高一物理受力分析和斜面模型
滑块与斜面体模型典型例题分析
滑块与斜面体模型典型例题分析滑块与斜面体模型的受力分析在高考中经常出现,学生对这类问题还是感觉比较困难,特别是其中摩擦力的确定,是考查的重点也是难点.实际上,滑块与斜面体模型中,只要从物体初始状态发掘出关键条件,再讨论当条件变化之后物体的受力情况,问题也就迎刃而解了.下面就滑块与斜面体模型中的几个典型例题,探讨一下这个模型中物体的受力特点和分析方法.1平衡状态下滑块与斜面体的受力分析例1如图1所示,一质量为m的滑块恰好静止在倾角为θ的斜面体上.现对滑块施加一个竖直向下的恒力F,则滑块A.仍处于静止状态B.沿斜面加速下滑C.受到的摩擦力不变D.受到的合外力增大解析以滑块为研究对象,当没有施加恒力F时,滑块恰好静止,受力如图2所示,由共点力的平衡条件可得mgsin θ=μmgcosθ,即μ=tanθ.当对滑块施加一竖直向下的恒力F时,因为μ=tanθ,所以(F+mg)sinθ=μ(F+mg)cos θ,滑块仍处于静止状态,答案为A.此题中关键条件是μ=tan θ.例2如图3所示,质量为m的滑块在竖直向上的力F(F<mg)作用下静止于斜面上,若减小力F,则A.滑块所受合力不变B.斜面对滑块的支持力不变C.斜面对滑块的摩擦力不变D.斜面对滑块的摩擦力可能为零解析滑块开始静止,则滑块所受重力mg和拉力F的合力mg-F满足(mg-F)sinθ≤μ(mg-F)cosθ,即μ≥tan θ.不难分析当F减小时,同样满足(mg-F)sinθ≤μ(mg-F)cosθ,答案为A.例3如图4所示,水平地面上有斜面体b,b的斜面上有一小滑块a,a与b之间、b与地面之间均存在摩擦.已知a 恰好可沿斜面匀速下滑,此时若对a施加如图所示的作用力,a仍可沿斜面下滑,则下列说法正确的是A.在a上施加竖直向下的力F1,则地面对b无摩擦力B.在a上施加沿斜面向下的力F2,则地面对b的摩擦力水平向左C.在a上施加一个水平向左的力F3,则地面对b的摩擦力水平右D.在图示平面内无论在a上施加沿什么方向的力,地面对b均无摩擦力解析开始a恰好可沿斜面匀速下滑,由平衡条件可知,a 受到的滑动摩擦力f和支持力FN的合力F合方向竖直向上,大小等于mg,F合与FN的夹角θ满足tanθ=fFN=μ.当对a施加竖直向下的力F1时,隔离a受力分析如图:斜面对a的支持力FN1和对a的摩擦力f1同时增大,设其合力F合1与FN1的夹角为θ1,则tanθ1=f1FN2=μ,即θ1=θ,F合1竖直向上.再隔离b:因为a对b的作用力竖直向下,则地面对b无摩擦力,A正确.所以在图6示平面内,无论在a上施加沿什么方向的力,a受到的滑动摩擦力f 和支持力FN,F合是同时变化的,其合力F合方向总是竖直向上的,a对b的作用力竖直向下,地面对b就无摩擦力.答案为A和D.此题一定要利用好初态条件tanθ=fFN=μ.2有加速度时的滑块与斜面体的受力分析例4在水平地面上有一斜面体b,b的斜面上有一小滑块a.a与b之间、b与地面之间均存在摩擦.已知斜面体b静止时,a静止在b的斜面上.现给a和b一个共同的向左的初速度,与a和b都静止时相比,此时可能A.a受沿斜面向上的摩擦力B.a受沿斜面向下的摩擦力C.a不受摩擦力D.a将与b分离解析开始a静止在b的斜面上,a受沿斜面向上的静摩擦力f0=mgsinθ且mgsinθ≤μmgcosθ,即μ≥tanθ.当给a和b一个共同的向左的初速度时,若a和b有共同的向右的加速度a0,当a0=gtanθ时,a不受摩擦力;当a0gtan θ时,a受沿斜面向下的摩擦力;因为a开始静止在b的斜面上,即使b的加速度很大,a也只会相对于b向上滑动,a 不会与b分离,答案为A、B和C.此题要注意到μ≥tanθ,再根据两者的加速度与临界加速度a0=gtanθ的大小关系进行讨论.例5物体a和b始终保持相对静止并一起沿水平面向右做匀加速运动,当加速度a0逐渐增大时,则A.b对a的弹力不变,b对a的摩擦力可能减小B.b对a的弹力增大,b对a的摩擦力可能增大C.b对a的弹力增大,b对a的摩擦力一定增大D.b对a的弹力增大,b对a的摩擦力可能减小解析开始a和b有共同的加速度时,若a不受摩擦力,则a0=gtanθ,当a0增大时,a受弹力FN增大,受摩擦力f 沿斜面向下且增大;若开始a0gtanθ,a受沿斜面向下的摩擦力,当a0增大时,FN增大且f增大.从临界条件a0=gtan θ展开讨论,各种可能情况就不会遗漏.答案为B和D.小结以上几道滑块与斜面体的例题,让我们认识到对这类问题进行受力分析时,一定要把握好初态条件,如μ=tan θ,μ≥tanθ或a0=gtanθ等,再综合运用整体法与隔离法等,就不难分析清楚物体的受力情况了.所以,对于一些常见和重要的物理模型,一定要善于总结,找到不同表象后的共同特点和解决方法,就能在积累知识的同时获得能力的提升.。
受力分析4-单物平面、斜面模型之非平衡状态
2015年东厦中学高一物理——受力分析(4)单物平面模型之非平衡状态(1)原本静止在水平地面上的物体A质量为m,突然受到一个水平向右的外力F,加速直线运动,而地面与物体A之间的动摩擦因素为μ,.求此时地物体A的加速度。
解:对物体受力分析如图,水平方向:F-f=ma竖直方向:F支=mg其中∵根据f =μF N而F N=F支=mg得f =μmg因此:F-μmg =ma得:F m gamμ-=方向:水平向右(2)原本加速向右运动的物体A质量为m,突然撤去外力,物体将沿着原来方向减速运动,而地面与物体A之间的动摩擦因素为μ,.求撤去外力后物体A的加速度。
解:对物体受力分析如图,水平方向:f=ma竖直方向:F支=mg其中∵根据f =μF N而F N=F支=mg得f =μmg因此:μmg =ma得:a =μg 方向:水平向左F(3)物体A 质量为m ,受到一个斜向上与水平方向成θ的外力F 在水平地面上加速向右运动,而地面与物体A 之间的动摩擦因素为μ,求此时物体A 的加速度。
对物体受力分析如图, 水平方向:Fcos θ-f=ma 竖直方向:F 支+Fsin θ=mg其中∵根据f =μF N 而F N =F 支= mg -Fsin θ 得f =μ(mg -Fsin θ)因此:Fcos θ-μ(mg -Fsin θ)=ma得:cos (sin )F mg F a mμθ--= 方向:水平向右 若是在水平地面上减速向右运动水平方向:f - Fcos θ=ma竖直方向:F 支+Fsin θ=mg因此:μ(mg -Fsin θ)-Fcos θ=ma得:(sin )cosmg F F a mμθ--=方向:水平向左(4)物体A 质量为m ,受到一个斜向下与水平方向成θ的外力在水平地面上加速向右运动,而地面与物体A 之间的摩擦因素为μ,此时物体A 的加速度a 。
求物体A 受到斜向下外力的大小?对物体受力分析如图, 水平方向:Fcos θ-f=ma 竖直方向:F 支=mg+Fsin θ其中∵根据f =μF N 而F N =F 支= mg+Fsin θ 得f =μ(mg+Fsin θ)FθF θ因此:Fcos θ-μ(mg+Fsin θ)=ma得:cos sin ma mg F μθμθ+=-单物斜面模型(1)物体A 质量为m ,沿斜面向下做加速直线运动,而斜面与物体A 之间的动摩擦因为数μ,求此时物体A 的加速度。
高中物理《解题手册》专题9斜面问题
专题九 斜面问题[重点难点提示]斜面模型时中学物理中常见的物理模型之一。
物理中的斜面,通常不是题目的主体,而只是一个载体,即处于斜面上的物体通常才是真正的主体.由于斜面问题的千变万化,既可能光滑,也可以粗糙;既可能固定,也可以运动,即使运动,也可能匀速或变速;既可能是一个斜面,也可能是多个斜面;斜面上的物体同样五花八门,可能是质点,也可能是连接体,可能是带电小球,也可能是导体棒,因此在处理斜面问题时,要根据题目的具体条件,综合应用力学、电磁学的相关规律进行求解。
[习题分类解析]动力学问题如图所示,物体从倾角为α的斜面顶端由静止释放,它滑到底端时速度大小这V 1;若它由斜面顶端沿竖直方向自由落下,末速度大小为V ,已知V 1是V 的K 倍,且K <1。
求:物体与斜面间的动摩擦因素μ分析与解答:设斜面长为S ,高为h ,物体下滑过程受支的摩擦力为f ,由于物体沿斜面匀加速下滑,设加速度为a :mgsinα-f= ma f=μmgcosα所以a=g (sinα-μcosα)由运动规律可知V 12=2aS =2Sg (sinα-μcosα) V 2=2gh由题意: V 1=KV解得: μ=(1-K 2)tanα变式1 如图所示,在箱的固定光滑斜面(倾角为α)上用平行于斜面的细线固定一木块,木块质量为m 。
当⑴箱以加速度a 匀加速上升时,⑵箱以加速度a 匀加速向左时,分别求线对木块的拉力F 1和斜面对箱的压力F 2分析与解答:⑴a重力的方向竖直向下,所以F 1、F 2的合力F 必然竖直向上。
F1=Fsinα和F 2=Fcosα求解,得到: F 1=m(g+a)sinα,F 2=m(g+a)cosα⑵a 向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。
可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时也正交分解a ),然后分别沿x 、y 轴列方程求出F 1、F 2:F 1=m(gsinα-acosα),F 2=m(gcosα+asinα)还应该注意到F 1的表达式F 1=m(gsinα-acosα)显示其有可能得负值,这意味这绳对木块的力是推力,这是不可能的。
专题1.9 动力学中的斜面问题(解析版)
高考物理备考微专题精准突破专题1.9动力学中的斜面问题【专题诠释】1.斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
θmgfF Ny x对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ;当θμtan =时,物体沿斜面匀速下滑,或恰好静止;当θμtan >时,物体若无初速度将静止于斜面上;2.等时圆模型1.质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示。
2.质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。
3.两个竖直圆环相切且两圆环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。
【高考领航】【2019·浙江选考】如图所示为某一游戏的局部简化示意图。
D 为弹射装置,AB 是长为21m 的水平轨道,倾斜直轨道BC 固定在竖直放置的半径为R =10m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连接,且在同一竖直平面内。
某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10m/s 的速度滑上轨道AB ,并恰好能冲到轨道BC 的最高点。
专题05 牛顿运动定律中的斜面和板块模型(解析版)-高考物理计算题专项突破
专题05 牛顿运动定律中的斜面和板块模型一、牛顿第二定律:ma F =合;x ma F x =合;y ma F y =合。
二、牛顿第三定律:'F F -=,(F 与'F -等大、反向、共线)在解牛顿定律中的斜面模型时,首先要选取研究对象和研究过程,建构相应的物理模型,然后以加速度为纽带对研究对象进行受力分析和运动分析,最后根据运动学公式、牛顿运动定律、能量守恒定律、动能定理等知识,列出方程求解即可。
在解决牛顿定律中的板块模型时,首先构建滑块-木板模型,采用隔离法对滑块、木板进行受力分析,运用牛顿第二定律运动学公式进行计算,判断是否存在速度相等的临界点;若无临界速度,则滑块与木板分离,只要确定相同时间内的位移关系,列出方程求解即可;若有临界速度,则滑块与木板没有分离,此时假设速度相等后加速度相等,根据整体法求整体加速度,由隔离法求滑块与木板间的摩擦力f 以及最大静摩擦力m f 。
如果m f f ≤,假设成立,整体列式,求解即可;如果m f f >,假设不成立,需要分别列式求解。
一、在斜面上物块所受摩擦力方向的判断以及大小的计算1.物块(质量为m )静止在粗糙斜面上:(1)摩擦力方向的分析:对物块受力分析,因为物块重力有沿斜面向下的分力,故物块有沿斜面向下的运动趋势,则物块所受摩擦力沿斜面向上。
(2)摩擦力大小的计算:物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =。
2.物块(质量为m )在粗糙的斜面上匀速下滑:(1)摩擦力方向的分析:物块沿斜面向下运动,可以根据摩擦力的方向与相对运动的方向相反来判断物块受到的摩擦力的方向沿斜面向上。
(2)摩擦力大小的计算:①物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =,N F f μ=。
②物块沿斜面向下做匀加速运动,滑动摩擦力为N F f μ=,由牛顿第二定律有ma F mg f =-θsin 。
高中物理受力分析-斜面体模型2
高中物理受力分析-斜面体模型2各们小伙伴儿们,大家好!经过一个充实的周末之后,我们的物理模型分析又开始啦!经过上篇文章之后,我们的斜面体模型又将迎来新的篇章!我们先来看一道例题:例题1:如图所示,一斜面A静止在粗糙水平面上,在其斜面上放着一滑块B,若给滑块B一平行斜面向下的初速度v_{0},则B正好保持匀速下滑,斜面体A保持静止。
则此时水平面对斜面体A的摩擦力为多少?解析:因为滑块B做匀速直线运动,斜面体A静止,所以滑块B和斜面体A的合力均为0,可以对A和B用整体法。
现在对A和B整体进行受力分析,分析结果如下:从受力分析结果可以看出,此时水平面对斜面体A没有摩擦力。
因为整体隔离法在上一篇文章中已经讲过了,所以今天我们只是拿来运用。
今天我们的核心内容更加精彩,请看下面这道题。
例题2:一斜面体A静止在粗糙的水平面上,在其斜面上放着一滑块B,若给滑块B一平行斜面向下的初速度v_{0},则B正好保持匀速下滑。
如图所示,现在B下滑过程中再加一个作用力,则以下说法正确的是()A.在B上加一竖直向下的力F_{1},则B将保持匀速运动,A对地无摩擦力的作用B.在B上加一沿斜面向下的力F_{2},则B将加速运动,A对地有水平向左的静摩擦力的作用C.在B上加一水平向右的力F_{3},则B将减速运动,在B停止前A对地有向右的摩擦力的作用D.无论在B上加什么方向的力,在B停止前A对地都无静摩擦力的作用这个题我们根据题干的理解可以知道:B正好能保持匀速下滑,所以在B匀速下滑的过程中,水平面对A是没有摩擦力的。
但是如果再加上外力又该怎么样呢?可能有小伙伴儿想着这个题也用整体隔离法,但是一旦加上外力之后,物体B就会有加速度,此时用整体隔离法是分析不出地面对A的摩擦力的。
所以这个题不能用整体法,只能用隔离法。
我编写的《高中物理知识模型探究与实践》一书里面专门针对受力分析、牛顿第二定律、传送带和滑块木板、平抛运动、圆周运动、天体运动、动能定理功能关系和动量的基本知识点和基本模型进行了全面细致地讲解,采用的是讲解式的叙述手法。
科学《斜面》知识点总结
科学《斜面》知识点总结一、斜面上物体的受力分析在斜面上运动的物体受到多个力的作用,如重力、支持力、摩擦力等。
为了分析物体在斜面上的运动规律,需要先对物体所受的各种力进行分解和合成。
以一个倾角为θ的斜面为例,当物体静止在斜面上时,从牛顿第一定律可知,物体受到的合力为零,即重力沿着斜面的分力与摩擦力的合力相等。
而当物体开始运动时,斜面上的摩擦力可以通过计算得到,它的大小与物体所受的支持力成正比,可以根据静摩擦系数和物体受力分析得出。
另外,由于斜面的倾斜度不同,物体所受的支持力也会发生变化,需要通过受力分析来确定。
总之,通过对物体所受力的分析可以帮助我们理解斜面上物体的运动规律。
二、斜面的加速度计算在斜面上运动的物体具有加速度,其大小取决于斜面的倾角和摩擦系数等因素。
根据牛顿第二定律,物体在斜面上受到的合力与它的加速度成正比,可以通过受力分析得到。
另外,因为斜面的倾角不同,物体在斜面上受到的支持力也会有所改变,所以我们需要根据受力分析计算出物体在斜面上的加速度,这样才能更好地理解斜面上物体的运动规律。
三、斜面上物体的运动规律斜面是一个重要的物理学模型,它可以用来研究物体在斜面上的滑动、运动和静止等现象。
根据牛顿定律,当物体处于斜面上时,受到的合力不为零,就会产生加速度,导致物体在斜面上的运动。
例如,当一个物体沿着倾斜角为θ的斜面下滑时,它所受的合力包括重力和摩擦力,可以根据受力分析计算得到物体在斜面上的加速度。
另外,当物体静止在斜面上时,受力分析同样可以帮助我们理解斜面上物体的运动规律。
总之,通过对斜面上物体的受力分析和加速度计算,可以帮助我们更好地理解斜面上物体的运动规律。
四、斜面的应用斜面在日常生活和工程技术中都有着广泛的应用。
在日常生活中,斜面可以用来解释很多现象,例如为什么滑雪运动员下降时速度会增加,为什么小车在倾斜的坡道上可以自动下滑等。
在工程技术中,斜面也有着重要的应用,例如在建筑工程中,通过斜面的倾角和受力分析,可以确定建筑物的稳定性和结构设计等,另外在机械设计中,斜面可以用于设计斜坡道和滑道等。
高中物理重要方法典型模型突破9-模型专题(1) 斜面模型(解析版)
专题九模型专题(1)斜面模型【模型解读】在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
图示或释义与斜面相关的滑块运动问题规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变)(3)μ<tan θ,滑块一定匀加速下滑,此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (4)若滑块处于静止或匀速下滑状态,可用整体法求出地面对斜面体的支持力为(M+m)g,地面对斜面体的摩擦力为0;若滑块处于匀变速运动状态,可用牛顿第二定律求出,地面对斜面体的支持力为(M+m)g-ma sin θ,地面对斜面体的摩擦力为ma cos θ;不论滑块处于什么状态,均可隔离滑块,利用滑块的运动状态求斜面对滑块的弹力、摩擦力及作用力(5)μ=0,滑块做匀变速直线运动,其加速度为a=g sin θ注意画好截面图斜面的变换模型加速运动的车上水杯液面可类似于物块放在光滑斜面上a=gtana tana=h/R【典例突破】【例1】如图所示,在水平地面上静止着一质量为M、倾角为θ的斜面体,自由释放的质量为m的滑块能在斜面上匀速下滑(斜面体始终静止),则下列说法中正确的是() A.滑块对斜面的作用力大小等于mgcos θ,方向垂直斜面向下B.斜面对滑块的作用力大小等于mg,方向竖直向上C.斜面体受到地面的摩擦力水平向左,大小与m的大小有关D.滑块能匀速下滑,则水平地面不可能是光滑的解析:选B因滑块在重力、斜面的摩擦力及斜面的支持力作用下匀速下滑,如图所示,所以斜面对滑块的作用力大小等于mg,方向竖直向上,B项正确;而滑块对斜面的作用力与斜面对滑块的作用力是一对作用力与反作用力,A项错误;又因斜面体及滑块均处于平衡状态,所以可将两者看成一整体,则整体在竖直方向受重力和地面的支持力作用,水平方向不受力的作用,即水平地面对斜面体没有摩擦力作用,C、D项错误。
高考物理备考微专题1.9 动力学中的斜面问题(解析版)
高考物理备考微专题精准突破 专题1.9 动力学中的斜面问题【专题诠释】1.斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ; 当θμtan =时,物体沿斜面匀速下滑,或恰好静止; 当θμtan >时,物体若无初速度将静止于斜面上; 2.等时圆模型1.质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示。
2.质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。
3.两个竖直圆环相切且两圆环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。
【高考领航】【2019·浙江选考】如图所示为某一游戏的局部简化示意图。
D 为弹射装置,AB 是长为21 m 的水平轨道, 倾斜直轨道BC 固定在竖直放置的半径为R =10 m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连 接,且在同一竖直平面内。
某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10 m/s 的速度滑上轨道 AB ,并恰好能冲到轨道BC 的最高点。
高中物理经典解题模型归纳
高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
高中物理:斜面模型
斜面模型是中学物理中最常见的模型之一,力学、电学等问题中都有出现。
相关方法有整体与隔离法、极值法、极限法等。
斜面固定时,对斜面上的物体受力分析,建立坐标系进行正交分解,选择利用三大定律列方程求解;对斜面不固定时,我们将斜面与斜面上的物体看成系统,仔细观察题中条件,采用整体法或动量定理甚至动量守恒定律处理。
分析时,要注意:(1)斜面上物体受到摩擦力的种类、方向判断,如斜面倾角与的比较等;(2)在采用整体法处理斜面体与它上面的物体时要区分变速运动部分(合外力)与整体的质量;(3)在计算正压力时遗漏除重力以外的其他力产生的作用而导致摩擦力大小计算错误;(4)在分析电磁力时电荷或导体棒的极值问题而引起的弹力或摩擦力的变化。
一、利用正交分解法处理斜面上的平衡问题例1、相距为20cm的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为,现在导轨上放一质量为330g的金属棒ab,它与导轨间动摩擦系数为,整个装置处于磁感应强度B=2T的竖直向上的匀强磁场中,导轨所接电源电动势为15V,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取,为保持金属棒ab处于静止状态,求:(1)ab中通入的最大电流强度为多少?(2)ab中通入的最小电流强度为多少?解析:导体棒ab在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。
当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。
(1)ab中通入最大电流强度时受力分析如图2,此时最大静摩擦力沿斜面向下,建立直角坐标系,由ab平衡可知,x方向:y方向:由以上各式联立解得:(2)通入最小电流时,ab受力分析如图3所示,此时静摩擦力,方向沿斜面向上,建立直角坐标系,由平衡有:x方向:y方向:联立两式解得:由二、利用矢量三角形法处理斜面系统的变速运动例2、物体置于光滑的斜面上,当斜面固定时,物体沿斜面下滑的加速度为,斜面对物体的弹力为。
高中物理四大经典力学模型完全解析
四大经典力学模型完全解析一、斜面问题模型1.自由释放的滑块能在斜面上(如下图所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.2.自由释放的滑块在斜面上(如上图所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如下图所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零。
4.悬挂有物体的小车在斜面上滑行(如下图所示):(1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如下图所示):(1)落到斜面上的时间t=2v0tanθg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;6.如下图所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止。
例1在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如下图所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动。
(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法。
高三一轮复习专题:高中物理斜面问题(无答案)
斜面问题模型解读:斜面模型是中学物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面对下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ;当θμtan =时,物体沿斜面匀速下滑,或恰好静止;当θμtan >时,物体若无初速度将静止于斜面上;模型拓展1:物块沿斜面运动性质的推断例1.(多选)物体P 静止于固定的斜面上,P 的上表面水平,现把物体Q 轻轻地叠放在P 上,则( )A.、P 向下滑动B 、P 静止不动C 、P 所受的合外力增大D 、P 与斜面间的静摩擦力增大模型拓展2:物块受到斜面的摩擦力和支持力的分析例2.如图,在固定斜面上的一物块受到一外力F 的作用,F 平行于斜面对上。
若要物块在斜面上保持静止,F 的取值应有肯定的范围,已知其最大值和最小值分别为F 1和F 2(F 2>0)。
由此可求出( )A 、物块的质量B 、斜面的倾角C 、物块与斜面间的最大静摩擦力D 、物块对斜面的压力点评:本题考查受力分析、力的分解、摩擦力、平衡条件。
关键是要依据题述,利用最大静摩擦力平行斜面对上、平行斜面对下两种状况,应用平衡条件列出两个方程得出物块与斜面的最大静摩擦力的表达式。
斜面模型(解析版)-2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法斜面模型目录【模型一】斜面上物体静摩擦力突变模型【模型二】斜面体静摩擦力有无模型【模型三】物体在斜面上自由运动的性质【模型四】斜面模型的衍生模型----“等时圆”模型1.“光滑斜面”模型常用结论2.“等时圆”模型及其等时性的证明【模型五】功能关系中的斜面模型1.物体在斜面上摩擦力做功的特点2.动能变化量与机械能变化量的区别【模型一】斜面上物体静摩擦力突变模型【模型构建】1.如图所示,一个质量为m的物体静止在倾角为θ的斜面上。
1.试分析m受摩擦力的大小和方向【解析】:假设斜面光滑,那么物体将在重力和斜面支持力的作用下沿斜面下滑。
说明物体有沿斜面向下运动的趋势,物体一定受到沿斜面向上的静摩擦力作用。
由平衡条件易得:f=mg sinθ2.若斜面上放置的物体沿着斜面匀速下滑时,判断地面对静止斜面有无摩擦力。
【解析】:因地面对斜面的摩擦力只可能在水平方向,只需考查斜面体水平方向合力是否为零即可。
斜面所受各力中在水平方向有分量的只有物体A对斜面的压力N和摩擦力f。
若设物体A的质量为m,则N 和f的水平分量分别为N x=mg cosθsinθ,方向向右,f x=mg sinθcosθ,方向向左。
可见斜面在水平方向所受合力为零。
无左右运动的趋势,地面对斜面无摩擦力作用。
3.如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上。
若要物块在斜面上保持静止,F的取值应有一定的范围,已知其最大值和最小值分别为F1和F2(F2>0)。
设斜面倾角为θ,斜面对物块的静摩擦力为f。
(1).当F=mg sinθ时斜面对物块无静摩擦力(2).当F>mg sinθ时物块有相对于斜面向上运动的趋势静摩擦力方向向下平衡方程为:F=f+mg sinθ随着F的增大静摩擦力增大,当静摩擦力达到最大值时外力F取最大值F1时,由平衡条件可得:F1=f+ mg sinθ---------------(1);(3).当F<mg sinθ时物块有相对于斜面向下运动的趋势静摩擦力方向向上平衡方程为:F+f=mg sinθ随着F的增大静摩擦力减小当静摩擦力减小为0时突变为(2)中的情形,随着F的减小静摩擦力增大,当静摩擦力达到最大值时外力F取最小值F2时,由平衡条件可得:f+F2=mg sinθ-------(2);联立(1)(2)解得物块与斜面的最大静摩擦力f=(F2-F1)/2.1(2019·高考全国卷Ⅰ)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N.另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加【答案】BD【解析】 对N进行受力分析如图所示因为N的重力与水平拉力F的合力和细绳的拉力T是一对平衡力,从图中可以看出水平拉力的大小逐渐增大,细绳的拉力也一直增大,A错误,B正确;M的质量与N的质量的大小关系不确定,设斜面倾角为θ,若m N g≥m M g sinθ,则M所受斜面的摩擦力大小会一直增大,若m N g<m M g sinθ,则M所受斜面的摩擦力大小可能先减小后增大,D正确,C错误.2(2023·河北沧州·沧县中学校考模拟预测)如图甲所示,倾角为θ的斜面体C置于水平地面上,物块B置于斜面上,通过细绳跨过光滑的定滑轮与物块A连接,连接B的一段细绳与斜面平行,整个装置处于静止状态。
滑块斜面模型知识点总结
滑块斜面模型知识点总结1. 力的分解在滑块斜面模型中,我们经常需要用到力的分解,这是因为斜面上的力不仅仅是沿着斜面方向的,还有垂直斜面的分力。
力的分解是利用三角函数将斜面上的力分解成平行斜面和垂直斜面的两个力,从而方便我们进行计算。
通常情况下,平行斜面的力为Fsinθ,垂直斜面的力为Fcosθ,其中F是作用在斜面上的力,θ是斜面的倾角。
2. 摩擦力在滑块斜面模型中,摩擦力是一个重要的因素,它可以影响到滑块在斜面上的运动。
通常情况下,我们把摩擦力分为静摩擦力和动摩擦力两种。
静摩擦力是指当物体处于静止状态时,摩擦力的大小,它的大小由静摩擦系数μs和垂直斜面的力N共同决定,其大小不超过μsN。
动摩擦力则是指当物体处于运动状态时,摩擦力的大小,它的大小由动摩擦系数μk和垂直斜面的力N共同决定。
在斜面模型中,摩擦力的大小和方向需要通过受力分析进行计算。
3. 动力学分析在滑块斜面模型中,我们需要进行动力学分析,来计算滑块在斜面上的运动情况。
动力学分析包括受力分析和牛顿第二定律的运用。
通过受力分析,我们可以计算出斜面上的合力和合力矩,从而得到滑块的加速度和角加速度。
牛顿第二定律告诉我们,物体的加速度与合外力成正比,与物体的质量成反比。
通过动力学分析,我们可以得到滑块在斜面上的运动规律,从而进一步进行相关的计算和分析。
4. 动能和势能在滑块斜面模型中,动能和势能是两个重要的物理量。
动能是指物体由于运动而具有的能量,其大小与物体的质量和速度成正比。
势能是指物体由于位置而具有的能量,其大小与物体的质量、重力加速度和高度成正比。
在滑块斜面模型中,我们需要根据滑块的位置和速度来计算其动能和势能,从而进一步进行相关的计算和分析。
5. 斜面上的平衡在滑块斜面模型中,当滑块处于静止状态时,我们需要进行力的平衡分析,通过平衡方程来计算出斜面上的力的大小和方向。
力的平衡分析涉及到多个力的叠加,通过叠加得到合力和合力矩,从而得到力的平衡方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀变速运动的规律一、基本公式 1.速度公式:v t =v 0+at 2.位移公式:20011()22t s v v t v t at =+=+ (注:上式仅限于匀变速运动,而s vt =适用于任何情况下的运动) 二、推论 1.v t 2-v 02=2as2.任意两个连续相等的时间T 内的位移之差是一个恒量,即Δs=aT 23.某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即022tt v v v v +==4.某段位移中点的瞬时速度等于初速度v 0和末速度v t 平方和的一半的平方根,即2s v =5.初速度为零的匀加速直线运动的特点:①1t 内、2t 内、3t 内...位移之比s 1:s 2:s 3:…=1:4:9:… ②1t 末、2t 末、3t 末…速度之比v 1:v 2:v 3:…=1:2:3:…③第一个t 内、第二个t 内、第三个t 内…的位移之比为s Ⅰ:s Ⅱ:s Ⅲ:…=1:3:5:… ④从静止开始通过连续相等的位移所用时间之比为t 1:t 2:t 3:…=1:1)::...注意:①当题目中给出s 、t 时,优先考虑公式s v t =和2012s v t at =+ ②当题目中给出s 、v 时,优先考虑公式02t v v v +=,和2202t v v as -= ③对公式022t t v v s v v t +===的灵活使用 三、运动图像1.位移时间图像(s-t 图像)①两图线相交说明两物体相遇,其交点的横坐标表示相遇的时刻,纵坐标表示相遇处对0位移点的位移②图像是直线表示物体做匀速直线运动或静止,图像是曲线则表示物体做变速直线运动 ③图像与横轴交叉,表示物体从参考点的一边运动到另一边。
④图像平行于t 轴,说明斜率为零,即物体的速度为零。
图像斜率为正值,表示物体沿与规定的正方向相同的方向运动;图像斜率为负值,表示物体沿与规定的正方向相反的方向运动。
2.速度时间图像(v-t图像)①两图线相交说明两物体在交点时的速度相等,图像与横轴交叉,表示物体运动的速度反向②图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。
③图线平行于t轴,说明斜率为零,即物体a=0,表示物体做匀速运动;图线的斜率为正值表示物体的加速度与规定正方向相同;图线的斜率为负值,表示物体的加速度与规定的正方向相反④图线与横轴t所围的面积的数值等于物体在该段时间内的位移。
四、追及问题1.追和被追的两物体的速度相等(通向运动)是能追上、追不上、两者距离有极值的临界条件(1).速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动①当两者速度相等时,二者间有距离最大②当两者位移相等时,即后者追上前者。
(2)速度大者减速(如匀减速直线运动)追速度小者(如匀速运动)①若两者速度相等时,追者位移仍小于被追者位移,则永远追不上,此时二者有最小距离②若速度相等时,有相同位移,则刚上追上,也是二者相遇时避免碰撞的临界条件。
③若位移相同时追者速度仍大于被追者的速度,则被追者还能有一次能追上追者,二者速度相等时,二者间距离有一个最大位移。
④若被追赶的物体做匀减速运动,一定要注意追上前该物体是否停止运动......五、相遇问题1.同向运动的两物体追及即相遇。
2.通向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇。
s-t图像:①表示从正位移开始移至沿负方向做匀速直线运动并越过零位移处②表示物体静止不动③表示物体从零位移开始做正向匀速运动④表示物体做匀加速直线运动注:斜率大小表示速度大小;斜率的正负表示速度的方向v-t图像:①表示先做正向匀减速运动,再做反向匀加速运动②表示物体做正向匀速直线运动③表示物体从静止开始做正向加速直线运动④表示物体做加速度增大的加速运动注:斜率的大小表示加速度的大小;斜率的正负表示加速度的方向力一、力1.定义:力是物体间的相互作用。
力的作用效果使物体发生形变或使物体运动状态发生改变。
2.力的性质:力不能离开物体而存在,因此力具有物质性。
力总是成对出现,这体现了力具有相互性。
力不仅有大小而且有方向,相互的作用力和反作用力,总是大小相等,方向相反,因此力具有矢量性。
物体同时受到几个力的作用,某个力产生的效果跟这个力单独存在时产生的效果相同,这叫力的独立性。
3.力的分类:①按性质分(按力产生的本质分),可分为:重力、弹力、摩擦力、分子力、电场力、磁场力等。
②按作用效果分,可分为:拉力、压力、支持力、动力、阻力、向心力等。
二、弹力1.定义:发生弹性形变的物体,由于要恢复原状,会对跟它接触的物体产生力的作用,这种力叫弹力。
2.产生条件:①相互接触;②发生弹性形变。
3.方向:与作用在物体上时物体发生形变的外力方向相反。
①轻绳:只能产生拉力(张力),其方向沿轻绳恢复原状的方向。
②支持力(或压力):总是垂直于接触面指向被支持(或被压)的物体。
③杆的弹力方向:可沿杆的方向,也可不沿杆的方向。
4.弹力大小:与物体形变程度有关,形变量越大,产生的弹力越大。
弹簧产生的弹力大小,在弹性限度内遵循胡克定律:F=kx,x表示弹簧的形变量(伸长量或压缩量),k表示弹簧的劲度系数,在国际单位制中k的单位为N/m。
5.弹力的判断①弹力有无的判断:假设法。
光滑固定挡板,球的受力情况光滑斜面,球的受力情况②弹力方向的判断:弹力过重心,且垂直于接触面。
③弹力大小的计算:弹簧由胡克定律计算。
支持力、绳的拉力、杆产生的弹力根据受力平衡或牛顿运动定律进行计算。
三、摩擦力(一)滑动摩擦力:1.定义:一个物体在另一个物体表面相对滑动时,受到另一个物体阻碍它相对滑动的力叫滑动摩擦力。
2.产生条件:①相对运动;②表面粗糙;③接触面有压力。
3.方向:总是与接触面相切,并且与相对运动方向......相反。
滑动摩擦力可以是动力,也可以是阻力。
4.大小:滑动摩擦力与正压力成正比。
即F f=μF N,其中μ为动摩擦因数。
也可用平衡条件或牛顿第二定律求解。
(二)静摩擦力:1.定义:一个物体在另一个物体表面有相对运动趋势时,受到另一个物体阻止相对运动趋势的力。
2.产生条件:①表面粗糙;②接触面有压力;③有相对运动趋势。
3.方向:总是与接触面相切,并且与物体相对运动趋势的方向相反。
4.大小:静摩擦力的大小取值范围为0<F f≤F fmax,其中F fmax为最大静摩擦力,该物体的滑动摩擦力μF N。
通常由平衡条件或牛顿第二定律求解。
说明:①运动的物体可以受到静摩擦力,静止的物体也可以受到滑动摩擦力。
②静摩擦力可以是动力也可以是阻力。
③静摩擦力的方向和物体的运动方向没有必然联系,和相对运动趋势才有必然联系(总是相反)。
四、力的合成和力的分解(一)力的合成1.合力,分力,力的合成:一个力,如果它产生的作用效果跟几个力共同产生的作用效果相同,这个力就叫那几个力的合力。
求几个力的合力叫做力的合成。
2.共点力:几个力如果都作用在物体的同一作用点,或它们的作用线相交与一点,这几个力叫做共点力。
3.力的平行四边形法则:以表示两个共点力F1和F2的线段为邻边做平行四边形,合力F 的大小和方向就可以用平行四边形对角线表示出来。
这就是力的平行四边形定则。
4.矢量和标量:既有大小又有方向的物理量叫矢量,只有大小而无方向的物理量叫标量,标量按代数求和。
(二)力的分解1.分力:如果几个力的作用效果跟原来一个力产生的作用效果相同,这几个力就叫原来那个力的分离,原来那个力也就是这几个力的合力。
2.力的分解:求一个力的分力叫力的分解。
3.力的分解是力的合力的逆运算,同样遵守平行四边形法则。
4.将一个已知力进行分解常见情况:①已知合力和两个分力的方向,则两个分力有唯一确定的值。
②已知合力(大小、方向)和一个分力(大小、方向),则另一个力有唯一确定的值。
③已知合力、一个分力的方向和另一分力的大小,即F、θ(F1与F的夹角)和F2,这时分情况讨论:a.F≥F2>Fsinθ时,有两解;b.F2=Fsinθ时,唯一解;c.F 2≥F 时,唯一解;d.F 2<Fsin θ,无解。
④已知合力和一个分力的方向,则另一个分力有无数解,且具有最小值(垂线段唯一且最小)① ② ③比较F 2、F 、 ④F 2的最小值Fsin θ的大小1.如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m 的小球,下列关于杆对球的作用力F 的判断中,正确的有( ) A.小车静止时,F=mgsin θ,方向沿杆向上 B.小车静止时,F=mgcos θ,方向垂直杆向上 C.小车向右以加速度a 运动时,一定有F=ma/(sin θ)D.小车向左以加速度a 运动时,F =夹角arctan()a gα=2.质量为20kg 的物块在动摩擦因数为0.1的水平面上向右运动,在运动过程中受到水平向左、大小为10N 的拉力作用,则物体所受摩擦力为(取g=10N/kg) ( ) A.10N ,向右 B.10N ,向左 C.20N ,向右 D.20N ,向左3.如图物体A、B各重10N,水平拉力F1=4N,F2=2N,物体保持静止,则A、B间的静摩擦力大小为______N,B与地面间的摩擦力大小为_____N4.如图所示,物体A、B放在物体C上,水平力F作用于A,使A、B、C一起匀速运动,个接触面间的摩擦力的情况是( )A.A对C有向左的摩擦力B.C对B有向左的摩擦力C.物体C受到3个摩擦力的作用D.C对地有向右的摩擦力5.把以重为G的物体,用一个水平的推力F=kt(k为恒量,t为时间)压在竖直的足够高的平整的墙上。
从t=0时开始物体所受的摩擦力Ff随t的关系是下列( )6.如图有两条黑白毛巾交替地叠放在地面上。
白毛巾的中部用线与墙壁连接,黑毛巾的中部用线拉住。
设线均水平,若每条毛巾的质量均为m,质量均匀。
毛巾之间及与地面之间的动摩擦因数均为μ,欲将黑白毛巾分离开来,则将黑毛巾匀速拉出需加的水平力为( ) A.2μmg B.4μmg C.5μmg D.6μmg7.几个共点力作用在一个物体上,使物体处于静止状态,当其中某个力F停止作用时,以下判断中正确的是( )A.物体将沿着F的方向运动B.物体将沿着F的反方向运动C.物体仍保持静止D.由于不知共点力的个数,无法确定其运动状态矢量三角形处理变力模型8.在倾角α=30°的斜面上有一块竖直放置的挡板,在挡板和斜面之间放油一个中为G=20N的光滑圆球,如图所示。
求此时球对斜面的压力F1和对挡板的压力F2。
若挡板自竖直开始以下端为轴缓慢转动,直到水平,试分析F1、F2的变化情况(大小、方向)变式一:变式二:斜面模型:9.如图所示,质量为m的物体在粗糙斜面上以加速度a加速下滑。