七年级数学(下)第五章知识点整理

合集下载

人教版数学七年级下册第五章 相交线与平行线 课件(30张ppt)

人教版数学七年级下册第五章  相交线与平行线 课件(30张ppt)

知识点 对顶角的概念和性质
比例规张开的相对的两个角,就是一对对顶角.
知识点 对顶角的概念和性质
相等的角不一定是对顶角.
知识点 垂线与垂线段
用直角三角尺和量角器画垂线的方法:
知识点 垂线与垂线段
垂线段是图形,点到直线的距离是数量,是该点到直线的垂线段的长度, 所以不能说“垂线段是距离”,也不能说“作出点到直线的距离”.
平行线的判定与性质之间的关系.
知识点 命题、定理和证明
妈妈要榨果汁,她有苹果、橙子、雪梨三种水果,且其克数比为 9∶7∶6,小明发现妈妈榨完果汁后,苹果、橙子、雪梨的克数比变为 6∶3∶4,且榨果汁时妈妈没有使用雪梨.
知识点 命题、定理和证明
小明这样想:原来苹果、橙子、雪梨的克数比为9∶7∶6,即 18∶14∶12;榨汁后苹果、橙子、雪梨的克数比变为6∶3∶4,即 18∶9∶12.由于没有使用雪梨,所以也没有使用苹果. 他利用所学数学知识推断出妈妈榨果汁时只使用了橙子.
借助三角尺与直尺画平行线时,必须保持紧靠,否则画出的直线不平行.
知识点 平行公理及其推论
在绘制斑马线时,只要保证相邻的两条线彼此平行,就能保证所有的斑 马线都彼此平行.
知识点 平行线的判定方法
木工用角尺的一边紧靠木料边缘,另一边画两条直线a,b,根据“同位角 相等,两直线平行”可知这两条直线平行.
知识点 平行线的判定方法
同一平面内,垂直于同一直线的两条直线互相平行,即在同一平面内,若 a⊥c,b⊥c,则a∥b.
第五章 相交线与平行线
5.3 平行线的性质
知识点 平行线的性质
一条公路两次转弯后又回到与原来相同的方向,如果第一次转弯时 ∠A=140°,根据性质2可得∠B=140°.

人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件

人教版数学初一下册第五章 相交线与平行线  5.3.2:命题、定理、证明(1)课件
如果两个数互为相反数,那么这两个数相加得0; (4)同旁内角互补;
如果两个角是同旁内角,那么这两个角互补;
(5)对顶角相等.如果两个角是对顶角,那么这两个角相等.
16
知识点一:命题
学以致用
2、改写成“如果……那么……”的形式。并指出下列各命题 的题设和结论,
①、内错角相等; ②、两条平行线被第三直线所截,同位角相等; ③、同角的余角相等; ④、同平行于一直线的两直线平行; ⑤、直角三角形的两个锐角互余; ⑥、等角的补角相等; ⑦、正数与负数的和为0。
①如果一个数能被4整除,那么它也能被2整除。 ②如果两个角互补,那么它们是邻补角。
③相等的角是对顶角.
1
2
1 2
20
知识点二:真命题和假命题
归纳总结
判断一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举 反例等方法。
判断一个命题是假命题的方法:
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
,那么..."的形式,会区分命题的题设和结论。 2.知道真命题和假命题的概念,会通过举反例判 断一个命题是假命题.
重点难点 重点:命题的概念以及真命题和假命题的概念.
难点:区分命题的题设和结论.
3
知识点一:命题
新知探究
刚刚我们复习了平行线的性质与判定,这些语句都对某 一件事情作出判断,如:同位角相等,两条直线平行.
(2)题设是“两直线平行”,结论是“同位角相等”;
(3)题设是“两个角是邻补角”,结论是“这两个角互补”.
13
知识点一:命题
互动探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;

七年级下册数学第五章知识点总结

七年级下册数学第五章知识点总结

七年级下册数学第五章知识点总结第五章主要讲解了关于平面图形的分类、特征以及计算相关,其中包括正方形、矩形、平行四边形、菱形、梯形、圆等。

本文将从以下几个方面对这些内容进行总结。

基本概念平面图形是由各种点、线、面组成的,其中点是最基本的元素,线是由一些点组成的,面是由一些线构成的。

平面图形的分类有点、线、角、三角形、四边形、圆和复合图形等。

我们需要熟悉各种符号的含义,如直角符号“∠”表示角度,平行符号“||”表示两条线段之间的关系。

正方形和矩形正方形和矩形是常见的平面图形,它们有许多共同特征,如四个角度相等,相邻的内角互补等。

我们还需要知道它们的周长和面积公式,以便应用到实际场景中。

平行四边形和菱形平行四边形和菱形同样是有一些共同特征的平面图形,如有一组对边相等且平行等。

我们还需要了解它们的周长和面积公式,并学会使用这些公式求解问题。

梯形梯形是四边形的一种,拥有两组平行的边,它的面积公式需要用到上底、下底和高等参数,我们需要掌握如何计算这些参数,进而求出梯形的面积。

圆圆是一个独特的平面图形,它没有角度和边界,但却有半径、直径、圆周和面积等重要特征。

我们需要掌握圆的相关公式,如圆的周长公式、圆面积公式等,以及如何在实际问题中应用这些公式。

复合图形复合图形是由多个平面图形组成的,需要将它们分解为简单的图形进行计算。

我们需要掌握如何将复合图形分解,计算各个简单图形的周长和面积,并最终求得整个复合图形的周长和面积。

总结本章的知识点比较抽象,需要大量的练习才能更好地掌握。

熟练掌握这些概念和公式可以帮助我们应对实际问题,并在日常生活中更好地理解和运用数学知识。

我们还需要注意记忆各种公式、特征和符号的含义,以便在应用时灵活运用。

数学七年级下册第五章知识点总结

数学七年级下册第五章知识点总结

数学七年级下册第五章知识点总结在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

下面是整理的数学七年级下册第五章知识点,仅供参考希望能够帮助到大家。

数学七年级下册第五章知识点1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。

(2)三角形的任意两边之差小于第三边。

(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。

交点在三角形的内部。

(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

七年级下册数学第五章知识点

七年级下册数学第五章知识点

七年级下册数学第五章知识点数学是一门非常重要的学科,不仅在学校里学习,还在日常生活中广泛应用。

而七年级下册的数学第五章是一个重要的章节,本文将会讨论该章节的一些知识点。

1.比例与比例方程在数学中,比例是一个非常重要的概念。

比例是指两个或多个物体(事物)之间的数量关系。

比例关系可以用比例表示,也可以用比例方程表示。

比例方程是一个基本的数学工具,用于解决一些实际问题。

比例方程的解是符合比例关系的数值。

通过比例方程的解,可以计算出未知量的数值。

2.百分数与百分数问题百分数是一种常见的数学表示方式,它将一个数值表示为百分比。

百分数常用于计算比例,也可以用于表示增长率、减少率等。

在解决百分数问题时,我们需要将百分数转化为小数或分数,以便进行计算。

同时,也需要注意常见的百分数问题类型,如求百分数的数值、求基数、求增长率等。

3.利率与利息利率是指一定时间内利息与本金的比值。

利率是银行、贷款、投资等金融领域中的重要概念。

利率的计算通常以年为单位,也可以使用月、日等时间单位。

利率的计算方法包括简单利率和复合利率。

简单利率是指利息按照初始本金计算,而复合利率是指利息按照每年的本金加上去年的利息计算。

利率问题可以应用于实际生活中的贷款、存款等金融场景,通过合理利用利率计算公式,可以帮助我们做出正确的金融决策。

4.正比例与反比例正比例是指当一个变量增大(或减小)时,另一个变量也增大(或减小)的情况。

而反比例是指当一个变量增大(或减小)时,另一个变量减小(或增大)的情况。

正比例和反比例是一种常见的数量关系,通过建立数学模型,可以帮助解决实际问题。

正比例关系常用于计算比例、价格等问题,而反比例关系常用于计算时间、速度等问题。

通过理解正比例与反比例的概念,并进行实际问题的模型分析,可以帮助我们更好地应用数学知识解决实际问题。

5.三角形的相似与全等相似是指两个或多个图形的形状相似,但大小可能不同。

全等是指两个图形的形状和大小完全一样。

七年级数学下册第五章《三角形》知识点总结

七年级数学下册第五章《三角形》知识点总结

七年级数学下册第五章《三⾓形》知识点总结七年级数学下册第五章《三⾓形》知识点总结考点⼀、三⾓形1、三⾓形的三边关系定理及推论(1)三⾓形三边关系定理:三⾓形的两边之和⼤于第三边。

推论:三⾓形的两边之差⼩于第三边。

2、三⾓形的内⾓和定理及推论三⾓形的内⾓和定理:三⾓形三个内⾓和等于180°。

推论:①直⾓三⾓形的两个锐⾓互余。

②三⾓形的⼀个外⾓等于和它不相邻的来两个内⾓的和。

③三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓。

注:在同⼀个三⾓形中:等⾓对等边;等边对等⾓;⼤⾓对⼤边;⼤边对⼤⾓。

4、三⾓形的⾯积三⾓形的⾯积=21×底×⾼考点⼆、全等三⾓形1、全等三⾓形的概念能够完全重合的两个三⾓形叫做全等三⾓形。

2、三⾓形全等的判定三⾓形全等的判定定理:(1)边⾓边定理:有两边和它们的夹⾓对应相等的两个三⾓形全等(可简写成“边⾓边”或“SAS ”)(2)⾓边⾓定理:有两⾓和它们的夹边对应相等的两个三⾓形全等(可简写成“⾓边⾓”或“A SA ”)(3)边边边定理:有三边对应相等的两个三⾓形全等(可简写成“边边边”或“SSS”)。

(4)⾓⾓边定理:有两⾓和⼀边对应相等的两个三⾓形全等(可简写成“⾓⾓边”或“AAS ”)。

直⾓三⾓形全等的判定:对于特殊的直⾓三⾓形,判定它们全等时,还有HL 定理(斜边、直⾓边定理):有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等(可简写成“斜边、直⾓边”或“HL”)3、全等变换只改变图形的位置,不改变其形状⼤⼩的图形变换叫做全等变换。

全等变换包括⼀下三种:(1)平移变换:把图形沿某条直线平⾏移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转⼀定的⾓度到另⼀个位置,这种变换叫做旋转变换。

考点三、等腰三⾓形1、等腰三⾓形的性质(1)等腰三⾓形的性质定理及推论:定理:等腰三⾓形的两个底⾓相等(简称:等边对等⾓)推论1:等腰三⾓形顶⾓平分线平分底边并且垂直于底边。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

七年级数学第五章知识点整理

七年级数学第五章知识点整理

一、绝对值
1、定义:绝对值是一个数字离零的距离,简称“绝”,用符号,x,
表示。

2、性质:
(1),x,≥0,即所有数字都有一定的绝对值;
(2)若x≥0,则,x,=x;若x<0,则,x,=-x;
(3),x,=,-x;
(4),x+y,≤,x,+,y;
(5),xy,=,x,×,y。

二、平面直角坐标系
1、定义:平面直角坐标系是一个平面上,在被细分的单位格子中,
以双精度的方式查找和标记任意一点的坐标系统。

2、成分:由原点、X轴、Y轴以及单位格子组成。

3、坐标:坐标是指点在该坐标系中的位置。

4、坐标原点:坐标原点是坐标系中的起点,其坐标为(0,0)。

5、X轴:X轴是平面直角坐标系中的一条直线,在两坐标轴之间,其
坐标为(x,0)。

6、Y轴:Y轴是平面直角坐标系中的另一条直线,位于两坐标轴之间,其坐标为(0,y)。

7、单位格子:单位格子是平面直角坐标系中的一个单元,在一个点上两个坐标轴之间,其坐标为(x,y)。

三、数轴
1、定义:数轴是一种以零为中心,以实数范围贯穿的坐标系统。

2、特点:
(1)数轴上同时具有实数和虚数;
(2)0位于数轴的中心;
(3)具有正负对称性;。

七年级下册数学第五章知识点归纳

七年级下册数学第五章知识点归纳

七年级下册数学第五章知识点归纳一、相交线。

1. 邻补角。

- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

- 性质:邻补角互补,即相加等于180°。

例如,∠AOC和∠BOC是邻补角,则∠AOC+∠BOC = 180°。

2. 对顶角。

- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

- 性质:对顶角相等。

如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。

3. 垂线。

- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

- 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

二、平行线及其判定。

1. 平行线。

- 定义:在同一平面内,不相交的两条直线叫做平行线。

- 表示方法:平行用符号“∥”表示,如直线a平行于直线b,记作a∥b。

- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果a∥c,b∥c,那么a∥b。

2. 平行线的判定方法。

- 同位角相等,两直线平行。

例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。

- 内错角相等,两直线平行。

如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是内错角),则a∥b。

- 同旁内角互补,两直线平行。

当直线a、b被直线c所截,∠2+∠4 = 180°(∠2是同旁内角,∠4是同旁内角)时,a∥b。

三、平行线的性质。

1. 两直线平行,同位角相等。

- 例如:若a∥b,直线a、b被直线c所截,则∠1 = ∠2(∠1和∠2是同位角)。

人教版七年级下册数学第五章知识点总结

人教版七年级下册数学第五章知识点总结

第五章相交线与平行线5.1相交线5.1.1相交线有关概念邻补角:假如两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。

对顶角:假如一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。

对顶角的性质: 对顶角相等.5.1.2垂线有关概念1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线相互垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。

从垂直的定义可知,推断两条直线相互垂直的关键:只要找到两条直线相交时四个交角中一个角是直角。

2 垂直的表示:1)图形:2)文字:a、b相互垂直, 垂足为O3)符号:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b, 垂足为O 3.垂直的书写形式:如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。

3 书写形式:①断定:∵∠AOD=90°(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。

书写形式:②性质:∵ AB⊥CD (已知)∴∠AOD=90°(垂直的定义) (∠AOC=∠BOC=∠BOD=90°)4.垂线的性质(1)过一点有且只有一条直线与已知直线垂直. 垂线的性质(2)连接直线外一点与直线上各点的全部线段中,垂线段最短或说成垂线段最短直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔。

5.1.3同位角、内错角、同旁内角5.2平行线及其断定5.2.1平行线有关概念1.平行线的定义:在同一平面内不相交的两条直线叫做平行线。

2.平行线的表示:我们通常用符号“//”表示平行。

同一平面内的两条不重合的直线的位置关系只有两种:相交或平行3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

假如两条直线都和第三条直线平行,那么这两条直线也相互平行假如a//c, b//c;那么a//b假如两条直线都垂直于第三条直线,那么这两条直线相互平行.假如a⊥c, a⊥b;那么b//c 5.2.25.2.2平行线的断定有关概念一般地,断定两直线平行有以下的方法:1.两条直线被第三条所截,假如同位角相等,那么这两条直线平行.简洁地说,同位角相等,两直线平行.2.两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行. 简洁说成:内错角相等,两直线平行.3.两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行. 简洁说成:同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质1.平行线的性质1两条平行线被第三条直线所截,同位角相等. 简写为:两直线平行,同位角相等.2.平行线的性质2两条平行线被第三条直线所截,内错角相等. 简写为:两直线平行,内错角相等.3.平行线的性质3两条平行线被第三条直线所截,同旁内角互补. 简写为:两直线平行,同旁内角互补.5.3.2命题、定理推断一件事情的语句叫做命题。

人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)

人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)

⼈教版七年级数学下册第五章相交线与平⾏线知识整理复习(含答案)七年级数学下册第五章知识整理知识梳理1.两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线,具有这样位置关系的两个⾓,互为___________.2.两个⾓有⼀个公共顶点,并且⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,具有这种位置关系的⾓,互为___________.对顶⾓的性质:___________.3.垂直是相交的⼀种特殊情形,两条直线互相垂直,其中的⼀条直线叫做另⼀条直线的___________,它们的交点叫做___________。

4.在同⼀平⾯内,过⼀点有且只有___________直线与已知直线垂直。

5.连接直线外⼀点与直线上各点的所有线段中,___________最短,简单说成:___________。

6.直线外⼀点到这条直线的垂线段的长度,叫做___________。

7.如图,∠1和∠4,这两个⾓分别在直线AB,CD的同⼀⽅(上⽅),并且都在直线EF的同侧(右侧),具有这种位置关系的⼀对⾓叫做_______;∠2和∠4,这两个⾓都在直线AB,CD之间,并且分别在直线EF两侧,具有这种位置关系的⼀对⾓叫做_______;∠2和∠3也都在直线AB,CD之间,但它们在直线EF的同⼀旁,具有这种位置关系的⼀对⾓叫做_______;8.在同⼀平⾯内不相交的两条直线(a与b)互相_______,记作_______.9.平⾏线的基本事实(平⾏公理):经过直线外⼀点,有且只有_______直线与这条直线平⾏.10.如果两条直线都与第三条直线平⾏,那么这两条直线也_______.11.平⾏线的判定⽅法:(1)_______相等,两直线平⾏;(2)_______相等,两直线平⾏;(3)_______互补,两直线平⾏。

12.平⾏线的性质:(1)两直线平⾏,同位⾓_______;(2)两直线平⾏,内错⾓_______;(3)两直线平⾏,同旁内⾓_______.13.判断⼀件事情的语句,叫做_______.经过推理证实的真命题叫做_______.14.在很多情况下,⼀个命题的正确性需要经过推理才能作出判断,这个推理过程叫做_______.15.平移得到的新图形与原图形的形状和⼤⼩_______.知识反馈★知识点1;邻补⾓与对顶⾓1.下列说法正确的是( )A.和为180°的⾓为邻补⾓B和为180°的两个⾓为邻补⾓C,有公共顶点,和为90°的⾓为邻补⾓D.有公共顶点和⼀条公共边,它们的另⼀边互为反向廷长线的两个⾓为邻补⾓2.如图,∠1和∠2是对顶⾓的是( )3.如图,直线AB、CD相交于点O,若∠AOC=(3x+10°),∠BOC=(2x-10°),求∠AOD的度数.★知识点2:垂线与垂线段4.过直线AB外⼀点P画直线AB的垂线,则( )A.能画⽆数条B只能画2条 C.只能画1条 D.不能画成5.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有⼀部分同学画出下列四种图形,请你数⼀数,错误的个数为( )A.1个B.2个C.3个D.4个6.如图,在体育测试中,裁判员测量某同学的跳远成绩,在直线l上的A、B、C三点中,点________到沙坑中脚印点P的距离为该同学的成绩.7.如图,在三⾓形ABC中,∠BCA=90°,CD⊥AB,垂⾜为点D.线段AB,BC,CD的⼤⼩关系如何?并说明理由.★知识点3:同位⾓、内错⾓、同旁内⾓8.如图,下⾯说法中正确的是( )A.∠2和∠3是同位⾓B.∠3和∠4是同旁内⾓C,∠1和∠2是内错⾓ D.∠1和∠3是同旁内⾓9.如图所⽰,直线DE、BC被直线AB所截,∠1与∠4是_________,∠2与∠4是_________,∠1与∠2是_________,∠3与∠4是_________.★知识点4:平⾏线的定义及画法10.下列⽣活中的线是平⾏线的有( )①铁路上并排的两条铁轨;②上体育课时,双杠的两个横杠;③滑雪时两只雪撬滑动轨迹;④操场上的升旗杆与教室屋梁。

七年级数学下册第五章知识点整理

七年级数学下册第五章知识点整理

七年级数学下册第五章知识点整理在平凡的学习生活中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

还在为没有系统的知识点而发愁吗?以下是店铺收集整理的七年级数学人教版下册第五章知识点整理,欢迎大家借鉴与参考,希望对大家有所帮助。

七年级数学下册第五章知识点整理 1第五章相交线与平行线知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫平行线。

如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角的性质:邻补角互补。

如图1所示,与互为邻补角,与互为邻补角。

+ = 180°; + = 180°; + = 180°;+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。

对顶角的性质:对顶角相等。

如图1所示,与互为对顶角。

= ;= 。

5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当= 90°时,⊥ 。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当a ⊥ b 时,= = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。

图3中,共有对同位角:与是同位角;与是同位角; 与是同位角; 与是同位角。

②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。

人教版七年级数学下册第五章《命题、定理、证明》课件

人教版七年级数学下册第五章《命题、定理、证明》课件
解:(1)题设:AB⊥CD,垂足为O;结论:∠AOC=90°. (2)题设:∠1=∠2,∠2=∠3;结论:∠1=∠3. (3)题设:两直线平行;结论:同位角相等.
2 下列语句是命题的是( C ) A.延长线段AB到C B.用量角器画∠AOB=90° C.同位角相等,两直线平行 D.任何数的平方都不小于0吗?
解:(1)如果两个角是对顶角,那么这两个角相等. (2)如果两条直线都和第三条直线垂直,那么这 两条直线平行. (3)如果两个角是同一个角的余角或两个相等的 角的余角,那么这两个角相等.
总结
(1)命题改写的原则:不改变命题的原意;为了改写 后的语句通畅且保持原意,应适当地增加或删减 词语或调换词序;
A.1个
B.2个
C.3个
D.4个
知识点 3 定理与证明(举反例)
1.定理:经过推理证实得到的真命题叫做定理. 2.证明:在很多情况下,一个命题的正确性需要经
过推理,才能作出判断,这个推理过程叫做证明.
例4 如图,已知直线b//c,a⊥b .求证a⊥c.
证明:∵a⊥b (已知), ∴∠1 = 90° (垂直的定义). 又b//c(已知), ∴∠1 = ∠2 (两直线平行,同位角相等). ∴ ∠2= ∠1 = 90° (等量代换). ∴a⊥c (垂直的定义).
5 命题“如果a2=b2,那么a=b或a+b=0”的 结论是( C ) A.a2=b2或a=b B.a2=b2 C.a=b或a+b=0 D.a2=b2或a+b=0
知识点 2 命题的分类
命题的种类: (1)真命题:如果题设成立,那么结论一定成立,这
样的命题叫真命题. (2)假命题:题设成立时,不能保证结论一定成立,
1 举出学过的2~3个真命题.
解:如:等角的余角相等, 同旁内角互补,两直线平行.

人教版初中数学七年级下第五章-相交线和平行线知识点总结【实用版】

人教版初中数学七年级下第五章-相交线和平行线知识点总结【实用版】

人教版初中数学七年级下相交线和平行线知识点总结本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.。

重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2 有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠21 2注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可A BCDO以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

七年级数学下册第五章相交线与平行线重难点归纳(带答案)

七年级数学下册第五章相交线与平行线重难点归纳(带答案)

七年级数学下册第五章相交线与平行线重难点归纳单选题1、下列说法不正确的是()A.对顶角相等B.两点确定一条直线C.两点之间线段最短D.一个角的补角一定大于这个角答案:D分析:根据对顶角的性质,直线的性质,两点之间线段最短,补角的定义,依次判断即可得到答案.解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、两点之间线段最短,故该项不符合题意;D、一个角的补角不一定大于这个角,说法错误,故该项符合题意;故选:D.小提示:此题考查对顶角的性质,直线的性质,两点之间线段最短,补角的定义,正确理解各性质及定义是解题的关键.2、如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°答案:C分析:直接利用平行线的性质以及三角形的性质进而得出答案.由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°−45°−60°=75°.故选C.小提示:此题主要考查了平行线的性质,正确得出∠1的度数是解题关键.3、如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定答案:B分析:根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.如图:根据平移可得两只蚂蚁的行程相同,∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选B.小提示:本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.4、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.5、如图,已知a//b,∠1=120°,∠2=90°,则∠3的度数是( )A.120°B.130°C.140°D.150°答案:D分析:延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.如图,延长∠1的边与直线b相交,∵a//b,∴∠4=180°−∠1=180°−120°=60°,由三角形的外角性质可得,∠3=90°+∠4=90°+60°=150°.故选:D.小提示:本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6、如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离答案:C分析:根据点到直线的距离等于垂线段的长度,垂线段最短逐项分析判断即可.解:A. 线段PB的长是点P到直线a的距离,故该选项正确,不符合题意;B.PA、PB、PC三条线段中,PB最短,故该选项正确,不符合题意;C. 线段AP的长是点A到直线PC的距离,故该选项不正确,符合题意;D. 线段PC的长是点C到直线PA的距离,故该选项正确,不符合题意;故选C小提示:本题考查了点到直线的距离等于垂线段的长度,垂线段最短,掌握垂线段的定义是解题的关键.7、如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不能确定答案:C分析:根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.小提示:本题考查了垂线和余角,解题的关键是掌握垂线的定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.8、如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角答案:C分析:分别根据对顶角、同位角、内错角以及同旁内角的定义判断即可.解:A、∠1与∠2是对顶角,正确,故该选项不合题意;B、∠1与∠3是同位角,正确,故该选项不合题意;C、∠1与∠4是内错角,错误,故该选项符合题意;D、∠B与∠D是同旁内角,正确,故该选项不合题意;故选:C.小提示:本题主要考查了对顶角、同位角、内错角以及同旁内角的定义,熟记定义是解答本题的关键.9、如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°答案:A分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.10、如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°答案:B分析:根据平行线的性质可得解.详解:∵a//b∴∠1=∠2又∵∠1=60°,∴∠2=60°故选B.点睛:两条平行线被第三条直线所截,同位角相等.填空题11、如图a∥b,∠1+∠2=75°,则∠3+∠4=______________.答案:105°分析:根据平行线的性质和等量代换可以求得∠3+∠4=∠5+∠4,所以根据三角形内角和是180°进行解答即可.如图,∵a∥b,∴∠3=∠5,又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,∴∠5+∠4=105°,∴∠3+∠4=∠5+∠4=105°,故答案是:105°.小提示:本题考查了平行线的性质和三角形内角和定理.解题的技巧性在于把求(∠3+∠4)的值转化为求同一三角形内的(∠5+∠4)的值.12、如图,将三角尺与两边平行的直尺(EF∥HG)贴在一起(∠ACB=90°)在直尺的一边上.若∠2=47°,则∠1的大小为 _____度.答案:43分析:先根据平行线的性质求出∠2的度数,再由∠1与∠3互余即可得出结论.解:如图所示:∵EF//HG,∠2=47°,∴∠2=∠3=47°又∵∠ACB=90°,∠1+∠3=∠ACB=90°,∴∠1=∠ACB−∠3=90°−47°=43°,∴∠1=43°.所以答案是:43.小提示:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13、如图,添加一个你认为合适的条件______使AD//BC.答案:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)分析:根据平行线的判定方法即可求解.第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,AD//BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,AD//BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,AD//BC;故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.小提示:本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.14、如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.答案:20cm分析:根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.所以答案是:20cm.小提示:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15、如图,已知直角三角形ABC,∠A=90∘,AB=4cm,BC=5cm.将△ABC沿AC方向平移1.5cm得到△A′B′C′,求四边形BCC′B′的面积为________cm2.答案:6分析:根据题意,再结合平移的性质,可得AB=A′B′,AA′=BB′=CC′=1.5cm,BB′∥CC′,S△ABC=S△A′B′C′,然后再根据等量代换,得出S四边形AA′OB =S四边形OCC′B′,然后再根据等量代换,得出S四边形BCC′B′=S四边形AA′B′B,然后再根据长方形的特征,得出四边形AA′B′B是长方形,然后再根据长方形的面积公式,算出长方形AA′B′B的面积,即可得出四边形BCC′B′的面积.解:如图,∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴A的对应点为点A′,点B的对应点为点B′,点C的对应点为点C′,∴由平移的性质,可得:AB=A′B′=4cm,AA′=BB′=CC′=1.5cm,BB′∥CC′,又∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴S△ABC=S△A′B′C′,又∵S△ABC=S四边形AA′OB+S△A′OC,S△A′B′C′=S四边形OCC′B′+S A′OC,∴S四边形AA′OB =S四边形OCC′B′,∵S四边形BCC′B′=S四边形OCC′B′+S△BOB′,S四边形AA′B′B =S四边形AA′OB+S△BOB′,∴S四边形BCC′B′=S四边形AA′B′B,∵AB=A′B′,AA′=BB′,∠A=90∘,∴根据长方形的特征,可得:四边形AA′B′B是长方形,∴S长方形AA′B′B=AB⋅AA′=4×1.5=6cm2,∴S四边形BCC′B′=S四边形AA′B′B=6cm2所以答案是:6小提示:本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等.解答题16、已知:如图,∠1=∠2.求证:AB//CD.分析:如图,欲证AB//CD,只要证∠1=______.证明:∵∠1=∠2,(已知)又∠3=∠2,()∴∠1=__________.()∴AB//CD.(__________,____________)答案:∠3;对顶角相等;∠3;等量代换;同位角相等,两直线平行.分析:根据等量代换和同位角相等,两直线平行即可得出结果.分析:如图,欲证AB//CD,只要证∠1=∠3.证明:∵∠1=∠2,(已知)又∠3=∠2,(对顶角相等)∴∠1=∠3.(等量代换)∴AB//CD.(同位角相等,两直线平行)小提示:本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.17、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;答案:(1)∠BOF=33°(2)∠AOC=72°分析:(1)先根据对顶角相等求出∠BOD=76°,再由角平分线定义得∠DOE=∠BOE=38°,由邻补角得∠COE=142°,再根据角平分线定义得∠EOF=71°,从而可得结论.(2)利用角平分的定义得出∠BOE=∠EOD,∠COF=∠FOE,进而表示出各角求出答案.(1)∵∠AOC、∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∠BOD=38°∴∠DOE=∠BOE=12∴∠COE=142°,∵OF平分∠COE.∠COE=71°,∴∠EOF=12又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠EOD=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得x=36°,故∠AOC=72°.小提示:本题考查了角平分线的定义和对顶角的性质,解决本题的关键是掌握对顶角的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线).18、完成下面的证明如图.已知:AD∥EF,∠1=∠2,求证:AD平分∠BAC.证明:∵AD∥EF(),∴∠2=(),∠1=().∵∠1=∠2(已知),∴∠BAD=∠CAD().即AD平分∠BAC.答案:已知;∠CAD,两直线平行,同位角相等;∠BAD,两直线平行,内错角相等;等量代换.分析:根据平行线的性质进行推理即可解答.解:∵AD∥EF(已知),∴∠2=∠CAD(两直线平行,同位角相等),∠1=∠BAD(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠CAD=∠BAD(等量代换),即AD平分∠BAC(角平分线的定义).小提示:本题主要考查了平行线的性质,掌握两直线平行、内错角相等,两直线平行、同位角相等成为解答本题的关键.。

七年级数学下各章知识点汇总

七年级数学下各章知识点汇总

七年级数学下各章知识点汇总第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等3、判断两直线平行的条件:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

(4)如果两条直线都和第三条直线平行,则这两条直线也互相平行。

(5)如果两条直线都和第三条直线垂直,则这两条直线也互相平行。

4、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)内错角相等,同旁内角互补。

5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,则……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“则”开始的部分是结论。

6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行且相等。

第六章 实数一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方 实数无理数有理数→⎭⎬⎫ 二、知识回顾算术平方根的定义: 平方根的定义: 平方根的性质: 立方根的定义: 立方根的性质: 练习:1、—8是 的平方根; 64的平方根是 ; =64 ;—64的立方根是 ; =9 ; 9的平方根是 。

2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ;2a =无理数的定义: 实数的定义: 实数与 上的点是一一对应的第七章 平面直角坐标系 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

人教版七年级下册数学第五章知识点归纳及相应练习题和答案

人教版七年级下册数学第五章知识点归纳及相应练习题和答案

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13.如图,,8,6,10,BC AC CB cm AC cm AB cm⊥===那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.14.设a、b、c为平面上三条不同直线,a)若//,//a b b c,则a与c的位置关系是_________;b)若,a b b c⊥⊥,则a与c的位置关系是_________;第 1 页共3 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(下)期末复习知识点整理5.1相交线1、邻补角与对顶角注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

A B C DO画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆。

如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。

PO 是垂线段。

PO 是点P 到直线AB 所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。

联系:具有垂直于已知直线的共同特征。

(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。

联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行•P AB O4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a ∴b ∥c 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。

5、三线八角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做同位角(位置相同) ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做内错角(位置在内且交错)③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角。

④三线八角也可以成模型中看出。

同位角是“A ”型;内错角是“Z ”型;同旁内角是“U ”型。

6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

例如:如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8。

我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图。

如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角。

a b ca b l12 3 45 6 7 81 6 B A D23 45 7 89 F EC A B F 2 1 A B C 1 7A B C D 2 6A DB F1注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成。

7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 几何符号语言:∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。

平行线的判定是写角相等,然后写平行。

注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。

上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”。

⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行。

②如果两条直线都平行于第三条直线,那么这两条直线平行。

典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线。

⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。

⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。

“在同一平面内”是一项重要条件,不能遗漏。

⑵正确⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。

因为如果这一点不在已知直线上,是作不出这条直线的平行线的。

BAF E 5 8CA B C DE F 1 2 3 4典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行; ⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠3+∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行。

5.3平行线的性质1、平行线的性质:性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补。

几何符号语言: ∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补) 2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离。

3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成A B C DE F 1 2 3 4 A E G BC FH D每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。

对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。

注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

4、平行线的性质与判定①平行线的性质与判定是互逆的关系 两直线平行同位角相等;两直线平行内错角相等; 两直线平行同旁内角互补。

其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

典型例题:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等,两直线平行) ∴∠2=∠C (两直线平行 同位角相等) 注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了。

典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB ∥DF (已知)∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°A D F BE C 1 2 35.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点③连接各组对应点的线段平行且相等2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。

②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。

典型例题:如图,△ABC经过平移之后成为△DEF,那么:⑴点A的对应点是点_________;⑵点B的对应点是点______。

⑶点_____的对应点是点F;⑷线段AB的对应线段是线段_______;⑸线段BC的对应线段是线段_______;⑹∠A的对应角是______。

⑺____的对应角是∠F。

解答:⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB。

相关文档
最新文档