[高考专项训练]统计与统计案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题押题16—14⎪⎪

统计与统计案例

考查点一 抽样方法

1.(2015·北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )

A.90 C .180

D .300

解析:选C 设该样本中的老年教师人数为x ,由题意及分层抽样的特点得x 900=3201 600,

解得x =180.

2.(2015·四川高考)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )

A .抽签法

B .系统抽样法

C .分层抽样法

D .随机数法

解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分

数的平均数为().

A.89 B.91

C.90 D.900

解析:选C考察平均数的计算与茎叶图的转换关系

考查点二用样本估计总体

4.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()

A.x1,x2,…,x n的平均数

B.x1,x2,…,x n的标准差

C.x1,x2,…,x n的最大值

D.x1,x2,…,x n的中位数

解析:选B标准差能反映一组数据的稳定程度.故选B.

5.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()

A.各月的平均最低气温都在0 ℃以上

B.七月的平均温差比一月的平均温差大

C.三月和十一月的平均最高气温基本相同

D.平均最高气温高于20 ℃的月份有5个

解析:选D由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确,故选D.

6.(2015·山东高考)为比较甲、乙两地某月14时的气温情况,

随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)

制成如图所示的茎叶图.考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③

D .②④

解析:选B 法一:∵x 甲=26+28+29+31+31

5=29,

x 乙=28+29+30+31+325=30,

∴x 甲

又s 2甲=

9+1+0+4+45=185,s 2乙=4+1+0+1+4

5

=2,

∴s 甲>s 乙.故可判断结论①④正确.

法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.

7.(2014·广东高考)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )

A .100,10

B .200,10

C .100,20

D .200,20

解析:选D 易知(3 500+4 500+2 000)×2%=200,即样本容量;抽取的高中生人数为2 000×2%=40,由于其近视率为50%,所以近视的人数为40×50%=20.

8.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.

(1)直方图中的a =________;

(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 解析:(1)由0.1×1.5+0.1×2.5+0.1×a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3. (2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6. 因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 000

考查点三 变量间的相关关系、统计案例

9.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:

根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y --b ^x -

.据此估计,该社区一户年收入为15万元家庭的年支出为( )

A .11.4万元

B .11.8万元

C .12.0万元

D .12.2万元

解析:选B 由题意知,x =8.2+8.6+10.0+11.3+11.9

5

=10,y =

6.2+

7.5+

8.0+8.5+

9.8

5

=8,

∴a ^

=8-0.76×10=0.4,

∴当x =15时,y ^

=0.76×15+0.4=11.8(万元).

10.(2014·江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )

表1

表2

相关文档
最新文档