一元一次方程-等式的基本性质(学生版)
小学五年级等式知识点归纳
![小学五年级等式知识点归纳](https://img.taocdn.com/s3/m/0722f55dfbd6195f312b3169a45177232e60e447.png)
小学五年级等式知识点归纳等式是数学中非常重要的概念,它在解决数学问题和方程等方面起着关键作用。
在小学五年级,学生开始接触和掌握一些基本的等式知识。
本文将逐步介绍五年级学生需要掌握的等式知识点。
一、等式的基本概念等式由等号“=”连接的两个数或算式组成。
等号左边和右边的数或算式是相等的。
例如:3 + 5 = 8,表示左边的算式结果等于右边的数8。
小学五年级学生需要理解并正确运用等式的基本概念。
二、等式的性质1.对称性:等式两边可以互换位置而不改变等式的成立。
例如:3 + 5 =8可以写成8 = 3 + 5,意义相同。
2.传递性:如果a = b,b = c,那么a = c。
这个性质可以帮助学生推导解题过程。
三、等式的运算法则1.加法法则:等式两边同时加上(或减去)相同的数,等式仍然成立。
例如:如果a = b,则a + c = b + c。
2.乘法法则:等式两边同时乘上(或除以)相同的数,等式仍然成立。
例如:如果a = b,则a × c = b × c。
四、解一元一次方程在小学五年级,学生开始学习解一元一次方程。
一元一次方程是形如ax + b = c的方程,其中a、b、c表示已知的数,x表示未知数。
解方程意味着找到使方程成立的未知数x的值。
解一元一次方程的步骤如下:1.对方程进行变形,将未知数项移到一个边,常数项移到另一个边。
2.通过逆运算,消去未知数项前的系数,将方程化简为ax = b的形式。
3.通过除法,求出未知数x的值。
例如,解方程2x + 5 = 11的步骤如下:第一步,将未知数项2x移到等号右边,常数项5移到等号左边,得到2x = 11 - 5。
第二步,化简方程,得到2x = 6。
第三步,通过除法,求得x = 3。
五、应用等式解决问题等式在解决实际问题中起到重要的作用。
学生需要将等式的概念和运算法则应用到各种实际问题中。
例如,小明有一些苹果,他给了小红3个苹果后还剩下7个。
奥数:列方程解应用题.学生版[推荐]
![奥数:列方程解应用题.学生版[推荐]](https://img.taocdn.com/s3/m/a793049008a1284ac8504399.png)
1、会解一元一次方程2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识点说明:一、 等式的基本性质 1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。
三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式来表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.板块一、直接设未知数 【例 1】 长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?例题精讲知识精讲教学目标列方程解应用题【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】(全国小学数学奥林匹克)某八位数形如2abcdefg,它与3的乘积形如4abcdefg,则七位数abcdefg应是.【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【例 4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【巩固】已知三个连续奇数之和为75,求这三个数。
第三章 一元一次方程专题复习(学生版)
![第三章 一元一次方程专题复习(学生版)](https://img.taocdn.com/s3/m/c260570bccbff121dd3683f3.png)
第三章 一元一次方程专题复习(学生版)一.知识网络结构二.知识要点剖析知识点一.等式与方程1.等式:表示_____关系的式子.等式的基本性质(方程的同解原理):等式的性质1:等式两边加(或减)___一个数(或式子),结果仍_____。
即:若a=b ,则a ±c =b_____;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个________的数,结果仍相等。
即:若a=b ,则ac=b___, cbc a (c_____0)其它性质:若a=b ,b=c,则a=c (传递性).注意:等式的基本性质是解方程的依据,在使用时要注意式性质成立的条件. 2.方程:含有______的等式叫方程.方程的解:能使方程左右两边________的未知数的值.注意:等式、方程含有等号, 方程是含有未知数的等式; 代数式不含等号;不等式含不等号. 知识点二.一元一次方程(1)定义:只含有_____未知数,并且未知数的次数是_____(次),系数_________的整式方程.(2)一般形式:______________(其中x 是未知数,a,b 是已知数,且a ≠0). 注意:(1)一元一次方程必须满足的3个条件: 只含有一个未知数; 未知数的次数是1次; 整式方程. (2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点三.一元一次方程的解法思路:通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成x =a 的形式。
解一元一次方程的一般步骤: 知识点四.列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:①审题,②_______,③_________,④解方程,⑤检验,⑥________. 解应用题的书写格式:设→根据题意→解这个方程→答。
注意:(1)在一道应用题中,往往含有几个未知数量,应恰当地选择其中的一个,用字母x 表示出来,即所设的未知数,然后根据数量之间的关系,将其它几个未知数量用含x 的代数式表示。
一元一次方程讲义
![一元一次方程讲义](https://img.taocdn.com/s3/m/43ab68360b4c2e3f572763b0.png)
一元一次方程一、等式及其性质1、等式用等号表示相等关系的式子叫等式。
如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。
注意:等式中一定含有等号。
2、等式的性质等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。
a=b ,那么a ±c=b ±c等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
a=b ,那么ac=bc ;如果a=b ,那么a /c=b /c (c ≠0)。
注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。
思考:回答下列问题:(1)从a+b=b+c ,能否能到a=c ,为什么?(2) 从a-b=b-c ,能否能到a=c ,为什么?(3) 从ab=bc ,能否能到a=c ,为什么?(4) 从a/b=c/b ,能否能到a=c ,为什么?(5)从xy=1,能否能到x=1/y ,为什么?二、解一元一次方程的步骤:①去分母; ⇐(没有分母的项不要漏乘;去掉分数线,同时要把分子加上括号) ②去括号; ⇐(当括号外面是负号,去掉括号后,要注意变号)③移项; ⇐(移项要注意变号)④合并同类项; ⇐(如果方程中有同类项,一定要合并同类项)⑤系数化为1; ⇐(记得每一项都要除系数) 例:解一元一次方程3122133---=+x x x三、一元一次方程解的实际应用1、列方程解应用题的步骤(1)审:明确已知什么,求什么及基本关系。
找出能表示题目全部含义的相等关系(2)设:设未知数。
可直接设,也可间接设,要尽量使列出的方程简单。
①直接设未知数:题目求什么就设什么。
②间接设未知数:设的未知数不是题目直接求的量。
③设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去(3)列:根据等量关系列方程。
(4)解:解方程(5)验:检验方程的解和解是否符合实际问题。
5.1.2 第2课时 等式的基本性质
![5.1.2 第2课时 等式的基本性质](https://img.taocdn.com/s3/m/e20a145caf1ffc4ffe47ac6c.png)
学习目标
1.理解等式的基本性质.(重点) 2.能利用等式性质解简单的一元一次方程.(难点)
1、什么是方程? 含有未知数的等式
2、什么是一元一次方程? 只含有一个未知数,且未知数的指数是 一次的整式方程
3、什么是方程的解 使方程左右两边相等的未知数的值
3x=3y; 6x=5×6;
下列用等式变形中,那些是正确的,并说明理由
(1)若x=y,则5+x=5+y √ 两边同时加上5
(2)若x=y,则5-x=5-y √ 先两边乘-1然后两边加上5
(3)若x=y,则5x=5y √ 两边同时乘以5
(4)若x=y,则 x y √ 两边同时除以5
(5)若
x
y
(1)x - 9 = 8; (2)5 - y = - 16;
解:x - 9 +9= 8+9;
5–y-5 = - 16-5பைடு நூலகம்
x = 17;
-y= - 21 y= 21
(3)3 x + 4 = - 13; 3 x + 4-4 = - 13-4
3 x = - 17
x = - 17/3
(4) 2 x 1 5 3
小结 本节课你学到什么知识?
1、等式的基本性质。
2、运用等式的基本性质解方程。
注意:当我们获得了方程解的后还应
检验,要养成检验的习惯。
课堂小结
等式的基本性质
{ 等式的基本性质 利用等式的基本性 质解一元一次方程
(1) x- 5= 6;
(2) 0.3x =45;
(3) 5x+4=0;
(4) 2 1 x 3. 4
一元一次方程知识点及经典例题 - 学生版
![一元一次方程知识点及经典例题 - 学生版](https://img.taocdn.com/s3/m/8bd04ea705087632311212d5.png)
一元一次方程单元复习与巩固一、知识网络二、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2 防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)等式基本性质1 移项要变号,不移不变号;合并同类项把方程化成ax=b(a≠0)的形式合并同类项法则计算要仔细,不要出差错;系数化成1 在方程两边都除以未知数的系数a,得到方程的解x=等式基本性质2 计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
解一元一次方程--等式的性质
![解一元一次方程--等式的性质](https://img.taocdn.com/s3/m/583ea0d8ad51f01dc281f15f.png)
-10 3.如果-m n 5 m 5,那么n 。 ab b 3 4.如果 4,那么 。 a a
2 2
18
教案
课题:2 .1.2 等式的性质(1)
①了解等式性质 1; 教学目标 ②会用等式的性质 1 解简单的一元一次方程; ③培养学生观察、分析、概括及逻辑思维能力; ④渗透“化归”的思想. 理解和应用等式的性质 1 应用等式性质 1 把简单的一元一次方程化成“x=a”. 教学过程(师生活动) 用估 算的方法 我们可以 求出简单 的一元 一次方程 的解. 你能用这种方法求出下列方程的解吗? 提出问题 (1) 4x=24; (2) x+1=3. 第(1) 题要 求学生给 出解答, 第(2)题较 复杂,估 算比较 困难, 此时教师提 出:我们必 须学习解一 元一次方程 的其他 方法. ①实验演示: 教师 先提出实 验的要求 :请同学 们仔细 观察实验 的过程, 思考能否从中发现规律,再用自己的语言叙述你发现的规律. 教师可以进行两次不同物体的实验. ②归纳: 请几名学生回答前面的问题. 在学生 叙述发现的 规律后,教 师进一步引 导:等式就 像平衡 的天平 ,它具有与 上面的事实 同样的性质 .比如 “8=8” ,我 们在两 边都加上 6 ,就有“ 8+6=8+ 6” ;两边 都减去 11,就 探究新知 有“8-11=8-11” ③表示: 问题 1:你能用文字来叙述等式的这个性质吗? 在学 生回答的 基础上, 教师必须 说明: 等式两边 加上的 可以是同一个数,也可以是同一个式子. 问题 2: 等式一般可以用 a=b 来表示. 等式的性质 1 怎样 用式子的形式来表示? 如果 a=b,那么 a ±c =b±c 字母 a、 b、 可以表示具体的数,也可以表示一个 c 式子。 举例的目 的在于 得到初步的应用 . 两种形式 的表示 方法应该 让学生 理解 先观察后 实验的 目的 一是 培养 学 生 的 看 图 能 力,二是 培养学 生读数学 书的能 力 用实验演 示,能 比较直观 地归纳 出等式的性质 设计理念 第 (1) 题是为了 复习,第(2) 题 是 估 算 比 较 困 难,以引 起学生 认知冲突 ,引出 新课
新初一暑假讲义第10讲(一元一次方程)学生版
![新初一暑假讲义第10讲(一元一次方程)学生版](https://img.taocdn.com/s3/m/85914007b90d6c85ec3ac6b3.png)
3.方程的已知数和未知数
【概念】一般是具体的数值叫做方程已知数。需要求的数,叫做方程未知数。未知数通常用x、y、z等字母表示。
【举例】如1+x=0中,1和0是已知数。如:关于x、y的方程ax-b=y中,a、b是已知数,x、y是未知数。
三、一元一次方程
1.一元一次方程定义
【概念】只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.
【举例】x+1=21、y+6=21
2.一元一次方程最简单形式
【概念】方程 ( , 为已知数)的形式叫一元一次方程的最简形式。
【举例】 、
3.一元一次方程最标准形式
【概念】方程 ( , 是已知数)的形式叫一元一次方程的标准形式。
【举例】 、
4.一元一次方程易错点
【概念】一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证
(3)下列方程中有解是x=2的一共有()
A.1个B.2个C.3个D.4个
判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由
(1) (2) (3)
(4) (5) (6)
(1)若 是关于x的一元一次方程,则a=______。
(2)若 是关于x的一元一次方程,则a=______。
(3)若 是关于x的一元一次方程,则m=______。
(4)已知 是关于x的一元一次方程,则方程的解x=_。
(5)方程 是关于x的一元一次方程,若 是它的解,则a+b=。
(1)若关于x的方程 是一元一次方程,求a的值及方程的解。
5111一元一次方程的认识及解法题库学生版
![5111一元一次方程的认识及解法题库学生版](https://img.taocdn.com/s3/m/842345bd5901020206409c7a.png)
板块 考试要求 A 级要求B 级要求C 级要求方程 知道方程是刻画数量关系的一个有效的数学模型 能够根据具体问题中的数量关系,列出方程 能运用方程解决有关问题 方程的解 了解方程的解的概念 会用观察、画图等手段估计方程的解一元一次方程 了解一元一次方程的有关概念会根据具体问题列出一元一次方程能运用整式的加减运算对多项式进行变形,进一步解决有关问题一元一次方程的解法理解一元一次方程解法中的各个步骤能熟练掌握一元一次方程的解法;会求含有字母系数(无需讨论)的一元一次方程的解会运用一元一次方程解决简单的实际问题一、等式的概念和性质1.等式的概念 用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则. 2.等式的类型(1)矛盾等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=. (2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x +=需要1x =才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x +=-. 注意:等式由代数式构成,但不是代数式.代数式没有等号. 3.等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a mb m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a bm m=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.知识点睛中考要求一元一次方程的认识及解法(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b=,那么b a=.②等式具有传递性,即:如果a b=,b c=,那么a c=.二、方程的相关概念1.方程含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.3.方程的已知数和未知数已知数:一般是具体的数值,如50x+=中(x的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a、b、c、m、n等表示.未知数:是指要求的数,未知数通常用x、y、z等字母表示.如:关于x、y的方程2-、ax by c-=中,a、2b c是已知数,x、y是未知数.4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解.5.解方程求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.三、一元一次方程的定义1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.2.一元一次方程的形式标准形式:0a≠,a,b是已知数)的形式叫一元一次方程的标准形式.ax b+=(其中0最简形式:方程ax b=(0a≠,a,b为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b=与方程(0)ax b a=≠是不同的,方程ax b=的解需要分类讨论完成.四、一元一次方程的解法1.解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边.注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b=的形式.注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a(0a≠),得到方程的解bxa=.注意:不要把分子、分母搞颠倒.2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.一、等式的概念和性质【题01】判断题.(1)11123x y++是代数式.(2)12S ah=是等式.(3)等式两边都除以同一个数,等式仍然成立.(4)若x y=,则44x m y m+-=+-.【题02】回答下列问题,并说明理由.(1)由2323a b+=-能不能得到a b=?(2)由56ab b=能不能得到56a=?(3)由7xy=能不能得到7yx =?(4)由0x=能不能得到11xx x+=?【题03】下列说法不正确的是()例题精讲A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.【题04】下列结论中正确的是( )A .在等式3635a b -=+的两边都除以3,可得等式25a b -=+.B .如果2x =-,那么2x =-.C .在等式50.1x =的两边都除以0.1,可得等式0.5x =.D .在等式753x x =+的两边都减去3x -,可得等式6346x x -=+.【题05】下列变形中,不正确的是( ) A .若25x x =,则5x =. B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=.D .若x ya a =,则ax ay =.【题06】根据等式的性质填空. (1)4a b =-,则a b =+; (2)359x -=,则39x =+;(3)683x y =+,则x =; (4)122x y =+,则x =.【题07】用适当数或等式填空,使所得结果仍是等式,并说明根据的是哪一条等式性质及怎样变形的. (1)如果23x =+,那么x =; (2)如果6x y -=,那么6x =+;(3)如果324x y -=,那么2y -=-;(4)如果324x =,那么x =.二、方程的相关概念 【题08】下列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x-=;⑦230y y +=;⑧2223a a -;⑨32a a <-.【题09】判断题. (1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程. ( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程. ( ) (7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( )【题10】下列各式不是方程的是( ) A .24y y -= B .2m n =C .222p pq q -+D .0x =【题11】判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明理由. (1)373x x -=-+; (2)223y -=; (3)2351x x -+;(4)112--=-;(5)42x x -=-;(6)152x y-=.【题12】下列说法不正确的是( ) A .解方程指的是求方程解的过程. B .解方程指的是方程变形的过程. C .解方程指的是求方程中未知数的值,使方程两边相等的过程. D .解方程指的是使方程中未知数变成已知数的过程.【题13】检验括号里的数是不是方程的解:()3212y y -=(1y =,32y =)【题14】在1y =、2y =、3y =中,是方程104y y =-的解.【题15】解为2x =-的方程是( )三、一元一次方程的定义【题16】下列各式中:①3x +;②2534+=+;③44x x +=+;④12x=;⑤213x x ++=;⑥44x x -=-;⑦23x =;⑧2(2)3x x x x +=++.哪些是一元一次方程?【题17】下列方程是一元一次方程的是( )A .2237x x x +=+B .3435322x x -+=+C .22(2)3y y y y +=-- D .3813x y -=【题18】下列方程是一元一次方程的是( )(多选)A .1xy =B .225x+=C .0x =D .13ax +=E .235x +=F .2π 6.28R =【题19】若关于x 的方程223(4)0n x n -+-=是一元一次方程,求n 的值.【题20】已知方程2(63)70n m x -+=是关于x 的一元一次方程,求m ,n 满足的条件.【题21】已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.【题22】方程23350m x --=是一元一次方程,求m 的值.【题23】若2(1)(2)(3)0k x k x k -+-+-=是关于x 的一元一次方程,求k .【题24】若22(1)(1)20a x a x -+-+=是关于x 的一元一次方程,求a .【题25】若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【题26】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k =.【题27】若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x =.【题28】已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m =.【题29】求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.【题30】2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( )A .2140-B .2140C .5615-D .5615【题31】已知4553a ax a -+=是关于x 的一元一次方程,求这个方程式的解.【题32】已知方程1(2)40a a x --+=是一元一次方程,则a =;x =.【题33】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k =.若关于x 的方程 2(2)450k x kx k ++-=是一元一次方程,则方程的解x =.四、一元一次方程的解法 1.基本类型的一元一次方程的解法 【题34】解方程:6(1)5(2)2(23)x x x ---=+【题35】解方程:3(3)52(25)x x -=--【题36】解方程:2(43)56(32)2(1)x x x --=--+【题37】解方程:135(3)3(2)36 524x x---=【题38】解方程:11 (4)(3) 34y y-=+【题39】解方程:12225y yy-+ -=-【题40】解方程:12225y yy-+ -=-【题41】解方程:31 26 x xx+-=-【题42】解方程:253164x x---=【题43】解方程:122233x xx-+ -=-【题44】解方程:2321 64x x++=+【题45】解方程:2135 43x x+--=【题46】解方程:122233x xx-+ -=-【题47】解方程:21511 36x x+--=【题48】解方程:43232.548x x x+-=-+【题49】解方程:122233x xx-+ -=-【题50】解方程:2352 246x x---=2.分式中含有小数的一元一次方程的解法【题51】方程0251x=.的解是x=.【题52】解方程:7110.251 0.0240.0180.012 x x x--+=-去分母,得.根据等式的性质()去括号,得.移项,得.根据等式的性质()合并同类项,得.系数化为1,得.根据等式的性质()【题53】解方程:1121321 32xx-+-=【题54】解方程:10.50.210.3 0.30.30.02x x x ---=【题55】解方程:0.10.020.10.13 0.0020.05x x-+-=【题56】解方程:0.10.40.2111.20.3x x-+-=【题57】解方程:2 1.21 0.70.3x x--=【题58】解方程:0.40.90.10.50.030.020.50.20.03x x x+-+-=【题59】解方程:11(0.170.2)1 0.70.03x x--=【题60】解方程:0.130.4120 0.20.5x x+--=【题61】解方程:0.10.020.10.10.3 0.0020.05x x-+-=【题62】解方程:421.7 30%50%x x-+-=【题63】解方程:1(4)335190.50.125x x x +++=+【题64】解方程:0.20.450.0150.010.5 2.50.250.015x xx ++-=-【题65】解方程:0.10.90.210.030.7x x--=3.含有多层括号的一元一次方程的解法【题66】解方程:11133312242y ⎧⎫⎛⎫---=⎨⎬ ⎪⎝⎭⎩⎭【题67】解方程:42132[()]3324x x x --=【题68】解方程:1112{[(4)6]8}19753x ++++=【题69】解方程:111[(1)6]20343x --+=【题70】解方程:11111[(1)]3261224x ------=-【题71】解方程:11110721()3(2)33623x x x x x +-⎡⎤⎡⎤--=--⎢⎥⎢⎥⎣⎦⎣⎦【题72】解方程:1112(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦【题73】解方程:111233234324x x x x ⎧⎫⎡⎤⎛⎫----=+⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【题74】解方程:[]{}234(51)82071x ----=【题75】解方程:11111071233223x x x x x +-⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭4.一元一次方程的技巧解法【题76】解方程:1123(23)(32)11191313x x x -+-+=【题77】解方程:113(1)(1)2(1)(1)32x x x x +--=--+【题78】解方程:11311377325235x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭【题79】解方程:31333(()()447167x x x x ⎡⎤---=-⎢⎥⎣⎦【题80】解方程:2009122320092010x x x+++=⨯⨯⨯【题81】解方程: (200312232002200320032004)x x x x++++=⨯⨯⨯⨯【题82】解方程: (200613352003200520052007)x x x x++++=⨯⨯⨯⨯【题83】解方程:20181614125357911x x x x x -----++++=【题84】解方程:2325118357911x x x x x -----++++=【题85】解方程:1111(1)(2)(3)(2009)20092342010y y y y ++++++++=【题86】解方程:20101309720092007x x x---++=【题87】解方程:3x a b x b c x c a c a b ------++=,(1110a b c++≠)【题88】解方程:4x a b c x b c d x a c d x a b d d a b c ------------+++=(11110a b c d+++≠)【题89】已知1abc =,求关于x 的方程2004111x x xa ab b bc c ca++=++++++的解.【题90】若1abc =,解关于x 的方程:2221111ax bx cx ab a bc b ca c ++=++++++。
第01讲 等式性质与不等式性质(学生版)
![第01讲 等式性质与不等式性质(学生版)](https://img.taocdn.com/s3/m/3c56d22c854769eae009581b6bd97f192279bff7.png)
第1讲 等式性质与不等式性质知识点01 等式的性质等式的基本性质性质1 如果a =b ,那么b =a ;性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ;性质4 如果a =b ,那么ac =bc ;性质5 如果a =b ,c ≠0,那么a c =b c .【微点拨】利用等式的相关性质来处理与相等关系有关的问题,比如说:等式的变形(化简)、解方程与方程组等.【即学即练1】方程2312360x x --+= 的解为 .知识点02 不等关系及不等式【微点拨】用数学式子表达不等关系时,一定要在读懂题的要求下用准确的不等关系表达变量间的关系,特别要注意的是等号的包含与不包含.【即学即练2】一般认为,民用住宅窗户面积a 与地板面积b 的比应不小于10%,即1110a b≤<,而且比值越大采光效果越好,若窗户面积与地板面积同时增加m ,采光效果变好还是变坏?请将你的判断用不等式表示__________【即学即练3】为了庆祝我们伟大祖国70周年华诞,某市世纪公园推出优惠活动.票价降低到每人5元;且一次购票满30张,每张再少收1元.某班有27人去世纪公园游玩,当班长王小华准备好了零钱到售票处买票时,爱动脑筋的李敏喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,李敏的提议对不对呢?是不是真的浪费?谈谈你们的看法.知识点03 不等式的相关性质不等式的一些常用性质(1)倒数的性质①a>b ,ab>0⇒1a <1b . ②a<0<b ⇒1a <1b . ③a>b>0,0<c<d ⇒a c >b d .④0<a<x<b 或a<x<b<0⇒1b <1x <1a . (2)有关分数的性质若a>b>0,m>0,则①b a <b +m a +m ;b a >b -m a -m (b -m>0). ②a b >a +m b +m ;a b <a -m b -m(b -m>0). 3.不等式的基本性质【微点拨】运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能凭想当然随意捏造性质.解有关不等式选择题时,也可采用特殊值法进行排除,注意取值一定要遵循如下原则:一是满足题设条件;二是取值要简单,便于验证计算.【即学即练4】对于实数a ,b ,c ,下列命题中的真命题是A. 若a >b ,则ac 2>bc 2B. a >b >0,则C. a <b <0,则D. a >b ,,则a >0,b <0【即学即练5】下面是甲、乙、丙三位同学做的三个题目,请你看看他们做得对吗?如果不对,请指出错误的原因.甲:因为-6<a <8,-4<b <2,所以-2<a -b <6.乙:因为2<b <3,所以13<1b <12, 又因为-6<a <8,所以-2<a b <4. 丙:因为2<a -b <4,所以-4<b -a <-2.又因为-2<a +b <2,所以0<a <3,-3<b <0,所以-3<a +b <3.考法01不等关系的表示:【典例1】a 克糖水中含有b 克塘(0)a b >>,若在糖水中加入x 克糖,则糖水变甜了.试根据这个事实提炼出一个不等式: .【典例2】【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.比较大小:两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧ a -b>0⇔a > b a -b =0⇔a = ba -b<0⇔a <b (a ,b ∈R );一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法⎩⎪⎨⎪⎧ a b >1⇔a > b a b =1⇔a = ba b <1⇔a < b(a ∈R ,b>0). 一般步骤是:①作商;②变形;③判断商与1的大小;④结论.(3)特值法: 若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.注意:用作商法时要注意商式中分母的正负,否则极易得出相反的结论.【典例3】1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M<NB .M>NC .M =ND .不确定2)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( )A .A≤B B .A≥BC .A<BD .A>B3)若0a b >>, 0c d <<,则一定有( ) A. a b d c > B. a b c d < C. a b c d > D. a b d c< 4)若a =1816,b =1618,则a 与b 的大小关系为________.5)已知a b c >>且0a b c ++=,则下列不等式恒成立的是( )A. 222a b c >>B. a b c b >C. ac bc >D. ab ac >考法03不等式的性质的运用:【典例4】已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b>0,则bc -ad >0; ③若bc -ad >0,c a -d b>0,则ab >0.其中正确的命题是________.考法04。
方程的概念及等式的性质(学生版)
![方程的概念及等式的性质(学生版)](https://img.taocdn.com/s3/m/be49a8ca80c758f5f61fb7360b4c2e3f572725ed.png)
高一数学寒假课程方程的概念及等式的性质 (学生版) 1 / 15 初一数学暑假课程高一数学寒假课程方程的概念及等式的性质 (学生版) 2 / 15 初一数学暑假课程 初一数学暑假班(学生版)知识点一:方程的有关概念1. 方程:含有未知数的等式就叫做方程. 注意未知数的理解,n m x ,等,都可以作为未知数2.一元一次方程:只含有一个未知数(元),并且未知数的指数都是1(次),这样的方程叫做一元一次方程。
3.判断一元一次方程的条件 1. 首先是一元一次方程。
2. 其次是必须只含有一个未知数 3. 未知数的指数是14. 分母中不含有未知数注意:1、分式的含义,分式不能在方程中出现。
2、必须进行方程的化简,最后的结果中,仍然满足满足一元一次方程的定义时才可。
3、 是字母,但不是未知数,是一个常数。
知识点二 等式的基本性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍是等式。
方程的概念及等式的性质知识梳理高一数学寒假课程方程的概念及等式的性质 (学生版) 3 / 15 初一数学暑假课程 用式子形式表示为:如果a=b ,那么a±c=b±c。
等式的性质(2):等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍是等式。
用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c = bc⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:等式的性质① 如果,那么 ;等式的性质② 如果,那么 ;如果,那么. 要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:6.12.045.03=+--x x 将其化为: 6.12401053010=+--x x 。
方程的右边没有变化,这要与“去分母”区别开。
【例1】在①2x +3y -1.②2 +5 =15-8,③1-13x =x +l ,④2x +y =3中方程的个数是( )b a ==±c a b a ==ac b a =()0≠c =ca例题解析A.1个B.2个C.3个D.4个【例2】在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.【例3】已知方程(3m﹣4)x2﹣(5﹣3m)x﹣4m=﹣2m是关于x的一元一次方程,(1)求m和x的值.(2)若n满足关系式|2n+m|=1,求n的值.初一数学暑假课程高一数学寒假课程方程的概念及等式的性质(学生版)4/ 15【例4】已知方程(a﹣2)x|a|﹣1+8=0是关于x的一元一次方程,求a的值.【例5】已知关于x的方程的两个解是;又已知关于x 的方程的两个解是;又已知关于x的方程的两个解是;…,初一数学暑假课程高一数学寒假课程方程的概念及等式的性质(学生版)5/ 15小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?【例6】已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1B.1C.D.﹣初一数学暑假课程高一数学寒假课程方程的概念及等式的性质(学生版)6/ 15【例7】若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3 C.x=﹣3D.x=2【例8】已知m﹣1=n,试用等式的性质比较m与n的大小.【例9】已知梯形的面积公式为S=.(1)把上述的公式变形成已知S,a,b,求h的公式;(2)若a:b:S=2:3:4,求h的值.初一数学暑假课程高一数学寒假课程方程的概念及等式的性质(学生版)7/ 15【例10】利用等式基本性质,把5+x=9﹣y中的x用关于y的代数式表示,再将等式中的y用关于x的代数式表示.【例11】不论x取何值,等式2ax+b=4x﹣3总成立,求a+b的值.【例12】阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc ﹣q),由于﹣c2﹣pc﹣q与c及m都是初一数学暑假课程高一数学寒假课程方程的概念及等式的性质(学生版)8/ 15整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.反思总结重点区分:方程的解与解方程.注:(1)方程的解和解方程是两个不同的概念,方程的解实质上是求得的结果,它是一个数值初一数学暑假课程高一数学寒假课程方程的概念及等式的性质(学生版)9/ 15(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
2024秋七年级数学上册第五章一元一次方程5.2等式的基本性质教案(新版)冀教版
![2024秋七年级数学上册第五章一元一次方程5.2等式的基本性质教案(新版)冀教版](https://img.taocdn.com/s3/m/c74f8799ba4cf7ec4afe04a1b0717fd5360cb288.png)
c.等式的两边交换位置,等式仍然成立。
②等式的应用:
-利用等式的性质解决实际问题,如方程的求解等。
-示例:某商店进行打折活动,原价100元的商品打八折后是多少元?
-解答:设打折后的价格为x元,根据题意可得等式:100 × 0.8 = x,解得x = 80。所以,打八折后的价格是80元。
3.能够运用等式的性质解决实际问题,如方程的求解等。
4.培养学生的逻辑思维能力,能够运用等式的性质进行数学表达式的转化和简化。
5.培养学生的创新思维和解决问题的能力,能够运用等式的性质解决实际问题。
6.提高学生对数学学习的兴趣和自信心,培养积极的学习态度和良好的学习习惯。
7.培养学生的团队合作能力,通过小组讨论和合作解决问题,提高学生的沟通和合作能力。
8.培养学生的自主学习能力,通过独立完成练习题和思考问题,提高学生的自主学习能力和问题解决能力。
课堂小结,当堂检测
1.课堂小结:
本节课我们学习了等式的基本性质,包括等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘以或除以同一个非零数,等式仍然成立;等式的两边交换位置,等式仍然成立。这些性质可以帮助我们解决实际问题,如方程的求解等。通过实例分析和练习题,我们能够运用等式的性质进行数学推理和问题解决。希望大家能够理解和掌握这些知识,并在日常生活中运用它们解决实际问题。
-利用多媒体课件展示等式的性质,并用动画效果展示性质的运用过程。
-教师通过互动提问,检查学生对等式性质的理解程度。
3.巩固练习(10分钟)
-教师设计一些练习题,让学生运用刚学到的等式性质进行解答。
-学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
初中数学人教七年级上册第三章一元一次方程-等式的性质
![初中数学人教七年级上册第三章一元一次方程-等式的性质](https://img.taocdn.com/s3/m/04a005210640be1e650e52ea551810a6f524c895.png)
探究新知
性质1 等式的两边同时加上(或减去)同一个
数或同一个式子,所得的结果仍是等式.
用式子的形式怎样表示?
探究新知
天平两边同时
加入 拿去
相同质量的砝码
天平仍然平衡
等式两边同时
加上 减去
相同的数
(或式子)
等式仍然成立
换言之, 等式的性质1
等式两边同时加 (或减) 同一个数 (或式子),结果仍相等.
探究新知
你能发现什么规律 ?
a
bc
左
右
a=b
探究新知
你能发现什么规律 ?
a
bc
左
右
a=b
探究新知
你能发现什么规律 ?
ac bc
左
右
a=b
探究新知
你能发现什么规律 ?
bc
ac
左
a=b
右
a+c = b+c
探究新知
你能发现什么规律 ?
bc
左
a=b
ca
右
探究新知
你能发现什么规律
?
bc
a
左
a=b
右
(5)如果x=y,那么
2x
1 3
2y
(13
√)
两边乘的数不相等 等式的性质1和性质2
探究新知
素养考点 2 利用等式的性质解方程
例2 利用等式的性质解下列方程: (1) x + 7 = 26 解: 方程两边同时减去7, 得:x + 7-7 = 26-7
x = 19
小结:解一元一次方程要“化归”为“ x=a ”的形式.
探究新知
素养考点 1 识别等式变形的依据
例1 (1) 怎样从等式 x-5= y-5 得到等式 x = y ? 依据等式的性质1两边同时加5.
等式的基本性质 优秀教案
![等式的基本性质 优秀教案](https://img.taocdn.com/s3/m/a0497370ff00bed5b9f31df9.png)
《等式的基本性质》教学设计一、教材分析《等式的性质》选自北师大版七年级上册第五章《一元一次方程》第一节认识一元一次方程。
等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型,它是解方程的必备知识,并且对解一元一次方程中的移项、合并同类项起着至关重要的作用。
本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。
同时培养学生数学思维能力。
三、教学重难点教学重点:引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。
教学难点:抽象归纳出等式的基本性质。
四、学情分析在此之前,学生已经学习了算式中的图形或字母所表示数的求解方法,大部分学生已经较好的掌握了用乘法分配律对代数式进行化解方法,并在学习中初步建立起了利用等式的性质求解图形和字母所表示的数的思维,认识了方程并会求解一些简单的方程。
但是,也有一少部分的学生对对方程的认识还不完善,误用等式的性质等,因此在教学中,关注全体学生的同时,要特别关注这些学生,课堂上给予提供及时的帮助。
五、教学过程一.引入师:天平右盘放一个质量为10kg的圆柱体a,左盘什么也不放,天平会出现什么状态呢?要使天平平衡,那么天平左边应该放一个质量为多少的小方块b呢?此时你们能用数学式子来表示天平平衡吗?a=b,这是一个等式,那么等式有什么性质?它的性质又有什么用途呢?这节课我们一起来研究等式的性质。
(板书:等式的性质)(引用学生熟悉的生活背景——天平秤,通过天平处于的平衡状态引出等式 a=b,从而引出课题。
从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然的引出了课题。
让学生从中体验学生与生活的紧密联系。
)二.探索新知1.探究等式性质1师:如果在天平左边加上一个质量为10kg的小方块c,要使天平保持平衡,右边需要进行什么操作?(根据学生回答,教师进行添加演示。
一元一次方程解法(学生版)
![一元一次方程解法(学生版)](https://img.taocdn.com/s3/m/d34706cd48649b6648d7c1c708a1284ac850058e.png)
高一数学寒假课程一元一次方程解法 (学生版) 1 / 15 初一数学暑假课程高一数学寒假课程一元一次方程解法 (学生版) 2 / 15 初一数学暑假课程 初一数学暑假班(学生版)知识点一解一元一次方程的一般步骤在方程两边都除以未知数的系数a ,得到方程 的解x =知识点二理解方程ax=b 在不同条件下解的各种情况 ①0≠a 时,方程有唯一解abx =;高一数学寒假课程一元一次方程解法 (学生版) 3 / 15 初一数学暑假课程 ②0,0==b a 时,方程有无穷解; ③0,0≠=b a 时,方程无解。
【例1】解方程(1)3(x ﹣1)+1=x ﹣3(2x ﹣1) (2).【例2】解方程:(1)5x+3(2﹣x)=8 (2)=1﹣(3)+=(4)[x﹣(x﹣1)]=(x﹣1)【例3】数学迷小虎在解方程﹣1去分母时,方程右边的﹣1漏乘了3,因而求得方程的解为x=﹣2,请你帮小虎同学求出a 的值,并且正确求出原方程的解.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)4/ 15【例4】方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.【例5】已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【例6】小明在解方程=﹣1去分母时,方程右边的(﹣1)项没有乘3,因而求得的解是x=2,试求a的值,并求出方程正确的解.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)5/ 15【例7】已知关于x的方程2x﹣a=1与方程=﹣a的解的和为,求a的值.【例8】(1)已知式子与式子的值相等,求这个值是多少?(2)已知关于x 的方程4x+2m=3x+1的解与方程3x+2m=6x+1的解相同,求m的值.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)6/ 15【例9】阅读理解:在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:①当x<2时,原方程可化为﹣3(x﹣2)=﹣(x﹣2)+4,解得:x=0,符合x<2②当x≥2时,原方程可化为3(x﹣2)=(x﹣2)+4,解得:x=4,符合x≥2∴原方程的解为:x=0,x=4.解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.知识迁移:(1)运用整体思想先求|x﹣3|的值,再去绝对值符号的方法解方程:|x﹣3|+8=3|x﹣3|;知识应用:(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2﹣x|﹣3|x+1|=x﹣9.提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)7/ 15【例10】阅读下面的解题过程:解方程:|5x|=2.解:(1)当5x≥0时,原方程可化为一元一次方程5x=2,解得x=;(2)当5x<0时,原方程可化为一元一次方程﹣5x=2,解得x=﹣.请同学们仿照上面例题的解法,解方程3|x﹣1|﹣2=10.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)8/ 15【例11】如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.【例12】方程和方程的解相同,求a 的值.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)9/ 15高一数学寒假课程一元一次方程解法 (学生版) 10 / 15 初一数学暑假课程理解方程ax=b 在不同条件下解的各种情况 ①0≠a 时,方程有唯一解ab x =; ②0,0==b a 时,方程有无穷解; ③0,0≠=b a 时,方程无解。
2024秋七年级数学上册第五章一元一次方程5.2等式的基本性质教学设计(新版)冀教版
![2024秋七年级数学上册第五章一元一次方程5.2等式的基本性质教学设计(新版)冀教版](https://img.taocdn.com/s3/m/57081718bf1e650e52ea551810a6f524ccbfcb33.png)
(2)新课讲解:运用PPT展示等式的基本性质,并进行讲解,让学生清晰地了解每个性质的含义和应用。
(3)例题讲解:挑选具有代表性的例题,引导学生运用等式的基本性质进行求解,并讲解解题思路和方法。
(4)实践环节:设计一些具有实际意义的题目,让学生独立完成,检验学生对等式性质的掌握程度。
6. 等式的变形:通过等式的基本性质,可以对等式进行加减、乘除等操作。例如,如果等式 a = b,那么可以通过加减法将等式变形为 a + c = b + c 或 a - c = b - c,通过乘除法将等式变形为 a * d = b * d 或 a / d = b / d。
7. 等式的解:通过等式的基本性质,可以找到等式的解。例如,如果等式 a = b,那么可以通过代入法或变量替换法找到满足等式的具体数值。
②等式的基本性质:等式具有两边同时加减、乘除同一个数的性质。
③等式的应用:等式的基本性质在解决实际问题中具有广泛的应用。
八、板书设计
①等式的定义:等式是指两个表达式之间用等号连接,表示它们具有相等值的数学语句。
②等式的基本性质:等式具有两边同时加减、乘除同一个数的性质。
③等式的应用:等式的基本性质在解决实际问题中具有广泛的应用。
存在主要问题:
1. 学生参与度不高:在课堂上,部分学生参与度不高,影响了课堂效果。
2. 实践题目难度不够:实践题目难度设置不够,不能很好地锻炼学生的解决问题的能力。
3. 教学评价单一:教学评价过于依赖考试成绩,不能全面反映学生的学习情况。
改进措施:
1. 提高学生参与度:我将通过调整教学方法,如增加游戏、竞赛等互动环节,提高学生的参与度。
5.2一元一次方程的解法+等式的基本性质2024-2025学年+北师大版(2024)数学七年级上册
![5.2一元一次方程的解法+等式的基本性质2024-2025学年+北师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/c7dbb5afdb38376baf1ffc4ffe4733687f21fc4e.png)
分层设计 数学 BS 七年级 上
思考
a
b
a
b
a a
b b
3a = _____
3b
_____
a = _____
b
_____
从右到左,等式发生了怎样的变化?
等式的两边都乘同一个
等式的两边都除以同一个数,等式仍然成立.
数(或除以同一个不为0
的数),所得结果仍是
等式.
3
解:(2)方程的两边都加 2,得
- -2+2=10+2。
3
化简,得
- =12。
3
方程的两边都乘-3,得
n=-36。
检验:将n=-36代人方程的左边,得方程
−36
左边=- -2=10,右边=10,左边=右边,
3
所以n=-36是-
3
−2=10的解。
随堂检测
1. 根据等式的性质,由x=y可得( B
分层设计 数学 BS 七年级 上
新知小结
1. 等式基本性质.
(1)等式基本性质1:等式两边都加(或减)
同一个代数式
所得结果仍是等式,即如果 a = b ,那么 a ± c =
(2)等式基本性质2:等式的两边都乘
以
同一个不为0的数
那么 ac =
bc
同一个数
b ±
c
,
.
(或除
),所得结果仍是等式,即如果 a = b ,
解:方程两边同时减 x ,得
方程两边同时加3,得
3 x -3=9。
3 x =12。
方程两边同时除以3,得
x =4。
检验:将x=4代人方程的左边,得方程
秋七年级数学上册第4章一元一次方程4.2解一元一次方程4.2.1等式的基本性质导学课件新版苏科版
![秋七年级数学上册第4章一元一次方程4.2解一元一次方程4.2.1等式的基本性质导学课件新版苏科版](https://img.taocdn.com/s3/m/c72702474531b90d6c85ec3a87c24028915f85c5.png)
4.2 解一元一次方程
目标二 会用等式的基本性质进行简单变形
例 2 教材补充例题下列方程变形正确的是( B )
A.方程 x-6=2 变形为 x=2-6 B.方程12x=-1 变形为 x=-2 C.方程-2x=3 变形为 x=23 D.方程 6x=3 变形为 x=2
4.2 解一元一次方程
[解析] A 选项中方程 x-6=2 两边同时加上 6,变形为 x=6+2,所以 A 选项变形错误;C 选项中方程-2x=3 两边同时除以-2,变形为 x= -32,所以 C 选项变形错误;D 选项中方程 6x=3 两边同时除以 6,变形 为 x=12,所以 D 选项变形错误;而 B 选项中方程12x=-1 两边同时乘 2, 变形为 x=-2,所以 B 选项变形正确.故选 B.
4.2 解一元一次方程
目标突破
目标一 理解方程的解
例1 [教材补充例题]下列选项中,是方程3x-2=4x-3的解的是 (B ) A.x=0 B.x=1 C.x=2 D.x=3
4.2 解一元一次方程
【归纳总结】检验方程的解的基本方法: 将未知数的值代入原方程,看等式是否成立,若等式成立, 则该数是方程的解;若等式不成立,则该数不是方程的解.
第4章 一元一次方程
第1课时 等式的基本性质
知识目标 目标突破 总结反思
4.2 解一元一次方程
知识目标
1.通过代入求值、计算,理解方程的解和解方程的概念,会判 断一个数是不是方程的解. 2.经历通过天平观察、分析,理解等式的两条基本性质,会运 用等式的基本性质对等式进行简单变形. 3.通过对等式基本性质的学习,会用等式的基本性质解简单的 一元一次方程.
例 3 [教材例 1 变式题]用等式的基本性质解下列方程:
2024七年级数学上册第5章一元一次方程5.2等式的基本性质课件青岛版
![2024七年级数学上册第5章一元一次方程5.2等式的基本性质课件青岛版](https://img.taocdn.com/s3/m/84c9a313f6ec4afe04a1b0717fd5360cba1a8d3d.png)
等式的基本性质2
(2)12x+3=23x-1, 两边同时减3,得12x+3-3=23x-1-3,
知1-练
等式的基本性质1
即12x=23x-4 , 两边同时减23x,得12x-23x=23x-4-23x,
等式的基本性质1
即-16x=- 4 , 两边同时除以-16,得x=2 4 .
等式的基本性质2
2-1. 下列方程的变形中,正确的是( D ) A. 由2x-3=7得2x=7-3 B. 由2x-3=x-1得2x-x=-1-3 C. 由-3x=5得x=5+3
第5章 一元一次方程
5.2 等式的基本性质
1 课时讲解 等式的基本性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 等式的基本性质
知1-讲
1. 等式的基本性质
等式的基 本性质
文字表示
用字母表示
等式两边都加上(或减 基本性质1 去)同一个代数式,结
果仍是等式
如果a=b,那么a±c=b±c
D. 由-14x=1得x=-4
知1-练
等式的基本性质
基本性质1 基本性质2
等式的基 本性质
应用
边要进行同一种运算;二是一定是同一个数或式子. 2. 利用等式的基本性质进行变形时,除以的同一个数(或
式子) 不能为零.
知1-练
例 1 利用等式的基本性质变形,使等式成立,并说明理 由.(2)如果-2x=10, 那么x=__-__5__. 解题秘方:利用等式的基本性质进行解答.
知1-练
解:(1)根据等式的基本性质1,等式两边都减去7,得 3x+7-7=8-7,即3x=8-7. (2)根据等式的基本性质2,等式两边都除以-2, 得-2x÷(-2)=10÷(-2),即x=- 5 .