一元一次方程 等式的性质(1)

合集下载

等式的性质1精品公开课教案(大赛一等奖作品)

等式的性质1精品公开课教案(大赛一等奖作品)

第三章一元一次方程3.1 从算式到方程等式的性质1.利用等式的基天性质平等式进行变形.2.会用等式的性质解简单的一元一次方程;一、情境导入同学们,你们玩过跷跷板吗?它有什么特色 ?翘翘板的两边增添的量之间究竟知足什么关系时,翘翘板才能保持均衡?二、合作研究研究点一:应用等式的性质平等式进行变形.例 1:用适合的数或整式填空,使所得结果还是等式.(1)假如 2x+7=10 ,那么 2x=10-_______ ;(2)假如 -3x=8 ,那么 x=________ ;(3)假如 x- 2= y-2,那么 x=_____ ;3 3(4)假如a= 2,那么 a=_______.4分析:( 1)依据等式的基天性质(1),在等式两边同时减去7 可得 2x=10-7 ;( 2)依据等式的基天性质(2),在等式两边同时除以-38;可得 x=3( 3)依据等式的基天性质(1),在等式两边同时加上2可得 x=y ;3( 4)依据等式的基天性质(2),在等式两边同时乘以4可得 a=8.故答案为: 7, -8 3 , y, 8.方法总结:运用等式的性质,能够将等式进行变形,变形时等式两边一定同时进行完整同样的四则运算,不然就会损坏本来的相等关系。

例 2:已知 mx=my ,以下结论错误的选项是()A . x=yB .a+mx=a+myC . mx-y=my-yD . amx=amy分析: A 、等式的两边都除以m ,依据等式性质 2,m ≠0,而 A 选项没有说明,故A 错误;B 、切合等式的性质 1,正确.C 、切合等式的性质1,正确. D 、切合等式的性质1,正确.应选 A .方法总结: 此题主要考察等式的基天性质.在等式的两边同时加上或减去同一个数或字母,等式仍成立, 这里的数或字母没有条件限制, 可是在等式的两边同时乘以或除以同一个数或字母时,这里的数或字母一定不为0.研究点二:利用等式的性质解方程 例 3:用等式的性质解以下方程:( 1) 4x+7=3 ;( 2) 1 x- 1x=4.23分析:( 1)在等式的两边都加或都减7,再在等式的两边都除以4,可得答案;( 2)在等式的两边都乘以 6,在归并同类项,可得答案.解:( 1)方程两边都减 7,得 4x=-4 .方程两边都除以4,得 x=-1 .( 2)方程两边都乘以 6,得 3x-2x=24 , x=24 .方法总结 :解方程时,一般先将方程变形为 ax=b 的形式,而后再变形为 x=c 的形式。

《等式的性质》一元一次方程PPT课件

《等式的性质》一元一次方程PPT课件
(4) 从 3ac=4a 能不能得到 3c=4,为什么?
不能,a可能为0.
探究新知
素养考点 2 判断等式变形的对错
例2 已知mx=my,下列结论错误的是 (

A. x=y
B. a+mx=a+my
C. mx-y=my-y
D. amx=amy
A
解析:根据等式的性质1,可知B、C正确;根据等式的性质2,可知D正确;
-2x
2x 8 2x
探究新知
知识点 2
等式的性质 2
你能发现什么规律?
b
a


a = b
探究新知
你能发现什么规律?
b b
a

a

a = b
2a = 2b
探究新知
你能发现什么规律?
b b b
a a a

a = b
3a = 3b

探究新知
你能发现什么规律?
b
C个
a
a a aaa a
指出等式变形的依据.
x y
(1) 从 x = y 能不能得到 ,为什么?
9 9
能,根据等式的性质2,两边同时除以9.
(2) 从 a+2=b+2 能不能得到 a=b,为什么?
能,根据等式的性质1,两边同时加上-2.
(3) 从-3a=-3b 能不能得到 a=b,为什么?
能,根据等式的性质2,两边同时除以-3.
成立就可看作是天平保持两边平衡.
b
a
等式的左边
等式的右边


探究新知
你能发现什么规律?
a


探究新知

新华东师大版七年级数学下册《6章 一元一次方程 6.2 解一元一次方程 等式的性质与方程的简单变形》教案_1

新华东师大版七年级数学下册《6章 一元一次方程  6.2 解一元一次方程  等式的性质与方程的简单变形》教案_1

1.等式的性质与方程的简单变形第1课时由等式的性质到方程简单变形归纳导入复习导入类比导入悬念激趣同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.图6-2-1小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的质量.最常见的方法是用天平测量一个物体的质量.现在认识一下天平,然后回答下列问题:问题1:天平有什么作用呢?它代表什么意义呢?问题2:要让天平平衡应该满足什么条件?问题3:如果天平在平衡的条件下,左盘放着重(3x+4)克的物体,右盘放着重4x克的物体,你知道怎样列式吗?问题4:已知方程4x=3x+4,你能求出x吗?[说明与建议] 说明:通过对天平的认识让学生感受等式可以类比天平,利用天平称物的图示可以形象直观地展现等式的性质,还可以直观地展现方程的求解过程,从而激发学生的求知欲.建议:充分发挥学生的主动性,注重训练学生的合作交流意识,通过解决问题,回顾以前知识,提醒学生注意与新知识的对比.上节课我们将几个实际问题转化成了数学模型即方程,只列出了方程,并没有求出方程的解.其实,在小学我们利用逆运算能够去求形如ax+b=c的方程的解,比如:5x+4=9.对于这样的方程:23x=13,比较复杂,怎么解呢?要想求出这些复杂的一元一次方程的解,我们必须研究等式的性质,才可以解决这个问题.[说明与建议] 说明:学生感受到自己原先具有的知识已不能够解决目前的问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.建议:可让学生去解一下这个复杂的方程,让他们亲身体会此方程的复杂,然后小组讨论,是否能够找到解决办法.——教材第6页例1、例2 例1 解下列方程: (1)x -5=7;(2)4x =3x -4. 例2 解下列方程: (1)-5x =2;(2)32x =13.【模型建立】利用等式的基本性质解方程就是通过对方程进行简单变形,使含未知数的项在一边,不含未知数的项在另一边,合并同类项后,两边同时除以未知数的系数即可.【变式变形】1.如果5a 3b 5与a 3b 6m -7是同类项,那么m 的值为( B )A .-4B .2C .-2D .42.当x =___3___时,代数式3x -7的值是2. 3.当k =__-12__时,方程5x -k =3x +8的解是-2. 4.解方程:(1)2-3x =5.[答案:x =-1] (2)-2x =6+3x.[答案:x =-65](3)-35x +2=-4.[答案:x =10] (4)-14x +1=-2x +4.[答案:x =127][命题角度1] 等式的基本性质的应用此种题型考查学生对等式的基本性质的理解,应用等式的基本性质对方程进行简单变形. 例 把方程12x =1变形为x =2,其依据是__等式的性质2__.[命题角度2] 移项的识别移项的依据是方程的变形规则1,这一变形过程不改变方程的解.注意:(1)移项的时候一定要变号;(2)移项不等于移动,在等号一边利用加法交换律移动的项不能改变符号;(3)移项不改变方程中项的数目,不要漏写任一项.例 解方程6x +1=-4,移项正确的是( D ) A .6x =4-1 B .-6x =-4-1 C .6x =1+4 D .6x =-4-1[命题角度3] 利用等式的基本性质解方程利用等式的基本性质可以把一个等式进行变形,变成ax =b 的形式,然后两边同时除以a 即可.例 [湖州中考] 方程2x -1=0的解是x =__12__.[命题角度4] 与其他知识综合此类型试题检测学生的审题能力,并能根据题意准确列出式子,利用一元一次方程的解法求出有关字母的值.例 x 为何值时,代数式2x -3与-3x +7的值互为相反数?[答案:x =4] [命题角度5] 解决实际应用题列方程解决实际问题是本章的重点及难点,此类型考题注重考查学生的综合分析能力及解决问题的能力,要求学生能够读懂题意,找准等量关系,正确列出方程并求解.图6-2-2例 [金华中考] 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图6-2-2方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可做多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?解:(1)4张餐桌:4×4+2=18(人);8张餐桌:4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90,解得x =22. 答:这样的餐桌需要22张.练习1 P5 1.回答下列问题:(1)由a =b 能不能得到a -2=b -2?为什么? (2)由m =n 能不能得到-m 3=-n3?为什么?(3)由2a =6b 能不能得到a =3b ?为什么? (4)由x 2=y3能不能得到3x =2y ?为什么?解:(1)能,根据等式的基本性质1,两边同时减去2. (2)能,根据等式的基本性质2,两边同时乘以-13.(3)能,根据等式的基本性质2,两边同时除以2. (4)能,根据等式的基本性质2,两边同时乘以6.2. 填空,使所得结果仍是等式,并说明是根据哪一条等式性质得到的: (1)如果x -2=5,那么x =5+________; (2)如果3x =10-2x ,那么3x +________=10; (3)如果2x =7,那么x =________; (4)如果x -12=3,那么x -1=________.解:(1)2,等式的基本性质1. (2)2x ,等式的基本性质1. (3)72,等式的基本性质2. (4)6,等式的基本性质2. 练习2 P71.下列方程的变形是否正确?为什么? (1)由3+x =5,得x =5+3; (2)由7x =-4,得x =-74;(3)由12y =0,得y =2;(4)由3=x -2,得x =-2-3.解:(1)错误,3由等号左边移项到等号右边没有改变符号. (2)错误,方程两边同时除以7,得x =-47.(3)错误,方程两边同时乘以2,得y =0.(4)错误,x 由等号右边移项到等号左边没有改变符号. 2.(口答)求下列方程的解: (1)x -6=6; (2)7x =6x -4; (3)-5x =60; (4)14y =12. 解:(1)x =12. (2)x =-4. (3)x =-12. (4)y =2. 练习3 P8 1.解下列方程: (1)3x +4=0; (2)7y +6=-6y ; (3)5x +2=7x +8; (4)3y -2=y +1+6y ; (5)25x -8=14-0.2x ; (6)1-12x =x +13.解:(1)移项,得3x =-4. 两边同时除以3,得x =-43.(2)移项,得7y +6y =-6. 合并同类项,得13y =-6. 两边同时除以13,得y =-613. (3)移项,得5x -7x =8-2. 合并同类项,得-2x =6. 两边同时除以(-2),得x =-3. (4)移项,得3y -y -6y =1+2. 合并同类项,得-4y =3. 两边同时除以(-4),得y =-34.(5)两边同时乘以20,得8x -160=5-4x . 移项,得8x +4x =5+160. 合并同类项,得12x =165.两边同时除以12,得x =554. (6)两边同时乘以6,得6-3x =6x +2. 移项,得-3x -6x =2-6. 合并同类项,得-9x =-4. 两边同时除以(-9),得x = 49.2.试解6.1节中问题1所列出的方程. 解:移项,得44x =328-64. 合并同类项,得44x =264. 两边同时除以44,得x = 6. 习题6.2.1 P9 1.解下列方程: (1)18=5-x ; (2)34x +2=3-14x ; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ; (5)x -1=5+2x ;(6)0.3x +1.2-2x =1.2-2.7x . 解:(1)移项,得x =5-18. 合并同类项,得x =-13. (2)移项,得34x +14x =3-2.合并同类项,得x =1.(3)移项,得3x +4x -6x =7-2. 合并同类项,得x =5.(4)移项,得10y -11y +2y =-5-5. 合并同类项,得y =-10. (5)移项,得x -2x =5+1. 合并同类项,得-x =6, 两边同时除以-1,得x =-6. (6)移项,得0.3x -2x +2.7x =1.2-1.2. 合并同类项,得x =0. 2.解下列方程: (1)2y +3=11-6y ; (2)2x -1=5x +7; (3)13x -1-2x =-1; (4)12x -3=5x +14. 解:(1)移项,得2y +6y =11-3. 合并同类项,得8y =8. 两边同时除以8,得y =1.(2)移项,得2x -5x =7+1. 合并同类项,得-3x =8. 两边同时除以-3,得x =-83.(3)移项,得13x -2x =-1+1.合并同类项,得-53x =0.两边同时除以-53,得x =0.(4)移项,得12x -5x =14+3.合并同类项,得-92x =134.两边同时除以-92,得x =-1318.3.已知A =3x +2,B =4-x ,解答下列问题: (1)当x 取何值时,A =B? (2)当x 取何值时,A 比B 大4?解:(1)根据题意,要求3x +2=4-x 的解. 解这个方程得x =12.所以当x =12时,A =B .(2)根据题意,要求3x +2-(4-x )=4的解. 解这个方程得x = 32.所以当x =32时,A 比B 大4.专题一 一元一次方程1. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1. 2. 某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).A .25%B .40%C .50%D .66.7% 3. 下面判断中正确的是 [ ]A .方程132=-x 与方程x x x =-)32(同解B .方程132=-x 与方程x x x =-)32(没有相同的解C .方程x x x =-)32(的解都是方程132=-x 的解D .方程132=-x 的解都是方程x x x =-)32(的解专题二 探究题4. 对于数x ,符号[x ]表示不大于x 的最大整数.例如[3.14]=3,[-7.59]=-8,则满足关系式[377x +]=4的x 的整数值有( )A .6个B .5个C .4个D .3个5. 现在弟弟的年龄恰是哥哥年龄的21,而九年前弟弟的年龄是哥哥年龄的51,则哥哥现在的年龄是___________岁.6.解方程:3x-1.10.4 -4x-0.20.3 =0.16-0.7x0.06状元笔记【知识要点】1.等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;(2)等式的两边都乘以(或都除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的变形规则:(1)方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程的两边都乘以(或都除以)同一个不等于0的数,方程的解不变.3.方程的变形类型:(1)移项:依据方程的变形规则1,将方程中的某些项改变符号后,从方程的一边移到另一边的变形;(2)将未知数的系数化为1:依据方程的变形规则2,将方程的两边都除以未知数的系数的变形.4.一元一次方程:只含有一个未知数,并且未知数的最高次数是的整式方程叫做一元一次方程.5.解一元一次方程的步骤: ①去分母 ②去括号 ③移项④合并同类项⑤化未知项的系数为1⑥检验方程的解一般不需答出,但要养成检验的习惯 6.列一元一次方程解应用题的步骤:①弄清题意,设未知数:求什么?用字母表示适当的未知数;②分析条件,找等量关系:找出已给出的数量及未知数之间的等量关系;③组织方程,列方程:对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程.④解所得的方程:求解所列出的一元一次方程,并检验所求的解是否原方程的解、是否符合实际意义.⑤写出答语.【温馨提示(针对易错)】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等都不是一元一次方程.2.解方程时要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【方法技巧】解方程的基本思想就是应用等式的基本性质进行转化,将方程化为“x =常数”的形式,最后的“常数”就是方程的解. 答案1.【答案】D2.【答案】C .【解析】设商品的进价为a 元,标价为b 元, 则80%b -a =20%a ,解得b =32 a ,原标价出售的利润率为b-aa ×100%=50%3.【答案】D【解析】方程132=-x 的解是2=x;方程x x x =-)32(的解是0=x 和2=x .因此,A .B .C .的判断都是错误的,只有D 判断正确. 4. 【答案】D 5. 【答案】12【解析】设弟弟年龄是x ,则哥哥年龄是2x ,则依题意有5(x -9)=(2x -9), ∴x = 12.6. 【答案】解:原方程变形为 30x-114 -40x-23 =16-70x6去分母,得3×(30x -11)-4×(40x -2)=2×(16-70x ) 去括号,得90x -33-160x +8=32-140x 移项, 得90x -160x +140x =32+33-8 合并, 得70x =57 系数化为1,得x =5770“方程的简单变形”学习点拨学习方程变形的依据及方程的两种简单变形,是为进一步学习解一元一次方程作铺垫。

一元一次方程知识点归纳

一元一次方程知识点归纳

一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。

温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。

②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。

如x x 2735-=+才是等式。

二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。

即如果b a =,那么c b c a ±=±。

性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。

温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。

若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。

所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。

如31=+x ,左边加2,右边也加2,则有2321+=++x 。

②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。

③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。

b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。

例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。

(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。

三.方程含有未知数的等式叫做方程。

温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。

②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。

一元一次方程复习

一元一次方程复习

合并同类项,得 6x= 2.5
5 两边同除以6, 得x= 12
解方程
x 0.4 x 3 2 0.2 0.5
解:变形,得
5( x 0.4) 2x 3 2
去括号,得 5x+2-2x+6=2 移项,得 5x-2x=2-2-6 合并同类项,得 3x=-6 系数化为1,得 X=-2
x 3x 7 练1、 1与 若 互为相反数,则x的值为 ( C ) 2 2
(A)4.5
(B) 2.5
(C)1.25
(D)-2.5
练2、已知:实数x, y满足关系式 | x 2 | (2 y 1) 0, 求xy的值。 xy=1
2
点拨:根据非负数构造方程解题
非负问题 转化 方程问题 求解 已学的两类非负数:绝对值“| a |" , 平方“a 2 "
- 2X+5 C、3(3X+1)=___________
例:方程3X+20=4X-25+5
移动的项要变号 (3)移项:
• 移项正确的是:A、3X--4X=-5-25-20 • B、 3X-4X=-25+5-20
× √
火眼金睛
下面方程的解法对吗?若不对,请改正 。 解方程
3x 1 4x 1 1 3 6
移项,得
4x 9x 6 2 30
合并同类项,得
13 x 34
系数化为1,得
34 x 13
课堂练习:解方程: 1.5 x 1.5x 0.6 2

0.5
解:原方程可化为:
5x 2

1.5 x 2
0.5
去分母, 得5x –(1.5 - x)= 1 去括号,得 5x – 1.5 + x = 1 移项, 得 5x + x = 1 + 1.5

一元一次方程讲义

一元一次方程讲义

一元一次方程一、等式及其性质1、等式用等号表示相等关系的式子叫等式。

如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。

注意:等式中一定含有等号。

2、等式的性质等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。

a=b ,那么a ±c=b ±c等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。

a=b ,那么ac=bc ;如果a=b ,那么a /c=b /c (c ≠0)。

注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。

思考:回答下列问题:(1)从a+b=b+c ,能否能到a=c ,为什么?(2) 从a-b=b-c ,能否能到a=c ,为什么?(3) 从ab=bc ,能否能到a=c ,为什么?(4) 从a/b=c/b ,能否能到a=c ,为什么?(5)从xy=1,能否能到x=1/y ,为什么?二、解一元一次方程的步骤:①去分母; ⇐(没有分母的项不要漏乘;去掉分数线,同时要把分子加上括号) ②去括号; ⇐(当括号外面是负号,去掉括号后,要注意变号)③移项; ⇐(移项要注意变号)④合并同类项; ⇐(如果方程中有同类项,一定要合并同类项)⑤系数化为1; ⇐(记得每一项都要除系数) 例:解一元一次方程3122133---=+x x x三、一元一次方程解的实际应用1、列方程解应用题的步骤(1)审:明确已知什么,求什么及基本关系。

找出能表示题目全部含义的相等关系(2)设:设未知数。

可直接设,也可间接设,要尽量使列出的方程简单。

①直接设未知数:题目求什么就设什么。

②间接设未知数:设的未知数不是题目直接求的量。

③设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去(3)列:根据等量关系列方程。

(4)解:解方程(5)验:检验方程的解和解是否符合实际问题。

一元一次方程的解法

一元一次方程的解法

(2) 调配问题。 从调配后的数量关系中找等量关系, 常见是“和、 差、 倍、 分”关系, 要注意调配对象流动的方向和数量。
例 1 . 学校组织植树活动,已知在甲处植树的有 27 人,在乙处植树的有 18 人.如果要使在甲处植树的人 数是乙处植树人数的 2 倍,需要从乙队调多少人到甲队?
例 2 . 学校组织植树活动,已知在甲处植树的有 23 人,在乙处植树的有 17 人.现调 20 人去支援,使在甲 处植树的人数是乙处植树人数的 2 倍多 3 人,应调往甲、乙两处各多少人?
5
表或画图来帮助理解题意。
例 1 .一项工程,甲、单独做需 20 天完成,乙单独做需 30 天完成,如果先由甲单独做 8 天,再由乙单独 做 3 天,剩下的由甲,乙两人合作还需要几天完成?
例 2. .一项工程,甲独做需12天完成,乙独做24天完成,丙独做需6天完成,现在甲与丙合作2天, 丙因事离去,由甲乙合作,甲乙还需几天才能完成这项工程?
一元一次方程的解法 知识点和方法概述 1、等式 等式:用“=”表示相等关系的式子。 等式的性质: 1) 等式两边都加上 (或减去) 同一个数或同一个整式, 所得结果仍是等式。 即: 若 A=B, 则 A±C=B±C。 2) 等式两边都乘以 (或除以) 同一个数 (除数不为 0) , 所得结果仍是等式。 即: 若 A=B, A B C ≠ 0 ,则 A⋅C=B⋅C, = 。 C C 3)等式的对称性:若 A=B,则 B=A。 4)等式的传递性:若 A=B,B=C,则 A=C。 等式的类型: 1)恒等式:当不论用任何数值代替等式中的字母,其左右两边的值总相等时,这样 的等式叫做恒等式。如 0 ⋅ x = 0 。 2)矛盾等式:如 2=0, 2 x = 2 x + 1 3)条件等式:字母取某特定值时才成立的等式,如 3 x − 4 = 3 2、方程 方程:含有未知数的等式叫做方程。 方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。 方程的根:只含有一个未知数的方程的解,也叫方程的根。 解方程:求方程的解的过程叫做解方程。 同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。 (注:用等式的 两条性质所得的方程与原方程是同解方程。 ) 方程的同解原理: 1)方程两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 2)方程两边都乘以(或除以)同一个数(除数不为 0) ,所得结果仍是等式。 不难看出,方程的同解原理是由等式的性质演变出来的,其实质是一样的。 检验方程的解:检验一个数是不是某个方程的解,其方法是将数分别代入方程的左边和 右边,如果左边=右边,则该数就是原方程的解,否则就不是。 含绝对值符号的方程:绝对值符号内含有未知数的方程,叫含绝对值符号的方程,有时 也简称绝对值方程。 解含绝对值符号的方程的基本思想就是去掉绝对值符号,转化为一般方程。具体操作方 式有两种:其一是对含绝对值符号的各个式子分别讨论其正负,利用绝对值的定义去掉绝对

一元一次方程复习讲义

一元一次方程复习讲义

第三章一元一次方程复习讲义知识点1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.例1(1)怎样从等式x-5=y-5得到等式x=y?(2)怎样从等式3+x=1得到等式x=-2?(3)怎样从等式4x=12得到等式x=3?例2利用等式的性质解下列方程:(1)x+7=26(2)-5x=203.方程:只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、匕是已知数,且aW0).8.一元一次方程解法的一般步骤:化简方程分数基本性质去分母同乘(不漏乘)最简公分母去括号先去小括号,再去中括号,最后去大括号.依据是去括号法则和乘法分配律,注意符号变化移项把含有未知数的项移到一边,常数项移到另一边.“过桥变号”,依据是等式性质一合并同类项将未知数的系数相加,常数项相加.依据是乘法分配律合并后注意符号系数化为1在方程的两边除以未知数的系数.依据是等式性质二.例1解下列方程[1]用合并同类项的方法解一元一次方程(1)2x-£%=6-8;(2)7x—2.5x+3x-1.5x=-15x4—6x3.[2]用移项的方法解一元一次方程(1)7-2x=3-4x(2)4x+10=6x[3]利用去括号解一元一次方程去括号法则:去掉“+()”,括号内各项的符号不变.去掉“-()”,括号内各项的符号改变.用三个字母a、b、c表示去括号前后的变化规律:a+(b+c)=a+b+ca-(b+c)=a—b—c(1)2x-(x+10)=5x+2(x—1)(2)3x—7(x—1)=3—2(x+3)[4]利用去分母解一元一次方程(总结:像上面这样的方程中有些系数是分数,如果能化去分母,把系数化为整数,则可以使解方程中的计算更方便些.)2x+2x+7x+x=33(2)3x+x-1=3-2x-1(1)^要点归纳1.去分母时,应在方程的左右两边乘以分母的最小公倍数;2.去分母的依据是等式性质2,去分母时不能漏乘没有分母的项;3.去分母与去括号这两步分开写,不要跳步,防止忘记变号.10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出 未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程(组)的应用题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).[注意]审题是基础,找等量关系是关键.11.解实际应用题:知识点1:市场经,^、打折销售问题(1)商品利润=商品售价一商品成本价(3)商品销售额=商品销售价X 商品销售量(4)商品的销售利润=(销售价一成本价)X 销售量例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?变式1.某琴行同时卖出两台钢琴,每台售价为960元.其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?例2一件服装先将进价提高25%出售,后进行促销活动,又按标价的8折出售,此时售价为60元.请问商家是盈是亏,还是不盈不亏?例3.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出 售,但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?(2) 商品利润率= 商品利润 商品成本价X 100%例4.某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元但不超过500元的优惠10%,超过500元,其中500元按9折优惠,超过的部分按8折优惠。

解一元一次方程--等式的性质

解一元一次方程--等式的性质

-10 3.如果-m n 5 m 5,那么n 。 ab b 3 4.如果 4,那么 。 a a
2 2
18
教案
课题:2 .1.2 等式的性质(1)
①了解等式性质 1; 教学目标 ②会用等式的性质 1 解简单的一元一次方程; ③培养学生观察、分析、概括及逻辑思维能力; ④渗透“化归”的思想. 理解和应用等式的性质 1 应用等式性质 1 把简单的一元一次方程化成“x=a”. 教学过程(师生活动) 用估 算的方法 我们可以 求出简单 的一元 一次方程 的解. 你能用这种方法求出下列方程的解吗? 提出问题 (1) 4x=24; (2) x+1=3. 第(1) 题要 求学生给 出解答, 第(2)题较 复杂,估 算比较 困难, 此时教师提 出:我们必 须学习解一 元一次方程 的其他 方法. ①实验演示: 教师 先提出实 验的要求 :请同学 们仔细 观察实验 的过程, 思考能否从中发现规律,再用自己的语言叙述你发现的规律. 教师可以进行两次不同物体的实验. ②归纳: 请几名学生回答前面的问题. 在学生 叙述发现的 规律后,教 师进一步引 导:等式就 像平衡 的天平 ,它具有与 上面的事实 同样的性质 .比如 “8=8” ,我 们在两 边都加上 6 ,就有“ 8+6=8+ 6” ;两边 都减去 11,就 探究新知 有“8-11=8-11” ③表示: 问题 1:你能用文字来叙述等式的这个性质吗? 在学 生回答的 基础上, 教师必须 说明: 等式两边 加上的 可以是同一个数,也可以是同一个式子. 问题 2: 等式一般可以用 a=b 来表示. 等式的性质 1 怎样 用式子的形式来表示? 如果 a=b,那么 a ±c =b±c 字母 a、 b、 可以表示具体的数,也可以表示一个 c 式子。 举例的目 的在于 得到初步的应用 . 两种形式 的表示 方法应该 让学生 理解 先观察后 实验的 目的 一是 培养 学 生 的 看 图 能 力,二是 培养学 生读数学 书的能 力 用实验演 示,能 比较直观 地归纳 出等式的性质 设计理念 第 (1) 题是为了 复习,第(2) 题 是 估 算 比 较 困 难,以引 起学生 认知冲突 ,引出 新课

第4章《一元一次方程》知识讲练(学生版)

第4章《一元一次方程》知识讲练(学生版)

2023-2024学年苏科版数学七年级上册章节知识讲练知识点01:一元一次方程的概念1.方程:叫做方程.2.一元一次方程:只含有(元),未知数的次数都是,这样的方程叫做一元一次方程.知识要点:判断是否为一元一次方程,应看是否满足:①只含有一个未知数的次数为;②未知数所在的式子是,即分母中不含未知数.3.方程的解:叫做这个方程的解.4.解方程:叫做解方程.知识点02:等式的性质与去括号法则1.等式的性质:等式的性质1:,结果仍相等.等式的性质2:,结果仍相等.2.合并法则:合并时,把系数 保持不变. 3.去括号法则:(1)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相反.知识点03:一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的(2)去括号:依据 ,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边, 移到方程另一边.(4)合并:逆用 ,分别合并含有未知数的项及常数项,把方程化为 (a ≠0)的形式.(5)系数化为1: 得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若 相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点04:用一元一次方程解决实际问题的常见类型1.行程问题:路程= ×时间2.和差倍分问题:增长量=原有量×3.利润问题:商品利润=商品售价-4.工程问题:工作量=工作效率× ,各部分劳动量之和=5.银行存贷款问题:本息和=本金+利息,利息=本金× ×6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•惠山区校级期末)关于x 的方程kx =2x +6与2x ﹣1=5的解相同,则k 的值为( ) A .4B .3C .5D .62.(2分)(2022秋•高新区期末)已知等式3a =2b +5,则下列等式中不一定成立的是( ) A .3a ﹣5=2bB .3a +1=2b +6C .D .3ac =2bc +53.(2分)(2022秋•玄武区校级期末)小明到某文具店购买铅笔和中性笔.设购买铅笔的金额为x元,根据表格,下列方程错误的是()商品单价(元/支)购买数量/支购买金额/元铅笔x中性笔总计/ 13 34 A.+=13 B.x+3.5(13﹣)=34C.1.2(13﹣)=x D.3.5(13﹣)=34﹣x4.(2分)(2022秋•江都区期末)某学校组织师生去中小学素质教育实践基地研学.已知此次共有n名师生乘坐m辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①40m+15=45(m﹣1);②40m﹣15=45(m﹣1);③=﹣1;④+1.其中正确的是()A.①④B.①③C.②③D.②④5.(2分)(2022秋•连云港期末)明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x 两银子,则可列方程为()A.7x﹣4=5x+8 B.C.7x+4=5x﹣8 D.6.(2分)(2022秋•惠山区校级期末)元旦期间,甲、乙两家水果店对刚到货的橙子搞促销,甲水果店连续两次降价,第一次降价10%,第二次降价20%,乙水果店一次性降价30%,小丽想要购买这种橙子,她应选择()A.甲水果店B.乙水果店C.甲、乙水果店的价格相同D.不确定7.(2分)(2022秋•南通期末)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤8.(2分)(2022秋•泗洪县期末)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑得快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)9.(2分)(2022秋•工业园区校级月考)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=2OA,点M以每秒1个单位长度的速度从点A向右运动,点N以每秒3个单位长度的速度从点B向左运动(点M、点N同时出发),经过几秒,点M、点N分别到原点O的距离相等()A.5秒B.5秒或者4秒C.5秒或者秒D.秒10.(2分)(2022秋•江都区月考)观察月历,用形如的框架框住月历表中的五个数,对于框架框住的五个数字之和,小明的计算结果有45,55,60,75,小华说有结果是错误的.通过计算,可知小明的计算结果中错误的是()A.45 B.55 C.60 D.75二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•亭湖区期末)若(2﹣a)x|a﹣1|﹣5=0是关于x的一元一次方程,则a=.12.(2分)(2022秋•泗阳县期末)如图,在数轴上,A、B两点同时从原点O出发,分别以每秒2个单位和4个单位的速度向右运动,运动的时间为t,若线段AB上(含线段端点)恰好有4个整数点,则时间t 的最小值是.13.(2分)(2022秋•海门市期末)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?根据题意,可求得合伙买羊的是人.14.(2分)(2022秋•鼓楼区校级期末)防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为.15.(2分)(2022秋•江都区期末)一项工程甲单独做要20小时,乙单独做要12小时,现先由甲单独做5小时,然后乙加入进来合作.完成整个工程一共需要小时.16.(2分)(2022秋•江阴市期末)某种商品降价10%后的价格恰好比原价的一半多40元,该商品的原价是元.17.(2分)(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.18.(2分)(2022秋•大丰区期末)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时,按此运行速度,地下隧道运行时间比地上大约多3分钟,求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.19.(2分)(2022秋•句容市校级期末)如图,正方形的边长为6,已知正方形覆盖了三角形面积的,而三角形覆盖了正方形面积的一半,那么三角形的面积是.20.(2分)(2021秋•射阳县校级期末)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为.三.解答题(共8小题,满分60分)21.(6分)(2022秋•仪征市期末)解方程:(1)5(x﹣1)+3=3x﹣3;(2)+=1.、22.(6分)(2022秋•仪征市期末)某小组计划做一批“中国结”如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①5x﹣9=4x+15②=(1)①中的x表示;②中的y表示.(2)请选择其中一种方法,写出完整的解答过程.23.(8分)(2022秋•丹徒区期末)某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)35 65标价(元/件)50 100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?24.(8分)(2022秋•惠山区校级期末)运动场环形跑道周长为300米,爷爷一直都在跑道上按逆时针方向匀速跑步,速度为3米/秒,与此同时小红在爷爷后面100米的地方也沿该环形跑道按逆时针方向运动,速度为a米/秒.(1)若a=1,求两人第一次相遇所用的时间;(2)若两人第一次相遇所用的时间为80秒,试求a的值.25.(8分)(2022秋•丹徒区期末)已知关于m的方程的解也是关于x的方程2(x﹣8)﹣n=6的解.(1)求m、n的值;(2)如图,数轴上,O为原点,点M对应的数为m,点N对应的数为n.①若点P为线段ON的中点,点Q为线段OM的中点,求线段PQ的长度;②若点P从点N出发以1个单位/秒的速度沿数轴正方向运动,点Q从点M出发以2个单位/秒的速度沿数轴负方向运动,经过秒,P、Q两点相距3个单位.26.(8分)(2022秋•玄武区校级期末)某市采用分段收费的方式按月计算每户家庭的水费,收费标准如表:户月用水量(m3)收费标准(元/m3)不超过18m3超过18m3,但不超过25m3的部分 5超过25m3的部分7(1)小明家3月份用水量为20m3,应缴纳水费元;(2)设某户某月的用水量为xm3,应缴纳水费多少元?(用含x的代数式表示)(3)小红家6月份和7月份的用水量共50m3,且7月份用水量比6月份多,这两个月共缴纳水费217元,则小红家6月份和7月份的用水量分别为m3,m3.27.(8分)(2022秋•太仓市期末)如图1,将一副三角板摆放在直线MN上,在三角板OAB和三角板OCD中,∠OAB=∠OCD=90°,∠AOB=45°,∠COD=30°.(1)保持三角板OCD不动,当三角板OAB旋转至图2位置时,∠BOD与∠AON有怎样的数量关系?请说明理由.(2)如图3,若三角板OAB开始绕点O以每秒6度的速度逆时针旋转的同时、三角板OCD也绕点O以每秒3度的速度逆时针旋转,当OB旋转至射线OM上时,两块三角板同时停止转动.设旋转时间为t秒,则在此过程中,是否存在t,使得∠BOD+∠AON=60°?若存在,求出t的值;若不存在,请说明理由.28.(8分)(2022秋•广陵区校级期末)数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律,例如;数轴上点M、点N表示的数分别为m、n,则M、N 两点之间的距离MN=|m﹣n|,线段MN的中点表示的数为.如图,数轴上点M表示的数为﹣1,点N 表示的数为3.(1)直接写出:线段MN的长度是,线段MN的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+1|+|x﹣3|有最小值是,|x+1|﹣|x﹣3|有最大值是;(3)点S在数轴上对应的数为x,且x是方程2x﹣1=x+4的解,动点P在数轴上运动,若存在某个位置,使得PM+PN=PS,则称点P是关于点M、N、S的“麓山幸运点”,请问在数轴上是否存在“麓山幸运点”?若存在,则求出所有“麓山幸运点”对应的数;若不存在,则说明理由.。

《一元一次方程》复习课件1

《一元一次方程》复习课件1

解: 设 Ⅰ型洗衣机台数为x ,得: ____X_+__2_x_+__1_4_x__=_2_5__5_0______ 基本等量关系1: 总量=各部分量的和
分书问题
2、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺25本.这个班有多少学生?
分析: 设这个班有 x 名学生
A 1/3 B -1/3
C 4/3
D -4/3
3、若y=4是方程ay-3=1的解,那么a的值是( C )
A4 B 0 C 1
D -1/2
4、设a为整数,若关于x的方程ax=2的解为整数,则a 的取值的个数是( C )
A 2 B3 C 4
D5
知识拓展
1.已知9x-3y- 1 =0,观察并思考,怎样求出 3x-y的值? 3 1/9
x 1 x1
2. (2 x 2) 3(4x 10) 9(1 x )
解:去括号,得:
2x 4 12x 30 9 9x
移项,得:
2x 12x 9x 9 4 30 合并同类项,得: x 17
方程两边同 除以-1,得:
x 17
3. 1 2x 5 3 x
6
4
解、去分母,得: 12 2( 2x 5 ) 3( 3 x )
36
2
解 : 2x 2 x 2 12 3x,
2x x 3x 12 2 2
4x 16
x 4.
解方程: x 0.17 0.2x 1 0.7 0.03
解:原方程可化为10 x 17 20x 1
7
3
去分母,得30x 7(17 20x) 21
去括号,得30x 119140x 21 移项,得30x 140x 21119

一元一次方程的概念与解法

一元一次方程的概念与解法

一元一次方程的概念与解法【知识要点】1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的标准形式是:2.等式的基本性质(1)等式的两边都加上或减去或,所得的结果仍是等式.(2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:【典型例题】例1.下列方程是一元一次方程的有哪些?x+2y=9 x 2-3x=1 11=xx x 3121=-2x=1 3x –5 3+7=10 x 2+x=1例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x_________3,123=--=那么x x ;(3)如果;__________x ,521==那么x(4)如果________.3x ,32==那么yx例3.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x例4.解方程 1.32243332=+--x x 2.1423(1)(64)5(3)25x x x --++=+3.21101211364x x x -++-=- 4.22314615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.83161.20.20.55x x x +-+-=-例6.x 取何值时,代数式 63x + 与 832x- 的值相等.例7.已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例8. 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.例9.当.38322倍的的值是为何值时,代数式x x x x ++-例10. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.系统讲解一元一次方程的应用【知识梳理】一、知识结构二、知识要点归纳1.列方程解决实际问题的一般步骤(1)找——找准等量关系,找出能够表示题意的等量关系.(2)设——设未知数,弄清题意和找准等量系后,用字母表示题目中的一个未知数.(3)列——列出方程,用含未知数的代数式表示出题目中的各种数量,依据找准的等量关系,列出方程.(4) 解——解方程.解出所列的方程,求出未知数的值.(5) 答_作出应答,检验方程的解是否符合实际,作出回答且注明单位.水速度=船速-水速2.分析应用题中等量关系的一般方法(1)译式法:将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数式之间的内在联系找出等量关系.(2)线示法:用同一直线的线段表示应用题中的数量关系,然后根据线段的长度的内在联系,找出等量关系.(3)列表法:将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系.(4)图示法:利用图表示题中的数量关系,它可以使量之间的关系更为直观,更方便找出其中的等量关系.三、考查解析一元一次方程应用问题,关键是考查同学们用一元一次方程的模型解决实际问题的能力,大多数属于当基本题或中档题,学习中应抓住其核心问题——建模,从等量关系入手,而不是只让学生套题型,套步骤去解应用题.【典型例题】劳动力分配问题例1.某车间有100个工人,每人平均每天可以加工螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓要配两个螺母)应如何分配加工螺栓、螺母的工人?分析:等量关系为螺栓数:螺母数=1︰2.设加工螺栓人数为x,则加工螺栓的总数为18x个,加工螺母总数为24(100-x)个.解:设加工螺栓的人数为x人,依题意有24xx⨯(=-2,18)100解得 40=x (人).∴加工螺母的人数为 100-x =100-40=60(人) 答:应分配40人去加工螺栓.点评:此题重点是培养学生寻找等量关系的意识和能力. 等体积问例2.一个圆柱形水桶,底面半径为11cm ,高25cm ,将满桶的水倒入底面长30cm ,宽20cm 的长方体容器,问此长方体容器的高度至少要多少才不溢出水(π取3.14,结果精确到0.1cm )? 分析:从相等关系入手,即圆柱形容器积=长方体器容积. 解:设长方体容器的高为x cm ,依题意,有 30×20x =25π×112,解方程,得 ≈=24121πx 15.9cm , 答:长方体容器的高至少需要15.9cm.点评:“等积变换”是中学数学的常用方法,要让学生理解和把握这方法,并能在实际问题中灵活应用. 盈亏问题例3.某服装个体户同时卖出两套服装,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.(1)在这次买卖中,这位个体户是赔是赚还是正好保本? (2)若将题中的135元改成为任何正数a 元,情况如何? 分析:关键把握等量关系: 进价(1+盈利率)=售价,进价(1-亏本率)=售价.解:(1)设第一件进价为x 元,则135%)251(=+x , 解得 108=x ,设第一件进价为y 元,则135%)251(=-y , 解得 180=y ,而 181352)180108(1352)(=⨯-+=⨯-+y x .所以赔18元.(2)仿前一小题方法可得: a x =+%)251(及a y =-%)251(, 解得 a x 54=, a y 34=,而 0152234542)(>=-⎪⎭⎫ ⎝⎛+=-+aa a a a y x , 所以此时仍然是亏本.点评:解决该题的关键是把握住此类问题中的几个等量关系,同时理解好一些常用“词”:如:打八折,进价,售价,盈利10%,亏本20%等.拓广:在例3中,将题中的135元改为任何正数a 元,同时又将题中的25%改为m%(0<m <100)情况如何?工程量问题例4.甲、乙两水管往水池中注水,甲管单独打开用20小时可注满一池水,乙管单独打开用40小时可注满一池水.现在甲管单独打开8小时后,乙管才开始工作,问两管一起打开后需多少小时可注满水池?分析:利用等量关系,甲管工作量+乙管工作量=1,来解题,为了理清工作量的关系,可列表如下:(设两管一起开后x 小时可注满全池)解:设两管一起打开后x 小时可注满全池,依题意,得140208=++xx . 解得 8=x (小时),答:两管一起打开后8小时可注满水池.点评:“列表法”在分析等量关系中,有其特点,但重点还应是在培养学生寻找等量关系的意识和能力上,提高“建模”能力.行程问题例5.由甲地到乙地前32的路是高速公路,后31的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路上的行驶速度是100千米/时,在普通公路的行驶速度是60千米/时.B 车在高速公路上的行驶速度是110千米/时,在普通公路上的行驶速度是70千米/时.A 、B 两车分别从甲、乙两地同时出发相向行驶,在距离丙地44千米处相遇,求甲、乙两地之间的距离是多少?分析:本题在相遇过程中A 、B 两车同时出发相向而行至相遇如图3-5-1所示,相等关系是A 车行驶时间=B 车行驶时间.距丙地44千米处,有两种可能,(1)相遇处在高速公路上距丙地44千米,(2)相遇处在普通公路上,解题时要考虑到这两种情况,再根据实际取舍.解:设甲、乙两地相距x 千米,A 车从甲地到丙地,需要15010032xx=(小时),B 车从乙地到丙地,需要2107031x x=(小时), ∵210150x x > ∴A 、B 两车只能在高速公路上距丙地44千米处相遇.列方程得,1104470311004432+=-xx 解得441=x .答:甲、乙两地之间的距离是441千米.点评:“线示法”分析等量关系比较方便.但要注意分类讨论各种情况,以免挂一漏万.利息问题例6.大宝、小宝共利用假期打工1000元,大宝把他的工钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税,小宝把他的工钱买了月利率为2.15%的债券,但要交纳20%的利息税,一年后两人得到的收益恰好相等,问两人的压岁钱各是多少?分析:抓住这一问题的等量关系.1.利息(免税的)=存入钱数×年利率,2.利息(不免税的)=存入钱数×年利率×(1-税率),3..大宝的收益=小宝的收益.解:设大宝的工钱为x元,则小宝的工钱为(1000-x)元,由题意,得.1⨯98%⨯⨯x.=x-(80%100012%).215解得510x(元),1000-x=490(元).=答:大宝的工钱是510元,小宝的工钱是490元.【自我测试】一、基础测试1.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追及超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒2.有一旅客携带30公斤行李从某机场乘飞机返回绵阳,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购行李票,已知该旅客现已购行李票60元,则它的飞机票价为()A.300元B.400元C.600元D.800元3.一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?4.某商品的进货单价为280元,按25%的利润率确定售价.后因市场发生变化,决定按原定价格的八五折出售,问这时每售出一件这种商品,商店获利多少?5.用内径18毫米的圆柱形试管盛满水后,向一个底面是边长为22毫米的正方形,高是15毫米的空长方体容器内倒水,倒满容器后试管内水面下降约多少毫米?6.一艘船在甲、乙两地之间航行,顺水要3小时,逆水要3.5小时,已知船在静水中航行速度是每小时26千米,求水流速度.7.两人在环形跑道上同向急走,一圈为400米,甲的速度为平均每分钟80米,乙的速度是甲的1.25倍,如果乙在甲的前面100米,多少分钟后两人相遇?8.某人原计划骑车以12km/h的速度由A地去B地.这样可在规定时间内到达B地.但他因事将原计划出发的时间推迟了20min,只好以15km/h的速度前进,结果比规定时间早4min到达B地,求A、B 两地的距离?二、综合能力测试题1.某商店先在广州以每件15元的价格购进一种商品10件,后来又到深圳以每件12.5元的价购进同样商品40件,如果商店销售这些商品时,要获利12%的利润,那么这种商品的销售价应该是_______.2.有一卷铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩下10m,这卷铁丝原长多少?3.有大中小三个正方形水池,它们的内池分别为6m、3m、2m,把两堆碎石分别沉浸在中、小水池的水里,两个水池的水面分别升高了6cm和4cm,如果将这两堆碎石都沉浸在大水池的水里,大水池的水面升高了多少厘米?4.有一火车以每分钟600m的速度要过完第一、第二座铁桥,过第二座铁桥比过第一座铁桥多用5分钟,又知第二座铁桥的长度比第一座铁桥长度的2倍短50m,试求各铁桥的长?5.某公司向银行贷款40万元用来生产某种新产品,已知该贷的年利率为1.5%(不计复利),每人新产品的成本是2.3元,售价4元,应纳税是销售额的10%,如果每年生产该种产品20万个,并把所得利润用来归还贷款,问需要几年才能一次性还清?(利润=销售额-成本-应纳税款)6.某班共40名学生,其中33人数学成绩不低于80分,32人英语成绩不低于80分,且班上每人在这两科中至少有一科不低于80分.求两科成绩都不低地80分的人数.。

一元一次方程知识点及练习

一元一次方程知识点及练习

一元一次方程一、知识点知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2 防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号) 等式基本性质1 移项要变号,不移不变号;合并同类项把方程化成ax=b(a≠0)的形式合并同类项法则计算要仔细,不要出差错;系数化成1 在方程两边都除以未知数的系数a,得到方程的解x=等式基本性质2 计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答。

一元一次方程

一元一次方程

一元一次方程一、一元一次方程一、双基回顾1、方程、方程的解和解方程含有的叫做方程;使方程相等的的值叫做方程的解。

的过程叫做解方程。

例:x=-3是不是方程2x=5x+9的解,你是怎么知道的.2、一元一次方程只含有未知数,并且未知项的次数的方程叫做一元一次方程。

例:指出下列各式中哪些是一元一次方程?并说明理由。

(1)2x-y=3; (2)x=0; (3)x2-2x+1=0; (4)x+3=2x-1.3、等式的性质性质1 等式两边同一个数(或),结果仍相等。

若a=b,则.性质2 等式两边同一个数,或的数,结果仍相等。

若a=b,则; 若a=b,则.例:用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。

(1)如果3x+8=6,那么3x=6[ ]; (2)如果-5x=25,那么x=[ ];(3)如果2x-3=5,那么2x=[ ]; (4)如果x/4=-7,那么x=[ ]4、合并同类项解一元一次方程如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。

例:解方程:-3x+2x=5-1二、例题导引例1 下列说法中正确的是〔〕①若x=y,则x/m2=y/m2;②若x=y,则mx=my; ③若x/m=y/m,则x=y; ④若x2=y2,则x3=y3例2 已知方程(m-2)x︱m︱-1+3=m-5是关于x的一元一次方程,求m的值。

例3 已知x=1/2是关于x的方程4+x=3-2ax的解,求a2+a+1的值。

例4 小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。

)三、练习提高夯实基础1、下列各式中,是方程的有〔〕①2x+1; ②x=0; ③2x+3>0;④x-2y=3; ⑤1/x-3x=5;⑥x2+x-3=0.A、3个B、4个C、5个D、6个2、下列方程中,解为1/2的是〔〕A、5(t-1)+2=t-2B、1/2x-1=0C、3y-2=4(y-1)D、3 (z-1) =z-23、下列变形不正确的是〔〕A、若2x-1=3,则2x = 4B、若3x =-6,则x =2C、若x+3=2,则x =-1D、若-1/2x=3,则x=-64、已x=y,下列变形中不一定正确的是〔〕A、x-2=y-2B、-2x=-2yC、ax=ayD、x/c2=y/c25、下列各式的合并不正确的是〔〕A、-x-x = -2xB、-3x+2x = -xC、1/10x-0.1x = 0D、0.1x-0.9x = 0.8x6、若x2a-1+2=0是一元一次方程,则a=.7、某班学生为希望工程捐款131元,比每人平均2元还多35元。

一元一次方程知识点汇总

一元一次方程知识点汇总

一元一次方程知识点汇总【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a (b+c )=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现. 审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h②长方体的体积 V =长³宽³高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间 工作时间工作量工作效率= 工作效率工作量工作时间=合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。

一元一次方程定义与知识点

一元一次方程定义与知识点

编辑本段方程简介只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。

通常形式是kx+b=0(k,b为常数,且k≠0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数是1。

编辑本段性质一.等式的性质一:等式两边同时加一个数或减一同一个数,等式两边相等。

二.等式的性质二:等式两边同时乘一个数或除以同一个数(0除外),等式两边相等。

三.等式的性质三:两边都可以有未知数。

编辑本段一元一次方程的解ax=b 1,当2,当3,当超准确答案!a≠0,b=0时,方程有唯一解,a≠0,b≠0时,方程有唯一解,a=0,b=0时,方程有无数解x=0;x=b/a 。

4,当a=0,b≠0时,方程无解例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小公倍数)↓5(3x+1)- 10×2=(3x-2)-2(2x+3)去括号↓15x+5-20=3x-2-4x-6移项↓15x-3x+4x=-2-6-5+20合并同类项!!!!!!!↓16x=7系数化为 1↓x=7/16编辑本段一元一次方程与实际问题一元一次方程牵涉到许多的实际问题,例如:工程问题、种植面积问题、比赛比分问题、路程问题。

从算式到方程列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程(equation) 。

1.4x=242.1700+150x=24503.0.52x-(1-0.52)x=80上面各方程都只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linearequationwithoneunknown )。

分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程
等式的性质
你会观察出下列方程的解吗? 你会观察出下列方程的解吗?
1、 4 x = 24
x=6
1 2、 − x +7 = 2 2
x=?
(一)
等式的性质
(二)
用等式的性质解方程
(一) 探究1: 探究 :
猜想:等式具有什么样的性质? 猜想:等式具有什么样的性质?
实例验证1: 实例验证 :
1 2、 − x +7 = 2 2
解:两边同减去7,得 两边同减去 ,
1 − x+7−7 = 2−7 2
化简, 化简,得
1 − = −5 2
两边同时乘以-2, 两边同时乘以 ,得
x = 10
通过这节课的学习你有些什么收获呢? 通过这节课的学习你有些什么收获呢
1、等式性质1: 等式两边加上(或减去)同一个数(或式子), 等式两边加上(或减去)同一个数(或式子), 结果仍相等. 结果仍相等.
如果a=b,那么ac=bc ,那么 如果
a b 如果a=b (c≠0),那么 如果 那么 = c c
返回
(二)挑战自我:
(1)、
用等式的性质解方程
x + 7 = 26
(2)、
−5 x = 20
1 (3)、 − x − 5 = 4 3
(1)、x + 7 = 26
解:两边减7,得 x+7-7=26-7 于是
a=b,则a±c=b±c
(字母 、b、c 可以表示具体的数,也可以表示一个式子 字母a、 、 可以表示具体的数,也可以表示一个式子) 字母
探究2: 探究 :
你又能发现什么样的规律?
实例验证2 实例验证
2+3
=
×3
÷3
5 5 5
2+3
=
×3
2+3
=
÷3
结论2: 结论 :
等式性质2: 等式性质 等式两边乘以同一个数 或除以同一个不 同一个数,或除以同一个 等式两边乘以同一个数 或除以同一个不 的数,结果仍相等 为0的数 结果仍相等 的数 结20
解:两边同除以-5,得
−5 x 20 = −5 −5
于是
X=-4
1 (3) − x − 5 = 4 3
解:两边加5,得
1 − x−5+5 = 4+5 3 化简, 得
怎样检验 你的结果 是正确的 呢?
1 − x=9 3
两 边 同 乘 以 − 3, 得 x=-27
解决问题
(1)
5+4 = 9 5 + 4 + 3 =9 + 3 5 + 4 - 3= 9 - 3
(2)
2+3 2+3 + 2x 2+3

2x
= = =
5 5 5
+ 2x

2x
结论1: 结论 :
等式的性质1: 等式的性质 :
等式两边加上(或减去) 等式两边加上(或减去)同一个数 (或 式子),结果仍相等. 式子),结果仍相等.
等式性质2:
等式两边乘上同一个数, 等式两边乘上同一个数,或除以同一个不 的数,结果仍相等. 为0的数,结果仍相等. 等式性质1 等式性质1 2、一元一次方程 等式性质2 等式性质2 x=a
作业:课本 页 、 题 作业:课本84页3、4题
相关文档
最新文档