分块矩阵在高等代数中的应用
分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的.根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式.二、研究的基本内容, 拟解决的主要问题:研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用.解决的主要问题:1.了解分块矩阵的基本概念.2.探讨分块对角化的性质.3.研究分块矩阵的应用.三、研究步骤、方法及措施:研究步骤:1.查阅相关资料, 做好笔记;2.仔细阅读研究文献资料;3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4.翻译英文资料;5.撰写毕业论文;6.上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用确定合理的方法来解决问题.四、参考文献:[1] 居余马. 线性代数[M]. 清华大学出版社,1992.[2] 穆大禄, 裴惠生. 高等代数教程[M]. 山东大学出版社, 1990.[3] 北京大学数学系. 高等代数[M]. 高等教育出版社.[4] 叶伯诚. 高等代数[M] . 青岛海洋大学出版社, 1989.[5]张敏. 分块矩阵的应用[J]. 吉林师范大学学报(自然科学版), 2003, 1(1): 120.[6] S.K.Jain. Linear Algebra: An Interactive Approach[M]. 北京: 机械工业出版社, 2003,7.[7] Hamilton J.D, “Time Series Analysis1” Princeton University Press[J].1999, 26 – 291.。
【文献综述】分块矩阵的性质及其应用

用中还是会遇到很多问题, 在实际生活中, 我们的很多问题可以用矩阵抽象出来, 但这些矩阵
一般都是高阶矩阵, 行数和列数都是一个相当大的数字, 因此我们在计算和证明这些矩阵时
会遇到很烦琐的任务. 这时我们得有一个新的矩阵处理工具, 来使这些问题得到更好的解决!
在文献[3]中给出了分块矩阵定义: 把一个 m n 矩阵 A , 在行的方向分成 s 块, 在列的方
向分成 t 块, 称为 A 的 s t 分块矩阵, 记作 A Akl st , 其中 Akl , k 1, 2,, s ,
l 1, 2,, t 称为 A 的子块, 它们是各种类型的小矩阵.
A
=
I3 0
A1
A2
并称它是 A 的一个 2 2 分块矩阵, 其中的每一个小矩阵称为 A 的一个子块. 常用的矩阵分块
方法, 除了上例中的 4 块矩阵, 矩阵的分块还有以下几种常用的分法:
(1) 按行分块
a11 a12 ... a1n A1
A
a12Βιβλιοθήκη ...a22 ...
... ...
| M || BC | | CA1B | .
文献[5-12]中还提到了有关分块矩阵的一些用法, 比如用分块矩阵证明有关矩阵乘积的
秩的定理: 矩阵乘积的秩不超过其因子的秩, 即 r( AB) r( A), 且 r( AB) r(B), 或者表示成
r( AB) min{r( A), r(B)}, 其中 r( A) 表示矩阵 A 的秩. 还可以利用分块矩阵求矩阵的行列
AD
式问题, 比如利用分块矩阵求高阶行列式
: 设 A, C 都是 n 阶矩阵, 其中| A | 0 , 并且
矩阵的分块及应用

矩阵的分块及应用武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。
分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。
分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。
讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。
通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。
关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。
I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it isvery important for linear algebra. The paper discussed the concept of the partition matrix and the operation of the partition matrix and the property of the partition matrix and the block-elementary matrix. Then it summarized some applications of the partition matrix. Those applications were relative to the rank of matrix and inverse matrix and determinant and positive definite matrix and positive semi-definite matrix etc. By quoting a number of examples we could get that its convenientto solve many problems about calculation and provement by using block matrices. Key words: partitioned matrices; elementary transformation; caculate; inverse matrix; prove。
分块矩阵的几种用法

A1 1 4 2 A2 5 (1) 2 = 5 0 2 5 As 6 3 (2) O A O = ( A O* ( A
-1 1 2 1 -1
-1
-1 1 4 A1 2 -1 5 2 A2 5 0 2 5 2 - 15 A 3 s 6
A2
-1
R ( BC) - R( B) 。
由此可以看出 , 解决此类问题应先将不等式中的“ 变为 -” , 由不等式大的一边向另一边证明。 “ +” 2. 解决与行列式有关的问题 在解决此类与行列式有关的问题时 , 这里我们是先通过 一系列的矩阵的初等变换 , 把原来的矩阵化为三角矩阵或对 角矩阵 , 这样我们所求矩阵的行列式就是对角线上各分块的 矩阵行列式的积。 例1 设 A, B∈Mn(F), 且 A+B, A- B可逆。证明 : P=
-1
-1
-1
定 理2
若对矩阵
, , , Amn Im In O Bmn Pm Qn In O Amn - Bm Qn
经过前 m行的初等行变换 , 前 n 列 , 则有 PmAmnQn=Bmn 。 作 如 下 变 换 : 前n列 作 初 等
列变换后再进行 ( i) 列 × ai+(n+1)列 ( i=1 , 2 , … , n ) 的 列 变 换 得 到
此类问题就是利用初等变换把分块矩阵化为题目要求的 形式。 3. 解决求逆矩阵的问题 在求一个矩阵的逆矩阵时 , 一般地我们可以通过求其伴 随矩阵和矩阵的行列式来求 , 但对一些矩阵 , 对其进行适当的 分块 , 并利用一定的结论可以使问题更加轻松地得到解决。 下 面给出两个常用的结论 : 设 Ai(i=1 , 2 , … , s)都是可逆矩阵 , 则有
# a21x1+a22x2+… +a2nxn=b2 设非齐次线性方程组为 ( I) " , + # an1x1+an2x2+… +annxn=bn $ x1 ( % b1 ( % & & ) x2 b2 ) 将 ( I) 写为矩阵方程为 AX=B, 其中 X= & , B= & ) 。 ) +) & +) & xn * ’ bn * ’
高等代数矩阵的分块

Chk = Ah1B1k + Ah2B2k + · · · + AhsBsk.
cuv 是位于 AhqBqk (q = 1, 2, · · · , s) 的第 u 行第 v 列的元素的和, 即 Ah1, · · · , Ahs 的第 u 行分别与 B1k, B2k, · · · , Bsk 的第 v 列的 乘积的和. 但由 (4),Ah1, · · · , Ahs 的第 u 行凑起来就是 A 的第 i 行,而 B1k, · · · , Bsk 的第 v 列凑起来就是 B 的第 j 列,所以
矩阵分块与分块矩阵的概念
在这节,我们将介绍矩阵运算的一种有用的技巧 -矩阵的分块.
这种技巧在处理教高阶的矩阵时常常被用到.
设 A 是一个矩阵. 我们在它的行或列之间加上一些线. 把这个矩
阵分成若干个小块. 例如,设 A 是一个 4 × 3 矩阵
A = aaa123111
a12 a22 a32
个 m × n 矩阵,并且对 A, B 都用同样的方法来分块:
A = A...11
···
A1q ...
,
B = B...11 · · · B...1q ,
Ap1 · · · Apq
Bp1 · · · Bpq
而 a 是一个数,那么
A
+
B
=
A11
+ ...
B11
m1 + m2 + · · · + mr = m,
n1 + n2 + · · · + ns = n,
(1)
p1 + p2 + · · · + pt = p.
(完整版)分块矩阵及其应用汇总,推荐文档

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content.In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix11 ⎪1 引 言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义 1.1 [1] 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把 m ⨯ n 矩阵分割为如下形式的矩阵:⎛A 11A ⎫ 1n ⎪A m ⨯n = ⎪A m 1 A m n特别地,对于单位矩阵分块:⎝ ⎭ ⎛E 0 0 ⎫ ⎪ E n ⨯n = 0 0 0 ⎪ 0 E ⎝n n ⎭ 显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的A 所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.ij依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2.1 矩阵的相关概念2 分块矩阵在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵 的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.a 11 定义 2.1.1[2]n 级行列式a 21a 12 a 22 a 1n a 2n等于所有取自不同行不同列的a n 1 a n 2a nn 个元素的乘积a 1j a 2ja n j的代数和,这一定义又可写成:12na 11 a 21 a 12a 22a 1na 2n =(-1) (j 1j 2 j n )a aa .a n 1 a n 2a n∑j 1j 2 j n1j 1 2j 2n j n[2]定义 2.1.2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所O I ⎪ ⎪ ⎪1谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义 2.1.3 [2] n 级方阵称为可逆的,如果有n 级方阵 B ,使得A B = A -1 .BA = E (这里 E 是n 级单位矩阵),那么B 就称为 A 的逆矩阵,记为定义 2.1.4 [3] 对分块矩阵施行下列三种初等变换: (1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换. 定义 2.1.5 [3] m + n 2 ⨯ 2 ⎛I m O ⎫对 阶单位矩阵作 分块,即I m +n = O I ⎪ ,然后⎝ n ⎭对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵⎛I n O ;⎫ ⎝ m ⎭⎛P O ⎫ ⎛I m O ⎫(2) 分块初等倍乘阵 0 I ⎪ , ⎪ ;⎝ n ⎭ (3) 分块初等倍加阵⎛I m R 1 ⎫ O I ⎝ 0 Q ⎭ ,⎛I m O ⎫ ; S I ⎝ n ⎭ ⎝ n ⎭其中 P , Q 分别是m 阶和n 阶可逆方阵,且R ∈ R m ⨯n ,S ∈ R n ⨯m为非零阵.2.2 矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质: 定义 2.2.1 [4] 矩阵加法:设A = (a ) , B = (b ) 是两个同型矩阵,ij snij sn则矩阵C = (c i j )= (a i j+ b i j )称为 A 和 B 的和,记为C = A + B .元素全为零的矩阵称为零矩阵,记为O s n ,可简单记为O,对于矩阵 A 、 B ,有:(1) A + O = A(2) A + ( -A ) = 0(3) A - B = A + ( -B )(4) ( A + B ) + C = A + ( B + C )snsnn11 (5)A + B = 定义 2.2.2 [4] B + A矩阵乘法:设A = (a ) ,B = (b ) 是两个不同型矩阵,i k s nk j n m那么矩阵C = A B =(c i j ),称为矩阵 A 与 B 的乘积,其中:smc i j = a i 1b 1j + a i 2b 2j+ a i n b n j= ∑a i k b k jk =1在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质:(1) A ( B + C ) = A B + A C(2) ( B + C )A = B A + C A(3) (A B )D =A (B D )⎛k a 11 k a 1k a 1 ⎫定义 2.2.3 [4] 矩阵数乘: k a 21k ak a 2n ⎪ ⎪A = (a ) 与 数 22 ⎪称为矩阵 ⎪⎪ ij sn k a k a k a ⎝ s 1 s 2 s n ⎭k 的数量乘积,记为kA ,有以下性质:(1) 1 * A = A ;(2) k(l A ) = (k l )A ;(3) k ( A + B )= kA + kB ;(4) (k + l )A = kA +lA ; (5) k (A + B ) = kA +kB .2.3 分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设 A 、 B 是m ⨯ n 矩阵,若对它们有相同的划分,也就有:⎛A 11 + B A 1t + B 1t ⎫ ⎪ 加法:A + B = ⎪ . ⎪ A + B A + B ⎪ ⎝ s 1 s 1 st st ⎭乘法:C = A B , 其中:∑ ⎪ 1 C i j = A i 1B 1j + A i 2B 2j+ + A i n B n j⎛k A 11k A 1 ⎫⎪ n= A i k B k j .k =1数乘:k A =⎪ .⎪ k Ak A⎝s 1 s t ⎭总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质:定义 2.3.1 [2] 由单位矩阵 E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵 E 的i 行与 j 行的位置; (2) 用数域 P 中的非零数c 乘 E 的i 行; (3) 把矩阵 E 的 j 行的k 倍加到i 行.定义 2.3.2 [5] 将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵⎛ A B ⎫进行相应变换,只要应用矩阵的计算性质,左乘对⎝C D ⎭ 应分块矩阵: ⎛ O E m ⎫ ⎛ A B ⎫ ⎪⎪⎛C D ⎫ ⎪ ⎝E n O ⎭ ⎝C D ⎭⎝ A B ⎭ ⎛P O ⎫ ⎛ A B ⎫ ⎛P A = P B ⎫ O E ⎪C D ⎪ ⎪⎝ n ⎭ ⎝⎭ ⎝ C D ⎭ ⎛E m O ⎫ ⎛ A B ⎫ ⎛ = A B⎫P E ⎪C D ⎪ ⎪C + P AD + P B⎝ n ⎭ ⎝⎭ ⎝ ⎭2.4 矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法[6] :(1) 列向量分法,即A =(1,⎛ ⎫ ⎪, n ),其中j 为 A 的列向量.(2) 行向量分法,即A = ⎪ ,其中j 为 A 的行向量.⎪ ⎝ m ⎭=1⎪ (3)分两块,即A = (A 1, A 2 ),其中A 1 ,A 2 分别为A 的各若干列作成.或 A = ⎛B ⎫ ,其中B ,B 分别为 A 的若干行作成. B ⎪1 2 ⎝ 2 ⎭⎛C 1 C 2 ⎫(4) 分四块,即A =C C ⎪ .⎝ 3 4 ⎭我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5 常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下: (1) 单位矩阵:对角线元素都为1,其余元素为0 的n 阶方阵. (2) 对角矩阵:对角线之外的元素都为0 的n 阶方阵. (3) 三角矩阵:对角线以上(或以下)元素全为0 的n 阶方阵. (4) 对称矩阵:满足矩阵 A 的转置和 A 相等. (5) 若尔丹(Jordan )块:形如⎛ 0 1 0 0 ⎫ 0 ⎪J ( ,t ) ⎪= ⎪0 0 ⎪ 0 0 0 1 ⎝ ⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:⎛A 1 ⎫⎪ A 2⎪ ⎪ ⎪A ⎪ ⎝n ⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3.1 行列式计算的应用3 分块矩阵及其应用定理 3.1.1 [2] 拉普拉斯(Laplace )定理:设在行列式 D 中任意取定了k 个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式a ⎪ a 按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例 3.1.1 [7] :(爪形行列式)计算行列式:a 01 1 1 1 a 10 0 1 0 a 2 0 ,其中a i ≠ 0(i = 1, 2, , n ) .1 0 0 a n解:设Q =A D ,其中A = (a )C B a 1 B =,C = ( 1, 1, , 1)T ,D = ( 1, 1, , 1) .a n因为a i ≠ 0(i = 1, 2, , n ) ,所以 B 是可逆矩阵.-1⎛n 1 ⎫又易知: A - D B C = a 0 - ∑ ⎪ . ⎝ i =1 i ⎭根据分块矩阵乘法: ⎛ E0 ⎫ ⎛ A D ⎫ --1 ⎪ ⎪= ⎛A D ⎫-1 ⎝ C A E ⎭ ⎝C B ⎭ ⎝ 0 B - C A D ⎭A D -1 -1 ⎛ n 1 ⎫则:= AB - C A D =B A - D BC = a a a a-∑ a ⎪C B⎛n 1 ⎫ 12n 0⎝i =1 i ⎭故:原行列式=a 1a 2 a n a 0 - ∑ ⎪ . ⎝ i =1 i ⎭例 3.1.2 [7] :(对角行列式)计算行列式:adH 2n= a d.c bcb解:令⎪ a x A =⎛a ⎫⎪ ,B = ⎛b ⎫⎪ ,C = ⎛ c ⎫ ⎛ ,D = d ⎫⎪ ⎪ ⎪ ⎪ ⎪ a ⎪ b ⎪ c ⎪ d ⎪ ⎝ ⎭ 为n 阶方阵. 由于a ≠ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 0,故 A 为可逆方阵.⎛ b - c a -1d⎫⎪ 又易知:B - C A -1D =⎝ b - c a -1d ⎪ b - -1 ⎪ ca d ⎭故 H 2n= A D = C BAB - C A -1D = a n (b - c a -1d )n= (a b - c d )n .例 3.1.3 [8] :设 A 、 B 、C 、 D 都是n 阶矩阵,证明当 AC = CA 时, A 可逆时,有A D= A B - C DC B⎛ A D ⎫ ⎛E -A 1D-⎛ A 0 ⎪ ⎫,证明:若 A 可逆,⎪ ⎪ =-1 ⎝C B ⎭ ⎝OE ⎭ ⎝C B - C A D ⎭A D故:=C BAB - C A -1D = A B - A C A-1D = A B - C D .注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a d c b= a b - c d ,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2 线性方程组的应用对于线性方程组,我们有以下四种表述: (1) 标准型:⎧a 11x 1 + a 12x 2+ + ax = b ⎪ 1nn 1⎨ax + ax + + a x = b ; ⎪a 21 x 1+ 22 2 + + 2n n a x = b ⎩ m1 1 m2 2 m n n m (2) 矩阵型:令A = ⎣a i j ⎦m ⨯n,x = (x 1, x 2, , x n )' ,B = (b 1, b 2, b m )' 方程组可以表述为: Ax = B ;(3) 列向量型:令2⎢a ⎥ ⎝O O⎪ ⎪ ⎪ ⎡a 11 ⎤ ⎢21 ⎥⎡a 12 ⎤⎥ 22 ⎡a 1n ⎤ ⎢ ⎥ = , 1 ⎢ ⎥ 2 = , , ⎢ ⎥= ⎢a 2n ⎥ n ⎢ ⎥ ⎢ ⎥ ⎣a m 1 ⎦ ⎢ ⎥ ⎣a m 2 ⎦ ⎢ ⎥ ⎣a m n ⎦则方程组又可以表述为:x 11 + x22+ + x nn = B ;(4)行向量型: x ' + x ' + + x' = B ' .1 12 2n n可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例 3.2.1:(齐次线性方程组)求解方程组:⎧ x 1 + 2x 2 2x ⎪ + x + 2x 3 - 2x + x 4 = 0 - 2x = 0 ⎨ 1 x -2x - 4x 3 - 3x 4=0 ⎩ 1 2 3 4 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:⎛1 0 -25 ⎫ - 3⎪ ⎛ 1 2 2 1 ⎪⎫ ⎛ 1 2 2 1 ⎪⎫4 ⎪ ⎛E C ⎫ A = 2 1 -2 -2 0 -3 -6 -4 0 1 2 ⎪ = 2 ⎪ ⎪1 -1 -4 -3⎪ 0 -3 -6 -4⎪ 3 ⎪ 12 ⎭ ⎝ ⎭ ⎝ ⎭ 0 0 0 0 ⎪⎪ ⎝ ⎭R ( A ) = 2,基础解系含4 - 2 = 2 个.而方程又满足:相应的可以取:⎛E 2 C ⎫ ⎛1 ⎫ = ⎛ 0⎫⎪ ,⎝O 1 O 2 ⎭ ⎝2 ⎭⎝ 0⎭⎛ 5 ⎫ 2 3 ⎪ ⎛ -C ⎫⎪⎝ E 2 ⎭⎪ = -2 4 ⎪3 ⎪1 0 ⎪ ⎝ 0 1 ⎭-⎪ 0 3 ⎪⎭⎛ 2 ⎫ ⎛ 5 ⎫3 ⎪有通解: = k + k,其中= -2⎪1, =- ⎪ 4 ⎪ . 1 12 21 ⎪2 ⎪ ⎪ ⎝ 0 ⎭⎪ 1 ⎪ ⎝ ⎭例 3.2.2 [9] :(非齐次线性方程组)求解方程组:⎧⎪ x 1 + 2x 2- 3x 4 + 2x 5 = 1 x - x - 3x + x - 3x = 2 ⎪ ⎨ 1 2 3 4 52x - 3x + 4x - 5x + 2x = 7 ⎪ 9x ⎩ 1= 25 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:r ( A ) = 3,而r ( A ) = 4 , 故r ( A ) ≠ r ( A) . 从而方程组无解. ⎛ Λ45 -b ⎫事实上,我们可以利用分块矩阵叙述:经对分块矩阵 ⎝ E变换,都不能把最后一列变成0 ,所以该方程组无解.例 3.2.3:证明: n 阶方阵 A 的秩为n- 1,则r a n k ( A* )=1首先证明此例需要利用的一个引理: 4进行行列0 引理:A = (a i j )n ⨯n ,B = (b i j )n ⨯n ,r( A ) = r ,A B =0 ,则r ( B ) ≤ n - r证明:对矩阵 B 进行列向量的分块,B = (B 1, B 2, B n ) ,A B = 0 则有:A B i= 0 ,B i 是AX = 0 的解. 而A X =0 基础解系有n - r 个解.故:r ( B ) ≤ n - r 再证明本例: 因为r ( A )= n - 1,则 A = 0 ,A 至少有一个n -1级子式不为零,r a n k ( A* ) ≥ 1.而:A * =AE = 0 .利用引理得:r a n k ( A * ) ≤ 1,故r a n k ( A )=*.51 - 9 x +2 6x - 163 x4 + 2x 52 3 4 5⎝⎪ 1 2= ⎪ ⎪ 得证.3.3 求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、 利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例 3.3.1 [6] :设 A 、 B 是n 阶方阵,若 A + B 与 A - B 可逆,试证明: ⎛ A B ⎫可逆,并求其逆矩阵. B A ⎭ ⎪ 解:令D = ⎛ A B ⎫,由假设知 A + B ≠ 0 , A - B ≠ 0B A ⎪ .那么:D =A B⎝ ⎭A +B B =A + BB= A + B A - B ≠ 0 .B AB + A AA - B即 D 可逆. 再令D -1 ⎛D 1= D 2⎫ , 由D -1 = E ,即:可得:D D ⎝ 3 4 ⎭⎛ A B ⎫ ⎛D D ⎫ ⎛E 0 ⎫ ⎪ ⎪⎪ ⎝B A ⎭ ⎝D 3D 4 ⎭ ⎝ 0E ⎭⎪⎧A D 1 + B D 3 = E B D + A D = 0⎪12⎨A D +B D = 0 B D 2 + A D 4 = E ⎩ 2 4将第一行和第二行相加、相减,得:⎪D + D = ( A + B )-1 ⎨1 3⎩D 1 - D 3= ( A - B )-1 解之得:D = 1 ⎡( A + B )-1 + ( A - B )-1 ,D = 1⎡( A + B )-1 - ( A - B )-11 2 ⎣⎦ 2 2 ⎣⎦类似地:D 2所以: = D 3 ,D 4= D 1 .⎛ A B ⎫-11 ⎛( A + B )-1 + ( A - B )-1 ( A + B )-1 - ( A - B )-1 ⎫⎪ = 2 -1 -1 -1-1 ⎪ . ⎝B A ⎭ ⎝( A + B ) - ( A - B )( A + B ) + ( A - B ) ⎭ =⎝⎭ ⎝ - ⎪⎪ ⎪0 例 3.3.2 [6] :已知分块形矩阵M = ⎛ A B ⎫可逆,其中 B 为p ⨯ p 块, C 为C 0 ⎪ ⎝ ⎭q ⨯ q 块,求证: B 与C 都可逆,并求M-1 . 解:由0 ≠M = (-1)p qBC ,则: B ≠0 , C ≠ 0 ,即证 B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆: ⎛ A B E p0 ⎫ → ⎛ A B E 0 ⎫ → ⎛ 0B E -AC -1 ⎫⎪ ⎪ -1 ⎪ -1⎝C 0 0 Eq ⎭ ⎝E 0 0 C ⎭ ⎝E 0 0 E ⎭→ ⎛ 0 E B -1-B -1A C -1 ⎫ → ⎛E 0 0 C-1 ⎫E 0 0 C-1⎪ 0 E B -1-B -1A C -1 ⎪ ⎭-1⎛C -1 ⎫故 :M = B -1-B -1A C-1 ⎪ . ⎝⎭备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:⎛ 1 0 1 ⎫ 例 3.3.3 [10] :求矩阵A = 2 1 0 ⎪的逆矩阵.⎝ ⎭ 解:构造矩阵:⎛ 10 1 1 00⎫⎪⎛ 1 0 1 1 0 0⎫⎪2 0 0 1 -2 -2 1 0 D = ⎛ A E ⎫= -3 1 0 0 1 2 -5 0 0 1⎪ → 0 2 -2 3 0 1⎪ ⎪⎪ ⎪ ⎝E O ⎭6⨯6 1 0 0 0 00 1 0 0 0 0⎪ 1 0 0 0 0 0⎪ 0⎪ 0 1 0 0 0 0⎪0 0 1 0 0 0 0 1 0 0 0 ⎝ ⎭ ⎝ ⎭⎛ 1 0⎫⎪ 00 1⎪ →1 0⎪ ⎛ 1 0 1 1 0 0⎫ 0 1 -2 -2 1 0 0 1⎪ → 1 0⎪⎪ ⎪ 0 0⎪ 0 0⎪ 00⎪ 0 0⎪ ⎝⎭ ⎝ ⎭ 0 1 1 0 1 -2 -2 1 0 2 7 -2 0 0 0 0 1 0 0 0 0 1 0 00 2 7 -2 0 -1 0 0 1 0 0 0 0 1 0 0- - ⎪ ⎝ ⎭ ⎝ ⎭1 ⎛ 1 0 0 1 0 0⎫⎪0 1 0 2 1 0 ⎛ 10 0 1 0 0⎪⎫ 0 1 0 2 1 0 0 0 17 -2 1⎪0 0 2 7 -2 1⎪1 ⎪→ ⎪ → 10 - 0 0 0⎪ .1 0 -1 0 0 0⎪2⎪ 0 1 2 0 0 0⎪ 00 10 01 0 0 0⎪0 0 1 0 0 0⎪⎝所以;⎭⎪⎝2⎭⎛1 0 1 ⎫ ⎛ 5 1 ⎫- 2 ⎪⎛ 1 0 0⎫ - 2 -1 - 2 ⎪ A -1 = 0 1 1 ⎪ -2 1 0⎪ = 5 -1 1 ⎪ . ⎪ ⎪ ⎪ 1 ⎪ 7 -2 17 1 ⎪ 0 0 2 ⎪ ⎝ ⎭ 2 -1 2 ⎪ 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵, 有时比较简单.3.4 矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵 的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设 A 、 B 均为m ⨯ n 矩阵,则:r ( A + B ) ≤ r(A ) + r ( B ) .(2)矩阵乘积的秩不超过各因子的秩.即:设 A 是m ⨯ n 矩阵 , B 是n ⨯ s 矩(3)r ⎛A B ⎫阵,则:r ( A B ) ≤≥ r ( A ) + r ( B ) . m i n {r ( A ) , r ( B )}.(4)r ⎝ 0 C ⎭ ⎪ ⎛A ⎫ ⎪⎪ ≥ A i j .A ⎪ ⎝ m ⎭再来介绍由分块矩阵证明导出的两个基本不等式例 3.4.1[11] :(薛尔弗斯特不等式)设A = (a ) ,B = (b ) ,证明:ij s ⨯nij n ⨯mr a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) - n⎪ 证明:由分块矩阵的乘积⎛ E n 0⎪ ⎫ ⎛E B ⎫ ⎪⎛E n -B ⎫⎛E n 0 ⎫ -A E A n0 0 E ⎪ = ⎪0 - ⎝ s ⎭ ⎝ ⎭ ⎝ 知:m ⎭⎝ A B ⎭ r a n k⎛E n B⎫ = r a n k (E ) + r a n k ( -A B ) = n + r a n k ( A B )A 0 ⎪n.⎝ ⎭但,r a n k⎛E nB ⎫ A 0⎪= r a n k⎛B E n ⎫ ≥ r a n k ( A ) + r a n k ( B ) ⎪故:得证.⎝⎭ ⎝ 0 A ⎭.n + r a n k ( A B )≥ r a n k ( A ) + r a n k ( B )备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵: (1) 矩阵不等式中含两个不同矩阵:构造 ⎛A 0 ⎫⎪;⎝ 0 B ⎭(2) 矩阵不等式中含有两个不同矩阵及阶数:构造⎛ A E ⎫ ⎪ 或者 ⎛ A 0 ⎫ ⎪.⎝ 0 B ⎭ ⎝E B ⎭具体分块矩阵的元素则要看题目所给的条件.例 3.4.2 [6] :(Frobenius 不等式)设 A 、 B 、C 是任意3 个矩阵,乘积ABC 有意义,证明:r ( A B C ) ≥ r ( A B ) + r ( B C ) - r ( B )证明:设 B 是n ⨯ m 矩阵,r ( B ) = r那么存在n 阶可逆阵 P , m 阶可逆阵Q ,使B = ⎛Er0⎫ P ⎪ Q .⎝ 0 0⎭把 P 、Q 适当分块:P = (M , S ),Q =⎛N ⎫, 由上式有: T ⎝ ⎭故:r ( A B C )= r ( A M N C ) B = (M , S )⎛E r0⎫ ⎛N ⎫ = M N .⎪ ⎪ ⎝ 0 0⎭ ⎝T ⎭≥ r ( A M ) + r ( N C ) - r0 ≥ r ( A M N ) + r ( M N C ) - r ( B )得证.= r ( A B ) + r ( B C ) - r ( B ) .3.5 矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例 3.5.1[11] :设 A 为m ⨯ k 矩阵, B 为k ⨯ n 矩阵,则证明:r a n k ( A )+r ank( B ) - k≤ r ank( AB) ≤ m i n {r a n k ( A ) , r a n k ( B )}证明:先证明右边的不等式,由:(A 0)(E k0 B ) = ( A A B ) ;E n可得:⎛E k A E 0⎪ ⎫ ⎛B ⎪⎫ = ⎛ B A B ⎫⎪ ,⎝m ⎭ ⎝ ⎭⎝ ⎭r a n k ( A ) =r ank( A 0) = r a n k ( A A B ) ≥ r a n k ( A B ) ;r a n k ( B ) = r a n k ⎛ B ⎫ = r a n k ⎛ B ⎫≥ r a n k ( A B ) .⎪ ⎪⎝ 0 ⎭ ⎝AB ⎭ 再证左边的不等式.注意到下列事实:⎛E m -A ⎫ ⎛ A 0 ⎫ ⎛E ⎪k -B ⎫ = ⎛ 0 -A B ⎫⎪ 0 E ⎪E B 0E⎪ E 0 ⎝k ⎭ ⎝ k 则:⎭ ⎝ n ⎭⎝ k ⎭0 ⎫⎛ 0r a n k ⎛ A ⎪ = r a n k-A B ⎫ ⎪于是:⎝E kB ⎭ ⎝E k0 ⎭⎛ A 0 ⎫r a n k ( A ) + r ank ( B ) ≤r ank ⎪ = r a n k ( -A B ) + r a n k (E k )= r a n k ( A B ) + k⎝E kB ⎭ 从而: r a n k ( A ) + r a n k ( B ) - k ≤ r a n k ( A B ) .这里也是用到构造矩阵的方法.例 3.5.2 [6] :设n 阶矩阵 A 、 B 可交换,证明:r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B )→ → , ⎝ ⎭ 解:利用分块初等变换,有:⎛A O ⎫ ⎛A B ⎫ ⎛A + B B ⎫⎪ ⎪⎪ ⎝O B ⎭ ⎝O B ⎭ ⎝ B B ⎭ 因为 AB = BA ,所以:⎛ E O ⎫ ⎛A + B B ⎫ = ⎛A + B B ⎫ .B -A - ⎪ B ⎪ O- ⎪B B A B ⎝ 于是,有:⎭ ⎝ ⎭ ⎝ ⎭r a n k ( A ) + r a n k ( B )= r a n k⎛A + B B ⎫≥ r a n k ⎛A + B B ⎫B ⎪⎝ B ⎭ ⎝ ⎪O-A B ⎭即:r a n k ( A + B )得证.≥ r a n k ( A + B ) + r a n k ( A B ) .≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B ) .例 3.5.3:设 A 是n 阶方阵,且r ( A ) = r ( A 2 ,证明:对任意自然数k ,有r ( A k ) = r ( A )⎛A 2O ⎫证:构造分块矩阵 O A 2 ⎪,由 Frobenius 不等式: 2 2 2 ⎛A O ⎫ ⎛A 2 -A 3 ⎫ ⎛O -A 3 ⎫ 3 r ( A )+r( A ) ≤ r ⎪ = r A A 2 A O ⎪ = r A O ⎪ = r ( A ) + r ( A ) . 由:r ( A ) = r ( A 2 ) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭所以,r ( A3 ) = r ( A 2 * A )≤ r ( A2 ) .故: r(A 2 ) = r ( A 3 .由此可推得:r ( A3) = r ( A 4) , r ( A4) = r ( A5 ) , .故:对任意自然数k , 有:r ( A k ) = r ( A ) .3.6 综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例 3.6.1 [6] :(特征多项式的降阶定理)设 A 是m ⨯n 矩阵, B 是n ⨯ m 矩阵. 证明: AB 的特征多项式f A B ( ) 与 BA 的特征多项式f B A( ) 有如下的关系:nm1 2 s证:先要把上式改写为:n f () =m f () .A BB AnE -m A B =mEE 1 Bn - B A .用构造法,设 ≠ 0 ,令: H =n.A E m⎛1 ⎫ ⎛E 1 B ⎫对 ⎛E n 0⎪ ⎫ E n B ⎪= n ⎪ ⎝ -A E⎪⎪ 1 ⎪ 两边取行列式得: n ⎭ A E⎝ m ⎭ 0 E - ⎝A B ⎪⎭ H = E -1 A B = 1 m E - A B .⎛E 1 B ⎫ ⎛E nm 0 ⎫⎛ 1( ) m1 B ⎫ 再对 n ⎪ -A E ⎪ E - B A ⎪ 两边取行列式得: ⎪ ⎪ = n⎪⎝ A E m ⎭⎝ n ⎭ ⎝ H = E -0 1B A = E m ⎭ 1 n E - B A .故: 1nE n- B A =1Em mn- A B() nmE n - B A = nE m - A B .上述等式是假设了 ≠ 0 ,但是两边均为的n + m 次多项式,有无穷多个值使它们成立(0)≠ ,从而一定是恒等式,即证.这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用. 例 3.6.2 [6] :设 A 为m ⨯ n 矩阵, B 为n ⨯ m 矩阵,证明: AB 与 BA 有相同的非零特征值.证:由定理:m E - B A = n E - A B .设 E m- A B = m -s (- ) ( - ) ( - ) ,其中12 m ≠么有:0 ,即 AB 有s 个非零特征值:1, 2, , s , 由上面两式,那nE - B A = ( - 1) ( - ) 2 (- )n- s s即证 BA 也只有s 个非零特征值:1, 2, , s .m∑ 例 3.6.3 [6] :设 A 、 B 分别是m ⨯n 和n ⨯ m 矩阵,证明:t r A B = t r B A .解:由上例知,若E - A B = m -s ( - a ) ( - a )m1s其中a 1a 2 a s ≠ 0. 则 AB 的全部特征值为1 = a 1, , s= a s , s +1= = m = 0 ,且:E - B A = n -s ( - a ) ( - a ) .n1s即 BA 的全部特征值为:1 = a 1,2 = a2, ,s +1= = n = 0 .从而 t r A B =sa ii=1=t r B A .可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1] 上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982. [2] 北京大学. 高等代数{M}. 高等教育出版社, 1998.[3] 高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. ft 西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154. [6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7] 王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8] 张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. ft东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所,2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
分块矩阵在求矩阵秩及其相关不等式证明中的应用

94
—— 科协论坛 ・ 2011 年第 10 期 (下) ——
m - s + t - n, 即秩 B≥秩 A - m + s - t +n 命题 6: 已知秩(AB)=秩(B),试证对任意可右乘矩阵 C, 有 秩(ABC)=秩(BC)
引理 3: 引理 4:
证明: 由引理 1 得, (ABC)≤秩(BC), 秩 因为 于是由引理 1-4 得:
引理 5: 命题 2: m×n 矩阵。 证明: 因为 , 于是由引理 1 得 从而有秩 (ABC) (AB) 秩 ≥秩 + (BC)- 秩 (B), 又已知秩 (AB) =秩(B) 代入上式得秩(ABC) , ≥秩(BC) ,所以,秩 (ABC) (BC) =秩 推论 1 : A 为 n 阶矩阵, 设 证明 An = 秩 An+1 = 秩 An+2=… 又因为 , 综上即得 证明: 因为 n = 秩 E = 秩 A0≥秩 A≥秩 A1≥秩 A2…≥秩 An≥0 于是必有正整 k(0≤k≤n), 使秩 Ak≥秩 A k+1, 由命题 6 得 秩 An = 秩 An+1 = 秩 An+2 = … 命题 3: A 为 s×n 矩阵, 设 则有, 秩(E-ATA) - 秩(ES-ATA) = n - s。 证明: 因为 1-5 得 又因为 , 同理可得 , 于是由引理 3 结语 本文从利用分块矩阵求矩阵的秩和证明矩阵秩的不等式 两方面讨论了分块矩阵的应用, 通过以上实例我们可以看出, 分块矩阵的在解决有关矩阵秩的一些问题时具有简洁、 快速、 易于操作等特点, 可以让人对分块矩阵这一工具的实用价值 有所认识和了解, 它既是一种解题方法又是一种解题技巧。 但 它的应用并不止这些,它还有更宽更广的应用还有待于我们 去深入的探索和研究。 所以有: (E-AAT) - 秩(ES-AAT) = n - s。 秩 命题 4: 设为 m×n 矩阵, s 是从 A 中取 s 行得到的矩阵, A 则秩 As≥秩 A+s-m 证明: 不妨设 As 是 A 的前 s 行, 而后 m-s 行构成的矩阵为 B, 则 , 其中 A, B 均为
分块矩阵在解题中的灵活应用

中国科教创新导刊中国科教创新导刊I 2008N O .30C hi na Educa t i on I nnov at i on H er al d 教育教学方法1分块矩阵的性质定义1:分块矩阵的初等行(列)变换是指下列三种变换:Ⅰ、调换分块矩阵的i ,j 两行(列),记作〔i ,j 〕。
Ⅱ、用一个可逆矩阵P 左(右)乘分块矩阵的第i 行(列),记作〔i (P)〕。
Ⅲ、用一个可逆矩阵P 左(右)乘分块矩阵的第i 行(列)后加到第j 行(列),记作〔i (P)+j 〕。
性质1:分块矩阵是可逆的,且逆矩阵为分块初等矩阵。
性质2:分块单位矩阵(即单位矩阵经分块后得到的分块矩阵)经过一次分块矩阵的初等行(列)变换所得到的矩阵仍为分块初等矩阵。
2分块矩阵在求逆矩阵时的重要应用定理1:设A 、B 、C 分别是m ×m,n ×n ,n ×m 矩阵,A 、B均可逆,则=。
证明:由=两边求逆:即=例1:求下式的逆矩阵:E=。
解:将E 分解成E=其中:求得:分块矩阵在解题中的灵活应用胡香兰(南昌师范高等专科学校自然科学系南昌330029)摘要:从分块矩阵的性质出发,说明分块矩阵在高等代数解题中有着重要作用,结合逆矩阵及非齐次线性方程组的求解予以具体说明。
关键词:分块矩阵逆矩阵初等变换非齐次方程组中图分类号:G 633文献标识码:A 文章编号:1673-9795(2008)10(c)-0088-013分块矩阵在非齐次线性方程组求解时的重要应用定义2:如果E 是一个n 阶非奇异阵E=(e i j ),i .j =1,2,3,……n,将E 进行分块,E=,其中A ,B ,C ,D 分别是p ×p,q ×q,q ×p,p ×q 矩阵,p+q=n,若B是非奇异阵,那么一定可以找到一个上三角分块阵F=,使得FE=,其中G=A-DB -1C ,且G 是非异阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生毕业设计(论文) 题目:分块矩阵在高等代数中的应用Title: Block Matrix Of Application in AdvancedAlgebra学号 0508060357姓名邹维喜学院数信学院专业数学与应用数学指导教师甘爱萍完成时间 2008.4.15分块矩阵在高等代数中的应用【摘要】高等代数以其独特的理论体系而引人入胜,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境。
作为高等代数中的一个工具——分块矩阵,分块矩阵是高等代数中的一个重要内容,在高等代数中有着很重要的应用,本文详细且全面论述了分块矩阵阵的概念和其的初等变换以及证明了矩阵的分块在高等代数中的应用,包括用分块矩阵来算矩阵的乘积,利用分块矩阵求逆矩阵的问题,用分块矩阵求矩阵的行列式问题.【关键词】:分块矩阵;矩阵乘积得秩;逆矩阵;行列式Block Matrix in Advanced Algebra Application【Abstract】 Higher Algebra for its unique and fascinating theoretical system based on abstract knowledge, skills and strong problem-solving approach, a little carelessness will be in trouble. Advanced Algebra as a tool - sub-block matrix, block matrix is of higher algebra an important share in higher algebra very important applications, this paper discusses the detailed and comprehensive array block matrix of the concept and its elementary transformation matrix, as well as the sub-block in the application of higher algebra, including matrices to count the product matrix, the use of sub-block matrix inverse matrix problem, with sub-block matrix of the determinant of the matrix problem.【Key words】: sub-block matrix; matrix product of a rank; inverse matrix; determinant目录1引言 (1)2 矩阵的分块 (1)2.1 矩阵分块的概念 (2)2.2 分块矩阵的运算 (2)2.3 分块矩阵的初等变换 (3)3 分块矩阵在高等代数中的应用 (3)3.1 利用分块矩阵算矩阵的乘积 (3)3.2 利用分块矩阵求逆矩阵 (4)3.3 利用分块矩阵求高阶行列式 (5)4 总结 (6)谢辞..........................................7. 参考文献 (7)1 引言高等代数是数学类专业的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力、开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造性能力等起到重要作用。
矩阵的分块不仅是高等代数中一个非常重要的内容,而且也是高等代数的很多分支研究问题的工具,它贯穿了整个高等代数的内容。
而我们在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,这样可以使问题的解决更简明。
分块矩阵作为处理矩阵的一种重要的方法,在学习矩阵的分块之后,我们不仅仅只会矩阵的分块,还要学会更深层的问题,要学会观察,联想,猜想。
学会用矩阵的分块去解决在高等代数中遇到的问题,比如说用矩阵的分块去求高阶行列式,求一个矩阵的逆矩阵,求矩阵的特征值等一些问题。
矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于学生理解和掌握,而且能开拓学生的思维,提高学生灵活应用知识解决问题的能力。
下面主要介绍了分块矩阵的概念,分块矩阵的初等变换,还有就是分块矩阵在高等代数中的几个应用。
所介绍的几个应用将对我们今后学习高等代数有重要作用。
2 矩阵的分块2.1 矩阵分块的概念将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。
为了说明这个方法,我们来看以下的一个例子,在矩阵A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1011012100100001=⎥⎦⎤⎢⎣⎡E A E O 212中,E 2表示2级单位矩阵,而 A 1=⎥⎦⎤⎢⎣⎡-1121, O=⎥⎦⎤⎢⎣⎡0000 这就是我们所说的矩阵的分块。
2.2 分块矩阵的运算在前面我们学过矩阵的运算,一般来说矩阵的运算是矩阵的加法,乘法。
矩阵的加法就是矩阵对应的元素相加,矩阵相乘就是前面矩阵的第i 行和后面的 矩阵的第j 列的对应元素乘积的和。
分块矩阵的运算法则也是一样的 ,只不过分块矩阵的每个小矩阵代替矩阵中的每个元素了。
以下举两个例子。
分块矩阵P=⎥⎦⎤⎢⎣⎡D C B A ,Q=⎥⎦⎤⎢⎣⎡N M F E (对应的每个小矩阵的行数和列数相等),则P+Q=⎥⎦⎤⎢⎣⎡++++N D MC F B E A ,PQ=⎥⎦⎤⎢⎣⎡++++DN CF DM CE BN AF BMAE在运算的时候我们要注意相加的矩阵必须有相同的行数和列数 ,在乘法中第二个矩阵的行数与第一个矩阵的列数相等,且第一个矩阵列的分法与第二个矩阵行的分法完全一致。
2.3 分块矩阵的初等变换分块矩阵不仅可以像普通矩阵一样做运算,而且可以对它们做初等变换。
为了对分块矩阵作更深一步的了解,我们对分块矩阵的初等变换作简单的介绍,效仿矩阵的初等变换,分块矩阵也可以做以下三种变换,称为分块矩阵的初等变换,也可以称为广义变换:(1) 互换两行(列)的位置;(2) 某一行(列)左乘(右乘)一个矩阵 P ;(3) 把某一行(列)左乘(右乘)以矩阵P 加到另一行(列)去;可以看出,与初等矩阵和初等变换的关系一样,用初等矩阵去乘分块矩阵只要分块乘法能够进行,左乘就相当与对它做相应的广义初等行变换,右乘相当于做相应的广义初等列变换。
分块乘法和矩阵的初等变换有效的结合是矩阵的运算中一种极为重要的手段,灵活并巧妙的用这种手段会使某些矩阵问题较为容易的得到解决。
3 分块矩阵在高等代数中的应用3.1 利用分块矩阵来算矩阵的乘积上面我们介绍到了分块矩阵的运算,我们这里所说的用分块矩阵来算矩阵 的乘积,其实是跟矩阵的乘法是一样的,下面就举几个例子来说明下这种方法。
A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1011012100100001=⎥⎦⎤⎢⎣⎡E A E O 212 (其中E 2=⎪⎪⎭⎫ ⎝⎛1001,A 1=⎪⎪⎭⎫⎝⎛-1121,O=⎪⎪⎭⎫ ⎝⎛0000) B=⎪⎪⎪⎪⎪⎭⎫⎝⎛---0211140110212301=⎪⎪⎭⎫ ⎝⎛F E D C (其中C=⎪⎪⎭⎫ ⎝⎛-2101,D=⎪⎪⎭⎫ ⎝⎛1023,E=⎪⎪⎭⎫⎝⎛--1101 F=⎪⎪⎭⎫⎝⎛0214 ) AB=⎪⎪⎭⎫⎝⎛E A E O 212 ⎪⎪⎭⎫ ⎝⎛F ED C =⎪⎪⎭⎫⎝⎛++F D E C D C A A 11其中 E C A +1=⎪⎪⎭⎫ ⎝⎛-1121⎪⎪⎭⎫ ⎝⎛-2101+⎪⎪⎭⎫ ⎝⎛--1101=⎪⎪⎭⎫⎝⎛--1142 F D A +1=⎪⎪⎭⎫ ⎝⎛-1121⎪⎪⎭⎫⎝⎛1023+⎪⎪⎭⎫ ⎝⎛0214 =⎪⎪⎭⎫⎝⎛3511 所以AB=⎪⎪⎪⎪⎪⎭⎫⎝⎛---3511114210212301从上面的例子可以看出利用分块矩阵算矩阵的乘积可以在一定程度上简化题目,减少我们的运算量。
不难看出,上面计算出的结果和直接按四级矩阵乘积的定义所得的结果是一样的。
3.2 利用分块矩阵求逆矩阵在求一个矩阵的逆矩阵时,一般的我们可以通过求其的伴随矩阵和矩阵,行列式来求。
但对一些矩阵。
如果我们对其进行适当的分块,并利用一定的结论可以使问题更加轻松的得到解决。
以下给出两个常用的结论:设Ai(i=1,2,3 ,s )都是可逆矩阵,则有(1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-A A A s000000211=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---A AA s 100001000121(2)⎥⎦⎤⎢⎣⎡-00211A A =⎥⎥⎦⎤⎢⎢⎣⎡--011012A A(3)⎥⎦⎤⎢⎣⎡-C B A 01=⎥⎥⎦⎤⎢⎢⎣⎡-----C A C A B 11110 前两个结论我们不证明了,下面我们来证明一下第三个结论,由矩阵的初等变换以及初等矩阵的概念我们知道了求逆矩阵的一种方法,利用分块矩阵的初等变换我们可以证明以上第三个结论,下面我们来证明。
证明:⎥⎦⎤⎢⎣⎡C B A 0 ⇔⎥⎦⎤⎢⎣⎡1001 对上式两边进行初等变换得:⎥⎦⎤⎢⎣⎡C A 00⇔⎥⎦⎤⎢⎣⎡-1011A B ⎥⎦⎤⎢⎣⎡C 001⇔⎥⎥⎦⎤⎢⎢⎣⎡--1011A A B ⎥⎦⎤⎢⎣⎡1001⇔⎥⎥⎦⎤⎢⎢⎣⎡-----C A CA B 1111所以 ⎥⎦⎤⎢⎣⎡C B A 0=⎥⎥⎦⎤⎢⎢⎣⎡-----C A C A B 1111以上两个结论在利用分块矩阵求逆矩阵时经常用到,下面举几个例子来说明用分块矩阵来求逆矩阵。
例 1. 求矩阵 S=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--3111522100110012 的逆矩阵解:把矩阵S 分块得A=⎥⎦⎤⎢⎣⎡1112,B=⎥⎦⎤⎢⎣⎡3152,C=⎥⎦⎤⎢⎣⎡--1121A 1-=⎥⎦⎤⎢⎣⎡--2111,B 1-=⎥⎦⎤⎢⎣⎡--2153,A BC 11---=⎥⎦⎤⎢⎣⎡--1173019所以 S 1-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------2111753301900210011由于该部分比较简单,我们不再详述,但从上述例题可以看出,利用分块矩阵求逆矩阵,方法比较简单,计算时,若能把分块矩阵的性质和定理的结论综合在一起,会使适用范围更广。
3.3 分块矩阵在求高阶行列式的应用行列式是高等代数的一个重要组成部分,在高等代数中我们常常遇到 些计算高阶行列式的问题,如果我们直接去计算的话,计算量不仅很大,而且很容易出错。