七年级上有理数测试题含答案
人教版七年级数学上册《第一章有理数》测试卷-附含答案
人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
人教版数学七年级上册第一章有理数综合测试(含答案)
人教版数学七年级上学期 第一章有理数测试一、选择题(每小题3分,共30分)1.若a+b <0,ab <0,则( ) A. a >0,b >0 B. a <0,b <0C. a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D. a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 2.a,b,c 在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>03.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( ) A. 0.1636×B. 1.636×C. 16.36×D. 163.6×104.-23+(-2×3)的结果是( ) A. 0B. -12C. -14D. -25.的相反数是( ) AB. 2C.12D. 12-6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃7.下列说法正确的是( ) A. 零是正数不是负数 B. 零既不是正数也不是负数 C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数 8.既是分数又是正数的是( ) A. 2+B. 143- C.D. 2.39.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188二、填空题10. 若x=4,则|x﹣5|=_________.11.设a是最小正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c等于____________.12.一组按规律排列数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).13.数轴上到原点的距离等于4的数是.14.绝对值不大于2的所有整数为__________.15.-3倒数是,-3的绝对值是.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条18. 某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)星期一二三四五(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?20.在求1+2+22+23+24+25+26值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.答案与解析一、选择题(每小题3分,共30分)1.若a+b<0,ab<0,则( )A a>0,b>0B. a<0,b<0C. a,b两数一正一负,且正数的绝对值大于负数的绝对值D. a,b两数一正一负,且负数的绝对值大于正数的绝对值【答案】D【解析】【详解】解:∵ab<0,∴a、b必定是异号,∵a+b<0,∴a,b两数一正一负,且负数的绝对值大于正数的绝对值.故选D.2.a,b,c在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>0【答案】C【解析】【分析】由图可知a<c<0<b,据此可判断【详解】解:由图可知a<c<0<b,则abc>0,A错误;ab-ac=a(b-c)<0,B错误;(a-b)c>0,C正确;(a-c)b<0,D 错误;故选择C.【点睛】本题考查了数轴的概念,熟记数轴上右边的数大于左边的数是关键.3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A. 0.1636×B. 1.636×C. 16.36×D. 163.6×10【答案】B【解析】试题分析:科学计数法是指a×,且,n为原数的整数位数减一.考点:科学计数法4.-23+(-2×3)的结果是( )A. 0B. -12C. -14D. -2 【答案】C【解析】【分析】按照有理数的运算法则计算即可.【详解】解:原式=-8-6=-14,故选择C.【点睛】本题考查了有理数的混合运算.5.的相反数是( )A. B. 2 C. 12D.12【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃【答案】B【解析】【详解】12-2=10℃.故选B.7.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.8.既是分数又是正数的是()A. 2+B.143- C. D. 2.3【答案】D【解析】本题考查的是有理数的分类大于0的数是正数.小数是分数的一种形式,所以既是分数、又是正数的数是,故选D.9.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188【答案】C【解析】分析:由图中看出,从2开始,每相邻3个数的和等于第4个数,那么所求的数是26+48+88=162.详解:26+48+88=162.故选C.点睛:解决本题的关键的根据所给的数得到四个数之间的规律(从2开始,每相邻3个数的和等于第4个数).二、填空题10. 若x=4,则|x﹣5|=_________.【答案】1.【解析】试题分析:∵x=4,∴x ﹣5=﹣1<0,故|x ﹣5|=|﹣1|=1. 考点:绝对值.11.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a + b + c 等于____________. 【答案】0 【解析】 【分析】根据a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,得出a ,b ,c 的值,代入即可得出结论. 【详解】依题意得:a =1,b =﹣1,c =0,∴a +b +c =1+(﹣1)+0=0. 故答案为0.【点睛】本题考查了正整数、负整数的概念和绝对值的性质.熟练掌握有关概念是解答本题的关键. 12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).【答案】8,11(1)(1)2n n ++-+【解析】试题分析:观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是11(1)(1)2n n ++-+. 考点:规律型:数字的变化类13.数轴上到原点的距离等于4的数是 . 【答案】±4. 【解析】试题分析:数轴上到原点的距离等于4的数有两个,是±4. 考点:1.相反数;2.绝对值.14.绝对值不大于2的所有整数为__________. 【答案】0,±1,±2 【解析】试题分析:绝对值等于2的整数是2,-2;在数轴上位于2和-2之间的整数有1,0,-1三个,它们都符合要求,所以绝对值不大于2的所有的整数是-2,-1,0,1,2. 考点:绝对值.15.-3的倒数是 ,-3的绝对值是 .【答案】-13,3.【解析】试题分析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.试题解析:-3的倒数是-13,-3的绝对值是3.考点:1.倒数;2.绝对值.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?【答案】225 625 1 225 2 025(1)发现后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2) 7 225, 9 025.【解析】试题分析:(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)根据(1)发现的规律可求出结果.试题解析:152=225;252=625;352=1225;452=2025(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)852=7225,952=9025.17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条?【答案】第七次捏合后可拉出128根面条.【解析】【分析】第一次捏合后得到2根面条,第二次捏合后得到4根,第三次捏合后得到8根,据此寻找规律即可.【详解】第一次……2根面条;第二次……22根面条;第三次……23根面条;…第x次……2x根面条.于是由2x=128=27,得x=7.答:第七次捏合后可拉出128根面条.【点睛】本题考查了规律的探索.18.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【答案】(1)9.9元;(2)亏了497.5元.【解析】试题分析:(1)用上周买入股票每股的金额加上本周股票五天的涨跌额,即可得本周星期五收盘时每股股票的金额;(2)用本周五卖出股票金额减去上周买入股票金额,减去买入成交额的手续费,减去卖出成交额的手续费,再减去卖出成交额的交易费可得收益情况.试题解析:解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5%﹣1000×9.9×1.5%﹣1000×9.9×1%=9900﹣150﹣148.5﹣99﹣10000=﹣497.5(元).答:该股民的收益情况是亏了497.5元.考点:正负数的意义;有理数的混合运算.19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?【答案】(1)450元;(2)4830元;(3)424080元.【解析】【分析】(1)通过每个学生每天的用水量计算出每个季节的用水量,从而计算出全年用水量;(2)购买饮水机解决学生饮水问题后,每班学生全年的花费为“水费+电费+饮水机费用”;(3)原水费-现在水费=能节约的水费.【详解】(1)因为每个学生春、秋、冬季每天购买1瓶矿泉水,夏季每天购买2瓶,所以一个学生在春、秋、冬季共要购买180瓶矿泉水,夏季要购买120瓶矿泉水,所以一年中一个学生共要购买300瓶矿泉水,所以一个学生全年共花费1.5×300=450(元).(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要4×2 1203⎛⎫⨯⎪⎝⎭=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,所以全年共要纯净水(320+300+60)=680(桶), 故购买矿泉水费用为680×6=4 080(元),使用电费为240×10×5001000×0.5=600(元),故每班学生全年共花费为4 080+600+150=4 830(元).(3)因为一个学生节省450-=353.4(元),所以全体学生共节省353.4×24×50=424 080(元).【点睛】本题一道实际问题,考查了通过阅读来分析题目条件,进而答题.20.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【答案】(1)1093.5(2)2014a1 a1--【解析】【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【详解】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=2014a1a1--.【点睛】本题考查数字类的规律探索,有理数的混合运算,分式的运算,正确理解题意正确计算是本题的解题关键.。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册
人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
七年级数学上册有理数练习题(含答案)
七年级数学上册有理数练习题(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列不是有理数的是( )A .227B .3.14C .πD . 3.1415926-2.下列说法正确的是( )A .所有的整数都是正数B .非负数就是正数C .0既不是正数,也不是负数D .正数和负数统称为有理数3.在+8.3,﹣4,﹣0.8,15-,0,90中,分数共有( ) A .1个 B .2个 C .3个 D .4个4.在数 8-,0,5,π,0.01-,1322 中,属于非负整数的有( ) A .2 个 B .3 个 C .4 个 D .5 个5.如果温度上升1℃记作1+℃,那么温度下降5℃,应记作( )A .5+℃B .5-℃C .6+℃D .6-℃6.在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有( )A .4 个B .5 个C .6 个D .7 个二、填空题7.若○中填入最小的正整数,℃中填入最小的非负数,□中填入大于﹣3且小于3的整数的个数,则(○+℃)×□=___.8.某居民的身份证如图所示,则该居民的出生年份是__.9.下列各数:()21-,12,0.2,其中有理数有______个. 10.______和______统称为有理数:有理数可分为:______数,______数和______. 11.把下列各数填入相应的集合中:+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%,π,﹣0.2020020002…(每相邻两个2之间0的个数逐次加1).正分数集合:{ …};正整数集合:{ …};整数集合:{ …};有理数集合:{ …}. 12.在 18%,112,4.5,17-,0,227,π2,56- 中,整数是____;正分数是____;有理数有____个. 13.2018年10月26日,全世界最长的跨海大桥--港珠澳大桥正式通车,其全长为55__(填单位).三、解答题14.将下列各数填入相应的圈内: 12-,7+, 2.8+,90-, 3.5-,193,0,4.15.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4. (1)正数集合:{ }(2)整数集合:{ }(3)分数集合:{ }(4)负数集合:{ }(5)正整数集合:{ }(6)负分数集合:{ }16.已知正数x 的两个不等的平方根分别是214a -和2a +,1b +的立方根为-3;c(1)求x和b的值;(2)式子a b c-+的值=;(3是数(填“有理”或“无理”).17.下列六个数中:﹣2.5,132,0,+5,﹣4,12-.(1)整数有个;负分数有个;既不是正数也不是负数的是.(2)把所有数据分别在数轴上表示出来.参考答案:1.C【分析】根据有理数的定义,有理数包括分数和整数,据此分析即可.【详解】227,3.14, 3.1415926-都是分数,是有理数;π是无限不循环的小数,不是有理数;故选C.【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.2.C【分析】根据正数和负数的定义解答即可.【详解】解:A.整数包含正整数、0、负整数,错误;B.非负数就是0和正数,错误;C.0既不是正数,也不是负数,正确;D.零、正有理数和负有理数统称为有理数,错误.故选:C.【点睛】本题考查的是正数和负数的定义,熟知相关性质是解题的关键.3.C【分析】根据分数定义,把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数,分数分为正分数与负分数,对各数进行一一区分即可.【详解】解:分数有+8.3,﹣0.8,15 -,分数共有3个.故选:C.【点睛】本题考查分数,掌握分数定义是解题关键.4.A【分析】非负整数即为正整数与0,找出即可.【详解】解:在数8-,0,5,π,0.01-,1322中,属于非负整数的有0,5,共2个故选A.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.5.B【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可;【详解】如果温度上升1℃记作+1℃,即初始温度为0℃,那么温度下降5℃记作-5℃,故选:B .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负;6.C【分析】根据有理数的定义,即可求解.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有15,7.35-,0,45-,0.303,117,共6个 故选C .【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.7.5【分析】最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个,然后根据算式计算即可.【详解】由题意可知:最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个; ○代表1,℃代表0,□代表5;则原式=(1+0)×5=5,故答案为:5【点睛】本题考查正整数、非负数等的概念,解决本题的关键是对有理数的分类要清晰明了. 8.1978【分析】由身份证号码第7—10位数字表示的是年份,即可得出结论.【详解】解:由身份证号码第710-位数字表示的是出生年份,得该居民出生年份是1978.故答案为:1978.【点睛】本题考查了数学常识,了牢记身份证号码18位数字的意义是解题的关键.9.3【分析】根据有理数的定义即可求解.【详解】解:根据有理数的定义知:2(1)-,12,0.2,是有理数,故答案为:3.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解题的关键.10.整数分数正有理负有理零【分析】根据有理数的分类及定义即可判定.【详解】解:整数和分数统称为有理数,有理数可分为正有理数和负有理数和0;故答案为:整数、分数、正有理、负有理、零【点睛】本题主要考查了有理数的定义及分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题11.见解析【分析】直接根据有理数的分类进行解答即可.【详解】解:正分数集合:{0.75,245,9%…};正整数集合:{+6,+8…};整数集合:{+6,﹣3,0,+8…};有理数集合:{+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%…}.故答案为:0.75,245,9%;+6,+8;+6,﹣3,0,+8;+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%.【点睛】本题考查的是有理数和绝对值,掌握正分数、正整数、整数、有理数的概念是解决此题关键.12.17-,018%,112,4.5,2277【分析】根据有理数的定义与分类求解即可.【详解】解:在18%,112,4.5,17-,0,227,π2,56-中,整数是17-,0,正分数是18%,112,4.5,227;有理数有7个.故答案为:17-,0;18%,112,4.5,227;7.【点睛】本题考查了有理数的分类,掌握有理数的分类与定义是解题的关键.有理数是整数(正整数、0、负整数)和分数的统称.13.千米【分析】根据长度单位的认识即可求解.【详解】解:2018年10月26日,全世界最长的跨海大桥-港珠澳大桥正式通车,其全长为55千米.故答案为:千米.【点睛】考查了数学常识,关键是熟悉长度单位.14.见解析【分析】根据有理数的分类填写即可.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:如图【点睛】本题考查了有理数的分类,掌握有理数的定义与分类是解题的关键.15.(1)37+,0.8,12,17%,0.4(2)-2,12,0(3)37+,0.8,-2.1,375-,17%,0.4(4)-2,-2.1,3 75 -(5)12(6)-2.1,3 75 -【分析】根据有理数的定义及分类解答.(1)解:正数集合:{ 37+,0.8,12,17%,0.4 } (2)整数集合:{ -2,12,0 }(3)分数集合:{ 37+,0.8, -2.1,375-,17%,0.4 } (4)负数集合:{ -2, -2.1,375- } (5)正整数集合:{ 12 }(6)负分数集合:{ -2.1,375- } 【点睛】本题考查有理数及其分类,是基础考点,掌握相关知识是解题关键.16.(1)36x =,28b =-;(2)34;(3)有理【分析】(1)根据平方根性质,得()2421a a -=+-,通过求解一元一次方程,得a 的值,根据乘方的性质,计算得x ;根据立方根的性质,得()31327b +=-=-,通过求解方程即可得到答案;(2)结合题意,根据算术平方根、实数大小比较的性质,得2c =;再根据代数式的性质计算,即可得到答案;(3)结合题意,根据算术平方根和实数分类的性质分析,即可得到答案.【详解】(1)根据题意,得()2421a a -=+-℃4a =℃()2236x a =+=℃1b +的立方根为-3℃()31327b +=-=-℃28b =-;(2)℃c ,即23<<℃2c =℃()428234a b c -+=--+=故答案为:34;(34==故答案为:有理.【点睛】本题考查了平方根、立方根、一元一次方程、乘方、算术平方根、代数式、实数的知识;解题的关键是熟练掌握平方根、立方根、一元一次方程、代数式、实数分类的性质,从而完成求解.17.(1)3,2,0(2)见解析【分析】(1)根据有理数的分类进行分类即可;(2)根据数轴的定义,将数据表示在数轴即可.(1)解:整数有0,+5,﹣4共3个,负分数有﹣2.5,﹣12共2个,既不是正数也不是负数的是0.故答案为:3,2,0;(2)解:如图,【点睛】本题考查了有理数的分类和数轴表示数,解题的关键是掌握有理数的分类和用数轴表示数的方法.。
七年级上有理数测试卷【含答案】
七年级上有理数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √-12. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. √3 √2D. -√2 √23. 下列哪个数是整数?A. 1.5B. -2/3C. 3/3D. √94. 下列哪个数是正有理数?A. -5/6B. 0C. 3/4D. -√45. 下列哪个数是负有理数?A. -√9B. 2/3C. -2/-3D. √16二、判断题(每题1分,共5分)1. 所有整数都是有理数。
()2. 所有有理数都可以表示为分数形式。
()3. 两个有理数相加,结果一定是有理数。
()4. 两个有理数相减,结果一定是有理数。
()5. 两个有理数相乘,结果可能是无理数。
()三、填空题(每题1分,共5分)1. 有理数包括整数和______。
2. 两个有理数相加,结果一定仍为______。
3. 两个有理数相乘,结果可能是______。
4. 所有有理数都可以表示为______形式。
5. 两个有理数相减,结果可能是______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述整数和分数的关系。
3. 请简述有理数和无理数的区别。
4. 请简述两个有理数相乘的性质。
5. 请简述两个有理数相减的性质。
五、应用题(每题2分,共10分)1. 请计算:-3/4 + 2/32. 请计算:5/6 1/33. 请计算:2/3 3/44. 请计算:-2/5 / 4/55. 请计算:√16 + 3/4六、分析题(每题5分,共10分)1. 请分析两个有理数相加的性质。
2. 请分析两个有理数相乘的性质。
七、实践操作题(每题5分,共10分)1. 请用图形表示-3/4和2/3的和。
2. 请用图形表示5/6和1/3的差。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证两个有理数相加的结果仍为有理数。
七年级有理数练习题集及答案(10套)
有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。
人教版数学七年级上册第一章有理数综合检测(附答案)
人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。
2024新人教版七年级上册数学《有理数》单元测试卷及答案
第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。
(完整版)七年级上册数学有理数测试题及答案
七年级数学第一章有理数测试题一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元。
(A)411⨯(D)34.103.11⨯1.1⨯ (C)3101.1⨯(B)510102、大于–3。
5,小于2。
5的整数共有( )个。
(A)6 (B)5 (C)4 (D)33、已知数bx,是互为倒数,那么a,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y|2-+的值等于()|a2xyb(A)2 (B)–2 (C)1 (D)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )(A)同号,且均为负数(B)异号,且正数的绝对值比负数的绝对值大(C)同号,且均为正数(D)异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、46、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C、整数D、不等于零的有理数7、下列说法正确的是()A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个;8、在有理数中,绝对值等于它本身的数有()A 。
1个B 。
2个 C. 3个 D.无穷多个9、下列计算正确的是()A 。
-22=-4 B.-(-2)2=4 C 。
(-3)2=6 D.(-1)3=110、如果a 〈0,那么a 和它的相反数的差的绝对值等于( )A.aB.0 C 。
-a D.-2a二、填空题(每题2分,共50分)1、()642=。
2、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a *b = b a 23-。
人教版七年级上册数学《有理数》测试题(含答案)
七年级数学单元测试题(一)有理数1、选择题(每题3分, 共30分)A 、有一种记分方法:以80分为准, 88分记为+8分, 则某同学得分为74分, 应记为( )A 、+74 分 B.分 C.+6分 D.分B 、下列各数中, 最小的正数是( )3、 B.0 C 、1 D 、24、下列说法中正确的是( )A.0可以用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的点D.数轴上表示的点一定在原点的右边A 、4.2的相反数是( )A 、 B. C.2 D.B 、若, 则和的关系为( )和相等 B.和互为相反数A 、C.和相等或互为相反数 D.以上答案都不对B 、下列计算, 正确的是( )B.7、C. D 、8、与)()(y x ---相等的式子是( )8、 B. C. D.9、下列说法错误的是( )一个数同1相乘, 仍得这个数 B.一个数同相乘, 得原数的相反数9、C 、互为相反数的数的积为1 D 、一个数同0相乘, 得010、计算31327⨯÷-的结果是( ) 10、 B.27 C. D.311、计算223)2(5)3(--+-的值为( )二、A.2 B.5 C. D.11、填空题(每题4分, 共24分)12、比较大小: .13、1030这个数用科学记数法可表示为 .14、12的相反数与7-的绝对值的和是 .数轴上点A, B 的位置如图所示, 若点A 左侧有一点C 满足AB=AC, 则点C 表示的数为 .15、一个数的倒数是, 这个数是 .三、若是的相反数, =5, 则的值为 .解答题一(每题6分, 共18分)17、计算: 18、计算19、计算:四、解答题二(每题7分, 共21分)20、检查5袋水泥的质量, 把超过标准质量的克数记为正数, 不足标准质量的克数记为负数, 记录结果如下表所示:水泥编号1 2 3 4 5 与标准质量的差 100+ 50- +80 70- 30-(1)用绝对值判断最接近标准质量的是几号水泥;质量最大的水泥比质量最小的水泥重多少克?如图, 在数轴上有三个点A.B.C, 请回答下列问题:若将点B 沿数轴向左移动3个单位长度, 则此时A.B.C 三个点所表示的数中哪个数最小? 最小的数是多少?若将点A 沿数轴向右移动4个单位长度, 则此时A 、B 、C 三个点所表示的数中哪个数最小?最小的数是多少?22.已知, 互为相反数, , 互为倒数, 的绝对值为2, 求的值.23、解答题三(每题9分, 共27分)(1)小虫从某点A出发, 在一直线上来回爬行, 假定向右爬行的路程记为正数, 向左爬行的路程记为负数, 爬行的各段路程依次为(单位:):, , , , , , .(2)小虫最后是否回到出发点A?小虫离开原点最远是多少厘米?在爬行过程中, 如果每爬行1奖励一粒芝麻, 则小虫一共得到多少粒芝麻?先阅读并填空, 再解答问题:(1)我们知道, , ,(2), .(3)作含有的式子表示你所发现的规律: .计算: +….(1)现有一组有规律排列的数: 1, , 2, , 3, , 1, , 2, , 3, , …, 其中1, , 2, , 3, 这六个数按此规律重复出现.(2)第50个数是什么?把从第1个数开始的前2025个数相加, 结果是多少?从第1个数起, 把连续若干个数的平方加起来, 如果和为510, 则共有多少个数的平方相加?有理数参考答案一、DCADC DCCCD二、> 12. 13. 14. 15. 16.或三、解: 原式18、解: 原式)55()1220(+-++-= )212523(75-+==08+- 2775⨯= =8- 25=19、解: 原式四、(2)解: (1)因为5袋水泥中与标准质量的差的绝对值最小的是5号水泥, 所以最接近标准质量的是5号水泥;21、质量最大的是1号水泥, 比标准质量多100, 质量最小的是4号水泥, 比标准质量少, 所以质量最大的水泥比质量最小的水泥重(1)解: 点A 表示, 点B 表示, 点C 表示3(2)将点B 沿数轴向左移动3个单位长度后表示, 此时点B 表示的数最小, 是. 将点A 沿数轴向右移动4个单位长度后表示0, 此时点B 表示的数最小, 是解: 由, 互为相反数, 则;由、互为倒数, 则;由的绝对值为2, 则当时, 原式;当时, 原式.4)2()10()2(3-=-⨯+--⨯=五、解: (1)所以小虫最后回到出发点A.(2)第一次爬行距离原点是cm 5;第二次爬行距离原点是)(235cm =-;第三次爬行距离原点是)(12102cm =+;第四次爬行距离原点是)(4812cm =-; 第五次爬行距原点是)(2264cm =-=-;第六次爬行距离原点是)(10122cm =+-; 第七次爬行距离原点是)(01010cm =-;从上面可以看出小虫离开原点最远是12.cm 小虫爬行的总路程为:24、, 所以小虫一共得到54粒芝麻.(2)解: (1);(3)111+-n n (4)原式816161414121(21-+-+-=+…)2024120221-+)2024121(21-= 40481020=1012255= (2)解: (1)因为……2, 所以第50个数是(3)因为……3, , , 所以从第1个数开始的前2025个数相加, 结果是2. , ……6, 且, , 所以共有111个数的平方相加.。
七年级数学上学期《有理数》精品练习(含答案)
七年级数学上学期《有理数》第1节 正数和负数基础巩固训练一、选择题:1.若规定收入为“+”,那么支出-50元表示( )A .收入了50元;B .支出了50元;C .没有收入也没有支出;D .收入了100元 2.下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数;B .零既不是正数也不是负数;C .零既是正数也是负数;D .若a 是正数,则-a 不一定就是负数 3.既是分数,又是正数的是( ) A .+5 B .-514C .0D .83104.下列说法不正确的是( )A .有最小的正整数,没有最小的负整数;B .一个整数不是奇数,就是偶数;C .如果a 是有理数,2a 就是偶数;D .正整数、负整数和零统称整数 5.下列说法正确的是( )A .有理数是指整数、分数、正有理数、零、负有理数这五类数;B .有理数不是正数就是负数;C .有理数不是整数就是分数;D .以上说法都正确 二、填空题1.向东走10米记作-10米,那么向西走5米,记作____________.2.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________. 3.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,•应表示为_____________.4.一种零件标明的要求是0.020.0210+-Φ= (•单位:•mm )•,•表示这种零件的标准尺寸为直径10mm ,该零件最大直径不超过____________mm ,最小不低于____________mm ,为合格产品.5.若书店在学校的东面500米记作+500米,那么超市的位置记作-600米,•则表示____________. 6.在东西走向的公路上,•乙在甲的东边3•千米处,•丙距乙5•千米,•则丙在甲的__________. 7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是___________,如果在原来的位置上再上升20米,则高度是____________.8.收入-200元的实际意义是_____________________. 三、解答题1.把下列各数填入相应的大括号内:分数集合正数集合CBA-13.5,2,0,0.128,-2.236,3.14,+27,-45,-15%,-112,227,2613.正数集合{ …},负数集合{ …}, 整数集合{ …}, 分数集合{ …}, 非负整数集合{ …}. 2.右图中的两个圆分别表示正数集合和分数集合, 请你在每个圆中及它们重叠的部分各填入3个数.3.课桌的高度比标准高度高2毫米记作+2毫米,那么比标准高度低3•毫米记作什么?现有5张课桌,量得它们的尺寸比标准尺寸长1毫米,-1毫米,0毫米,+3毫米,-•1.5毫米,若规定课桌的高度最高不能高于标准高度2毫米,最低不能低于标准高度2毫米,才算合格,问上述5张课桌有几张不合格?4.在一次数学测验中,一年(4)班的平均分为86分,•把高于平均分的部分记作正数. (1)李洋得了90分,应记作多少? (2)刘红被记作-5分,她实际得分多少? (3)王明得了86分,应记作多少?(4)李洋和刘红相差多少分?综合创新训练四、学科内综合题1.已知有A ,B ,C 三个数集,每个数集中所含的数都写在 各自的大括号内,•请把这些数填入图中相应的部分. A .{-5,2.7,-9,7,2.1}B .{-8.1,2.1,-5,9.2,-17}C .{2.1,-8.1,10,7}2.观察下列各组数,请找出它们的排列规律,并写出后面的2个数.(1)-2,0,2,4,…,;(2)1,-12,23,-34,45,-56,…;(3)1,0,-1,0,1,0,-1,0,…;(4),2,4,-6,8,10,-12,14,….3.我们用字母a表示一个有理数,试判断下列说法是否正确,若不正确,请举出反例.(1)a一定表示正数,-a一定表示负数;(2)如果a是零,那么-a就是负数;(3)若-a是正数,则a一定为非正数.五、竞赛题1.下列是按某种规律排列的一串数:0,3,8,17,34,…,那么第6个数是_______.2.观察下列数的排列规律:11,12,21,13,22,31,14,23,32,41,15,…,则37应排在第___位.中考题回顾六、中考题(吉林)如果自行车车条的长度比标准长度长2mm,记作+2mm,那么比标准长度短1.5mm,应记作________mm.答案:一、1.A 2.B 3.D 4.C 5.C二、1.+5米 2.-2℃ 3.-3.01% +4.21% 4.10.02 9.985.•超市在学校西面600米 6.东边8千米或西边2千米 7.-120米 -80米 8.支出200元三、1.正数集合{2,+27,227,2613,0.128,3.14…} 负数集合{-13.5,-2.236,-45,-15%,-112,…}整数集合{2,0,+27…},分数集合{-13.5,0.168,-2.236,3.14,-45,-15%,-112,227,2613,…},非负整数集合{2,+27,0,…}. 2.略 3.-3毫米,1张不合格. 4.(1)+4分;(2)81分;(3)0分;(4)9分 四、1.如图1所示172.1-8.11079.2-5-92.7CBA2.(1)6,8;(2)67,-78;(3)1,0;(4)16,-18 3.(1)错误.若a=-3,•则-a>0;(2)错误.a=0,-a=0;(3)错误.非正数包括零.五、1.67[提示:由前5个数发现a 2=2a 1+3,a 3=2a 2+2,a 4=2a 3+1,所以a 6=2a 5-1]2.39[提示:设a ≥1的自然数,则这串数规律1a ,111a +-,122a +- , 当a=9时,则19,28,37……(1+2+3+4+5+6+•7+8)+3=39] 六、-1.5.5-1FEDCBA5七年级数学上学期《有理数》第2节 数轴在线检测1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______来表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________. 3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________. 4.判断下列所画的数轴是否正确,如不正确,请指出.-10(1)(2)(3)10(4)(5)(6)5.在所给的数轴上画出表示下列各数的点:2,-3,112 ,0,32,5,123。
人教版数学七年级上册第一章有理数综合检测卷(含答案)
人教版数学七年级上学期第一章有理数测试一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元2.某种大米包装袋上的质量标识为“25±0.5kg ”,现从超市随机检测到四袋大米中不合格的是( ) A. 24.5kg B. 24.8kg C. 25.5kg D. 26.1kg 3.若a 的相反数为1,则a 2019是( )A. 2019B. ﹣2019C. 1D. ﹣14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对 7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36 B. ﹣20C. 6D. ﹣24 9.若与互为倒数,则()20072008a b ⋅-的值是( ) A. B. a -C. D. b - 10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0b a >,正确的是( ) A. ①② B. ②③ C. ②④ D. ③④11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34 )﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12 ) 20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当集合中.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少? (2)求142与132的相反数的商. 22.已知a =﹣312,b =﹣6.25,c =﹣2.5,求|b|﹣(a ﹣c )的值. 23.今抽查10袋盐,每袋盐标准质量是100克,超出部分记为正,统计成表:盐的袋数2 3 3 1 1每袋超出标准的克数+1﹣0.5 0 +2.5 ﹣2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作﹣100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为“25±0.5kg”,现从超市随机检测到四袋大米中不合格的是( )A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出面粉的合格重量的范围,再据此对四个选项逐一判断.【详解】解:质量标识为“25±0.5kg”表示25上下0.5,即24.5到25.5之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则a2019是( )A. 2019B. ﹣2019C. 1D. ﹣1【答案】D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a 2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a 的值.4.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:321亿元=32100000000元,32100000000元这个数用科学记数法可以表示为3.21×1010元.故选D .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 【答案】C【解析】【分析】根据已知可知1个细胞从第1次到第3次所分裂的细胞个数分别为21个,22个,23个,从而得出第n 次细胞分裂后的细胞个数.【详解】解:根据已知可知:一个细胞第一次分裂成21个,第二次分裂成22个,第三次分裂成23个,由上述规律可知,第n次时细胞分裂的个数为2n个,设第x次分裂成64个,由题意得2x=64,解得x=6,即第6次分裂细菌分裂成64个,答:由每半小时分裂一次,此细菌由1个分裂成64个,共花费了3个小时.故答案选C.【点睛】本题考查了有理数的乘方,解题的关键是熟练的掌握有理数的乘方的相关知识点.6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】各式计算得到结果,比较即可.详解】解:①−22=−4,22=4,不相等;②(−3)2=32=9,相等;③|−2|=2,−|−2|=−2,不相等;④(−3)3=−33=−27,相等;⑤−(+3)= −3,相等.故答案选B.【点睛】本题考查了相反数、绝对值与有理数的乘方,解题的关键是熟练度掌握相反数、绝对值与有理数的乘方的性质.7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】根据负数的定义可以判断题目中的哪些数据是负数,从而可以解答本题.【详解】解:在()()228,702,3------,,中, 负数有:27,3---,共2个,故选:C.【点睛】考查有理数的分类,掌握负数的定义是解题的关键.8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36B. ﹣20C. 6D. ﹣24 【答案】A【解析】【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.【详解】原式()()122841228436.=--+-=+-=故选A.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.9.若与互为倒数,则()20072008a b ⋅-的值是( ) A.B. a -C.D. b - 【答案】B【解析】【分析】由a 与b 互为倒数,得ab=1,然后逆用积的乘方公式即可求解.【详解】解:∵a 与b 互为倒数,∴ab=1,则原式=()20072007a a b ⋅⋅-=()2007ab a -⋅=()20071-•=a -.故选B .【点睛】本题考查倒数的定义以及积的乘方公式,正确对所求的式子进行变形是关键.10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0ba >,正确的是( )A. ①②B. ②③C. ②④D. ③④ 【答案】B【解析】由点A 、B 在数轴上的位置可知,505b a <-<<<,∴(1)0b a -<;(2)b a ->;(3)a b ->-;(4)0ba <.∴原来四个结论中成立的是②③.故选B.11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数【答案】C【解析】【分析】根据题意利用具特殊值的方法,即可判断出答案.【详解】当x =2时,|5+x |=|5+2|=7,而|5|+|x |=5+2=7,7=7,当x =0时,|5+x |=|5+0|=5,而|5|+|x |=5+0=5,故B 错误.当x =−2时,|5+x |=|5+(−2)|=3,而|5|+|x |=5+2=7,37,≠故A. D 错误;当x 是正数或0时,式子|5+x|=|5|+|x|成立.故选C.【点睛】考查绝对值的定义以及应用,注意分类讨论思想在解题中的应用.二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.【答案】-4【解析】【分析】根据乘积为1的两个数互为倒数,可得互为倒数的两个数的积是1,可得答案.【详解】解:若a 、b 互为倒数,则2ab-6=2-6=-4.故答案为−4.【点睛】本题考查了倒数的定义,解题的关键是熟练的掌握倒数的定义.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.【答案】1【解析】a 等于0,b 等于1.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 【答案】0.【解析】【分析】根据小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.得到A,B,C 的值,代入运算即可.【详解】A 表示最小的正整数,A=1B 表示最大的负整数 B=﹣1C 表示绝对值最小的有理数,C=0()()1100.A B C ⎡⎤-⨯=--⨯=⎣⎦故答案为0.【点睛】本题需掌握的知识点是:最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.【解析】【分析】根据题意,利用绝对值的代数意义化简求出a 与b 的值,即可确定出a-b 的值.【详解】∵|a |=1,|b |=2,且ab <0,∴a =1,b =−2;a =−1,b =2,则a −b =3或−3.故答案为3或−3.【点睛】考查[有理数的乘法, 绝对值, 有理数的减法,得到a 与b 的值是解题的关键.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.【答案】(4)(5).【解析】【分析】根据有理数加法,减法,乘法法则以及数轴的性质进行判断即可.【详解】(1)两个有理数的和为负数时,这两个数不一定都是负数;例如()32,+-故错误.(2)如果两个数的差是正数,那么这两个数不一定都是正数;例如()12,--故错误.(3)几个有理数相乘,当负因数个数为奇数时,乘积不一定为负;当有一个因数为0时,结果为0.(4)数轴上到原点的距离为3的点表示的数是3或﹣3;正确.(5)0乘以任何数都是0.正确.故答案为(4)(5).【点睛】考查有理数的加法,减法,乘法法则以及数轴的性质,比较基础,难度不大.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.【解析】【分析】根据题中运算程序,将3x =-代入列出关系式中计算,即可得到输出的结果.【详解】根据题意列得:()()232418414.-⨯-+=-+=-则输出的数值为14.-故答案为:14.-【点睛】此题考查了代数式的求值,弄清题中的运算程序是解本题的关键. 三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34)﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12) 【答案】(1)0.9;(2)﹣0.25;(3)﹣6;(4)﹣24;(5)814;(6)63. 【解析】分析】(1)利用加法结合律,进行加减运算即可求解;(2)把减法转化为加法,根据法则进行运算即可.(3)首先计算乘法,最后进行加减运算即可求解;(4)首先计算乘方,再利用分配律计算即可; (5)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;(6)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;【详解】(1)原式=(5.6+4.4)+(﹣0.9﹣8.1﹣0.1)=10﹣9.1=0.9;(2)原式=5﹣0.75﹣7+2.5 =7.5﹣7.75=﹣0.25;(3)原式434306. 555=-=-=-(4)原式191849,9=-⨯-+-=﹣1﹣18+4﹣9, =﹣24;(5)原式()18864,8=-÷-+118,88=++184=;(6)原式=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.【答案】详见解析.【解析】【分析】根据小于零的数是负数,可得负数集合;根据形如-1,-2,0,1,3,5…是整数,可得整数集合.【详解】解:∵﹣12=﹣1,﹣|﹣12|=﹣12,﹣(﹣5)=5,∴负数集合有:﹣12,﹣1.25,﹣|﹣12|,…整数集合有:﹣12,0,20,﹣|﹣12|,﹣(﹣5)|,…所以【点睛】考查有理数的分类,熟练掌握正数以及负数的定义是解题的关键.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少?(2)求142与132的相反数的商.【答案】(1)183-;(2)9-7【解析】【分析】(1)根据题意列出算式即可求出正确答案;(2)先求132的相反数,再将依据题意作商即可得出答案.【详解】解:(1)由题意可得:(4119--163)+(499-),则(4119--163)+(499-)=411(9-+-163)+(499-)=183-;(2)∵132的相反数是132-,∴142与132的相反数的商即为14921732=--.故本题答案为:(1)183-;(2)9-7.【点睛】掌握有理数加减乘除运算和相反数的含义,以及会根据题意列出相应的算式是解答本题的关键.22.已知a=﹣312,b=﹣6.25,c=﹣2.5,求|b|﹣(a﹣c)的值.【答案】7.25【解析】分析】把a、b、c的值代入代数式,再根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【详解】解:∵a=﹣312,b=﹣6.25,c=﹣2.5,∴|b|﹣(a﹣c)=﹣b﹣a+c=6.25+312﹣2.5=7.25.【点睛】本题考查了绝对值的性质与有理数的减法,解题的关键是熟练的掌握绝对值的性质与有理数的减法运算法则.23.今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成表:问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?【答案】(1)总计不足3千克;(2)997千克.【解析】【分析】(1)根据正数表示超出100克的重量,负数表示比100克差的重量,计算出10袋盐一共超出标准重量的重量;(2)根据(1)可得10袋盐一共超出标准重量的重量,然后用100×10加上这个数即可.【详解】解:(1)2×(﹣1)+3×(﹣0.5)+3×0+1×2.5+1×(﹣2)=﹣3,答:这10袋盐以100克为标准质量,总计不足3千克;(2)10×100﹣3=997千克.答:这10袋盐一共997千克.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【答案】(1)收工时在A地的西边,距A地17千米;(2)若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【解析】【分析】(1)根据题中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据题中的数据将它们的绝对值相加,然后乘以0.2即可解答本题.【详解】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣12=﹣17.答:收工时在A地的西边,距A地17千米.(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣12|=63,63×0.2=12.6(升),答:若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.【答案】﹣2016.【解析】【分析】先根据已知条件求出a+b=0,cd=1,x=1,再把这些数值代入所求式子,计算即可.【详解】解:∵不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,∴a+b=0,cd=1,x=1,∴2016a+2018cd﹣2017x+2016b﹣2017=2016(a+b)+2018cd﹣2017(x+1)=2016×0+2018×1﹣2017×(1+1)=0+2018﹣4034=﹣2016.【点睛】考查代数式求值, 根据相反数, 绝对值, 倒数的定义得到a+b=0,cd=1,x=1,是解题的关键.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.【答案】(1)周二进出货物后变化的量为﹣a,周五进出货物后变化的量为5;(2)a=0;(3)a=10,b=10.【解析】【分析】(1)根据有理数的加法法则即可求出周二、周五当天进出货物后变化的量;(2)运进货物件数-运出货物件数=-5,列出方程求解即可.(3)本周运进货物总件数比运出货物件数的一半多15件,列出方程即可求出b的值,设上周运进货物总件数为m,上周运出货物的总件数为n,找出题目中的等量关系,列方程即可求解.【详解】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=12(12+2a+8+0+b ﹣5+5+10)+15, 化简得:b=10, 设上周运进货物总件数为m ,上周运出货物的总件数为n ,1555556a b m m ++++++=-, 即5256a b m ++=, 2122855103a b n n +++-++=+, 即52303a b n ++=, ∵这两周内,该仓库货物共增加了3件, ∴()55363m n m n ⎛⎫-+-= ⎪⎝⎭, ∴11m ﹣16n=18, ∴()()631125162301855a b a b ⨯++-⨯++=, 解得:a=10.【点睛】考查正负数的意义以及一元一次方程的应用,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.熟练掌握正数和负数的意义和有理数的加减运算.。
人教版数学七年级上册第一章有理数综合测试题(含答案)
人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。
七年级数学上册有理数练习题及答案
七年级数学上册有理数练习题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法错误的是( ) A .0既不是正数,也不是负数B .零上6摄氏度可以写成+6℃,也可以写成6℃C .向东走一定用正数表示,向西走一定用负数表示D .若盈利1000元记作+1000元,则-200元表示亏损200元2.下列各数:﹣74,0.18,0,﹣π,12其中有理数的个数是( )A .2个B .3个C .4个D .5个 3.全国统一规定的交通事故报警电话是( ) A .122 B .110 C .120 D .1144.有下列说法:℃最小的自然数为1;℃最大的负整数是-1;℃没有最小的负数;℃最小的整数是0;℃最小非负整数为0,其中,正确的说法有( ) A .2个 B .3个 C .4个 D .5个 5.下面的说法中正确的为( ) A .1是绝对值最小的数 B .a -表示负数C .1-不是单项式D .11x x+-不是多项式 6.下列说法错误的是( ) A .负数的绝对值都是正数 B .除以一个数,等于乘这个数的倒数 C .有理数包括整数和分数D .倒数等于它本身的数只有±1.二、填空题7.回顾之前所学内容填空:小学我们学过的数有:自然数、________、 分数、___________.8.等高线指的是地形图上海拔相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.若某地的等高线标注为-20m ,表示此处的高度______海平面20米.(填“高于”或“低于”) 9.下列说法:℃负分数一定是负有理数;℃自然数一定是正数;℃3.2不是整数;℃ 0是整数;℃一个有理数,它不是整数就是分数.其中正确的有__________.(填序号)103π43中有理数有_________个. 11.有理数的分类:________ 和 ________统称为有理数. (1)按符号分类℃正有理数,正有理数分为正整数:如________;正分数:如________ ℃零℃负有理数,负有理数分为负整数:如_______;负分数:如_______ (2)按定义分类℃整数,整数分为 正整数:如______;零;负整数:如______ ℃分数,分数分为正分数:如______;负分数:如______提示:分数除了真分数、假分数、代分数外还包括有限小数、无限循环小数、百分数等.12.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.13.137的分数单位是____,去掉____个这样的分数单位后就成了最小的质数.三、解答题14.把下列各数填入到它所属的集合中.+8,+34,-(-0.275),-|-2|,0,-1.04,-227,13,-(-7).正数:{……}整数:{……}负数:{……}15.如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分,﹣23,9,0,+4.3,|﹣0.5|,﹣(+7),18%,(﹣3)4,﹣(﹣2)5,﹣6 2正分数集合:{…};负整数集合:{…};自然数集合:{…}.参考答案:1.C【分析】根据有理数的概念和性质判断即可.【详解】℃0既不是正数,也不是负数,℃A正确,不符合题意;℃零上6摄氏度可以写成+6℃,也可以写成6℃,℃B正确,不符合题意;℃正方向可以自主确定,℃向东走一定用正数表示,向西走一定用负数表示,是错误的,℃C不正确,符合题意;℃盈利1000元记作+1000元,则-200元表示亏损200元,℃D正确,不符合题意;故选:C.【点睛】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.2.C【分析】根据有理数的定义:整数和分数统称为有理数,进行解答即可.【详解】解:﹣74,0.18,为分数,属于有理数,0,12,为整数,属于有理数,℃有理数有4个,故选:C.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解本题关键.3.A【分析】本题考查的知识点是防范侵害,保护自己。
第2章 有理数的运算 综合检测卷(含答案) 初中数学人教版(2024)七年级上册
人教版(2024年新教材)七年级(上)综合检测卷第2章《有理数的运算》考试时间:100分钟总分值:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算:2+(﹣6)=( )A.4B.﹣4C.8D.﹣82.﹣2024的倒数是( )A.﹣2024B.2024C.D.3.横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃4.据国家统计局发布,2023年全国固定资产投资(不含农户)50.3万亿元,同比增长3.0%.其中数据“50.3万亿”用科学记数法表示为( )A.5.03×1014 B.5.03×1013 C.0.503×1014 D.5.03×10125.不改变原式的值,将6﹣(﹣3)+(﹣7)﹣(+2)中的减法改成加法,并写成省略加号的形式是( )A.6+3﹣7+2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣26.下列计算不正确的是( )A.﹣1.5×(﹣3)=4.5B.(﹣1.2)×(﹣7)=﹣8.4C.﹣8×(﹣1.3)=10.4D.0×(﹣1.6)=07.两个非零有理数的和为零,则它们的商( )A.1B.﹣1C.0D.不能确定8.下列各数中,结果相等的是( )A.23和32B.(﹣2)3和﹣23C.(﹣3)2和﹣32D.|﹣2|3和(﹣2)39.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于( )A.﹣2B.﹣6C.0D.210.数轴上的两点所表示的数分别为a,b,且满足ab>0,a+b<0,下列结论正确的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0二.填空题(共6小题,满分18分,每小题3分)11.比﹣27大3的数是 .12.底数是﹣2,指数是4的幂可以写成 .13.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.14.将数2 024.624四舍五入取近似值,精确到个位为 .15.计算(﹣2)÷6×的结果是 .16.在数4、﹣6、3、﹣2、1中,任意取3个不同的数相乘,其中乘积最大是 .三.解答题(共9小题,满分72分,每小题8分)17.(8分)计算:(1)(﹣7)+13﹣5;(2)(﹣)﹣(﹣)﹣|﹣1|.18.(6分)如果a、b互为相反数,c、d互为倒数,m的绝对值为5,求的值.19.(6分)先阅读第(1)小题,再计算第(2)小题:(1)计算:﹣1+(﹣5)+24+(﹣3)解:原式=(﹣1﹣)+(﹣5﹣)+(24+)+(﹣3﹣)=﹣1﹣﹣5﹣+24+﹣3﹣=﹣1﹣5﹣3+24﹣﹣+﹣=15﹣=13(2)计算(﹣15)+(﹣19)+14+(﹣1).20.(10分)计算:(1);(2).21.(6分)阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).22.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.(8分)某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图,增加粮食记作“+”,减少粮食记作“﹣”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化精况的一半,求7号这天仓库粮食变化情况.24.(10分)①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.25.(10分)阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数.所以,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.根据以上阅读完成:(1)|3.14﹣π|= ;(2)|x+y|=x+y,则x+y ;(3)计算:.参考答案一.选择题1.B.2.C.3.D.4.B.5.D.6.B.7.B.8.B.9.B.10.B.二.填空题11.﹣24.12.(﹣2)4.13.8.14.2025.15..16.48.三.解答题17.解:(1)原式=6﹣5=1;(2)原式=﹣﹣=﹣=0.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值为5,∴a+b=0,cd=1,m=±5,当a+b=0,cd=1,m=5时,;当a+b=0,cd=1,m=﹣5时,;所以原式的值为﹣7或3.19.解:(﹣15)+(﹣19)+14+(﹣1)=﹣15﹣﹣19﹣+14+﹣1﹣=﹣15﹣19+14﹣1﹣﹣+﹣=﹣21﹣=﹣2220.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.21.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)﹣4+2﹣6+5+3﹣7=﹣7答:前6天,仓库粮食减少7袋;(2)设7号粮食变化x袋,由题意得,,解得:x=﹣2答:7号粮食减少2袋.24.解:①当a、b、c中没有负数时,都是正数,则原式=1+1+1+1=4;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1﹣1=0;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1+1=0;当a、b、c都是负数时,则原式=﹣1﹣1﹣1﹣1=﹣4,综上所述,代数式的值是4或﹣4或0;②当有理数a+b+c=0且abc≠0时,a、b、c中至少有1个正数,有1个负数.则代数式的值是:0.25.解:(1)|3.14﹣π|=π﹣3.14;故答案为:π﹣3.14;(2)|x+y|=x+y,则x+y≥0,故答案为:≥0;(3)原式=1﹣+﹣+﹣+⋯+﹣=1﹣=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上有理数测试题
含答案
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
七年级数学(上)有理数整章测试
一、填空题(每题2分,共32分)
1.-2的相反数是 . 2.3的倒数是 .
3.如果水位下降3m 记作+3m ,那么水位上升4m 记作 . 4.在数轴上表示-12的点与表示-3的点的距离是 . 5.若一个数的平方等于它的倒数,则这个数一定是 . 6.用科学记数法表示数×410,则原数是 .
7.请写出两个有理数,并把它们相加,使它们的和的比两个加数都小______________.
8.绝对值小于4的整数的个数有 个.
9.某冷库的室温为-4℃,一批食品需要在-28℃冷藏,如果每小时降温3℃,经过___小时后能降到所要求的温度.
10.点A 在数轴上距离原点3个单位长度,将点A 向右移动4个单位长度,再向
左移7 个单位长度,此时点A 表示的数是_________.
11.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:
如果将两地国际标准时间的差简称为时差,那么北京与纽约的时差为 小
时.
12.若1230x y z -+++-=,则(1)(2)(3)x y z +--的值是 . 13.下列说法:①若a 、b 互为相反数,则a +b=0;②若a +b =0,则
a 、
b 互为相反数;③若a 、b 互为相反数,则
1a
b
=-;④若1a
b
=-,则a 、b 互为相反数.
其中正确的结论是 .
14.如图所示,两温度计读数分别为我国某地今年2月份某天的最低气温与最高
气温,那么这天的最低气温比最高气温低____________. 15.瑞士中学教师巴尔末成功地从光谱数据、
591216⋯⋯32
36
2125、、中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出接下来的第二个数据是____________.
16.已知|x |=4,y 2=4且y <0,则x +y 的值为____________ . 二、解答题(共68分)
17.(5分)计算
(1) (20)(3)(5)(7)-++---+; (2) 3712
()()14263-+----.
18.(5分)计算
(1)1( 6.5)(2)()(5)3-⨯-÷-÷-; (2) 113
(5)77(7)12()3322
-⨯+⨯--÷-.
19.(5分)画一条数轴,并在数轴上找出比-123大,且比1
22小的整数点.
20.(5分)给出依次排列的一列数:
-1,2,-4,8,-16,32,….
(1)按照给出的这几个数列的某种规律,继续写出后面的3项:_____、______、______.
(2)这一列数第n 个数是 .
21.(5分)若7a =,3b =,求a +b 的值.
22.(5分)已知│a +1│与│b -2│互为相反数,求a-b 的值. 23.(5分)已知a 与b 互为相反数,c 与d 互为倒数,求
1
38
22+-+cd b a 的值.
24.(5分)某地实验测得数据表明,高度每增加1千米,气温大约下降6oC ,若该地面温度为21oC ,(1)高空某处高度是8km ,求此处的温度是多少度;
(2)高空某处温度为—24oC,求此处的高度是多少千米.
25.(5分)计算:
12112 ()() 3031065 -÷-+-
解法1:原式=
1211215111 ()[()()]()()3 303610530623010 -÷++--=-÷-=-⨯=-
解法2:原式的倒数为:
211212112
()()()(30) 310653031065
-+-÷-=-+-⨯-
故原式=
1 10 -
请阅读上述材料,选择合适的方法计算:
11322 ()() 4261437 -÷-+-
26.(5分)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶纪录如下(单位:千米)
+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭何方距岗亭多远
(2)若摩托车行驶1千米耗油升,这一天共耗油多少升?
27.(5分)小张上星期日买进某公司股票1000股,每股16元,下表为本周内每日该股票的涨跌情况(单位:元).
根据你所学的数学知识,解答下列各题:
(1)星期四收盘每股是多少元?
(2)本周内最高价每股多少元最低是每股多少
(3)小张买进股票时付%的手续费,卖出时需付成交额%的手续费和%的交易税,如果小张在星期三收盘前将股票全部卖出,他的收益如何?
28.(5分)已知,如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点
对应的数为100.
(1)请写出AB 中点M 对应的数;
(2)现有一只电子蚂蚁P 从B 点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C 点对应的数是多少吗?
(3)若当电子蚂蚁P 从B 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D 点对应的数是多少吗
七年级数学(上)有理数整章测试(A )
一、填空题
1.2 2.1
3
3.-4 4.9 5.1 6.50020 7.-2,-1 8.7 9.8 10.0或-6 11.13 12.0
13.①②④ 14.12℃ 15.64
60
16.-6或-2
二、解答题
17.(1)-19;(2)1
34
- 18.(1);(2)0 19.-2,-1,0,1,2 20.(1)-64,
128,-256;(2)(1)n -12n - 21.10±或4± 22.-3 23.-2 24.-27℃ , 25.1
14-
26.(1)南方13km ;(2)升 27.(1)元;(2)20元,元;(3)3926元 28.(1)40;(2)52;(3)-260.
100。