2018年西藏高考数学试卷(文科)(全国新课标ⅲ)
2018年高考文科数学全国卷1(含详细答案)
数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。
全国高考真题及解析电子版试卷III卷数学(文科)
设函数
.
(1)画出
的图像;
(2)当
,
,求
的最小值.
答案
单选题 1. C 2. D 3. A 4. B 5. B 6. C 7. B 8. A 9. D 10. D 11. C 12. B 填空题 13.
14. 分层抽样 15. 3 16.
简答题 17.
(1)设 的公比为 ,由题设得
.
由已知得
,解得 (舍去),
以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知
.
列联表如下:
(3)由于 有差异.
,所以有 99%的把握认为两种生产方式的效率
19.
(1)由题设知,平面 CMD⊥平面 ABCD,交线为 CD.
因为 BC⊥CD,BC 平面 ABCD,所以 BC⊥平面 CMD,故 BC⊥DM.
成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时 间的中位数为 73.5 分钟.因此第二种生产方式的效率更高.
(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80 分钟; 用第二种生产方式的工人完成生产任务平均所需时间低于 80 分钟,因此第二种生产方式的 效率更高.
文科数学 2018 年高三试卷
文科数学
考试时间:____分钟
题型
单选题 填空题 简答题
总分
得分
单选题 (本大题共 12小题,每小题 ____分,共 ____分。)
1.已知集合
,
,则
A.
B.
C.
D.
2.
A.
B.
C.
D.
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图 中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方 体,则咬合时带卯眼的木构件的俯视图可以是
2018年全国高考文科数学试题及答案(全国1卷)
文科数学试题 第1页(共12页) 2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =IA .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}-- 2.设1i 2i 1iz -=++,则||z = A .0 B .12 C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为 A .13 B .12 C.2 D.35.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B .12πC. D .10π 6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =。
2018年西藏拉萨市高考数学一模试卷文科数学试题
2018年西藏拉萨市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={x|x2﹣4≥0},则A∩B=()A.{1,2}B.{3,4}C.{2,3,4}D.{1,2,3,4}2.(5分)已知a∈R,i是虚数单位,若z=a﹣i,,则a=()A. B.±1 C. D.3.(5分)已知等差数列{a n}的前n项和为S n,若a3=8,S6=54,则数列{a n}的公差为()A.2B.3C.4D.4.(5分)函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B. C.D.5.(5分)已知点P在圆C:x2+y2﹣4x﹣2y+4=0上运动,则点P到直线l:x﹣2y﹣5=0的距离的最小值是()A.4B.C.D.6.(5分)设向量,,且,则向量与的夹角为()A. B. C. D.7.(5分)执行如图所示的程序框图,若输出S的值为14,则空白判断框中的条件可能为()A.k<2B.k<3C.k<4D.k<58.(5分)已知函数f(x)=,则f(﹣2018)=()A. B.3 C. D.99.(5分)使函数是偶函数,且在上是减函数的θ的一个值是()A. B. C. D.10.(5分)中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如.现在正五边形A1B1C1D1E1内随机取一点,则此点取自正五边形A2B2C2D2E2内部的概率为()A. B.C.D.11.(5分)已知等比数列{a n}的前n项积为T n,若a1=﹣24,a4=﹣,则当T n取最大值时,n的值为()A.2B.3C.4D.612.(5分)设函数f'(x)是奇函数f(x)(x∈R)的导函数,当x>0时,,则使得(x2﹣1)f(x)>0成立的x的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知实数x,y满足,则的取值范围为.14.(5分)已知双曲线经过点(2,3),其一条渐近线方程为,则该双曲线的标准方程为.15.(5分)中国古代数学瑰宝《九章算术》中有这样一道题:“今有堑堵(底面为直角三角形的直棱柱)下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”其意思为:“今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”已知1丈为10尺,则题中的堑堵的外接球的表面积为平方尺.16.(5分)已知函数f(x),若关于x的方程f(x)﹣mx=0至少有两个不同的实数解,则实数m的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且.(1)求角A;(2)若,△ABC的面积为,求b,c.18.(12分)随着科技发展,手机成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机了.为了调查某地区高中生一周使用手机的频率,某机构随机调查了该地区100名高中生某一周使用手机的时间(单位:小时),所取样本数据分组区间为[0,2)、[2,4)、[4,6)、[6,8)、[8,10)、[10,12)、[12,14],由此得到如图所示的频率分布直方图.(1)求a的值并估计该地区高中生一周使用手机时间的平均值;(2)从使用手机时间在[6,8)、[8,10)、[10,12)、[12,14]的四组学生中,用分层抽样方法抽取13人,则每层各应抽取多少人?19.(12分)如图,四棱锥P﹣ABCD底面为等腰梯形,AD∥BC且BC=2AD=4,点E为PC中点.(1)证明:DE∥平面PAB;(2)若PA⊥平面ABCD,∠ABC=60°,直线PB与平面ABCD所成角的正切值为,求四棱锥P﹣ABCD的体积V.20.(12分)已知椭圆的长轴长是短轴长的倍,且过点.(1)求椭圆的标准方程;(2)若△OAB的顶点A、B在椭圆上,OA所在的直线斜率为k1,OB所在的直线斜率为k2,若,求的最大值.21.(12分)已知函数f(x)=lnx﹣ax,e为自然对数的底数,a∈R.(1)讨论函数f(x)的单调性;(2)当x≥1时,恒成立,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆O的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若直线l与圆O相交于A,B两点,求弦长|AB|;(2)以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,圆O和圆C的交点为P,Q,求弦PQ所在直线的直角坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x+1|﹣1.(1)求f(x)≤x+1的解集;(2)若不等式对任意实数a≠0恒成立,求实数x的取值范围.2018年西藏拉萨市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={x|x2﹣4≥0},则A∩B=()A.{1,2}B.{3,4}C.{2,3,4}D.{1,2,3,4}【解答】解:B={x|x2﹣4≥0}={x|x≥2或x≤﹣2},∵A={1,2,3,4},∴A∩B={2,3,4},故选:C2.(5分)已知a∈R,i是虚数单位,若z=a﹣i,,则a=()A. B.±1 C. D.【解答】解:由z=a﹣i,得,又(a﹣i)(a+i)=2,解得a=±1.故选:B.3.(5分)已知等差数列{a n}的前n项和为S n,若a3=8,S6=54,则数列{a n}的公差为()A.2B.3C.4D.【解答】解:在等差数列中,由a3=8,S6=54得,得a1=4,d=2,故选:A4.(5分)函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B. C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.5.(5分)已知点P在圆C:x2+y2﹣4x﹣2y+4=0上运动,则点P到直线l:x﹣2y﹣5=0的距离的最小值是()A.4B.C.D.【解答】解:圆C:x2+y2﹣4x﹣2y+4=0,转化为:(x﹣2)2+(y﹣1)2=1,则圆心(2,1)到直线x﹣2y﹣5=0的距离d==,则:点P到直线l的最小距离d min=﹣1.故选:D6.(5分)设向量,,且,则向量与的夹角为()A. B. C. D.【解答】解:根据题意,设向量与的夹角为θ,向量,,若,则有•=x﹣=0,解可得x=,即=(,1),=(1,﹣),则﹣=(0,4),则有|﹣|=4,||=2,(﹣)•=•﹣2=﹣4,则cosθ==﹣,又由0≤θ≤π,则θ=;故选:D.7.(5分)执行如图所示的程序框图,若输出S的值为14,则空白判断框中的条件可能为()A.k<2B.k<3C.k<4D.k<5【解答】解:模拟执行程序框图,可得k=1,S=0S=2满足条件,执行循环体,k=2,S=2+22=6满足条件,执行循环体,k=3,S=2+23=14此时,由题意,不满足判断框内的条件,退出循环,输出S的值为14.可得判断框内的条件为:k<3?故选:B.8.(5分)已知函数f(x)=,则f(﹣2018)=()A. B.3 C. D.9【解答】解:∵函数f(x)=,∴f(﹣2018)=f(﹣2018+4036×)=f(0)=f()==32=9.故选:D.9.(5分)使函数是偶函数,且在上是减函数的θ的一个值是()A. B. C. D.【解答】解:∵函数=2sin(2x+θ+)是偶函数,∴θ+=kπ+,即θ=kπ+,k∈Z ①,故可取θ=,此时,f(x)=2sin(2x+)=cos2x,且在上,2x∈[0,],f(x)是减函数,故选:B.10.(5分)中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如.现在正五边形A1B1C1D1E1内随机取一点,则此点取自正五边形A2B2C2D2E2内部的概率为()A. B.C.D.【解答】解:根据题意知,正五边形A1B1C1D1E1∽正五边形A2B2C2D2E2,又,∴===•=,∴所求的概率为P==.故选:D.11.(5分)已知等比数列{a n}的前n项积为T n,若a1=﹣24,a4=﹣,则当T n取最大值时,n的值为()A.2B.3C.4D.6【解答】解:等比数列{a n}的前n项积为T n,若a1=﹣24,a4=﹣,可得q3==,解得q=,T n=a1a2a3…a n=(﹣24)n•q1+2+…+(n﹣1)=(﹣24)n•(),当T n取最大值时,可得n为偶数,函数y=()x在R上递减,当n=2时,T2=242•=192;当n=4时,T4=244•()6=;当n=6时,T6=246•()15=,则T2<T4>T6,当n>6,且n为偶数时,T n<T6,故n=4时,T n取最大值.故选:C.12.(5分)设函数f'(x)是奇函数f(x)(x∈R)的导函数,当x>0时,,则使得(x2﹣1)f(x)>0成立的x的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【解答】解:根据题意,设g(x)=lnx•f(x),(x>0),其导数g′(x)=(lnx)′f(x)+lnxf′(x)=f(x)+lnxf′(x),又由当x>0时,,则有g′(x)=f(x)+lnxf′(x)<0,即函数g(x)在(0,+∞)上为减函数,又由g(1)=ln1•f(x)=0,则在区间(0,1)上,g(x)=lnx•f(x)>0,又由lnx<0,则f(x)<0,在区间(1,+∞)上,g(x)=lnx•f(x)<0,又由lnx>0,则f(x)<0,则f(x)在(0,1)和(1,+∞)上,f(x)<0,又由f(x)为奇函数,则在区间(﹣1,0)和(﹣∞,﹣1)上,都有f(x)>0,(x2﹣1)f(x)>0⇒或,解可得:x<﹣1或0<x<1,则x的取值范围是(﹣∞,﹣1)∪(0,1);故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知实数x,y满足,则的取值范围为.【解答】解:作出不等式组对应的平面区域,的几何意义是区域内的点到D(﹣2,1)的斜率;由图象知BD的斜率最大,CD的斜率最小,由,即B(1,2),则BD的斜率k==,由解得C(1,).,CD的斜率k==﹣,即﹣≤≤,故答案为:.14.(5分)已知双曲线经过点(2,3),其一条渐近线方程为,则该双曲线的标准方程为x2﹣=1.【解答】解:根据题意,双曲线的一条渐近线方程为y=x,则可以设其方程为3x2﹣y2=m,(m≠0),又由其经过(2,3),则有3×4﹣9=m,解可得m=3,则其方程为:3x2﹣y2=3,其标准方程为:x2﹣=1,故答案为:.15.(5分)中国古代数学瑰宝《九章算术》中有这样一道题:“今有堑堵(底面为直角三角形的直棱柱)下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”其意思为:“今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”已知1丈为10尺,则题中的堑堵的外接球的表面积为35621π平方尺.【解答】解:∵今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,∴题中的堑堵的外接球的半径:R==(尺).∴题中的堑堵的外接球的表面积为S=4πR2=35621π.故答案为:35621π.16.(5分)已知函数f(x),若关于x的方程f(x)﹣mx=0至少有两个不同的实数解,则实数m的取值范围为[]∪(2,+∞).【解答】解:f(x)==,当m=0时,f(x)的图象如图:y=mx化为y=0,符合题意;当m>0时,f(x)的图象如图:要使y=f(x)的图象与y=mx的图象至少有两个不同的交点,联立,得x2﹣(m+2)x+2m=0,则△=(m+2)2﹣8m≥0,解得m≥2,当m=2时不合题意,则m>2;当m<0时,f(x)的图象如图:要使y=f(x)的图象与y=mx的图象至少有两个不同的交点,则﹣m≤2m+1,解得m,∴.综上,要使关于x的方程f(x)﹣mx=0至少有两个不同的实数解,则实数m的取值范围为[]∪(2,+∞).故答案为:[]∪(2,+∞).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且.(1)求角A;(2)若,△ABC的面积为,求b,c.【解答】解:(1)由及正弦定理,得,由于sinC≠0,所以,即.又0<A<π,所以,所以,故.(2)△ABC的面积,故bc=4,①由余弦定理a2=b2+c2﹣2bccosA,故(b﹣c)2=a2﹣3bc=12﹣12=0,故b=c,②由①②解得b=c=2.18.(12分)随着科技发展,手机成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机了.为了调查某地区高中生一周使用手机的频率,某机构随机调查了该地区100名高中生某一周使用手机的时间(单位:小时),所取样本数据分组区间为[0,2)、[2,4)、[4,6)、[6,8)、[8,10)、[10,12)、[12,14],由此得到如图所示的频率分布直方图.(1)求a的值并估计该地区高中生一周使用手机时间的平均值;(2)从使用手机时间在[6,8)、[8,10)、[10,12)、[12,14]的四组学生中,用分层抽样方法抽取13人,则每层各应抽取多少人?【解答】解:(1)由于小矩形的面积之和为1,则(a+0.075+4a+0.15+5a+0.05+0.025)×2=1,由此可得a=0.02.该地区高中生一周使用手机时间的平均值为(1×0.02+3×0.075+5×0.08+7×0.15+9×0.1+11×0.05+13×0.025)×2=6.94.(2)使用手机时间在[6,8)的学生有0.15×2×100=30人,使用手机时间在[8,10)的学生有0.02×5×2×100=20人,使用手机时间在[10,12)的学生有0.05×2×100=10人,使用手机时间在[12,14]的学生有0.025×2×100=5人,故用分层抽样法从使用手机时间在[6,8),[8,10),[10,12),[12,14]的四组学生中抽样,抽取人数分别为,,,.19.(12分)如图,四棱锥P﹣ABCD底面为等腰梯形,AD∥BC且BC=2AD=4,点E为PC中点.(1)证明:DE∥平面PAB;(2)若PA⊥平面ABCD,∠ABC=60°,直线PB与平面ABCD所成角的正切值为,求四棱锥P﹣ABCD的体积V.【解答】证明:(1)取BC中点F,连接DF、EF.由于EF为△PBC中位线,所以EF∥PB,又EF⊄平面PAB,PB⊂平面PAB,所以EF∥平面PAB.由于AD∥BC且BC=2AD,则AD BF,所以四边形ABFD为平行四边形,所以DF∥AB,因为DF⊄平面PAB,AB⊂面PAB,所以DF∥平面PAB.因为EF∥平面PAB,DF∥平面PAB,EF∩DF=F,EF,DF⊂平面DEF,所以平面DEF∥平面PAB.又DE⊂平面DEF,所以DE∥平面PAB.解:(2)作AG⊥BC于点G,则BG=1.在△ABG中,∠ABG=60°,BG=1,则,AB=2.由PA⊥平面ABCD知,直线PB与平面ABCD所成角为∠PBA,故,即在△PAB中,有,则PA=3.所以,四棱锥P﹣ABCD的体积=.20.(12分)已知椭圆的长轴长是短轴长的倍,且过点.(1)求椭圆的标准方程;(2)若△OAB的顶点A、B在椭圆上,OA所在的直线斜率为k1,OB所在的直线斜率为k2,若,求的最大值.【解答】解:(1)由题意得解得∴椭圆的标准方程为.(2)设A(x1,y1),B(x2,y2),不妨设x1>0,x2>0.由,∴(k1≠0),直线OA、OB的方程分别为y=k1x,,联立解得,.∵=,当且仅当时,等号成立.所以的最大值为2.21.(12分)已知函数f(x)=lnx﹣ax,e为自然对数的底数,a∈R.(1)讨论函数f(x)的单调性;(2)当x≥1时,恒成立,求a的取值范围.【解答】解:(1)f(x)的定义域为(0,+∞),.若a≤0时,则f'(x)>0,∴f(x)在(0,+∞)上单调递增;若a>0时,则由f'(x)=0,∴.当时,f'(x)>0,∴f(x)在上单调递增;当时,f'(x)<0,∴f(x)在上单调递减.综上所述,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.(2)由题意得:对x≥1时恒成立,∴对x≥1时恒成立.令,(x≥1),∴.令,∴对x≥1时恒成立,∴在[1,+∞)上单调递减,∵,∴当x∈[1,e]时,h(x)≥0,∴g'(x)≥0,g(x)在[1,e]上单调递增;当x∈(e,+∞)时,h(x)<0,∴g'(x)<0,g(x)在[e,+∞)上单调递减.∴g(x)在x=e处取得最大值,∴a的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆O的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若直线l与圆O相交于A,B两点,求弦长|AB|;(2)以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,圆O和圆C的交点为P,Q,求弦PQ所在直线的直角坐标方程.【解答】解:(1)由直线l的参数方程为(t为参数),消去参数t,可得x﹣y+2=0,即直线l的普通方程为x﹣y+2=0.圆O的参数方程为(θ为参数),根据sin2θ+cos2θ=1消去参数θ,可得x2+y2=4,所以圆心O到直线l的距离,故弦长.(2)由于圆O的方程为:x2+y2=4,圆C的极坐标方程为,利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,可得圆C的普通方程为.∴弦PQ所在直线的直角坐标方程为,即.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x+1|﹣1.(1)求f(x)≤x+1的解集;(2)若不等式对任意实数a≠0恒成立,求实数x的取值范围.【解答】解:(1)由f(x)≤x+1,得|x﹣1|+|x+1|≤x+2,即或或即有1≤x≤2或0≤x<1或x∈∅,解得0≤x≤2,∴f(x)≤x+1的解集为[0,2].(2),当且仅当时,取等号.由不等式对任意实数a≠0恒成立,可得|x﹣1|+|x+1|﹣1≥3,即|x﹣1|+|x+1|≥4,即或或解得x≤﹣2或x≥2,故实数x的取值范围是(﹣∞,﹣2]∪[2,+∞).。
2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)
2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5.00分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5.00分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。
2018年高考文科数学(3卷)答案详解(附试卷)
2018年普通高等学校招生全国统一考试文科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D .【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则cos2α= {|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}(1i)(2i)+-=3i --3i -+3i -3i+1sin 3α=A .B .C .D . 【解析】227cos212sin 199αα=-=-=. 【答案】B5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.7【解析】只用现金支付、既用现金支付也用非现金支付、不用现金支付,三者是互斥事件,所以不用现金支付的概率为10.450.15=0.4--.【答案】B 6.函数2tan ()1tan xf x x=+的最小正周期为A .B .C .D .【解析】∵222222tan tan cos sin cos 1()sin cos sin 21tan (1tan )cos cos sin 2x x x x x f x x x x x x x x x ⋅=====++⋅+, ∴()f x 的最小正周期为 π .【答案】C7.下列函数中,其图像与函数的图像关于直线对称的是 A .B .C .D .【解析】解法一:从图A7中可以看出,函数)In(x y -=向右平移2个单位得到的图像,就是函数的图像关于直线对称的图像,其函数表达式为)2In(+-=x y .897979-89-4π2ππ2πln y x =1x =ln(1)y x =-ln(2)y x =-ln(1)y x =+ln(2)y x =+ln y x =1x =图A7解法一:(特殊值法)由题意可知,所求函数与函数的图像上的对应点关于对称. 在函数的图像任取一点(1,0),其关于对称的点为(1,0),即点(1,0)一定在所求的函数图像上,只有选项B 符合.【答案】B8.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min=⨯⨯=S ,6232221max =⨯⨯=S. ln y x =1x =ln y x =1x =20x y ++=x y A B P 22(2)2x y -+=ABP △[2,6][4,8]22(2)2x y -+=图A8【答案】A9.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(xf 422y x x =-++在),(220内为增函数,因此排除C.【答案】D10.已知双曲线C :22221(0,0)x y a b a b-=>>(4,0)到C 的渐近线的距离为AB.C .D .【解析】由题意可知c =,∴b a ==,渐近线方程为y x =±,即0x y ±=.∴ 点(4,0)到C 的渐近线的距离为222|4|=. 【答案】D11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. 222π3π4π6π∴3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , ∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
(完整版)2018年高考全国卷1文科数学试题及含答案
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列
2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2018年高考真题——文科数学(全国卷)+Word版含答案
甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y x =D .3y =7.在ABC △中,cos 2C 1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2-CD 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考新课标全国卷III文科数学(含答案)
8.直线 x y 2 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 ( x 2) y 2 上,则 △ ABP 面积 的取值范围是 A. [2, 6]
4 2
B. [4,8]
C. [ 2,3 2]
D. [2 2,3 2]
9.函数 y x x 2 的图像大致为
8 9
4
tan x 的最小正周期为 1 tan 2 x B. 2
ቤተ መጻሕፍቲ ባይዱ
C.
D. 2
7.下列函数中,其图像与函数 y ln x 的图像关于直线 x 1 对称的是
第 1 页
A. y ln(1 x )
B. y ln(2 x )
C. y ln(1 x )
D. y ln(2 x )
第 5 页
大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大 致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二 种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种 生产方式的效率更高.学科%网 以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知 m 列联表如下: 超过 m 第一种生产方式 第二种生产方式 (3)由于 K 2 19.(12 分) 解:(1)由题设知,平面 CMD⊥平面 ABCD,交线为 CD. 因为 BC⊥CD,BC 平面 ABCD,所以 BC⊥平面 CMD,故 BC⊥DM.
第 2 页
二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13.已知向量 a (1, 2) , b (2, 2) , c (1, ) .若 c
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)一、选择题目:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题目:本题共4小题,每小题5分,共20分。
2018年高考全国1卷文科数学(含答案)
4.已知椭圆 C :
x2 a2
y2 4
1的一个焦点为 (2 ,0) ,则 C 的离心率为
A. 1 3
B. 1 2
C. 2 2
D. 2 2 3
5.已知圆柱的上、下底面的中心分别为 O1 ,O2 ,过直线 O1O2 的平面截该圆柱所得的截面是面积为 8
的正方形,则该圆柱的表面积为
A.12 2π
B.12π
体的体积为
A.8
B. 6 2
C. 8 2
D.8 3
11.已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A1,a , B 2 ,b ,
且 cos 2 2 ,则 a b 3
A. 1 5
B. 5 5
C. 2 5 5
D.1
12.设函数
f
x
2 x 1
(2)当 a≥ 1 时,f(x)≥ ex ln x 1 .
4/9
20.(12 分)
设抛物线 C:y2 2x ,点 A2,0 , B2,0 ,过点 A 的直线 l 与 C 交于 M , N 两点.
(1)当 l 与 x 轴垂直时,求直线 BM 的方程; (2)证明:∠ABM ∠ABN . 21.(12 分)
已知函数 f x aex ln x 1. (1)设 x 2 是 f x 的极值点.求 a ,并求 f x 的单调区间; (2)证明:当 a ≥ 1 时, f x≥ 0 .
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合
题目要求的。
1.已知集合 A 0,2 , B 2,1,0,1,2,则 A B
A. 0 ,2
2015年西藏高考数学试卷(文科)(全国新课标Ⅱ)(附答案解析)
2015年西藏高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1. 已知集合A ={x|−1<x <2},B ={x|0<x <3},则A ∪B =( ) A.(−1, 3) B.(−1, 0) C.(0, 2) D.(2, 3)2. 若a 为实数,且2+ai1+i =3+i ,则a =( ) A.−4 B.−3C.3D.43. 根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4. a →=(1, −1),b →=(−1, 2)则(2a →+b →)⋅a →=( ) A.−1 B.0C.1D.25. 已知S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A.5 B.7C.9D.116. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17C.16D.157. 已知三点A(1, 0),B(0, √3),C(2, √3)则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.√213C.2√53D.438. 如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =( )A.0B.2C.4D.149. 已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4−1),则a 2=( )A.2B.1C.12D.1810. 已知A ,B 是球O 的球面上两点,∠AOB =90∘,C 为该球面上的动点,若三棱锥O −ABC 体积的最大值为36,则球O 的表面积为( ) A.36πB.64πC.144πD.256π11. 如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f(x),则y =f(x)的图象大致为( )A. B. C. D.12. 设函数f(x)=ln (1+|x|)−11+x 2,则使得f(x)>f(2x −1)成立的取值范围是( )A.(−∞, 13)∪(1, +∞)B.(13, 1)C.(−13,13)D.(−∞, −13)∪(13,+∞)二、填空题已知函数f(x)=ax 3−2x 的图象过点(−1, 4)则a =________.若x ,y 满足约束条件{x +y −5≤0,2x −y −1≥0,x −2y +1≤0,则z =2x +y 的最大值为________.已知双曲线过点(4,√3)且渐近线方程为y =±12x ,则该双曲线的标准方程是________.已知曲线y =x +ln x 在点(1,1)处的切线为l .若l 与曲线y =ax 2+(a +2)x +1相切,则a =________. 三.解答题△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin ∠Bsin ∠C ;(2)若∠BAC =60∘,求∠B .某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表B 地区用户满意度评分的频数分布表做出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.如图,长方体ABCD −A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过E ,F 的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值.椭圆C:x 2a 2+y 2b 2=1,(a >b >0)的离心率√22,点(2, √2)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.设函数f(x)=ln x +a(1−x). (Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a −2时,求a 的取值范围. 四、选修4-1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点.(1)证明:EF // BC ;(2)若AG 等于⊙O 的半径,且AE =MN =2√3,求四边形EBCF 的面积. 五、选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:{x =t cos αy =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=2√3cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值. 六、选修4-5不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a −b|<|c −d|的充要条件.参考答案与试题解析2015年西藏高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.【答案】A【考点】并集及其运算【解析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|−1<x<2},B={x|0<x<3},∴A∪B={x|−1<x<3}.故选A.2.【答案】D【考点】复数的基本概念虚数单位i及其性质【解析】根据复数相等的条件进行求解即可.【解答】解:由2+ai1+i=3+i,得2+ai=(1+i)(3+i)=2+4i,则a=4.故选D.3.【答案】D【考点】频率分布直方图【解析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004−2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.4.【答案】C【考点】平面向量数量积的性质及其运算【解析】利用向量的加法和数量积的坐标运算解答本题.【解答】因为a→=(1, −1),b→=(−1, 2)则(2a→+b→)⋅a→=(1, 0)⋅(1, −1)=1;5.【答案】A【考点】等差数列的前n项和【解析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=(1)则S5=5(a1+a5)2=5a3=(5)故选:A.6.【答案】D【考点】由三视图求体积【解析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为13×12×1×1×1=16,∴剩余部分体积为1−16=56,∴截去部分体积与剩余部分体积的比值为15.7.【答案】B【考点】圆的标准方程【解析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】因为△ABC 外接圆的圆心在直线BC 垂直平分线上,即直线x =1上, 可设圆心P(1, p),由PA =PB 得 |p|=√1+(p −√3)2, 得p =2√33圆心坐标为P(1, 2√33),所以圆心到原点的距离|OP|=(2√33)=√1+129=√213, 8.【答案】 B【考点】 程序框图 【解析】模拟执行程序框图,依次写出每次循环得到的a ,b 的值,当a =b =2时不满足条件a ≠b ,输出a 的值为2. 【解答】解:模拟执行程序框图,可得 a =14,b =18满足条件a ≠b ,不满足条件a >b ,b =4 满足条件a ≠b ,满足条件a >b ,a =10 满足条件a ≠b ,满足条件a >b ,a =6 满足条件a ≠b ,满足条件a >b ,a =2 满足条件a ≠b ,不满足条件a >b ,b =2 不满足条件a ≠b ,输出a 的值为2. 故选B . 9.【答案】 C【考点】等比数列的通项公式 【解析】利用等比数列的通项公式即可得出. 【解答】解:设等比数列{a n }的公比为q , ∵ a 1=14,a 3a 5=4(a 4−1),∴ (14)2×q 6=4(14q 3−1), 化为q 3=8,解得q =2. 则a 2=14×2=12.故选C .10.【答案】 C【考点】球的表面积和体积柱体、锥体、台体的体积计算【解析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O −ABC 的体积最大,利用三棱锥O −ABC 体积的最大值为36,求出半径,即可求出球O 的表面积. 【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时, 三棱锥O −ABC 的体积最大, 设球O 的半径为R ,此时V O−ABC =V C−AOB =13×12×R 2×R =16R 3=36, 故R =6,则球O 的表面积为4πR 2=144π. 故选C . 11.【答案】 B【考点】正切函数的图象 【解析】根据函数图象关系,利用排除法进行求解即可. 【解答】当0≤x ≤π4时,BP =tan x ,AP =√AB 2+BP 2=√4+tan 2x ,此时f(x)=√4+tan 2x +tan x ,0≤x ≤π4,此时单调递增,当P 在CD 边上运动时,π4≤x ≤3π4且x ≠π2时,如图所示,tan ∠POB =tan (π−∠POQ)=tan x =−tan ∠POQ =−PQOQ =−1OQ ,∴OQ=−1tan x,∴PD=AO−OQ=1+1tan x ,PC=BO+OQ=1−1tan x,∴PA+PB=√(1−1tan x )2+1+√(1+1tan x)2+1,当x=π2时,PA+PB=2√2,当P在AD边上运动时,3π4≤x≤π,PA+PB=√4+tan2x−tan x,由对称性可知函数f(x)关于x=π2对称,且f(π4)>f(π2),且轨迹为非线型,排除A,C,D,12.【答案】B【考点】对数函数的图象与性质【解析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)−11+x2为偶函数,且在x≥0时,f(x)=ln(1+x)−11+x2,导数为f′(x)=11+x +2x(1+x2)2>0,即有函数f(x)在[0, +∞)单调递增,∴f(x)>f(2x−1)等价为f(|x|)>f(|2x−1|),即|x|>|2x−1|,平方得3x2−4x+1<0,解得:13<x<1,所求x的取值范围是(13, 1).故选B.二、填空题【答案】−2【考点】函数解析式的求解及常用方法【解析】f(x)是图象过点(−1, 4),从而该点坐标满足函数f(x)解析式,从而将点(−1, 4)带入函数f(x)解析式即可求出a.【解答】根据条件得:4=−a+2;∴a=−2.【答案】8【考点】求线性目标函数的最值简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=−2x+z,平移直线y=−2x+z,由图象可知当直线y=−2x+z经过点A时,直线y=−2x+z的截距最大,此时z最大.由{x+y−5=0,x−2y+1=0,解得{x=3,y=2.即A(3, 2),将A(3, 2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【答案】14x2−y2=1【考点】双曲线的标准方程【解析】设双曲线方程为y2−14x2=λ,代入点(4,√3),求出λ,即可求出双曲线的标准方程.【解答】设双曲线方程为y2−14x2=λ,代入点(4,√3),可得3−14×16=λ,∴λ=−1,∴双曲线的标准方程是14x2−y2=1.【答案】8【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】本题考查导数的几何意义、数形结合思想的应用.【解答】解:函数f(x)=x+ln x的导函数为f′(x)=1+1x,则f′(1)=1+11=2,所以切线l的方程为y−1=2(x−1),即y=2x−1,因为直线l与曲线y=ax2+(a+2)x+1相切,所以方程ax2+(a+2)x+1=2x−1,即ax2+ax+2=0有两个相等的实数根,显然a≠0,则Δ=a2−4×2a=0,解得a=8.故答案为:8.三.解答题【答案】解:(1)如图,由正弦定理得:AD sin∠B =BDsin∠BAD ,ADsin∠C=DCsin∠CAD,∵AD平分∠BAC,BD=2DC,∴sin∠Bsin∠C =DCBD=12;(2)∵∠C=180∘−(∠BAC+∠B),∠BAC=60∘,∴sin∠C=sin(∠BAC+∠B)=√32cos∠B+12sin∠B,由(1)知2sin∠B=sin∠C,∴tan∠B=√33,即∠B=30∘.【考点】两角和与差的正弦公式正弦定理同角三角函数间的基本关系【解析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180∘−(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(1)如图,由正弦定理得:ADsin∠B=BDsin∠BAD,ADsin∠C=DCsin∠CAD,∵AD平分∠BAC,BD=2DC,∴sin∠Bsin∠C=DCBD=12;(2)∵∠C=180∘−(∠BAC+∠B),∠BAC=60∘,∴sin∠C=sin(∠BAC+∠B)=√32cos∠B+12sin∠B,由(1)知2sin∠B=sin∠C,∴tan∠B=√33,即∠B=30∘.【答案】(1)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(2)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【考点】频率分布直方图古典概型及其概率计算公式【解析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】(1)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(2)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【答案】(1)交线围成的正方形EFGH如图所示;(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH=√EH2−EM2=6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97.【考点】棱柱、棱锥、棱台的体积平面的基本性质及推论【解析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH=√EH2−EM2=6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】(1)交线围成的正方形EFGH如图所示;(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH=√EH2−EM2=6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97.【答案】椭圆C:x2a2+y2b2=1,(a>b>0)的离心率√22,点(2, √2)在C上,可得√a2−b2a=√22,4a2+2b2=1,解得a2=8,b2=4,所求椭圆C方程为:x28+y24=1.设直线l:y=kx+b,(k≠0, b≠0),A(x1, y1),B(x2, y2),M(x M, y M),把直线y=kx+b代入x28+y24=1可得(2k2+1)x2+4kbx+2b2−8=0,故x M=x1+x22=−2kb2k2+1,y M=kx M+b=b2k2+1,于是在OM的斜率为:K OM=y Mx M =−12k,即K OM⋅k=−12.∴直线OM的斜率与l的斜率的乘积为定值.【考点】椭圆的标准方程直线与椭圆结合的最值问题【解析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0, b≠0),A(x1, y1),B(x2, y2),M(x M, y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】椭圆C:x 2a2+y2b2=1,(a>b>0)的离心率√22,点(2, √2)在C上,可得√a2−b2a=√22,4a2+2b2=1,解得a2=8,b2=4,所求椭圆C方程为:x28+y24=1.设直线l:y=kx+b,(k≠0, b≠0),A(x1, y1),B(x2, y2),M(x M, y M),把直线y=kx+b代入x 28+y24=1可得(2k2+1)x2+4kbx+2b2−8=0,故x M=x1+x22=−2kb2k2+1,y M=kx M+b=b2k2+1,于是在OM的斜率为:K OM=y Mx M =−12k,即K OM⋅k=−12.∴直线OM的斜率与l的斜率的乘积为定值.【答案】(1)f(x)=ln x+a(1−x)的定义域为(0, +∞),∴f′(x)=1x −a=1−axx,若a≤0,则f′(x)>0,∴函数f(x)在(0, +∞)上单调递增,若a>0,则当x∈(0, 1a )时,f′(x)>0,当x∈(1a, +∞)时,f′(x)<0,所以f(x)在(0, 1a)上单调递增,在(1a, +∞)上单调递减,(2),由(Ⅰ)知,当a≤0时,f(x)在(0, +∞)上无最大值;当a>0时,f(x)在x=1a取得最大值,最大值为f(1a)=−ln a+a−1,∵f(1a)>2a−2,∴ln a+a−1<0,令g(a)=ln a+a−1,∵g(a)在(0, +∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0, 1).【考点】利用导数研究函数的单调性利用导数研究函数的最值【解析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=ln a+a−1,根据函数的单调性即可求出a的范围.【解答】(1)f(x)=ln x+a(1−x)的定义域为(0, +∞),∴f′(x)=1x−a=1−axx,若a≤0,则f′(x)>0,∴函数f(x)在(0, +∞)上单调递增,若a>0,则当x∈(0, 1a)时,f′(x)>0,当x∈(1a, +∞)时,f′(x)<0,所以f(x)在(0, 1a)上单调递增,在(1a, +∞)上单调递减,(2),由(Ⅰ)知,当a≤0时,f(x)在(0, +∞)上无最大值;当a>0时,f(x)在x=1a取得最大值,最大值为f(1a)=−ln a+a−1,∵f(1a)>2a−2,∴ln a+a−1<0,令g(a)=ln a+a−1,∵g(a)在(0, +∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0, 1).四、选修4-1:几何证明选讲【答案】证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF // BC;由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30∘,∴△ABC与△AEF都是等边三角形,∵AE=2√3,∴AO=4,OE=2,∵OM=OE=2,DM=12MN=√3,∴OD=1,∴AD=5,AB=10√33,∴四边形EBCF的面积为12×(10√33)2×√32−12×(2√3)2×√32=16√33.【考点】相似三角形的判定【解析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC−S△AEF计算即可.【解答】证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF // BC;由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30∘,∴△ABC与△AEF都是等边三角形,∵AE=2√3,∴AO=4,OE=2,∵OM=OE=2,DM=12MN=√3,∴OD=1,∴AD=5,AB=10√33,∴四边形EBCF的面积为12×(10√33)2×√32−12×(2√3)2×√32=16√33.五、选修4-4:坐标系与参数方程【答案】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C3:ρ=2√3cosθ,则ρ2=2√3ρcosθ,即x2+y2=2√3x,②由①②得{x=0y=0或{x=√32y=32,即C2与C3交点的直角坐标为(0, 0),(√32, 32);(2)曲线C1的极坐标方程为θ=α(ρ∈R, ρ≠0),其中0≤α<π.因此A的极坐标为(2sinα, α),B的极坐标为(2√3cosα, α).所以|AB|=|2sinα−2√3cosα|=4|sin(α−π3)|,当α=5π6时,|AB|取得最大值,最大值为4.【考点】参数方程的优越性平面直角坐标系与曲线方程两点间的距离公式【解析】(1)将C2与C1转化为直角坐标方程,解方程组即可求出交点坐标;(2)求出A,B的极坐标,利用距离公式进行求解.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C3:ρ=2√3cosθ,则ρ2=2√3ρcosθ,即x2+y2=2√3x,②由①②得{x=0y=0或{x=√32y=32,即C2与C3交点的直角坐标为(0, 0),(√32, 32);(2)曲线C1的极坐标方程为θ=α(ρ∈R, ρ≠0),其中0≤α<π.因此A的极坐标为(2sinα, α),B的极坐标为(2√3cosα, α).所以|AB|=|2sinα−2√3cosα|=4|sin(α−π3)|,当α=5π6时,|AB|取得最大值,最大值为4.六、选修4-5不等式选讲【答案】由于(√a+√b)2=a+b+2√ab,(√c+√d)2=c+d+2√cd,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则√ab>√cd,即有(√a+√b)2>(√c+√d)2,则√a+√b>√c+√d;①若√a+√b>√c+√d,则(√a+√b)2>(√c+√d)2,即为a+b+2√ab>c+d+2√cd,由a+b=c+d,则ab>cd,于是(a−b)2=(a+b)2−4ab,(c−d)2=(c+d)2−4cd,即有(a−b)2<(c−d)2,即为|a−b|<|c−d|;②若|a−b|<|c−d|,则(a−b)2<(c−d)2,即有(a+b)2−4ab<(c+d)2−4cd,由a+b=c+d,则ab>cd,则有(√a+√b)2>(√c+√d)2.综上可得,√a+√b>√c+√d是|a−b|<|c−d|的充要条件.【考点】不等式的证明【解析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若√a+√b>√c+√d,证得|a−b|<|c−d|,②若|a−b|<|c−d|,证得√a+√b>√c+√d,注意运用不等式的性质,即可得证.【解答】由于(√a+√b)2=a+b+2√ab,(√c+√d)2=c+d+2√cd,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则√ab>√cd,即有(√a+√b)2>(√c+√d)2,则√a+√b>√c+√d;①若√a+√b>√c+√d,则(√a+√b)2>(√c+√d)2,即为a+b+2√ab>c+d+2√cd,由a+b=c+d,则ab>cd,于是(a−b)2=(a+b)2−4ab,(c−d)2=(c+d)2−4cd,即有(a−b)2<(c−d)2,即为|a−b|<|c−d|;②若|a−b|<|c−d|,则(a−b)2<(c−d)2,即有(a+b)2−4ab<(c+d)2−4cd,由a+b=c+d,则ab>cd,则有(√a+√b)2>(√c+√d)2.综上可得,√a+√b>√c+√d是|a−b|<|c−d|的充要条件.第21页共22页◎第22页共22页。
2018年西藏拉萨市高考数学一模试卷(文科)
2018年西藏拉萨市高考数学一模试卷〔文科〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕集合A={1,2,3,4},B={x|x2﹣4≥0},那么A∩B=〔〕A.{1,2}B.{3,4}C.{2,3,4}D.{1,2,3,4}2.〔5分〕a∈R,i是虚数单位,假设z=a﹣i,,那么a=〔〕A.B.±1 C.D.3.〔5分〕等差数列{a n}的前n项和为S n,假设a3=8,S6=54,那么数列{a n}的公差为〔〕A.2 B.3 C.4 D.4.〔5分〕函数f〔x〕=〔2x﹣2﹣x〕cosx在区间[﹣5,5]上的图象大致为〔〕A.B.C.D.5.〔5分〕点P在圆C:x2+y2﹣4x﹣2y+4=0上运动,那么点P到直线l:x﹣2y﹣5=0的距离的最小值是〔〕A.4 B.C.D.6.〔5分〕设向量,,且,那么向量与的夹角为〔〕A.B.C. D.7.〔5分〕执行如下图的程序框图,假设输出S的值为14,那么空白判断框中的条件可能为〔〕A.k<2 B.k<3 C.k<4 D.k<58.〔5分〕函数f〔x〕=,那么f〔﹣2018〕=〔〕A.B.3 C.D.99.〔5分〕使函数是偶函数,且在上是减函数的θ的一个值是〔〕A.B.C. D.10.〔5分〕中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如.现在正五边形A1B1C1D1E1内随机取一点,那么此点取自正五边形A2B2C2D2E2内部的概率为〔〕A.B.C.D.11.〔5分〕等比数列{a n}的前n项积为T n,假设a1=﹣24,a4=﹣,那么当T n 取最大值时,n的值为〔〕A.2 B.3 C.4 D.612.〔5分〕设函数f'〔x〕是奇函数f〔x〕〔x∈R〕的导函数,当x>0时,,那么使得〔x2﹣1〕f〔x〕>0成立的x的取值范围是〔〕A.〔﹣1,0〕∪〔0,1〕B.〔﹣∞,﹣1〕∪〔1,+∞〕C.〔﹣1,0〕∪〔1,+∞〕D.〔﹣∞,﹣1〕∪〔0,1〕二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.〔5分〕实数x,y满足,那么的取值范围为.14.〔5分〕双曲线经过点〔2,3〕,其一条渐近线方程为,那么该双曲线的标准方程为.15.〔5分〕中国古代数学瑰宝?九章算术?中有这样一道题:“今有堑堵〔底面为直角三角形的直棱柱〕下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?〞其意思为:“今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?〞1丈为10尺,那么题中的堑堵的外接球的外表积为平方尺.16.〔5分〕函数f〔x〕,假设关于x的方程f〔x〕﹣mx=0至少有两个不同的实数解,那么实数m的取值范围为.三、解答题〔本大题共5小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔12分〕a,b,c分别为△ABC的三个内角A,B,C的对边,且.〔1〕求角A;〔2〕假设,△ABC的面积为,求b,c.18.〔12分〕随着科技开展,成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的了.为了调查某地区高中生一周使用的频率,某机构随机调查了该地区100名高中生某一周使用的时间〔单位:小时〕,所取样本数据分组区间为[0,2〕、[2,4〕、[4,6〕、[6,8〕、[8,10〕、[10,12〕、[12,14],由此得到如下图的频率分布直方图.〔1〕求a的值并估计该地区高中生一周使用时间的平均值;〔2〕从使用时间在[6,8〕、[8,10〕、[10,12〕、[12,14]的四组学生中,用分层抽样方法抽取13人,那么每层各应抽取多少人?19.〔12分〕如图,四棱锥P﹣ABCD底面为等腰梯形,AD∥BC且BC=2AD=4,点E为PC中点.〔1〕证明:DE∥平面PAB;〔2〕假设PA⊥平面ABCD,∠ABC=60°,直线PB与平面ABCD所成角的正切值为,求四棱锥P﹣ABCD的体积V.20.〔12分〕椭圆的长轴长是短轴长的倍,且过点.〔1〕求椭圆的标准方程;〔2〕假设△OAB的顶点A、B在椭圆上,OA所在的直线斜率为k1,OB所在的直线斜率为k2,假设,求的最大值.21.〔12分〕函数f〔x〕=lnx﹣ax,e为自然对数的底数,a∈R.〔1〕讨论函数f〔x〕的单调性;〔2〕当x≥1时,恒成立,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.〔10分〕在直角坐标系xOy中,圆O的参数方程为〔θ为参数〕,直线l的参数方程为〔t为参数〕.〔1〕假设直线l与圆O相交于A,B两点,求弦长|AB|;〔2〕以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,圆O和圆C的交点为P,Q,求弦PQ所在直线的直角坐标方程.[选修4-5:不等式选讲]23.函数f〔x〕=|x﹣1|+|x+1|﹣1.〔1〕求f〔x〕≤x+1的解集;〔2〕假设不等式对任意实数a≠0恒成立,求实数x的取值范围.2018年西藏拉萨市高考数学一模试卷〔文科〕参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕集合A={1,2,3,4},B={x|x2﹣4≥0},那么A∩B=〔〕A.{1,2}B.{3,4}C.{2,3,4}D.{1,2,3,4}【解答】解:B={x|x2﹣4≥0}={x|x≥2或x≤﹣2},∵A={1,2,3,4},∴A∩B={2,3,4},应选:C2.〔5分〕a∈R,i是虚数单位,假设z=a﹣i,,那么a=〔〕A.B.±1 C.D.【解答】解:由z=a﹣i,得,又〔a﹣i〕〔a+i〕=2,解得a=±1.应选:B.3.〔5分〕等差数列{a n}的前n项和为S n,假设a3=8,S6=54,那么数列{a n}的公差为〔〕A.2 B.3 C.4 D.【解答】解:在等差数列中,由a3=8,S6=54得,得a1=4,d=2,应选:A4.〔5分〕函数f〔x〕=〔2x﹣2﹣x〕cosx在区间[﹣5,5]上的图象大致为〔〕A.B.C.D.【解答】解:当x∈[0,5]时,f〔x〕=〔2x﹣2﹣x〕cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f〔π〕=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,应选:D.5.〔5分〕点P在圆C:x2+y2﹣4x﹣2y+4=0上运动,那么点P到直线l:x﹣2y﹣5=0的距离的最小值是〔〕A.4 B.C.D.【解答】解:圆C:x2+y2﹣4x﹣2y+4=0,转化为:〔x﹣2〕2+〔y﹣1〕2=1,那么圆心〔2,1〕到直线x﹣2y﹣5=0的距离d==,那么:点P到直线l的最小距离d min=﹣1.应选:D6.〔5分〕设向量,,且,那么向量与的夹角为〔〕A.B.C. D.【解答】解:根据题意,设向量与的夹角为θ,向量,,假设,那么有•=x﹣=0,解可得x=,即=〔,1〕,=〔1,﹣〕,那么﹣=〔0,4〕,那么有|﹣|=4,||=2,〔﹣〕•=•﹣2=﹣4,那么cosθ==﹣,又由0≤θ≤π,那么θ=;应选:D.7.〔5分〕执行如下图的程序框图,假设输出S的值为14,那么空白判断框中的条件可能为〔〕A.k<2 B.k<3 C.k<4 D.k<5【解答】解:模拟执行程序框图,可得k=1,S=0S=2满足条件,执行循环体,k=2,S=2+22=6满足条件,执行循环体,k=3,S=2+23=14此时,由题意,不满足判断框内的条件,退出循环,输出S的值为14.可得判断框内的条件为:k<3?应选:B.8.〔5分〕函数f〔x〕=,那么f〔﹣2018〕=〔〕A.B.3 C.D.9【解答】解:∵函数f〔x〕=,∴f〔﹣2018〕=f〔﹣2018+4036×〕=f〔0〕=f〔〕==32=9.应选:D.9.〔5分〕使函数是偶函数,且在上是减函数的θ的一个值是〔〕A.B.C. D.【解答】解:∵函数=2sin〔2x+θ+〕是偶函数,∴θ+=kπ+,即θ=kπ+,k∈Z ①,故可取θ=,此时,f〔x〕=2sin〔2x+〕=cos2x,且在上,2x∈[0,],f〔x〕是减函数,应选:B.10.〔5分〕中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如.现在正五边形A1B1C1D1E1内随机取一点,那么此点取自正五边形A2B2C2D2E2内部的概率为〔〕A.B.C.D.【解答】解:根据题意知,正五边形A1B1C1D1E1∽正五边形A2B2C2D2E2,又,∴===•=,∴所求的概率为P==.应选:D.11.〔5分〕等比数列{a n}的前n项积为T n,假设a1=﹣24,a4=﹣,那么当T n 取最大值时,n的值为〔〕A.2 B.3 C.4 D.6【解答】解:等比数列{a n}的前n项积为T n,假设a1=﹣24,a4=﹣,可得q3==,解得q=,T n=a1a2a3…a n=〔﹣24〕n•q1+2+…+〔n﹣1〕=〔﹣24〕n•〔〕,当T n取最大值时,可得n为偶数,函数y=〔〕x在R上递减,当n=2时,T2=242•=192;当n=4时,T4=244•〔〕6=;当n=6时,T6=246•〔〕15=,那么T2<T4>T6,当n>6,且n为偶数时,T n<T6,故n=4时,T n取最大值.应选:C.12.〔5分〕设函数f'〔x〕是奇函数f〔x〕〔x∈R〕的导函数,当x>0时,,那么使得〔x2﹣1〕f〔x〕>0成立的x的取值范围是〔〕A.〔﹣1,0〕∪〔0,1〕B.〔﹣∞,﹣1〕∪〔1,+∞〕C.〔﹣1,0〕∪〔1,+∞〕D.〔﹣∞,﹣1〕∪〔0,1〕【解答】解:根据题意,设g〔x〕=lnx•f〔x〕,〔x>0〕,其导数g′〔x〕=〔lnx〕′f〔x〕+lnxf′〔x〕=f〔x〕+lnxf′〔x〕,又由当x>0时,,那么有g′〔x〕=f〔x〕+lnxf′〔x〕<0,即函数g〔x〕在〔0,+∞〕上为减函数,又由g〔1〕=ln1•f〔x〕=0,那么在区间〔0,1〕上,g〔x〕=lnx•f〔x〕>0,又由lnx<0,那么f〔x〕<0,在区间〔1,+∞〕上,g〔x〕=lnx•f〔x〕<0,又由lnx>0,那么f〔x〕<0,那么f〔x〕在〔0,1〕和〔1,+∞〕上,f〔x〕<0,又由f〔x〕为奇函数,那么在区间〔﹣1,0〕和〔﹣∞,﹣1〕上,都有f〔x〕>0,〔x2﹣1〕f〔x〕>0⇒或,解可得:x<﹣1或0<x<1,那么x的取值范围是〔﹣∞,﹣1〕∪〔0,1〕;应选:D.二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13.〔5分〕实数x,y满足,那么的取值范围为.【解答】解:作出不等式组对应的平面区域,的几何意义是区域内的点到D 〔﹣2,1〕的斜率;由图象知BD的斜率最大,CD的斜率最小,由,即B〔1,2〕,那么BD的斜率k==,由解得C〔1,〕.,CD的斜率k==﹣,即﹣≤≤,故答案为:.14.〔5分〕双曲线经过点〔2,3〕,其一条渐近线方程为,那么该双曲线的标准方程为x2﹣=1.【解答】解:根据题意,双曲线的一条渐近线方程为y=x,那么可以设其方程为3x2﹣y2=m,〔m≠0〕,又由其经过〔2,3〕,那么有3×4﹣9=m,解可得m=3,那么其方程为:3x2﹣y2=3,其标准方程为:x2﹣=1,故答案为:.15.〔5分〕中国古代数学瑰宝?九章算术?中有这样一道题:“今有堑堵〔底面为直角三角形的直棱柱〕下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?〞其意思为:“今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?〞1丈为10尺,那么题中的堑堵的外接球的外表积为35621π平方尺.【解答】解:∵今有底面为直角三角形的直棱柱,底面的直角边长宽为2丈,长为18丈6尺,高为2丈5尺,∴题中的堑堵的外接球的半径:R==〔尺〕.∴题中的堑堵的外接球的外表积为S=4πR2=35621π.故答案为:35621π.16.〔5分〕函数f〔x〕,假设关于x的方程f〔x〕﹣mx=0至少有两个不同的实数解,那么实数m的取值范围为[]∪〔2,+∞〕.【解答】解:f〔x〕==,当m=0时,f〔x〕的图象如图:y=mx化为y=0,符合题意;当m>0时,f〔x〕的图象如图:要使y=f〔x〕的图象与y=mx的图象至少有两个不同的交点,联立,得x2﹣〔m+2〕x+2m=0,那么△=〔m+2〕2﹣8m≥0,解得m≥2,当m=2时不合题意,那么m>2;当m<0时,f〔x〕的图象如图:要使y=f〔x〕的图象与y=mx的图象至少有两个不同的交点,那么﹣m≤2m+1,解得m,∴.综上,要使关于x的方程f〔x〕﹣mx=0至少有两个不同的实数解,那么实数m的取值范围为[]∪〔2,+∞〕.故答案为:[]∪〔2,+∞〕.三、解答题〔本大题共5小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔12分〕a,b,c分别为△ABC的三个内角A,B,C的对边,且.〔1〕求角A;〔2〕假设,△ABC的面积为,求b,c.【解答】解:〔1〕由及正弦定理,得,由于sinC≠0,所以,即.又0<A<π,所以,所以,故.〔2〕△ABC的面积,故bc=4,①由余弦定理a2=b2+c2﹣2bccosA,故〔b﹣c〕2=a2﹣3bc=12﹣12=0,故b=c,②由①②解得b=c=2.18.〔12分〕随着科技开展,成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的了.为了调查某地区高中生一周使用的频率,某机构随机调查了该地区100名高中生某一周使用的时间〔单位:小时〕,所取样本数据分组区间为[0,2〕、[2,4〕、[4,6〕、[6,8〕、[8,10〕、[10,12〕、[12,14],由此得到如下图的频率分布直方图.〔1〕求a的值并估计该地区高中生一周使用时间的平均值;〔2〕从使用时间在[6,8〕、[8,10〕、[10,12〕、[12,14]的四组学生中,用分层抽样方法抽取13人,那么每层各应抽取多少人?【解答】解:〔1〕由于小矩形的面积之和为1,那么〔a++4a++5a++0.025〕×2=1,由此可得a=0.02.该地区高中生一周使用时间的平均值为〔1×+3×+5×+7×+9×+11×+13×0.025〕×2=6.94.〔2〕使用时间在[×2×100=30人,使用时间在[×5×2×100=20人,使用时间在[×2×100=10人,使用时间在[12,14]×2×100=5人,故用分层抽样法从使用时间在[6,8〕,[8,10〕,[10,12〕,[12,14]的四组学生中抽样,抽取人数分别为,,,.19.〔12分〕如图,四棱锥P﹣ABCD底面为等腰梯形,AD∥BC且BC=2AD=4,点E为PC中点.〔1〕证明:DE∥平面PAB;〔2〕假设PA⊥平面ABCD,∠ABC=60°,直线PB与平面ABCD所成角的正切值为,求四棱锥P﹣ABCD的体积V.【解答】证明:〔1〕取BC中点F,连接DF、EF.由于EF为△PBC中位线,所以EF∥PB,又EF⊄平面PAB,PB⊂平面PAB,所以EF∥平面PAB.由于AD∥BC且BC=2AD,那么AD BF,所以四边形ABFD为平行四边形,所以DF∥AB,因为DF⊄平面PAB,AB⊂面PAB,所以DF∥平面PAB.因为EF∥平面PAB,DF∥平面PAB,EF∩DF=F,EF,DF⊂平面DEF,所以平面DEF∥平面PAB.又DE⊂平面DEF,所以DE∥平面PAB.解:〔2〕作AG⊥BC于点G,那么BG=1.在△ABG中,∠ABG=60°,BG=1,那么,AB=2.由PA⊥平面ABCD知,直线PB与平面ABCD所成角为∠PBA,故,即在△PAB中,有,那么PA=3.所以,四棱锥P﹣ABCD的体积=.20.〔12分〕椭圆的长轴长是短轴长的倍,且过点.〔1〕求椭圆的标准方程;〔2〕假设△OAB的顶点A、B在椭圆上,OA所在的直线斜率为k1,OB所在的直线斜率为k2,假设,求的最大值.【解答】解:〔1〕由题意得解得∴椭圆的标准方程为.〔2〕设A〔x1,y1〕,B〔x2,y2〕,不妨设x1>0,x2>0.由,∴〔k1≠0〕,直线OA、OB的方程分别为y=k1x,,联立解得,.∵=,当且仅当时,等号成立.所以的最大值为2.21.〔12分〕函数f〔x〕=lnx﹣ax,e为自然对数的底数,a∈R.〔1〕讨论函数f〔x〕的单调性;〔2〕当x≥1时,恒成立,求a的取值范围.【解答】解:〔1〕f〔x〕的定义域为〔0,+∞〕,.假设a≤0时,那么f'〔x〕>0,∴f〔x〕在〔0,+∞〕上单调递增;假设a>0时,那么由f'〔x〕=0,∴.当时,f'〔x〕>0,∴f〔x〕在上单调递增;当时,f'〔x〕<0,∴f〔x〕在上单调递减.综上所述,当a≤0时,f〔x〕在〔0,+∞〕上单调递增;当a>0时,f〔x〕在上单调递增,在上单调递减.〔2〕由题意得:对x≥1时恒成立,∴对x≥1时恒成立.令,〔x≥1〕,∴.令,∴对x≥1时恒成立,∴在[1,+∞〕上单调递减,∵,∴当x∈[1,e]时,h〔x〕≥0,∴g'〔x〕≥0,g〔x〕在[1,e]上单调递增;当x∈〔e,+∞〕时,h〔x〕<0,∴g'〔x〕<0,g〔x〕在[e,+∞〕上单调递减.∴g〔x〕在x=e处取得最大值,∴a的取值范围是.请考生在22、23两题中任选一题作答,如果多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.〔10分〕在直角坐标系xOy中,圆O的参数方程为〔θ为参数〕,直线l的参数方程为〔t为参数〕.〔1〕假设直线l与圆O相交于A,B两点,求弦长|AB|;〔2〕以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,圆O和圆C的交点为P,Q,求弦PQ所在直线的直角坐标方程.【解答】解:〔1〕由直线l的参数方程为〔t为参数〕,消去参数t,可得x﹣y+2=0,即直线l的普通方程为x﹣y+2=0.圆O的参数方程为〔θ为参数〕,根据sin2θ+cos2θ=1消去参数θ,可得x2+y2=4,所以圆心O到直线l的距离,故弦长.〔2〕由于圆O的方程为:x2+y2=4,圆C的极坐标方程为,利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,可得圆C的普通方程为.∴弦PQ所在直线的直角坐标方程为,即.[选修4-5:不等式选讲]23.函数f〔x〕=|x﹣1|+|x+1|﹣1.〔1〕求f〔x〕≤x+1的解集;〔2〕假设不等式对任意实数a≠0恒成立,求实数x的取值范围.【解答】解:〔1〕由f〔x〕≤x+1,得|x﹣1|+|x+1|≤x+2,即或或即有1≤x≤2或0≤x<1或x∈∅,解得0≤x≤2,∴f〔x〕≤x+1的解集为[0,2].〔2〕,当且仅当时,取等号.由不等式对任意实数a≠0恒成立,可得|x﹣1|+|x+1|﹣1≥3,即|x﹣1|+|x+1|≥4,即或或解得x≤﹣2或x≥2,故实数x的取值范围是〔﹣∞,﹣2]∪[2,+∞〕.。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
2018年西藏高考数学试卷(文科)(全国新课标ⅲ)
2018年西藏高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。
2018年高考真题全国3卷文科数学(附答案解析)
13.
2
【解析】
【分析】
由两向量共线的坐标关系计算即可.
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超 过 m 和不超过 m 的工人数填入下面的列联表:
超过 m
不超过 m
第一种生产方式 第二种生产方式
(3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
则 P (A ∪ B=) P (A) + P (B) + P (AB=) 1
= 因为 P (A) 0= .45, P (AB) 0.15
所以 P (B) = 0.4 ,
故选 B. 点睛:本题主要考查事件的基本关系和概率的计算,属于基础题. 6.C 【解析】 【详解】
分析:将函数
f
(
x
)
=
tanx 1+ tan2
Q= SVABC
= 3 AB2 9 3 4
∴AB = 6 , Q 点 M 为三角形 ABC 的中心 ∴BM = 2 BE = 2 3
3 ∴ RtVOMB 中,有 OM = OB2 − BM 2 = 2
∴DM = OD + OM = 4 + 2 = 6
( ) ∴ VD−ABC
= 1×9 max 3
3 × 6 = 18
分析:确定函数 y = lnx 过定点(1,0)关于 x=1 对称点,代入选项验证即可。
详解:函数 y = lnx 过定点(1,0),(1,0)关于 x=1 对称的点还是(1,0),只有=y ln (2 − x )
过此点。 故选项 B 正确 点睛:本题主要考查函数的对称性和函数的图像,属于中档题。 8.A 【解析】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年西藏高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=.14.(5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.15.(5分)若变量x,y满足约束条件,则z=x+y的最大值是.16.(5分)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)=.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828 19.(12分)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.20.(12分)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.21.(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.[选修4-5:不等式选讲](10分)23.设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.2018年西藏高考数学试卷(文科)(全国新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.故选:C.2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i【解答】解:(1+i)(2﹣i)=3+i.故选:D.3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.()4.(5分)若sinα=,则cos2α=A.B.C.﹣ D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.5.(5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.7【解答】解:某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1﹣0.45﹣0.15=0.4.故选:B.6.(5分)函数f(x)=的最小正周期为()A.B.C.πD.2π【解答】解:函数f(x)===sin2x的最小正周期为=π,故选:C.7.(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),|AB|==2,∵点P在圆(x﹣2)2+y2=2上,∴设P(2+,),∴点P到直线x+y+2=0的距离:d==,∵sin()∈[﹣1,1],∴d=∈[],∴△ABP面积的取值范围是:[,]=[2,6].故选:A.9.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.10.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.2【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得=,即:,解得a=b,双曲线C:﹣=1(a>b>0)的渐近线方程玩:y=±x,点(4,0)到C的渐近线的距离为:=2.故选:D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,∴S△ABC==,∴sinC==cosC,∵0<C<π,∴C=.故选:C.12.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=.【解答】解:∵向量=(1,2),=(2,﹣2),∴=(4,2),∵=(1,λ),∥(2+),∴,解得λ=.故答案为:.14.(5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是分层抽样.【解答】解:某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是分层抽样.故答案为:分层抽样.15.(5分)若变量x,y满足约束条件,则z=x+y的最大值是3.【解答】解:画出变量x,y满足约束条件表示的平面区域如图:由解得A(2,3).z=x+y变形为y=﹣3x+3z,作出目标函数对应的直线,当直线过A(2,3)时,直线的纵截距最小,z最大,最大值为2+3×=3,故答案为:3.16.(5分)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)=﹣2.【解答】解:函数g(x)=ln(﹣x)满足g(﹣x)=ln(+x)==﹣ln(﹣x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(﹣x)+1,f(a)=4,可得f(a)=4=ln(﹣a)+1,可得ln(﹣a)=3,则f(﹣a)=﹣ln(﹣a)+1=﹣3+1=﹣2.故答案为:﹣2.三、解答题:共70分。