cosx在[0,2π]上满足罗尔定理,则ξ=_________.正确答案:π解析:y’=一sinx,因函数在[0,2π]上满足罗尔定理,故存在ξ∈(0,2π),使一sinξ=0,故ξ=π.知识模块:一元函数微分学15.若函数f(x)在[0,1]上满足f’’(x)>0,则f’(0),f’(1),f(1)一f(0)的大小顺序为_________.正确答案:f’(1)>f(1)一f(0)>f’(0)解析:f’’(x)>0,则f’(x)单调递增,又有拉格朗日中值定理得f(1)一f(0)=f’(ξ)(1一0)=f’(ξ),ξ∈(0,1).故有f’(1)>f’(ξ)>f’(0),即f’(1)>f(1)一f(0)>f’(0).知识模块:一元函数微分学解答题16.设f(x)=其中a、b、A为常数,试讨论a、b、A为何值时,f(x)在x=0处可导?正确答案:若函数f(x)在x=0可导,则函数f(x)也连续,故有=f(0),f+’(0)=f-’(0),涉及知识点:一元函数微分学17.设y=,求y’.正确答案:涉及知识点:一元函数微分学18.设=a,且f’(0)存在,求f’(0).正确答案:∴f’(0)=a.涉及知识点:一元函数微分学19.求函数x=cosxy的导数.正确答案:等式两边关于x求导,可得1=一(sinxy)(xy)’=一(sinxy)(y+xy’),整理后得(xsinxy)y’=一1一ysinxy,从而y’=.涉及知识点:一元函数微分学20.已知y=,f’(x)=arctanx2,计算.正确答案:令y=f(μ),μ=,则涉及知识点:一元函数微分学21.讨论曲线y=的单调性、极值、凸凹性、拐点.正确答案:y=,令y’=0得x=e.而y’’=,令y’’=0,得x=e2.当x→1时,y→∞,则x=1为垂直渐近线.当0<x<1时,y’<0,y’’<0,故y单调下降,且是凸的.当1<x<e时,y’<0,y’’>0,故y单调下降,且是凹的.当e<x<e2时,y’>0,y’’>0,故y单调上升,且是凹的.当e2<x<+∞时,y’>0,y’’<0,故y单调上升,且是凸的.当x=e时,y有极小值2e,且(e2,e2)是拐点.涉及知识点:一元函数微分学22.设f(x)在[1,e]可导,且f(1)=0,f(e)=1,试证f’(x)=在(1,e)至少有一个实根.正确答案:设F(x)=f(x)一lnx,F(1)=0,F(e)=0,由罗尔定理,至少存在一点ξ∈(1,e)使F’(ξ)=0,即f’(ξ)一=0,所以f’(x)=在(1,e)至少有一个实根.涉及知识点:一元函数微分学23.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的正数a及b,在(0,1)内必存在不相等的x1,x2,使=a+b.正确答案:因a,b>0,故0<<1,又因f(x)在[0,1]上连续,且f(0)=0,f(1)=1,由介值定理,必存在ζ∈(0,1),使f(ζ)=.又分别在[0,ζ],[ζ,1]上用拉格朗日中值定理,得f(ζ)一f(0)=(ζ一0)f’(x1),f(1)一f(ζ)=(1一ζ)f’(x2)(其中0<x1<ζ<x2<1)即有=1-ζ.考虑到1-,并将上两式相加,得=1,即存在不相等的x1,x2使=a+b.涉及知识点:一元函数微分学24.利用拉格朗日中值定理证明:当x>1时,ex>ex.正确答案:令f(μ)=eμ,μ∈[1,x].容易验证f(μ)在[1,x]上满足拉格朗日中值定理的条件,故存在ξ∈(1,x),使=f’(ξ),即=eξ,因为ξ∈(1,x),所以eξ>e.即>e,整理得,当x>1时,ex>ex.涉及知识点:一元函数微分学25.设a>b>0,n>1,证明:nbn-1(a一b)<an一bn<nan-1(a一b).正确答案:构造函数f(x)=xn(n>1),因为f(x)=xn在[a,b]上连续,在(a,b)内可导,所以,存在一点ξ∈(a,b)使得f’(ξ)==nξn-1,又0<a<ξ<b,故an-1<ξn-1<bn-1,所以nan-1<nξn-1<nbn-1,即nan-1<<nbn-1,整理得nan-1(b一a)<bn一an<nbn-1(b一a).两边取负号得nbn-1(a一b)<an一bn<nan-1(a一b).涉及知识点:一元函数微分学已知函数f(x)=.26.证明:当x>0时,恒有f(x)+;正确答案:则可知F(x)=C,C为常数.当x=1时,F(1)=C=f(1)+f(1)=,故当x>0时,F(x)=f(x)+恒成立;涉及知识点:一元函数微分学27.试问方程f(x)=x在区间(0,+∞)内有几个实根?正确答案:令g(x)=f(x)一x,则g‘(x)=一1<0,故g(x)在(0,+∞)上单调递减,又则g(x)=0在(0,+∞)上有且仅有一个实根,即f(x)=x在(0,+∞)上只有一个实根.涉及知识点:一元函数微分学28.假设某企业在两个互相分割的市场上出售同一种产品,两个市场的销售量分别是Q1=,Q2=12一x,其中x为该产品在两个市场的价格(万元/吨),该企业生产这种产品的总成本函数是C=2(Q1+Q2)+5,试确定x的值,使企业获得最大利润,并求出最大利润.正确答案:由已知条件得利润函数为L=(Q1+Q2)x—C=(Q1+Q2)x一2(Q1+Q2)一5=[+(12-x)](x-2)一5=x2+24x一47,求导得L’=一3x+24,令L’=0,得驻点x=8.根据实际情况,L存在最大值,且驻点唯一,则驻点即为最大值点.Lmax=.82+24.8—47=49.故当两个市场价格为8万元/吨时,企业获得最大利润,此时最大利润为49万元.涉及知识点:一元函数微分学。
《高等数学(一)》(专升本)2024年陈巴尔虎旗模拟试题含解析
《高等数学(一)》(专升本)2024年陈巴尔虎旗模拟试题一、单选题(每题4分)1、A.-1B.0C.D.12、A.ex+CB.ex+2x+CC.ex+x2+CD.(ex+2)2+C3、用待定系数法求微分方程Y"-y=xex的一个特解时,特解的形式是(式中a、b是常数)()A.(ax2+bx)exB.(a,x2+b)exC.ax2exD.(ax+6)ex4、A.-3-xln3B.-3-x/ln3C.3-x/ln3D.3-xln35、A.3B.2C.1D.06、()A.eB.2C.1D.07、设,f(x)在点x0处取得极值,则().8、函数y=x2-x+1在区间[-1,3]上满足拉格朗日中值定理的ξ=()9、A.为无穷小B.为无穷大C.不存在,也不是无穷大D.为不定型10、设函数f(x)在[a,b]上连续且f(x)>0,则()二、填空题(每题4分)11、y″+5y′=0的特征方程为——.12、设y=ex+1,则dy=______。
13、过原点且与平面2x-y+3z+5=0平行的平面方程为______.14、15、函数y=cosx在[0,2π]上满足罗尔定理,则ξ=_____.16、设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度u(x,y)=2+y2,求该薄板的质量m.17、18、19、20、三、解答题(每题10分)21、22、23、24、25、求微分方程y”-3y'+2y=2的通解.26、27、参考答案一、单选题(每题4分)1、【正确答案】:C【试题解析】:2、【正确答案】:B【试题解析】:由不定积分的基本公式及运算法则可得因此选B.3、【正确答案】:A【试题解析】:4、【正确答案】:A【试题解析】:由复合函数链式法则可知,因此选A.5、【正确答案】:A【试题解析】:6、【正确答案】:D【试题解析】:本题考查了极限的运算的知识点.7、【正确答案】:A【试题解析】:如果f(x)在点x0处可导,且f(x)在点x处取得极值,由极值的必要条件可知f′(x0)= 0.又如y=1xI在点戈=0处取得极小值,但在点x=0处不可导.8、【正确答案】:D【试题解析】:y=x2-x+1在[-1,3]上满足拉格朗日中值定理,9、【正确答案】:D【试题解析】:10、【正确答案】:A【试题解析】:本题考查了定积分性质的知识点.二、填空题(每题4分)11、【正确答案】:【试题解析】:由特征方程的定义可知,所给方程的特征方程为【评析】如果是求该方程的解,则可以将所给方程作为可降阶方程求解,但当作二阶线性常系数方程求解较简便.12、【正确答案】:【试题解析】:13、【正确答案】:【试题解析】:已知平面的法线向量n1=(2,-1,3),所求平面与已知平面平行,因此可取所求平面的法线向量n=n1=(2,-1,3),又平面过原点(0,0,0),由平面的点法式方程可知,所求平面方程为14、【正确答案】:【试题解析】:15、【正确答案】:【试题解析】:Ⅱ16、【正确答案】:【试题解析】:由二重积分物理意义知【评析】如果被积函数为f(x2+y2)的形式,积分区域D为圆域或圆的一部分,此时将化为极坐标计算常常较简便.17、【正确答案】:1/3(e3一1)【试题解析】:本题考查了定积分的知识点.18、【正确答案】:【试题解析】:19、【正确答案】:【试题解析】:由可变上限积分求导公式可知20、【正确答案】:1【试题解析】:三、解答题(每题10分)21、【试题解析】:22、【试题解析】:设x=t,则x=t2,dx=2tdt.23、【试题解析】:24、【试题解析】:25、【试题解析】:26、【试题解析】:27、【试题解析】:。
专升本(高等数学一)综合模拟试卷1(题后含答案及解析)
专升本(高等数学一)综合模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.极限等于( )A.eB.ebC.eabD.eab+b正确答案:C解析:由于,故选C。
知识模块:极限和连续2.在空间直角坐标系中,方程x2-4(y-1)2=0表示( )A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面正确答案:A解析:由于所给曲面方程x2-4(y-1)2=0中不含z,可知所给曲面为柱面,但是由于所给方程可化为x2=4(y-1)2,进而可以化为x=2(y-1)与-z=2(y-1),即x-2y+2=0,x+2y-2=0,为两个平面,故选A。
知识模块:空间解析几何3.级数是( )A.绝对收敛B.条件收敛C.发散D.收敛性不能判定正确答案:A解析:依前述判定级数绝对收敛与条件收敛的一般原则,常常先判定的收敛性,由于的p级数,知其为收敛级数,因此所给级数绝对收敛,故选A。
知识模块:无穷级数填空题4.若函数在x=0处连续,则a=________。
正确答案:-2解析:由于(无穷小量乘有界变量),而f(0)=a+2,由于f(x)在x=0处连续,应有a+2=0,即a=-2。
知识模块:极限和连续5.若f’(x0)=1,f(x0)=0,则=________。
正确答案:-1解析:由于f’(x0)存在,且f(x0)=0,由导数的定义有知识模块:一元函数微分学6.设y=xe+ex+lnx+ee,则y’=________。
正确答案:y’=ee-1+ex+解析:由导数的基本公式及四则运算规则,有y’=ee-1+ex+。
知识模块:一元函数微分学7.曲线y=ex+x上点(0,1)处的切线方程为________。
正确答案:由曲线y=f(x)在其上点(x0,f(x0))的切线公式y-f(x0)=f’(x0)(x-x0),可知y-1=2(x-0),即所求切线方程为y=2x+1。
解析:注意点(0,1)在曲线y=ex+x上,又y’=ex+1,因此y’|x=0=2。
普高专升本数学(选择题)模拟试卷1(题后含答案及解析)
普高专升本数学(选择题)模拟试卷1(题后含答案及解析) 题型有:1.1.=________.正确答案:涉及知识点:函数、极限和连续2.= ________.正确答案:4 涉及知识点:函数、极限和连续3.设f(x)=sin2x+,则f(x)的周期是________.正确答案:2π涉及知识点:函数、极限和连续4.= ________.正确答案:3 涉及知识点:函数、极限和连续5.设函数y=f(x)满足arcsin y—ex+y=0,则y’=_______.正确答案:涉及知识点:一元函数微分学6.曲线的拐点为_______.正确答案:涉及知识点:一元函数微分学7.=__________.正确答案:1 涉及知识点:一元函数积分学8.设a≠0,则∫(ax+b)2012dx=________.正确答案:涉及知识点:一元函数积分学9.若∫f(x)dx=arctan(2x+1)+C,则f(x)=________.正确答案:涉及知识点:一元函数积分学10.设f(x)=ex,则∫01(x)f”(x)dx=________.正确答案:涉及知识点:一元函数积分学11.设a={2,5,一4},b={1,一2,一2},则a与b的夹角为__________.正确答案:涉及知识点:向量代数与空间解析几何12.与平面3x+6y一9z+5=0平行,且在三坐标轴上的截距之和为7的平面方程为_______.正确答案:涉及知识点:向量代数与空间解析几何13.设=__________.正确答案:涉及知识点:多元函数微分学14.设=x2-y2,则f(x,y)=________.正确答案:x2(1+y) 涉及知识点:多元函数微分学15.若u=ln(x2+y2+z2),则du=________.正确答案:涉及知识点:多元函数微分学16.设L是由x2+y2=2y所围成的区域D的正向边界,则(xy2+2y)dx +x2ydy=_________.正确答案:-2π涉及知识点:多元函数积分学17.利用二重积分可求得由曲线y=x2与y2=x所围成图形的面积S=_________.正确答案:涉及知识点:多元函数积分学18.级数(a>0)当________时收敛,当________时发散.正确答案:a>1,0<a<1 涉及知识点:级数19.设矩阵A=,则A—1=__________.正确答案:A=涉及知识点:线性代数20.向量组α1=(1,3,5,-1),α2=(2,-1,-3,4),α3=(5,1,-1,7)和α4=(7,7,9,1)的极大线性无关组是________。
江西省 专升本 高等数学(一) 模拟试卷及答案40
[考点]本题考查了换元积分法的知识点.
[解析]
5、C
[考点]本题考查了直线方程的知识点.
[解析]两平面的交线方向
即为所求直线的方向,所以所求直线方程为
6、C
[考点]本题考查了二元函数的全微分的知识点.
[解析]
注:另解如下,由一阶微分形式不变性得
7、C
[考点]本题考查了二重积分的性质的知识点.
[解析]因积分区域D是以点(2,1)为圆心的一单位圆,且它位于直线x+y=1的上方,即在D内恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
答案:
第Ⅰ卷(选择题)
一、选择题
1、C
[考点]本题考查了利用 求极限的知识点.
[解析]
2、C
[考点]本题考查了一元函数的一阶导数的知识点.
[解析] y=x2+1,
3、D
[考点]本题考查了函数的单调区间的知识点.
[解析] y=ex+e-x,则y′=ex-e-x,当x>0时,y′>0.所以y在区间[0,+∞)上单调递增.
14、设函数f(x)有连续的二阶导数且f(0)=0,f′(0)=1,f″(0)=-2,则
15、求
16、
17、
18、设 ,将此积分化为极坐标系下的积分,此时I=______.
19、若幂级数 的收敛半径为R,则幂级数 的收敛半径为______.
20、方程cosxsinydx+sinxcosydy=0的通解为______.
A.y=C1e-x+C2e3x+y* B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y* D.y=C1ex+C2e-3x+y*
河南专升本_模拟_高数(共五套)
河南专升本_模拟_高数(共五套)高等数学模拟试题(一)说明:考试时间120分钟,试卷共150分.一、单项选择题(每小题2分后,共50分后.在每个小题的候选答案中挑选出一个恰当答案,并将其代码写下在题干后的括号内.)1.已知f(x)的定义域为[-1,2],则函数f(x)?f(x?2)?f(2x)的定义域为()(a)[?3,0](b)[?3,1](c)[?11,1](d)[?,0]22x2sin2.limx?0sinx1x=()(a)无穷(b)不存有(c)0(d)1x?0?x?1?1,?3.设f(x)??则x=0是函数f(x)的()x?0,x?0?(a)可去间断点(b)无穷间断点(c)连续点(d)跳跃间断点44.方程x?x?1?0,至少存有一个根的区间就是()1122(c)(2,3)(d)(1,2)(a)(0,)(b)(,1)5.f(x)?(x?x0)??(x)其中?可微,则f?(x0)?()(a)0(b)?(x0)(c)??(x0)(d)?6.设f(x)?xsinn1(x?0)且f(0)?0,则f(x)在x=0处为()xnx?0(a)仅当limf(x)?limxsinx?01?f(0)?0时,才可以微x(b)在任何条件下都可以微(c)当且仅当n>1时才可以微(d)因sin1在x=0处并无定义,所以不容微x7.设f(x)在[a,?)上二次连续函数,且f(a)?0,f?(a)?0,f??(x)?0(x?a),则方程f(x)?0在[a,?)上()(a)没实根(b)存有多个实根第1页共28页(c)存有且仅有一个实根(d)无法推论与否存有实根8.下列函数在[?1,1]上满足罗尔定理条件的是()(a)y?1(b)y?1?xx(c)y?x(x2?1)(d)y?ln(1?x)9.设函数f(x)有连续的二阶导数,且f?(0)?0,limx?0f??(x)?1,则()x(a)f(0)是函数的极大值(b)f(0)是函数的极小值(c)(0,f(0))就是曲线y?f(x)的拐点(d)f(0)不是f(x)的极值,(0,f(0))也不是曲线y?f(x)的拐点10.若d?f(x)??d?g(x)?,则以下各式中不设立的就是()??(a)f(x)?g(x)(b)f?(x)?g?(x)(c)d?f(x)??d?g(x)?(d)d11.由曲线y?f?(x)dxdg?(x)dx?1,直线y?x,x?2所围成图形面积为()x2211(a)?(?x)dx(b)?(x?)dx1x1x222211(c)?(2?)dy??(2?y)dy(d)?(2?)dx??(2?x)dx1111xy12.i?(a)?120x3?2x2?xdx,则求该分数时恰当的作法就是i=()102?20x?1?x?dx(b)?x?x?1?dxx?1?x?dx??21x?x?1?dx(c)?200x?1?x?dx(d)0x?x?1?dx13.对于非零向量a,b满足a?3b?7a?5b,a?4b?7a?2b,则向量a,b夹角为()(b)64(c)(d)32(a)?y2?z2?2x?014.曲线?在xoy平面上投影曲线方程为()z3y22xy22x9(a)(b)z?0??z?0?y2?2x?y2?2x?9(c)?(d)?z3z3第2页共28页15.函数f(x,y)在点(x0,y0)的偏导数存在是f(x,y)在该点连续的()(a)充分条件但不是必要条件(b)必要条件但不是充分条件(c)充要条件(d)既不是充分条件也不是必要条件16.函数z?ln41的定义域为()?arcsin2222x?yx?y(a)1?x2?y2?4(b)1?x2?y2?4(c)1?x2?y2?4(d)1?x2?y2?417.发生改变(a)dx12x22xf(x,y)dy分数次序得()?10dy?422?y5yf(x,y)dx(b)?dy?0122?y2?yf(x,y)dx+?dy?14142y5yf(x,y)dxf(x,y)dx(c)dy02yf(x,y)dx(d)dy012f(x,y)dx+dy218.设d:x2?y2?r2,则(a)dx2?y2dxdy?()rdxdyrd3(b)?2?0drdrr20r(c)20dr02r23rdrr(d)dr2dr2r3003219.直观闭合曲线c所围区域d的面积为()11xdx?xdyydy?xdx(b)2?c2?c11(c)?ydx?xdy(d)?xdy?ydx2c2c1n1?),则级数()20.设un?(?1)ln(n(a)(a)?un?1?n与?un?1?2n收敛(b)2n?un?1?n与un12n都收敛2n(c)?un?1??n收敛而?un?1?发散(d)?un?1?n发散而un1发散21.设级数a收敛(a为常数),则有()?nn?1q(a)q?1(b)q?1(c)q??1(d)q?122.级数nen1nx的发散域就是()(a)x??1(b)x?0(c)0?x?1(d)?1?x?0第3页共28页23.微分方程y2y??x的特解应设为y??()(a)ax(b)ax?b(c)ax?bx(d)ax?bx?c24.过函数y?f(x)的图形上点(0,?2)的切线为:2x?3y?6且该函数满足微分方程y6x,则此函数为()(a)y?x2?2(b)y?3x2?2(c)3y?3x3?2x?6?0(d)y?x?3222x325.微分方程xdy?ydx?y2eydy的吉龙德为()(a)y?x(ex?c)(b)x?y(ey?c)(c)y?x(c?e)(d)x?y(c?e)二、填空题(每小题2分,共30分)1.设f(x)为已连续奇函数且f(2)?1,则limf(x)?______________.x??2xy2.lim(1?3x)x?01sinx?______________.3.曲线y?x?ex在点(0,1)处的切线斜率k?_________________________.4.函数f(x)?x3?x在[0,3]上满足罗尔定理的??_______________.5.函数f(x)?x?2cosx在[0,32?2]上的最大值为_______________.6.曲线f(x)?x?3x?2x?1的拐点为_________________________.7.设f(x)?sinx?cos2x,则f(27)(?)___________________.21x?18.不定积分:?edx?___________________.d2sin2xdx?____________________.9.dx?110.设0e tdt22,则1x20e?xdx=_______________________.11.将xoz平面内曲线z?5x拖x轴转动一周,分解成的转动曲面的方程为______________________________.12.由方程:ex?y?xyz?ez确认的隐函数z?z(x,y)的偏导数n?z=______________.?xxn13.幂级数1??(?1)2的收敛域为____________.nn?1?第4页共28页(?1)nxn14.级数?的和函数s(x)为________________.n2n?015.若d[e?xf(x)]?exdx,则f(x)?________________.三、计算题(每小题5分后,共40分后)1.谋limsin6x?6x.x?02x3dy.dx22.设y?xx?2xxx,求x23.谋分数??(x)dx,其中f(x?1)?ln2,且f[?(x)]?lnx.x?24lnx4.求定积分?1dx.x4?z?z5.设z?f2(x,xy),其中f具备一阶已连续的偏导数,谋,.?x?y6.排序10dxx2eydy.x2127.将f(x)?ex?2x进行为(x+1)的幂级数ZR19其发散域.228.谋微分方程:2x(yex?1)dx?exdy?0的吉龙德.四、应用题(每小题7分后,共21分后)1.用a元钱购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积的材料费的1.2倍,求水池的长与宽各多少米,才能使水池的容积最大?2.由曲线y?x3和直线x?2,y?0围成一平面图形,试求:(1)该平面图形的面积;(2)该平面图形拖y轴转动一周的旋转体体积.3.谋微分方程cosydy?siny?ex的吉龙德.dx12x?ln(1?x).2五、证明题(9分)证明:当x>0时,有x?答案一、单项选择题1.d2.c3.a4.d5.b6.c7.c8.c9.c10.a11.b12.b13.c14.b15.d16.a17.b18.c19.d20.c21.d22.b23.c24.c25.d二、填空题1.-12.e3.24.25.3?6?31x?16.(1,1)7.08.?e229.010.?11.y?z?5x第5页共28页c。
专升本(高等数学一)模拟试卷100(题后含答案及解析)
专升本(高等数学一)模拟试卷100(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,无穷小x+sinx是比xA.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:因=2,所以选C。
2.设函数f(x)在点x0的某邻域内可导,且f(x0)为f(x)的—个极小值,则等于A.一2B.0C.1D.2正确答案:B解析:因f(x)在x=x0处取得极值,且可导.于是f’(x0)=0.又3.设函数f(x)=,则f’(x)等于A.B.C.D.正确答案:C4.函数y=x-arctanx在(一∞,+∞)内A.单调增加B.单调减少C.不单调D.不连续正确答案:A解析:因y=x—arctanx,则y’=1一于是函数在(一∞,+∞)内单调增加.5.设∫f(x)dx=ex+C,则∫xf(1一x2)dx为A.B.C.D.正确答案:D解析:6.设ψ(x)=则ψ’(x)等于A.tanx2B.tanxC.sec2x2D.2xtanx2正确答案:D解析:因tantdt是复合函数,于是ψ’(x)=tanx2.2x=2xtanx2.7.下列反常积分收敛的A.B.C.D.正确答案:D解析:当p≤1时发散,p>1时收敛,可知应选D.8.级数A.绝对收敛B.条件收敛C.发散D.无法确定敛散性正确答案:C解析:级数的通项为此级数为p级数.又因所以级数发散.9.方程x2+y2=R2表示的二次曲面是A.椭球面B.圆柱面C.圆锥面D.旋转抛物而正确答案:D解析:由方程特征知,方程x2+y2=R2表示的二次曲面是圆柱面.10.曲线A.有水平渐近线,无铅直渐近线B.无水平渐近线,有铅直渐近线C.既有水平渐近线,又有铅直渐近线D.既无水平渐近线,也无铅直渐近线正确答案:C填空题11.函数F(x)=(x>0)的单调递减区间是________.正确答案:解析:12.设f”(x)连续,正确答案:yf”(xy)+f’(x+y)+yf”(x+y)解析:13.设D是圆域x2+y2≤a2,则I=________.正确答案:0解析:用极坐标计算.14.设f(x)=ax3一6ax2+b在区间[一1,2]的最大值为2,最小值为一29,又知a>0.则a,b的取值为_________.正确答案:解析:f’(x)=3ax2一12ax,f’(x)=0,则x=0或x=4.而x=4不在[一1.2]中,故舍去.f”(x)=6ax一12a,f”(0)=一12a.因为a>0,所以f”(0)<0,所以x=0是极值点.又因f(一1)=一a一6a+b=b一7a,f(0)=b,f(2)=8a一24a+b=b—16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b一16a=一29,即16a=2+29=31.15.设曲线则该曲线的铅直渐近线为_______.正确答案:x=一1解析:16.当p_______时,级数收敛.正确答案:>1解析:当p>1时收敛,由比较判别法知p>1时,17.求正确答案:解析:18.幂级数的收敛半径R=_______.正确答案:1解析:19.方程y”一2y’+5y=exsin2x的特解可没为y*=________.正确答案:xex(Asin2x+Bcos2x)解析:由特征方程为r2一2r+5=0,得特征根为1±2i,而非齐次项为exsin2x,因此其特解应设为y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).20.正确答案:解析:解答题21.确定函数f(x,y)=3axy-x3-y3(a>0)的极值点.正确答案:在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0.且一6a<0(a>0).故(a,a)是极大值点.22.正确答案:23.讨论级数的敛散性.正确答案:因所以级数收敛.24.正确答案:25.证明:ex>1+x(x>0).正确答案:对F(x)=ex在[0,x]上使用拉格朗日中值定理得F(x)-F(0)=F’(ξ)x,0<ξ<x,因F’(ξ)=eξ>1,即故ex>x+1(x>0).26.设x>0时f(x)可导,且满足f(x)=f(t)dt,求f(x).正确答案:因f(x)=可导,在该式两边乘x得xf(x)=x+∫1xf(t)dt,两边对x求导得f(x)+xf’(x)=1+f(x),则f(x)=lnx+C,再由x=1时.f(1)=1.得C=1,故f(x)=lnx+1.27.求方程y”-2y’+5y=ex的通解.正确答案:y”一2y’+5y=0的特征方程为r2一2r+5=0。
成人高考专升本高等数学(一)全真模拟试题及答案解析③
成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析③1(单选题)若则是( )(本题4分)A 2B -2C -1D 1标准答案: A解析:【考情点拨】本题考查了一元函数的导数及其极限的知识点。
【应试指导】因为2(单选题)若则等于()(本题4分)A 2x+2B x(x+1)C x(x-1)D 2x-1标准答案: A解析:【考情点拨】本题考查了一元函数的一阶导数的知识点。
【应试指导】因为故则3(单选题)设函数f(x)满足且f(0)=0,则f(x)=()。
(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了已知导函数求原函数的知识点。
【应试指导】由4(单选题)函数是()(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了函数的极值的知识点。
【应试指导】因于是令得驻点(-4,1)。
又因故对于点(-4,1),A=2,B=-1,C=2,B^2-AC=-3<0,且A>0,因此z=f(x,y)在点(-4,1)处取得极小值,且极小值为f(-4,1)=-1。
5(单选题)当x→0时,与x等价的无穷小量是( )。
(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了等价无穷小量的知识点。
【应试指导】对于选项A,故是在x→0时的比x低价的无穷小;对于选项B,故ln(1+x)是x→0时与x等价的无穷小;对于选项C,故是x→0时与x同阶非等价的无穷小;对于选项D,故是x→0时的比x高阶的无穷小。
6(单选题)使成立的f(x)为()。
(本题4分)A 绝对收敛B 条件收敛C 发散D 无法确定敛散性标准答案: A解析:【考情点拨】本题考查了反常积分的敛散性的知识点。
【应试指导】对于选项A,故此积分收敛,且收敛于1;对于选项B,不存在;对于选项C,故此积分收敛,但收敛于;对于选项D,故此积分收敛,但收敛于故选A。
7(单选题)级数是()。
(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了级数的绝对收敛的知识点。
专升本数学模拟试卷10套及答案
11.如果当 x ® 0 时,无穷小量(1 - cos x )与 a sin 2 x 为等阶无穷小量,则a = 2
ò 12.设 f ¢(x) 的一个原函数为 sin ax ,则 xf ¢¢(x)dx =
ò 13. sin x + cos x dx =
3 sin x - cos x
14.已知
a,
b, c
三、解答题:本大题共 8 小题,共 86 分.解答应写出文字说明,证明过程或演算步骤。 得分 评卷人 17.(本小题满分 10 分)
确定常数 a 和 b 的值,使 lim [ x2 + x + 1 - (ax + b)] = 0 x®-¥ 96-4
得分 评卷人 18.(本小题满分 10 分)
ò求Leabharlann xe x dx .10.已知 y = x 是微分方程 y¢ = y + j ( x ) 的解,则j ( x ) 的表达式为
ln x
xy
y
A. - y 2 x2
B. y2 x2
C. - x 2 y2
D. x2 y2
96-3
天津市高等院校“高职升本科”招生统一考试
高等数学标准模拟试卷(一)
第Ⅱ卷 (选择题 共 110 分)
B.是 f (x)g(x) 的驻点,但不是极值点
C.是 f (x)g(x) 的极大点
D.是 f (x)g(x) 的极小点
3.已知 f ¢(e x ) = xe-x 且 f (1) = 0 则 f (x) =
A. f (x) = (ln x)2 2
B. ln x
C. f (x) = ln x2 2
D. ln x 2
x
f (t)dt +
专升本高等数学一(解答题)模拟试卷1(题后含答案及解析)
专升本高等数学一(解答题)模拟试卷1(题后含答案及解析)题型有:1.1.求极限.正确答案:由于x→0时,xcotx=→1,故原极限为型,所以涉及知识点:函数、极限与连续2.求极限.正确答案:原式=.涉及知识点:函数、极限与连续3.证明方程4x=2x在区间(0,)内至少有一个实根.正确答案:令f(x)=4x一2x,f(0)=一1<0,>0,由连续函数的零点定理可知至少存在一点C∈(0,)使得f(c)=0,即方程4x=2x在(0,)内至少有一个根.涉及知识点:函数、极限与连续4.求曲线处的切线方程.正确答案:则根据点斜式求得切线方程为y=a+[x一a[一1)]=x-+2a.涉及知识点:一元函数微分学5.设y=y(x)由所确定,求.正确答案:,由隐函数求导涉及知识点:一元函数微分学6.计算lnl.01的近似值.正确答案:由微分定义可知f(x+△x)=f(x)+f’(x)△x,令f(x)=lnx,则ln1.01=f(1.01)=f(1)+f’(1).0.01=0+1.0.01=0.01.涉及知识点:一元函数微分学7.设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b).证明:若f(x)不恒为常数,则至少ξ∈(a,b),有f’(ξ)>0.正确答案:因为f(a)=f(b),且f(x)不恒为常数.所以至少存在x0∈(a,b),使f(x0)≠f(a),则f(x0)>f(a)或f(x0)<f(a).不妨设f(x0)<f(a),则在[x0,b]上用拉格朗日中值定理得.至少存在ξ∈[(x0,b)∈(a,b),有f’(ξ)=>0.对于f(x0)>f(a)情形同理可证.涉及知识点:一元函数微分学8.设一物体下端为直圆柱,上端为半球形,如果此物体的体积为V,问这物体的尺寸各是多少时,才能使其表面积最小?正确答案:设底面半径为r,圆柱高为h,则V=πr2h+πr3,S=3πr2+2πrh,经验证其为极小值点,在此问题中也为最小值点,r代入h中解得h=,所以底面半径和直圆柱的高均为时,S有最小值.涉及知识点:一元函数微分学9.求∫ln(1+x2)dx.正确答案:∫ln(1+x2)dx=xln(1+x2)一=xln(1+x2)一=xln(1+x2)一2(x—arctanx)+C.涉及知识点:一元函数积分学10.求.正确答案:涉及知识点:一元函数积分学11.设z=μ2ν一μν2,而μ=xcosy,ν=xsiny,求.正确答案:由于所以=(2μν一ν2)cosy+(μ2一2μν)siny=(2x2cosysiny—x2sin2y)cosy+(x2cos2y一2x2cosysiny)siny=2x2sinycos2y—x2sin2ycosy+x2sinycos2y一2x2sin2ycosy=3x2sinycosy(cosy—siny).=(2μν一ν2)(一xsiny)+(μ2一2μν)xcosy=(2x2cosysiny—x2sin2y)(一xsiny)+(x2cos2y一2x2cosysiny)xcosy=一2x3sinycosy(siny+cosy)+x3(siny+cosy)(sin2y—sinycosy+cos2y)=x3(siny+cosy)(1—3sinycosy).涉及知识点:多元函数积分学12.求=0的通解.正确答案:令y’=p,y’’=-p=0,分离变量得,两边积分得ln|p|=ln|y|+ln|C1|即p=C1y,即y’=C1y,再分离变量得dy=C1dx,两边积分得ln|y|=C1x+C,即通解y=C2eC1x,其中C1,C2为任意常数.涉及知识点:常微分方程设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)一f(1)],求:13.y=f(x)所满足的微分方程;正确答案:据题意,V(t)=π∫1t[f(x)]2dx=[t2f(t)一f(1)],即3∫1t[f(x)]2dx=t2f(t)一f(1),上式两边同时对t求导得,3f2(t)=2tf(t)+t2f’(t),即y=f(x)所满足的微分方程为x2y’+2xy一3y2=0;涉及知识点:常微分方程14.该微分方程满足条件y|x=2=的解.正确答案:将微分方程x2y’+2xy一3y2=0,化为,即为齐次方程.令μ=+μ,代入方程并化简得=3μ2一3μ.变量分离得,两端积分并代入μ=得通解为y—x=Cx3y,再把y|x=2=代入可得C=-1,故该微分方程满足条件y|x=2=的解为y—x=一x3y.涉及知识点:常微分方程15.求与z轴反向,模为3的向量a的坐标.正确答案:由题意可设a={0,0,一λ},满足λ>0且=3,所以λ=3,即向量a={0,0,一3}.涉及知识点:向量代数与空间解析几何。
专升本(高等数学一)模拟试卷101(题后含答案及解析)
专升本(高等数学一)模拟试卷101(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数f(x)=在x=0处A.连续且可导B.连续且不可导C.不连续D.不仅可导,导数也连续正确答案:B解析:因为=0=f(0),所以函数在x=0处连续;又因不存在。
所以函数在x=0处不可导.2.曲线A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线,又有铅直渐近线正确答案:D解析:因所以y=1为水平渐近线.又因所以x=0为铅直渐近线.3.,则a的值为A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1.4.设f(x)=∫0sinx—sint2 dt,g(x)=x3+x4,当x→0时f(x)与g(x)是A.等价无穷小B.f(x)是比g(x)高阶无穷小C.f(x)是比g(x)低阶无穷小D.f(x)与g(x)是同阶但非等价无穷小正确答案:D解析:故f(x)与g(x)是同价但非等价无穷小.5.已知∫f(x2)dx=.则f(x)A.B.C.D.正确答案:B解析:因为所以f(x)=6.曲线y=ex与其过原点的切线及y轴所围面积为A.∫01(ex-ex)dxB.∫1e(lny-ylny)dyC.∫0e(ex-xex)dxD.∫01(lny-ylny)dy正确答案:A解析:设(x0,y0)为切点.则切线方程为y=得x0=1,y0=e,所以切线方程为y=ex.故所求面积为∫01(ex—ex)dx.7.设函数f(x)=cosx,则A.1B.0C.D.一1正确答案:D解析:-f(x)=cos,f’(x)=-sinx,8.设y=exsinx,则y”‘=A.cosx.exB.sinx.exC.2ex(cosx一sinx)D.2ex(sinx—cosx)正确答案:C解析:由莱布尼茨公式,得(exsinx)”=(ex)”‘sinx+3(ex)”(sinx)’+ 3(ex)’(sinx)”+ex(sinx)”‘=exsinx+3excosx+3ex(一sinx)+ ex(-cosx) =2ex(cosx —sinx).9.若级数an(x一1)n在x=一1处收敛,则此级数在x=2处A.发散B.条件收敛C.绝对收敛D.不能确定正确答案:C解析:由题意知,级数收敛半径R≥2,则x=2在收敛域内部,故其为绝对收敛.10..则f(x)=A.exln2B.e2xln2C.ex+ln2D.e2x+ln2正确答案:B解析:因f’(x)=f(x).2,即y’=2y,此为常系数一阶线性齐次方程,其特征根为r=2,所以其通解为y=Ce2x,又当x=0时,f(0)=ln2,所以C=ln2,故f(x)=e2xln2.填空题11.正确答案:ln2解析:12.若在x=0处连续,则a=_____.正确答案:0解析:又f(0)=a,则若f(x)在x=0连续,总有a=0.13.设y=x2ex,则y(10)|x=0=________.正确答案:90解析:由莱布尼茨公式得,y(10)=x2(ex)(10)+10(x2)’.(ex)(9)+45(x2)”(ex)(8)=x2ex+20xex+90ex。
高等数学》专升本自测试题1(含答案)
高等数学》专升本自测试题1(含答案)1、若 $F(x)$ 在 $[a,b]$ 上有 $F'(x)=f(x)$,则 $F(x)$ 为$f(x)$ 在 $[a,b]$ 上的原函数。
2、下列函数中,是 $f(x)=e^{-x}$ 的原函数的是 $B$,即$e^{-x}+1$。
3、$\int e^{-2x}dx=-\frac{1}{2}e^{-2x}+C$。
4、设 $f(x)=\int e^xdx$,则 $f'(0)=e^0=1$。
5、设 $f(x)=\int \sin^2xdx=\frac{1}{2}\int (1-\cos2x)dx=\frac{1}{2}(x-\frac{1}{2}\sin2x)+C$,所以$f'(\frac{\pi}{2})=0$。
6、若 $\int f(x)dx=2x^2+x+C$,则 $f(x)=4x+1$。
7、若 $F(x)$ 是 $f(x)$ 的一个原函数,且 $a\neq 0$,$b$ 是常数,则 $\int f(ax+b)dx=\frac{1}{a}F(ax+b)+C$。
8、$\int \frac{2x-3}{x^2-3x-10}dx=\int \frac{2x-3}{(x-5)(x+2)}dx=\int (\frac{3}{x-5}-\frac{1}{x+2})dx=\ln|x-5|-\ln|x+2|+C$。
9、$\int \frac{\sin x}{2-\cos x}dx=-\int \frac{d(2-\cos x)}{2-\cos x}=-\ln|2-\cos x|+C$。
10、$\int \frac{x-3}{x-2}dx=\int (1-\frac{1}{x-2})dx=x-\ln|x-2|+C$。
11、若 $f(x)$ 的原函数为 $F(x)$,则 $\intf[\phi(x)]\phi'(x)dx=F[\phi(x)]+C$。
专升本高等数学一(无穷级数)模拟试卷1(题后含答案及解析)
专升本高等数学一(无穷级数)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.若级数an收敛于S,则(an+an+1一an+2)收敛于( ) A.S+a1B.S+a2C.S+a1—a2D.S一a1+a2正确答案:B解析:(an+an+1一an+2)=an一a1一a2)=S+a2,故选B.知识模块:无穷级数2.若正项级μn收敛(C为非零常数),则( )A.B.C.D.正确答案:B解析:设μn=(μn+C)≠0,(C为非零常数),所以C、D不正确,故选B.知识模块:无穷级数3.级数的敛散性为( )A.收敛B.发散C.无法确定D.可能收敛可能发散正确答案:B解析:<1的p级数,发散,则原级数也发散.知识模块:无穷级数4.级数是( )A.绝对收敛B.条件收敛C.发散D.无法确定敛散性正确答案:A解析:因=1,故原级数等价于收敛,所以级数绝对收敛.知识模块:无穷级数5.级数是( )A.绝对收B.条件收敛C.发散D.无法确定敛散性正确答案:C解析:级数的通项为μn=,此级数为p级数,又因<1,所以级数发散.知识模块:无穷级数6.设μn=(-1)nln(1+),则级数( )A.B.C.D.正确答案:C解析:μn为一交错级数,由于=0及ln(1+x)的单调性可保证μn+1==μn,根据莱布尼茨定理知μn收敛.而知识模块:无穷级数7.10.下列级数中收敛的是( )A.B.C.D.正确答案:B解析:A:p=<1的p级数,故发散;B:是公比q=的等比级数,收敛;C:由比值判别法知,>1的等比级数,发散,是p=2>1的p级数,收敛,故整体发散.知识模块:无穷级数8.如果级数的收敛区间是(3,4)则a= ( )A.3B.4C.5D.7正确答案:D解析:级数.(2n一1)=1,故一1<2x一a<1,则,由已知条件可得=4,所以a=7.知识模块:无穷级数9.设=ρ(ρ>0),若幂级数的收敛半径分别为R1,R2,R3,则下列关系式成立的是( ) A.R3>R2>R1B.R3>R2=R1C.R3=R2<R1D.R3=R2=R1正确答案:D解析:=ρ,=ρ,所以R1=R2=R3=,故选D.知识模块:无穷级数填空题10.设级数μn是收敛的,则级数(1+μn)是________的.正确答案:发散解析:(μn+1)发散.知识模块:无穷级数11.已知数项级数收敛,则其和S==________.正确答案:e-1解析:S=.1n一1=e-1.知识模块:无穷级数12.设μn≥(n=1,2,…),则级数是________的.正确答案:发散解析:μn≥发散.知识模块:无穷级数13.设anxn的收敛半径为R,则anx2n+1的收敛半径为_______.正确答案:解析:,故幂级数的收敛半径是.知识模块:无穷级数14.幂级数xn的收敛半径是________,收敛区间是________.正确答案:解析:=2.所以幂级数xn的收敛半径是,收敛区间是.知识模块:无穷级数15.若幂级数anxn的收敛半径为R,则幂级数nanxn-1的收敛半径为_________.正确答案:R解析:幂级数anxn的收敛半径为R,由幂级数的逐项微分定理知(anxn)’=nanxn-1的收敛半径也是R.知识模块:无穷级数16.将展开成x的幂级数为_________.正确答案:解析:知识模块:无穷级数17.级数的收敛区间为________.正确答案:(一1,1)解析:因为ρ=的收敛半径R==1,故收敛区间为(一1,1).知识模块:无穷级数解答题18.判断的敛散性.正确答案:涉及知识点:无穷级数19.判定级数的收敛性.正确答案:因为μn=.<1,故由比值法可得原级数收敛.涉及知识点:无穷级数20.判别的敛散性.正确答案:因为<1,故级数收敛.涉及知识点:无穷级数21.判断的敛散性.正确答案:涉及知识点:无穷级数22.求幂级数的收敛半径和收敛域.正确答案:令x2=t,先考虑,涉及知识点:无穷级数23.求x2n的和函数.正确答案:易求得该级数的收敛域为(一∞,+∞).=2x2e x2+ex2=(2x2+1)ex2.涉及知识点:无穷级数24.求幂级数的和函数,并求级数的和S.正确答案:=1的收敛半径为R=1,收敛区间为(一1,1).设幂级数的和函数为S(x),则S(x)=,其中于是g(x)=g(x)一g(0)=∫0xg’(t)dt=∫0x dt=一ln(1一x),而涉及知识点:无穷级数25.将f(x)=展成x的幂级数.正确答案:涉及知识点:无穷级数26.将函数展开成x的幂级数.正确答案:涉及知识点:无穷级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(专升本理工)数学模拟试卷1
一. 选择题(1-10小题,每题4分,共40分)
1. 设0
lim →x sinax
x =7,则a 的值是( )
A 1
7 B 1 C 5 D 7
2. 已知函数f(x)在点x 0处可等,且f ′(x 0)=3,则0
lim →h f(x 0+2h )-f(x 0)
h 等于( ) A 3 B 0 C 2 D 6
3. 当x 0时,sin(x 2+5x 3)与x 2比较是( )
A 较高阶无穷小量
B 较低阶的无穷小量
C 等价无穷小量
D 同阶但不等价无穷小量 》
4. 设y=x -5+sinx ,则y ′等于( )
A -5x -6+cosx
B -5x -4+cosx
C -5x -4-cosx
D -5x -6-cosx 5. 设y=4-3x 2 ,则f ′(1)等于( ) A 0 B -1 C -3 D 3
6. ⎠⎛(2e x -3sinx)dx 等于( )
A 2e x +3cosx+c
B 2e x +3cosx
C 2e x -3cosx
D 1
7. ⎠⎜⎛01
dx
1-x 2 dx 等于( )
A 0
B 1 C
2
π
D π !
8. 设函数 z=arctan y x ,则x z
∂∂等于( )y x z ∂∂∂2
A -y x 2+y 2
B y x 2+y 2
C x x 2+y 2
D -x
x 2+y 2 9. 设
y=e 2x+y
则y
x z ∂∂∂2=( ) A 2ye 2x+y B 2e 2x+y C e 2x+y D –e 2x+y
10. 若事件A 与B 互斥,且P (A )= P (AUB )=,则P (B )等于( ) A B C D
二、填空题(11-20小题,每小题4分,共40分)
11. ∞
→x lim (1-1
x )2x =
!
Ke 2x x<0
12. 设函数f(x)= 在x=0处连续,则 k =
13. 函数-e -x 是f(x)的一个原函数,则f(x)= 【
14. 函数y=x-e x 的极值点x=
15. 设函数y=cos2x , 求y ″=
16. 曲线y=3x 2-x+1在点(0,1)处的切线方程y= 17. ⎠
⎛1
x-1 dx =
18. ⎠⎛(2e x -3sinx)dx =
19.
xdx x sin cos 20
3⎰
π
=
20. 设z=e xy ,则全微分dz= 三、计算题(21-28小题,共70分) :
1. 1
lim →x x 2-1
2x 2-x-1
2. 设函数 y=x 3e 2x , 求dy
3. 计算 ⎠⎛xsin(x 2
+1)dx
4. 计算
⎰+1
)12ln(dx x
5. 设随机变量x 的分布列为 (1) 求a 的值,并求P(x<1) (2) 求D(x)
$
6. 求函数y=e x
1+x 的单调区间和极值
&
Hcosx x ≥0 x
,
-2
a
-1 0
$
2
7. 设函数z=(x,y)是由方程x 2+y 2+2x-2yz=e z 所确定的隐函数,求dz
8. 求曲线y=e x ,y=e -x 与直线x=1所围成的平面图形面积
`
专升本高等数学模拟试题一 答案
一、(1-10小题,每题4分,共40分)
1. D
2. D
3. C
4. A
5. C
6. A
7. C 9. B 10. A 二、(11-20小题,每小题4分,共40分)
11. e -2 12. 2 13. e -x 14. 0 16. y=-x+1 17. 1ln -x +c 18. 2e x +3cosx+c 19. 1
4 20. dz=e xy (ydx+xdy) 三、(21-28小题,共70分) )
1. 1
lim →x x 2-12x 2-x-1 =(x-1)(x-1)(x-1)(2x+1) =2
3
2. y ′=(x 3)′e 2x +(e 2x )′x 3=3x 2e 2x +2e 2x x 3 =x 2e 2x (3+2x) dy=x 2e 2x dx
3. ⎠⎛xsin(x 2+1)dx =12 ⎠⎛sin(x 2+1)d(x 2+1) =12 cos(x 2+1)+c
4. ⎠⎛0
1
ln(2x+1)dx =xln(2x+1) 10
-⎠
⎛0
1
2x (2x+1) dx =ln3-{x-1
2 ln(2x+1)}
10
=-1+3
2 ln3
5. (1) +a+++=1 得出a= ?
P(x<1),就是将x<1各点的概率相加即可,即:++= (2) E(x)=×(-2)+×(-1)+×0+×1+×2=
D(x)=E{xi-E(x)}2=2×+2×+2×+2×+2×=
6. 1) 定义域 x ≠-1
2) y ′=e x (1+x)-e x (1+x)2 =xe x
(1+x)2
3)令y ′=0,得出x=0(注意x=1这一点也应该作为我们考虑单调区间的点)
~
↓
↓
↑
函数在(-∞,1)U (-1,0)区间内单调递减 在(0,+∞)内单调递增 —
该函数在x=0处取得极小值,极小值为1
7.
x f ∂∂ =2x+2, y f ∂∂ =2y-2z z
f
∂∂ =-2y-e z
x z ∂∂
=-x
f
∂∂ ÷z f ∂∂ =2(x+1)2y+e z
az ay ==-y f ∂∂÷z f ∂∂=2y-2z -(2y+e z ) =2y-2z 2y+e z dz=2(x+1)2y+e z dx+2y-2z
2y+e z dy
8.如下图:曲线y=e x ,y=e -x ,与直线x=1的交点分别为A(1,e),B(1,e -1)则 S=dx e e x x )(1
--⎰
= (e x +e -x )
10
=e+e -1-2
y y ′
(-∞,1) -
-
+
-1 (-1,0)
0 (0,+∞)
无意义 无意义
,
F(0)=1为小极小值
(。