专题8几何计算线段角度及面积

合集下载

人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)

人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含答案)

人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形是矩形,点,在坐标轴上,是由绕点顺时针旋转得到的,点在轴上,直线交轴于点,交于点,线段=2,=4(1)求直线的解析式.(2)求的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3=xy分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D -3+3为直线AB上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+-x的解集为___________3>33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B .(1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B →C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF ⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1)OC=4,BC=2,B(-2,4),.设解析式为,.(2),.直线,.当,,,.2.(1)依照题意画出图形,如图所示.(2)令y=x+2中y=0,则x+2=0,解得:x=﹣2,∴点B(﹣2,0);令y=﹣x+4中y=0,则﹣x+4=0,解得:x=4,∴点C(4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7; (2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当m x m y 32,321-=+-=时 mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8)设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中,得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A (﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),时,即S=6m-18.11. (1)设函数解析式为y=kx +b , 由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46C O E B C M OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP是平行四边形由△BCM ≌△COE 可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k<-1,(1)解得2<k<4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A(﹣2,0),当x=0时,y=x+1=1,则B(0,1);(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。

几何测量的技巧学习准确测量和估算的方法

几何测量的技巧学习准确测量和估算的方法

几何测量的技巧学习准确测量和估算的方法几何测量是数学中非常重要的一个分支,它涉及到准确测量和估算的方法。

无论是在学校教育中还是在实际应用中,几何测量都扮演着重要的角色。

本文将介绍一些几何测量的技巧,包括测量线段、角度、面积和体积的方法。

1. 测量线段的技巧测量线段是几何测量中最基本的任务之一。

为了准确测量线段的长度,我们可以使用直尺或者尺子。

将直尺或尺子的一端与线段的起点对齐,然后用眼睛准确地读取终点的位置,这样就可以得到该线段的长度。

2. 测量角度的技巧测量角度也是几何测量中的一项重要任务。

对于小角度的测量,我们可以使用量角器。

将量角器的一个端点放在角的顶点上,然后调整另一个端点使其与角的两条边对齐,最后读取量角器上的刻度值即可得到角度的度数。

3. 测量面积的技巧当需要测量一个平面图形的面积时,我们可以使用不同的方法。

对于简单的形状如矩形、正方形和三角形,我们可以直接使用相应的公式计算面积。

例如,一个矩形的面积等于其长度乘以宽度。

对于复杂的图形,我们可以使用分割和逼近的方法。

将图形分割成简单的形状,计算每个形状的面积,然后将它们求和即可得到整个图形的面积。

4. 测量体积的技巧要测量一个立体体积,我们需要知道其形状以及相应的测量方法。

常见的体积测量包括测量立方体、圆柱体和锥体等。

对于立方体,可以直接使用边长的立方来计算体积。

对于圆柱体和锥体,我们可以先计算底面的面积,然后乘以高度来得到体积。

准确测量和估算的方法对于几何测量至关重要。

几何测量不仅在学校的数学教育中有着重要的地位,也广泛应用于人们的日常生活和各个行业。

通过掌握测量线段、角度、面积和体积的技巧,我们能够更准确地进行测量和估算,为数学和实际应用提供可靠的数据支持。

总结起来,几何测量的技巧涵盖了测量线段、角度、面积和体积等方面。

通过使用合适的工具和方法,我们能够准确地测量和估算各种几何量。

在实际应用中,这些技巧将帮助我们解决问题、做出决策,并提供正确的数学基础。

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

23.三角形中的线段计算,几何证明以及面积计算

23.三角形中的线段计算,几何证明以及面积计算

DHFEPCBADHFEPCBA线段计算,几何证明1.AD 是⊙O 的直径,且AD=6。

A 、B 、C 、D 、E 、F 为⊙O 的六等分点,P 为劣弧⋂AF 上一动点,连接PA 、PB 、PD 、PE 。

(1)当点P 运动到点F 时,求出PA+PB 的值;(2)当点P 运动到⋂AF 之间时(不与点A 与点F 重合),求出PDPB PEPA ++值.(3)令t= PA+PB+PD+PE ,请直接写出t 的取值范围.2.已知,Rt △ABC 中,∠BAC =900,AH ⊥BC 于H ,P 是AB 上一动点,AD ⊥CP ,BE ⊥CP ,HD 与BE两延长张交于点F 。

(1)当AB =AC 时,求∠BFH 的度数。

(2)当∠ABC=30°时,探求BF 与CD 的数量关系,说明理由。

(3)当∠ABC=α时,直接用α的代数式表示CDBF的值。

3.如图1,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,点P 为DC 上一点,且AP=AB ,过点C 作CE ⊥BP 交直线BP 于E .(1)若BC AB =43,求证BP=23CE ;(2)若AB=BC ,①如图2,当点P 与E 重合时,求PCPD 的值:②如图3,设∠DAP 的平分线AF 交直线BP 于F ,当CE=1,PC PD =74时,直接写出线段AF 的长为______.ABC DPE (E )P DC B AFEPDCB A4.已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC=2α.如果用α表示∠BIC 和∠E ,那么∠BIC= ,∠E= ;(2)如果AB=1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=,设BC=m ,试用m 的代数式表示BE .5.已知:正方形ABCD的边长为4,点E为BC的中点,点P为AB上一动点,沿PE翻折△BPE 得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.(1)如图,当BP=1.5时,求CQ的长;(2)如图,当点G在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x的取值范围;(3)延长EF交直线AD于点H,若△CQE与△FHG相似,求BP的长.6.如图1,在等腰△ABC中,AB=AC,∠ABC=α,过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求证:AC=AD;(2)点G为线段CD延长线上一点,将GC绕着点G逆时针旋转β,与射线BD交于点E.①如图1,若β=α,DG=2AD,试判断BC与EG之间的数量关系,并证明你的结论;②若β=2α,DG=kAD,请直接写出的值(用含k的代数式表示).7.如图△ABC 中,AB=AC=10厘米,BC=12厘米,D 是BC 的中点,点P 从B 出发,以a 厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒.(1)若a=2,△BPQ ∽△BDA ,求t 的值;(2)设点M 在AC 上,四边形PQCM 为平行四边形. ①若a=,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.8.在正方形ABCD 中,对角线AC 、BD 交于O 点,BC 上有一动点P ,作12BPE ACB ∠=∠,PE交BO 于点E ,过B 点作BF ⊥PE ,垂足为F ,且BF 交AC 于点G . (1)(3分)当P 点与C 点重合时(如图1),求证:EP =BG . (2)(3分)若P 点与C 点不重合(如图2),求BFPE的值,并证明. (3)(4分)把正方形ABCD 改为菱形,其它条件不变(如图3),若∠ACB =α,求BFPE的值(用含α的式子表示并证明).图1图2图39.已知在四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),E'为CB延长线上一点,且DE=BE',连接AE、AE'、EE'.∠的度数;(1)如图1,求AEE'(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=ME的长.10.如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一动点,G是BC边上的一动点,GE∥AD分别交AC、BA或其延长线于F、E两点. (1) 如图1,当BC=5BD时,求证:EG⊥BC;(2) 如图2,当BD=CD时,FG+EG是否发生变化?证明你的结论;(3) 当BD=CD,FG=2EF时,DG的值=_________BFB11.已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC=2α.如果用α表示∠BIC 和∠E ,那么∠BIC= , ∠E= ;(2)如果AB=1,且△A BC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=35,设BC=m ,试用m 的代数式表示BE .12.如图1,Rt △ABC 中,∠C=90°,tanB=43,点E 、F 、D 分别在三条边上, EF ∥AB ,ED∥AC . (1)求证:;DBADFA CF = (2)如图2,将△FCE 绕点C 逆时针旋转,点P 、G 分别为EF 、AB 的中点,若AF=9,求PG 的长;(3)如图3,将△DEB 绕点B 顺时针旋转,点H 、G 为AB 、DB 的中点,直接写出CEGH的值.(第24题图②)FABCDEI(第24题图①)ABCDEI13.在△ABC 中,∠ACB =90°,经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于∠ABC ,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E 。

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

直线形面积的计算例题讲解:板块一:基础题型:1.如图,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?解析:四边形ABCD的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。

CF=36×2÷8=9(厘米),FB=15-9=6(厘米),AE=36×2÷12=6(厘米),EB=8-6=2(厘米)。

阴影三角形DEF的面积是36-2×6÷2=30(平方厘米)2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?解析:40×15÷30=20(平方米)3.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?解析:三角形ADC的面积是3×3=9(平方厘米),三角形ABC的面积是3×9=27(平方厘米)4.如图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?解析:三角形BAE的面积是36÷3×2=24(平方厘米),三角形BDE的面积24÷3×2=16(平方厘米)5.如图所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?解析:(1)三角形AED的面积是20×3=60(平方厘米)(2)三角形DEC的面积是20+60=80(平方厘米),三角形DEC的面积是平行四边形DECF 的面积的一半,也是平行四边形ABCD的面积的一半,所以平行四边形DECF的面积是80×2=160(平方厘米)6.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?解析:根据一半模型可知,三角形AOD的面积和三角形BOC的面积是平行四边形ABCD 的面积的一半,所以三角形BOC的面积是36÷2-8=107.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?解析:链接BD ,可知三角形ABD 的面积和三角形BDC 都是96÷2=48(平方厘米),三角形ABE 的面积是48×32=32(平方厘米)。

专题08 立体几何解答题常考全归类(精讲精练)(原卷版)

专题08 立体几何解答题常考全归类(精讲精练)(原卷版)

专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。

专题8几何图形变化—8.1平移之概念性质-2021届鲁教版(五四制)九年级数学专题复习训练

专题8几何图形变化—8.1平移之概念性质-2021届鲁教版(五四制)九年级数学专题复习训练

一、平移(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。

(2)平移的性质:①对应点的连线平行(或共线)且相等②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)③对应角相等,对应角两边分别平行,且方向一致。

(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。

(从坐标来讲:向正方向平移为加,逆方向平移为减)(4)平移的两个要素:平移方向、平移距离(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。

类型一:平移的坐标特点【经典例题1】如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,3),(4,0),把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,3),则点E的坐标为.【解析】由题意知:A,B两点的横坐标差为4-3=1,由平移性质可知:E,D两点横坐标之差与B,A两点横坐标之差相等,设E点横坐标为a,∴a-6=1,∴a=7,∴E点坐标为(7,0).练习1-1(2020四川成都)在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A.(3,0)B.(1,2)C.(5,2)D.(3,4)练习1-2 (2020上海)如果存在一条线把一个图形分割成两部分,使其中一个部分沿某个方向平移后能与另一部分重合,那么我们把这个图形叫做平移重合图形,下列图形中,平移重合图形是()A. 平行四边形B. 等腰梯形C. 正六边形D. 圆【解析】过平行四边形对边中点的直线,把平行四边形分成两部分,将其中一部分平移后能与另一部分重合,在等腰梯形、正六边形、圆中不存在这样的直线.故选A.练习1-3(2020·台州中考)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为DA.(0,0) B.(1,2) C.(1,3) D.(3,1)(第1题图)练习1-4(2020河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0),将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)【解析】如解图,∵A(-2,6),B(7,0),∴C(-2,0),OC=2,即正方形OCDE的边长为2,∴D1E1=E1O1=O1C1=2,BC=9,AC=6,在Rt△ACB中,tan∠ABC=ACBC=69=23,∴O1B=O1E1tan∠ABC=3.∴O1O=OB-O1B=7-3=4,∴ED1=OC1=4-2=2,∴点D1的坐标为(2,2),即当点E落在AB边上时,点D的坐标为(2,2).所以此题选B练习1-5如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.练习1-6(2020上海)(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【解析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形,故选:A.练习1-7在直角坐标系中,△ABC的三个顶点都在边长为1的小正方形的格点上,△ABC关于y轴的对称图形为△A1B1C1,以△ABC与△A1B1C1组成一个基本图形,不断复制与平移这个基本图形,得到如图所示的图形(1)观察以上图形并填写下列各点坐标:A1(,),A2(,),...,A m(,)(m 为正整数)(2)若△A m B n C k是这组图形中的一个三角形,当n=2019时,则m= ,k= . 【解析】(1)2,2;6,2;4m-2,2(2)1010,1009类型二:平移的简单计算【经典例题2】(2020青海省卷)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为________.【解析】∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=C△ABC+AD+CF=8+2+2=12.练习2-1如图,在△ABC中,已知∠ACB=90°,∠BAC=30°,∠ACB的平分线与AB相交于点P,等腰直角△DEF的顶点D在射线CP上,且EF∥AB,连接PE,PF。

高斯小学奥数六年级上册含答案第08讲复杂直线型计算

高斯小学奥数六年级上册含答案第08讲复杂直线型计算
3
右侧边的1,那么它的面积就是大三角形的1- -•
22 3 6
3.沙漏三角中的比例关系:
如下图所示,上下两个三角形底边平行,
另两边呈交叉关
1.n边形的内角和是180n2;
2.n边形的外角和是36、平行四边形、长方形、正方形、梯形面积公式(详细公式略)
三、直线形中的比例关系
1.等高三角形:面积比等于底的比.
a:b
2.共角三角形:面积比等于共角夹边比的乘积•如右图所示,阴影三角形
与大三角形共享一个角,它的左侧边占大三角形左侧边的〕,右侧边占大三角形
第八讲复杂直线型计算
我们在之前的学习中已经详细学习了直线形长度、
角度以及面积的计算, 并学习了
直线形中的各种比例关系•下面我们就对这些知识作一下总结.
本讲知识点汇总:
我们在之前的学习中已经详细学习了直线形长度、角度以及面积的计算, 并学习了
直线形中的各种比例关系•下面我们就对这些知识作一下总结.
一、角度问题

专题08 平面解析几何(解答题)

专题08  平面解析几何(解答题)

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M e 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r,故可得2224(2)a a +=+,解得=0a 或=4a . 故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r ,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)31-;(2)4b =,a 的取值范围为[42,)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,13PF c =,于是122(31)a PF PF c =+=+,故C 的离心率是31ce a==-. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,即||16c y =,① 222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P . 所以4b =,a 的取值范围为[42,)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见解析;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =u u u u r ,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,由已知有32a b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,3a c b c ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-.因为点P在x轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C在直线4x=上,可设(4, )C t.因为OC AP∥,且由(1)知( 2 , 0)A c-,故3242ctc c=+,解得2t=.因为圆C与x轴相切,所以圆的半径长为2,又由圆C与l相切,得23(4)242314c+-=⎛⎫+ ⎪⎝⎭,可得=2c.所以,椭圆的方程为2211612x y+=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力. 6.【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.【答案】(1)22143x y+=;(2)3(1,)2E--.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C:221 43x y+=.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(−1,0),由221431xx y⎧⎪⎨+==-⎪⎩,得32y=±.又因为E是线段BF2与椭圆的交点,所以32y=-.因此3(1,)2E--.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.7.【2019年高考浙江卷】如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为312+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122113222134323424S m S m m m m m m=-=--=+++++⋅+…. 当3m =时,12S S 取得最小值312+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解.(1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)y =x –1;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k++=. 所以212244(1)(1)k AB AF BF x x k+=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【名师点睛】本题主要考查抛物线与直线和圆的综合,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.(1)利用点斜式写出直线l 的方程,代入抛物线方程,得到关于x 的一元二次方程,利用根与系数的关系以及抛物线的定义加以求解;(2)由题意写出线段AB 的垂直平分线所在直线的方程,设出圆心的坐标,由题意列出方程组,解得圆心的坐标,即可求解.10.【2018年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:2||||||FP FA FB =+u u u r u u u r u u u r. 【答案】(1)见解析;(2)见解析.【解析】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP u u u r . 于是222211111||(1)(1)3(1)242x x FA x y x =-+=-+-=-u u u r .同理2||=22x FB -u u u r .所以1214()32FA FB x x +=-+=u u u r u u u r .故2||=||+||FP FA FB u u u r u u u r u u u r .【名师点睛】本题主要考查椭圆的方程及简单几何性质、直线的斜率公式、直线与椭圆的位置关系、向量的坐标运算与向量的模等,考查运算求解能力、数形结合思想,考查的数学核心素养是数学抽象、数学运算.圆维曲线中与中点弦有关的问题常用点差法,建立弦所在直线的斜率与中点坐标间的关系,也可以通过联立直线方程与圆锥曲线方程,消元,根据根与系数的关系求解.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .【答案】(1)2213x y +=;(2)6;(3)1. 【解析】(1)由题意得222c =,所以2c =,又63c e a ==,所以3a =, 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则222212121264||1||1()42m AB k x x k x x x x ⨯-=+-=+⋅+-=,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 【名师点睛】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,考查考生的逻辑思维能力、运算求解能力,考查数形结合思想,考查的数学核心素养是直观想象、逻辑推理、数学运算.解决椭圆的方程问题,常用基本量法,同时注意椭圆的几何量的关系;弦长的计算,通常要将直线与椭圆方程联立,利用根与系数的关系求解.12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为53,||13AB =. (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【答案】(1)22194x y +=;(2)12-. 【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由22||13AB a b =+=,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得12694x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,涉及轨迹方程问题、定值问题、最值问题、参数的取值或取值范围问题等,其中考查较多的圆锥曲线是椭圆与抛物线,解决此类问题要重视化归与转化思想及设而不求法的应用.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.【答案】(1)椭圆C的方程为2214xy+=,圆O的方程为223x y+=;(2)①(2,1);②532y x=-+.【解析】(1)因为椭圆C的焦点为12()3,0,(3,0)F F-,可设椭圆C的方程为22221(0)x ya ba b+=>>.又点1(3,)2在椭圆C上,所以2222311,43,a ba b⎧+=⎪⎨⎪-=⎩,解得224,1,ab⎧=⎪⎨=⎪⎩因此椭圆C的方程为2214xy+=.因为圆O的直径为12F F,所以其方程为223x y+=.(2)①设直线l与圆O相切于0000(),,(00)P x y x y>>,则22003x y+=,所以直线l的方程为000()xy x x yy=--+,即0003xy xy y=-+.由22001,43,xyxy xy y⎧+=⎪⎪⎨⎪=-+⎪⎩消去y,得222200004243640()x y x x x y+-+-=.(*)因为直线l与椭圆C有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x∆=--+-=-=.因为00,0x y>,所以002,1x y==.因此点P的坐标为(2,1).②因为三角形OAB的面积为267,所以21267AB OP⋅=,从而427AB=.设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =, 因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.【名师点睛】本题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力. (1)利用椭圆的几何性质求圆的方程和椭圆的方程. (2)①利用直线与圆、椭圆的位置关系建立方程求解; ②结合①,利用弦长公式、三角形的面积公式求解.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.PMBAOyx(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.【答案】(1)见解析;(2)1510[62,]4. 【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分15分. (1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴. (2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-, 21200||22(4)y y y x -=-.因此,PAB △的面积3221200132||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是1510[62,]4. 【名师点睛】圆锥曲线问题是高考重点考查内容之一,也是难点之一.椭圆、抛物线是其中常考内容,需要熟练地掌握椭圆和拋物线的定义、基本性质、标准方程等,对于处理有关问题有很大的帮助.同时还要注意运算能力的培养和提高.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【答案】(1)1;(2)7y x =+.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1). 设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24xy =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,2221x m =±+. 从而12||=2||42(1)AB x x m -=+.由题设知||2||AB MN =,即42(1)2(1)m m +=+,解得7m =. 所以直线AB 的方程为7y x =+.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. (1)设A (x 1,y 1),B (x 2,y 2),由两点斜率公式求AB 的斜率;(2)联立直线与抛物线方程,消y ,得12||=2||42(1)AB x x m -=+,解出m 即可.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u ru u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00(,),(0,)NP x x y NM y =-=u u u r u u u u r ,由2NP NM =u u u ru u u u r 得0022x x y y ==,. 因为M (00,x y )在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知F (−1,0),设Q (−3,t ),P (m ,n ),则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---⋅=+-u u u r u u u r u u u r u u u r, (,),(3,)OP m n PQ m t n ==---u u u r u u u r.由1OP PQ ⋅=u u u r u u u r得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=u u u r u u u r,先设 P (m ,n ),则需证330m tn +-=,即根据条件1OP PQ ⋅=u u u r u u u r可得2231m m tn n --+-=,而222m n +=,代入即得330m tn +-=.17.【2017年高考全国Ⅲ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会,理由见解析;(2)见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1(,0)A x ,2(,0)B x ,则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-, 所以不能出现AC ⊥BC 的情况.(2)BC 的中点坐标为(2122x ,),可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22(21)22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩,,又22220x mx +-=,可得212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩,,所以过A 、B 、C 三点的圆的圆心坐标为(122m --,),半径292m r +=,故圆在y 轴上截得的弦长为22232m r -=(),即过A 、B 、C 三点的圆在y 轴上截得的弦长为定值. 【名师点睛】解答本题时,设()()12,0,,0A x B x ,由AC ⊥BC 得1210x x +=,由根与系数的关系得122x x =-,矛盾,所以不存在;求出过A ,B ,C 三点的圆的圆心坐标和半径,即可得圆的方程,再利用垂径定理求弦长.直线与圆综合问题的常见类型及解题策略:(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:222121212||1||1()4AB k x x k x x x x =+-=++-; (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(1)2214x y +=;(2)见解析.【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>.由题意得2,3,2a c a=⎧⎪⎨=⎪⎩解得3c =.所以2221b a c =-=.所以椭圆C 的方程为2214x y +=.(2)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=-. 所以直线DE 的方程为2()m y x m n +=--. 直线BN 的方程为(2)2ny x m=--. 联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5.【名师点睛】本题对考生计算能力要求较高,重点考查了计算能力,以及转化与化归的能力,解答此类题目,主要利用,,,a b c e 的关系,确定椭圆方程是基础,本题易错点是对复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力等. (1)根据条件可知32,2c a a ==,以及222b a c =-,从而求得椭圆方程;(2)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示出直线BN 的方程,并求得两条直线的交点纵坐标,根据1212E BDE BDNN BD y S S BD y ⋅⋅=⋅⋅△△即可求出面积比值. 19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【答案】(1)12;(2)(ⅰ)34;(ⅱ)2211612x y +=.【解析】(1)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (2)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(1)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=, 与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知|FQ |=32c ,有222(22)33[]()()222m c c c c m m -++=++,整理得2340m m -=,所以43m =, 故直线FP 的斜率为34.(ii )由2a c =,可得3b c =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c -+=⎧⎪⎨+=⎪⎩ 消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2c P c ,进而可得2235|()()22|c c FP c c =++=, 所以53||||||22c cFP FQ Q c P -=-==. 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离, 故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=, 所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.【名师点睛】圆锥曲线问题在历年高考中都是较有难度的压轴题,本题对考生的计算能力要求较高,是一道难题,重点考查了运算求解能力以及转化与化归的能力.求解此类问题时,利用,,,a b c e 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)的方程,根据根与系数的关系进行解题,但本题需求解交点坐标,在求解过程要善于发现四边形PQNM 中的几何关系,从而易求其面积,进而使问题获解.(1)先根据题意得出21()22b c a c +=,然后结合222b a c =-,即可求得离心率;(2)(ⅰ)首先设直线FP 的方程为x my c =-,再写出直线AE 的方程,两方程联立得到点Q 的坐标,根据32FQ c =求得m 的值,即得直线FP 的斜率;(ⅱ)将直线FP 的方程和椭圆方程联立,可得点P 的坐标,再求,FP FQ ,确定直线PM 和QN 都垂直于直线FP ,根据平面几何关系求面积,从而可求得c 的值,进而得椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(1)22142x y +=;(2)EDF ∠的最小值为π3. 【解析】(1)由椭圆的离心率为22,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=.(2)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*)且122421kmx x k +=+, 因此122221my y k +=+,所以222(,)2121km mD k k -++, 又(0,)N m -, 所以222222()()2121km m ND m k k =-++++ 整理得2242224(13)(21)m k k ND k ++=+ , 因为NF m =,所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++.令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2NDt t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF≤+=,由(*)得 22m -<< 且0m ≠.故12NF ND ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线l 的斜率是0. 综上所述:当0k =,(2,0)(0,2)m ∈-U 时,EDF ∠取到最小值π3. 【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; ②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. 解答本题时,(1)由22c a =得2a b =,由椭圆C 截直线y =1所得线段的长度为22,得2222a a b -=,求得椭圆的方程为22142x y +=;(2)由2224x y y kx m⎧+=⎨=+⎩,解得22(21)4k x kmx +++ 2240m -=,确定222(,)2121km m D k k -++,4222||3221m DN k k k =+++,结合22ND NF的单调性求EDF ∠的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值. 【答案】(1)(1,1)-;(2)2716. 【解析】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-. (2)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Q k k x k -++=+. 因为|P A |=211()2k x ++=21(1)k k ++, |PQ |=222(1)(1)1()1Q k k k x x k -++-=-+,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(2)联立直线AP 与BQ 的方程,得Q 的横坐标,进而通过表达||PA 与||PQ 的长度,利用函数3()(1)(1)f k k k =--+的单调性求解||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2)4737(,)77.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,。

专题17几何计算线段角度及面积

专题17几何计算线段角度及面积

(十一)几何计算角度及面积计算考点分析:证明与计算,是几何命题的两大核心内容。

几何计算主要包括:线段长度的计算、角度计算、面积计算,通常需要借助几何中的概念、定义、定理、公理等知识,求解相关几何元素的数值。

在解题时,要求能准确灵活地选用有关知识,采用各种数学方法(既可以是几何方法,也可以是代数方法),加以求解。

为了能在有限的时间内,迅速准确地解题,就需要在平时练习中,强化基础题,多采用一题多解、优化方案等训练方法,积累经验,达到熟能生巧的效果。

一、线段长度计算线段长度计算的四种基本模型:1.将线段长度的求解转化为线段和、差或等量线段的计算.例1.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连接PQ交AC于D,则DE的长为2.利用直角三角形的边角关系求线段长度.例2 (2018·黄冈中考)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )A.2 B.3 C.D.233.利用相似构造线段比例关系求线段长,例3.(2019·济南市)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.4.利用图形面积关系求线段长例4(2017·济南市)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.B.2 C. D.建模:初中几何中关于线段长度的计算,主要有四种模型:①利用线段和、差或等量关系求线段长;②解直角三角形求线段长;③利用相似关系求线段长;④利用面积关系求线段长,大家在解决线段长度的计算时,注意利用图形信息,选择合适的模型.二、面积计算问题基本策略:1.直接计算:三角形面积公式s=12ah= 12(a +b+c)r(r 是三角形内切圆半径),S=12铅直高x 水平宽(坐标系中)2.割补转化.3.等积变形:等底等高的两三角形面积相等.4.面积比问题{直接求比{找相似三角形找等底等高的三角形关注基本单元进行拓展计算无法直接求比无法直接求比:分别计算各自面积,再求比值例1.△ABC 中,∠C =90°,内切圆与AB 相切于点D ,AD =2,BD =3,则△ABC 的面积为( )A .3B .6C .12D .无法确定例2.(2019·济南市)如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接AE 、AF .若AB =6,∠B =60°,则阴影部分的面积为( )A .9﹣3πB .9﹣2πC .18﹣9πD .18﹣6π例3.(2019·槐荫一模)如图,线段AB =4,点C 为线段AB 上任意一点(与端点不重合),分别以AC 、BC 为边在AB 的同侧作正方形ACDE 和正方形CBGF ,分别连接BF 、EG 交于点M ,连接CM ,设AC =x ,S 四边形ACME=y ,则y 与x 的函数表达式为y =____________.例4.(2019·常德中考)如图,在等腰三角形ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .26三.角度相关计算1、求角度基本策略:利用多边形内角和、外角关系、互余、互补、等角转化以及圆中的等角关系,进行具体角度的计算,重点是关注角度的和、差关系转化;例1、(2019·德州中考)如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A .130°B .140°C .150°D .160°2、求三角函数值基本策略:把所求角放到直角三角形中,往往作高构造直角三角形,解决这类题目要思维灵活,如果直接构造直角三角形,求解条件不够充分或是数据非常复杂时,应当关注是否存在等角转化,有时等角转化后再解直角三角形可以大大降低解题难度.大家在练习中逐步培养等角转化的意识,提高此类问题的解决能力.例2.(2019济南市中一模)有这样一道题:如图,在正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,连接DH,如果BC=12,BF=3,则tan∠HDG的值为()A.B. C. D.例3.(2019·上海中考)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.针对性练习A组1.(2018·福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°2.(2018·青岛中考)如图,点A,B,C,D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )A.70°B.55° C.35.5°D.35°3.(2016济南)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4C.2D.1题图 2题图 3题图4.(2019历下二模)如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,则tan∠DEC的值是()A.1 B.C.D.5(2019历城一模)如图,在扇形OEF中,∠EOF=90°,半径为2,正方形ABCD的顶点C是的中点,点D在OF上,点A在OF的延长线上,则图中阴影部分的面积为.4题图 5题图 6题图6.如图,D,E分别是△ABC的边AB,BC上的点,且DE∥AC,AE,CD相交于点O,若S△DOE∶S△COA =1∶16,则S△BDE与S△CDE的比是_________.7.(2019历城一模)如图,在Rt△ACB中,∠ACB=90°,AC=BC,点D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC 相交于点F,连接AE,若,AD=2BD,则CF等于()A.B.C.D.8(2019年青岛中考)如图,在正方形纸片ABCD 中, E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长为 cm .7题图 8题图 9题图B组.9、(2018·枣庄中考)如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.10.(2018·绵阳中考)如图,△ACB和△ECD都是等腰直角三角形,CA=2,ADCB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE==6,则两个三角形重叠部分的面积为( )10、(2016济南中考)如图,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.。

人教版七年级上册数学《几何图形初步》微专题(线段与角度的计算专题突破练习)

人教版七年级上册数学《几何图形初步》微专题(线段与角度的计算专题突破练习)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版七年级上册数学《几何图形初步》微专题(线段与角度的计算专题突破练习)一.选择题.1. 如图,线段AB=9,C,D,E分别为线段AB(端点A,B除外)上顺次三个不同的点,图中所有的线段和等于46,则下列结论一定成立的是 ( )A.CD=3B.DE=2C.CE=5D.EB=52. 如图,在同一直线上顺次有三点A,B,C,点M是线段AC的中点,点N是线段BC 的中点,若想求出MN的长度,那么只需知道条件 ( )A.AM=5B.AB=12C.BC=4=23. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42°或98°D.82°4. 如图,点C在线段AB上,点D是AC的中点,如果CB=2CD, AB=20 cm,那么BC 的长为 ( )A.5 cmB.8 cmC.10 cmD.12 cm5. 如图,已知点M是直线AB上一点,∠AMC=52°48′, ∠BMD=72°19′,则∠CMD 等于( )A.49°07′B.54°53′C.55°53′D.53°7′6.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60 cm,若AP=2PB,则这条绳子的原长为 ( )3A.100 cmB.150 cmC.100 cm或150 cmD.120 cm或150 cm7. 已知一个角的补角比这个角的余角的3倍大20°,则这个角的度数是( )A.45°B.55°C.65°D.50°8.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEB′=50°,则∠DAB′的度数是( )A.40°B.60°C.75°D.80°二.填空题.9. 如图,A,B,C,D是直线上的顺次四点,M,N分别是AB,CD的中点,且MN=6cm,BC=4 cm,则AD= .10. 如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=1∠AOD,则∠BOC7的度数为_ __.11. 如图,线段AB=30,C是AB的中点,D是AB的延长线上的一点,且CB∶BD=3∶2,则CD的长为_______.12.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是 .13.若∠1+∠2=90°,∠3+∠2=90°,∠1=46°,则∠3=__ __°.14.一个锐角的补角等于这个锐角的余角的3倍,这个锐角是 .15. 如图:∠AOE=90°,OB,OD分别平分∠AOC,∠COE,则∠BOD=_ __,图中不大于90°的所有角的度数之和为__ __.16.一艘轮船行驶在B处,同时测得小岛A,C的方向分别为北偏西30°和西北方向,则∠ABC的度数是_________.三.解答题.17. 如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC的中点D.(2)在(1)的条件下,如果AB=4,求线段BD的长度.18. 计算:(1)48°39′+67°31′-21°17′.(2)23°53′×3-107°43′÷5.19. 如图,已知在同一平面内∠AOB=90°,∠AOC=α(α<90°),OD平分∠BOC,OE 平分∠AOC.(1)若α=60°即∠AOC=60°时,则∠BOC=______,∠DOE =______.(2)若α取任意值,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.20. 如图,C,D是线段AB上两点,已知AC∶CD∶DB=1∶2∶3,M,N分别为AC,DB的中点,且MN=12 cm,求线段AB,CD的长.21.如图,点A,O,B在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数.(2)写出图中所有互为余角的角.(3)写出图中所有互为补角的角.(4)∠AOD=51°17′,求它的余角和补角的度数.22.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+BC=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.23.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC∶∠MOC=2∶1,求∠AOC的度数.(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB的平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.。

几何计算公式大全

几何计算公式大全

几何计算公式大全一、平面几何公式:1.周长和面积公式:-矩形:周长=2*(长+宽),面积=长*宽-正方形:周长=4*边长,面积=边长^2-圆:周长=2*π*半径,面积=π*半径^2-三角形:周长=边1+边2+边3,面积=(底边*高)/2-梯形:周长=边1+边2+边3+边4,面积=(上底+下底)*高/22.角度和三角函数公式:-弧度和角度的转换关系:度=弧度*(180/π),弧度=度*(π/180)- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c是三角形的三条边,A、B、C是对应的角度。

- 余弦定理:c^2 = a^2 + b^2 - 2ab*cos(C),其中c是三角形的斜边,a、b是两个相邻角的边长,C是这两个边对应的夹角。

3.直线和平面的方程公式:-点斜式方程:y-y1=斜率(x-x1),其中(x1,y1)是直线上的一点,斜率可以用两点之间的高度差除以水平距离表示。

-两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。

-一般式方程:Ax+By+C=0,其中A、B、C是常数,表示直线上的所有点。

二、立体几何公式:1.体积和表面积公式:-立方体:体积=边长^3,表面积=6*边长^2-正方体:体积=边长^3,表面积=6*边长^2-圆柱体:体积=π*半径^2*高,曲面积=2*π*半径*高,总表面积=2*π*半径*(半径+高)-圆锥体:体积=(π*半径^2*高)/3,曲面积=π*半径*侧面长度,总表面积=π*半径*(侧面长度+半径)-球体:体积=(4/3)*π*半径^3,表面积=4*π*半径^22.直角三角形的性质:-毕达哥拉斯定理:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2- 直角三角形的角度关系:直角的两个锐角的正弦、余弦和正切函数值满足sin(A) = cos(B) = a/c,sin(B) = cos(A) = b/c,tan(A) =a/b,tan(B) = b/a。

专题 线段和角度计算章末重难点题型(举一反三)(原卷版)

专题 线段和角度计算章末重难点题型(举一反三)(原卷版)

专题线段和角度计算章末重难点题型汇编【举一反三】【考点1 几何图形】【方法点拨】掌握几何图形相关概念是解决此类问题的关键.【例1】(秋峄城区期末)下面的几何体中,属于棱柱的有()A.1个B.2个C.3个D.4个【变式1-1】(秋涞水县期末)如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.【变式1-2】(章贡区期末)图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.【变式1-3】(秋广丰区期末)下图右边四个图形中,哪个是左边立体图形的展开图?()A.B.C.D.【考点2 基本概念】【方法点拨】知识点1:线段像长方体的棱、长方形的边,这些图形都是线段.线段有两个端点,两个方向均不延伸,线段的长度是可以测量的.线段有两种表示方法:(1)一条线段可以用它的两个端点的大写字母来表示,如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”;(2)一条线段可以用一个小写字母来表示,如图,线段AB也可记作“线段a”.知识点2:射线将线段向一个方向无限延长就得到了射线.射线有一个端点,射线向一个方向无限延伸,射线是无法测量的.射线的表示法:两个大写字母:一条射线可以用表示它的端点和射线上的另一点的两个大写字母来表示,如图中的射线,点O是端点,点A是射线上异于端点的另一点,那么这条射线可以记作射线OA.注意:①表示射线的两个大写字母,其中一个一定是端点,并且要把它写在前面.②端点相同的射线不一定是同一条射线,端点不同的射线一定不是同一条射线③两条射线为同一射线必须具备的两个条件:①端点相同;②延伸的方向相同.知识点3:直线将线段向两个方向无限延长就形成了直线.直线没有端点,直线向两个方向无限延伸,直线是无法测量的.直线的两种表示方法:(1)一条直线可以用一个小写字母表示,如图中的直线可记作:直线a.(2)一条直线也可以用在这条直线上的表示两个点的大写字母来表示,如图中的直线可记作:直线AB或直线BA.【例2】(秋宜城市期末)下列说法中正确的个数是()①线段AB和射线AB都是直线的一部分;②直线AB和直线BA是同一条直线;③射线AB和射线BA是同一条射线;④把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.A.1B.2C.3D.4【变式2-1】(秋岑溪市期末)下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个【变式2-2】(秋李沧区期末)下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB和射线BA是同一条射线;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个【变式2-3】(春广饶县期末)如图的四个图形和每一个图形相应的一句描述,其中所有图形都是画在同一个平面上.①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C.其中正确的语句的个数有()A.0个B.1个C.2个D.3个【考点3 余角与补角定义】【方法点拨】余角和补角:(1)若α+β=90°,则α与β互余.(2)若α+β=180°,则α与β互补.(3)同角(或等角)的余角(或补角)相等.【例3】(春东阿县期末)一个角的余角是它的,则这个角的补角等于°.【变式3-1】(秋宜宾期末)如果一个角的余角与它的补角度数之比为2:5,则这个角等于度.【变式3-2】(秋化德县校级期末)若一个角的3倍比这个角补角的2倍还少5°,则这个角等于.【变式3-3】(秋凉山州期末)一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是.【考点4 钟面上的角度问题】【例4】(秋宛城区期末)上午9点30分时,时钟的时针和分针所夹的较小的角是度.【变式4-1】(秋莲湖区校级月考)时钟表面11点15分时,时针与分针所夹角的度数是度.【变式4-2】(秋大冶市期末)中午12点30分时,钟面上时针和分针的夹角是度.【变式4-3】(春单县期末)上午八点二十五分,钟表上时针和分针的夹角的度数为.【考点5 尺规作图】【例5】(春沙坪坝区校级期末)已知:∠α,∠β,线段c.求作:△ABC,使∠A=α,∠B=∠β,AB=c(不写作法,保留作图痕迹)【变式5-1】(秋翁牛特旗期末)用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b,求作:线段AB,使AB=2b﹣a.【变式5-2】(秋涡阳县期末)作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连结B′C′,这样△A′B′C′就和已知的△ABC 一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)【变式5-3】(秋安庆期末)如图,在同一平面内有四个点A ,B ,C ,D . (1)请按要求作出图形(注:此题作图不需写出画法和结论): ①作射线AC②作直线BD ,交射线AC 于点O ③分别连接AB ,AD .(2)观察所作图形,我们能得到:AO +OC = ;DB ﹣OB = (空格处填写图中线段)【考点6 与中点有关的长度计算】 【方法点拨】线段的中点如图,点C 在线段AB 上且使线段AC ,CB 相等,这样的点C 叫做线段AB 的中点.中点定义的推理步骤: (1)∵AC =CB (已知),∴点C 是线段AB 的中点(中点的定义). (2)∵点C 是线段AB 的中点(已知),∴AC =BC 或AC =12AB 或BC =12AB 或AB =2AC 或AB =2BC (中点的定义).【例6】(秋洛宁县期末)已知:点C 在直线AB 上,AC =8cm ,BC =6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.【变式6-1】(秋郯城县期末)如图,线段AB,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)若AB=8cm,AC=3.2cm,求线段MN的长;(2)若BC=a,试用含a的式子表示线段MN的长.【变式6-2】(秋永新县期末)如图,点C是线段AB上,AC=10cm,CB=8cm,M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+CB=acm,其他条件不变,不用计算你猜出MN的长度吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N仍分别为AC,BC的中点,你还能猜出线段MN的长度吗?(4)由此题你发现了怎样的规律?【变式6-3】(秋榆社县期末)已知:点M,N分别是线段AC,BC的中点.(1)如图,点C在线段AB上,且AC=9cm,CB=6cm,求线段MN的长;(2)若点C为线段AB上任一点,且AC=acm,CB=bcm,用含有a,b的代数式表示线段MN的长度.(3)若点C在线段AB的延长线上,且AC=acm,CB=bcm,请你画出图形,并且用含有a,b的代数式表示线段MN的长度.【考点7 与角平分线有关的角度计算】 【方法点拨】角平分线:(1)把一个角平分成二等分的射线,称为角平分线. (2)若OC 平分∠AOB ,则有①∠AOC =∠BOC .②∠AOC =21∠AOB .③∠AOB =2∠AOC =2∠BOC . 【例7】(秋化德县校级期末)如图,已知OM 平分∠AOC ,ON 平分∠BOC ,∠AOB =90°,∠BOC =30°. 求:(1)∠AOC 的度数; (2)∠MON 的度数.【变式7-1】(秋浏阳市校级期末)如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC =72°,OF ⊥CD ,垂足为O ,求: (1)求∠BOE 的度数. (2)求∠EOF 的度数.【变式7-2】(秋襄阳期末)如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.【变式7-3】(秋沙河口区期末)已知∠AOB=α,过O作射线OC,OM平分∠AOC,ON平分∠BOC.(1)如图,若α=120°,当OC在∠AOB内部时,求∠MON的度数;(2)当OC在∠AOB外部时,画出相应图形,求∠MON的度数(用含α的式子表示).【考点8 与旋转有关的角度计算】【例8】(秋启东市校级月考)O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为,∠COF和∠DOE的数量关系为_;(2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF和∠DOE之间的数量关系.【变式8-1】(秋武昌区期末)已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=.【变式8-2】(秋南江县期末)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.【变式8-3】(秋安庆期末)将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【考点9 与几何有关的规律问题】【例9】(秋禹会区校级月考)阅读表:图例线段总条数N线段AB上的点数n(包括A,B两点)33=2+146=3+2+1510=4+3+2+1615=5+4+3+2+1解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有种不同的票价?②要准备种车票?(直接写答案)【变式9-1】(秋滦县期中)(1)试验探索:如果过每两点可以画一条直线,那么请下面三组图中分别画线,并回答问题:第(1)组最多可以画条直线;第(2)组最多可以画条直线;第(3)组最多可以画条直线.(2)归纳结论:如果平面上有n(n≥3)个点,且每3个点均不在一条直线上,那么最多可以画出直线条.(作用含n的代数式表示)(3)解决问题:某班50名同学在毕业后的一次聚会中,若每两人握一次手问好,则共握次手;最后,每两个人要互赠礼物留念,则共需件礼物.【变式9-2】(秋江山市期末)为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:直线条数把平面分成部分数写成和形式121+1241+1+2371+1+2+34111+1+2+3+4………(1)当直线条数为5时,把平面最多分成部分,写成和的形式;(2)当直线为10条时,把平面最多分成部分;(3)当直线为n条时,把平面最多分成部分.(不必说明理由)【变式9-3】(秋桥东区校级期中)观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?【考点10 线段上的动点问题】【例10】(秋麒麟区期末)如图,线段AB=12cm,延长AB到点C,使BC=AB,点D是BC中点,点E 是AD中点.(1)根据题意,补全图形;(2)求DE的长;(3)若动点P从点A出发,以1cm/s的速度向点C运动,到达点C停止运动,点Q从点C出发,以2cm/s 的速度向点A运动,到达点A停止运动,若运动时间为ts,当t为何值时,PQ=3cm?【变式10-1】(秋孝南区期末)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足(a﹣6)2+|b+4|=0.(1)写出a、b及AB的距离:a=b=AB=(2)若动点P从点A出发,以每秒6个单位长度沿数轴向左匀速运动,动点Q从点B出发,以每秒4个单位长度向左匀速运动.①若P、Q同时出发,问点P运动多少秒追上点Q?②若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【变式10-2】(春金牛区校级月考)如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.【变式10-3】(秋峄城区期末)如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2.(1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)点A、B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB﹣mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【考点11 多边形的对角线】【例11】(春嘉兴期末)一个多边形从一个顶点出发,最多可以作2条对角线,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【变式11-1】(春忻城县期中)从n边形的一个顶点出发作对角线,这些对角线把这个n边形分成的三角形个数为()A.(n+1)个B.n个C.(n﹣1)个D.(n﹣2)个【变式11-2】(秋历城区期末)我们知道,四边形有2条对角线,五边形有5条对角线,那么十二边形的对角线总条数是()A.9B.54C.60D.108【变式11-3】(秋太原期末)从某多边形的一个顶点引出的所有对角线把这个多边形分成了6个三角形,则此多边形的形状是()A.六边形B.七边形C.八边形D.九边形。

中考数学专题复习8几何初步及三角形相关计算(原卷版)

中考数学专题复习8几何初步及三角形相关计算(原卷版)

几何初步及三角形相关计算复习考点攻略考点一直线、射线、线段相关概念和性质1.直线的性质(1)两条直线相交.只有一个交点;(2)经过两点有且只有一条直线.即两点确定一条直线;(3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线.两点之间.线段最短.两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点.则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系在同一平面内.两条直线只有两种位置关系:平行和相交.5.垂线的性质(1)两条直线相交所构成的四个角中有一个角是直角.则这两条直线互相垂直.其中一条直线叫做另一条直线的垂线;(2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中.垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线.这一点和垂足之间线段的长度叫做点到直线的距离.7. 角:有公共端点的两条射线组成的图形.8.角平分线(1)定义:在角的内部.以角的顶点为端点把这个角分成两个相等的角的射线(2)角平分线的性质:①若OC是∠AOB的平分线.则∠AOC=∠BOC=12∠AOB.∠AOB=2∠AOC =2∠BOC.②角平分线上的点到角两边的距离相等。

9.度、分、秒的运算方法1°=60′.1′=60″.1°=3600″.1周角=2平角=4直角=360°.10.余角和补角(1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;(2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.11.方向角和方位角在描述方位角时.一般应先说北或南.再说偏西或偏东多少度.而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时.又常常说成东南、东北、西南、西北方向.【例1】如图.在数轴上有A、B、C、D四个整数点(即各点均表示整数).且2AB=BC=3CD.若A、D两点表示的数分别为-5和6.且AC的中点为E.BD的中点为M.BC之间距点B的距离为13BC的点N.则该数轴的原点为A.点E B.点FC.点M D.点N【例2】如图.∠AOB=180°.∠BOC=80°.OD平分∠AOC.∠DOE=3∠COE.求∠BOE.【例3】如图.要修建一条公路.从A村沿北偏东75°方向到B村.从B村沿北偏西25°方向到C 村.若要保持公路CE与AB的方向一致.则∠ECB的度数为A.80°B.90°C.100°D.105°【例4】计算:18°30′=__________°考点二立体图形1.常见的立体图形有:球、柱体和锥体.圆柱和棱柱的区别:圆柱的底面是圆.棱柱的底面是多边形;圆柱的侧面是曲面.棱柱的侧面是四边形;圆锥和棱锥的区别:圆锥的底面是圆.侧面是曲面;棱锥的底面是多边形.侧面是三角形.2.点动成线.线动成面.面动成体.线没有粗细.点没有大小.3.设立体图形的面数为F.顶点数为V.棱数为E.则F+V-E=2.4.正方体的平面展开图有如下11种类型:【例5】如图是一个正方体包装盒的表面积展开图.若在其中的三个正方形A、B、C内分别填上适当的数.使得将这个表面展开图沿虚线折成正方体后.相对面上的两数互为相反数.则填在A、B、C内的三个数依次为A.0.-2.1 B.0.1.2C.1.0.-2 D.-2.0.1考点三三角形的基本概念(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三线八角的题型及解答

三线八角的题型及解答

三线八角的题型及解答1. 什么是三线八角?三线八角是一种数学题型,常见于中小学的数学考试中。

它的名称源自题目的形状,由三条线段和八个角构成。

这种题型通常要求解答与几何形状相关的问题,涉及到线段长度、角度大小、面积计算等内容。

2. 常见的三线八角题型2.1 线段长度计算这种题型要求根据给定的条件计算出某条线段的长度。

常见的条件包括已知两点坐标、已知与其他线段之间的关系等。

示例题:已知平面直角坐标系中,点A(3,4)和点B(7,9),求线段AB的长度。

解答:根据两点间距离公式可得:AB = √((x2-x1)^2 + (y2-y1)^2) = √((7-3)^2 + (9-4)^2) = √(16 + 25) = √41 所以线段AB的长度为√41。

2.2 角度计算这种题型要求根据给定条件计算出某个角度的大小。

常见的条件包括已知两条直线之间的夹角、已知三个点的坐标等。

示例题:已知平面直角坐标系中,点A(3,4)、点B(7,9)和点C(1,8),求∠ABC的大小。

解答:根据向量的内积公式可得:cos∠ABC = (AB·BC) / (|AB|·|BC|) 其中,AB = B - A = (7-3, 9-4) = (4, 5) BC = C - B = (1-7, 8-9) = (-6, -1) 所以,AB·BC = 4(-6) + 5(-1) = -24 - 5 = -29 |AB| = √(4^2 + 5^2) = √41 |BC| = √((-6)^2 + (-1)^2) = √37 代入公式计算可得:cos∠ABC ≈ -0.897 ∠ABC ≈ arccos(-0.897) ≈ 152.35° 所以∠ABC的大小约为152.35°。

2.3 面积计算这种题型要求根据给定条件计算出某个几何形状的面积。

常见的条件包括已知图形的边长、已知图形的高等。

示例题:已知平面直角坐标系中,正方形ABCD,顶点A(-2,-2),边长为4,求正方形ABCD的面积。

重庆中考数学24题专题

重庆中考数学24题专题

重庆中考几何一、有关几何的基本量:线段、角度、全等、面积、四边形性质1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC 交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:过点H作HI⊥EG于I,∵G为CH的中点,∴HG=GC,∵EF⊥DC,HI⊥EF,∴∠HIG=∠GFC=90°,∠FGC=∠HGI,∴△GIH≌△GFC,∵△EBH≌△EIH(AAS),∴FC=HI=BH=1,∴AD=4-1=3.2、已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD 和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.证明:(1)∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,AC=AE ∠DAC=∠BAE AD=AB ,∴△DAC≌△BAE(SAS),∴DC=BE;(2)如图,作DG∥AE,交AB于点G,由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,∴∠DGF=∠FAE=90°,又∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°,又∵△ABD为等边三角形,∠DBG=60°,DB=AB,∴∠DBG=∠ABC=60°,在△DGB和△ACB中,∠DGB=∠ACB ∠DBG=∠ABC DB=AB ,∴△DGB≌△ACB(AAS),∴DG=AC,又∵△AEC为等边三角形,∴AE=AC,∴DG=AE,在△DGF和△EAF中,∠DGF=∠EAF ∠DFG=∠EFA DG=EA ,∴△DGF≌△EAF(AAS),∴DF=EF,即F为DE中点.3、如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.(1)求证:CF=CG;(2)连接DE,若BE=4CE,CD=2,求DE的长.解答:(1)证明:连接AC,∵DC ∥AB ,AB=BC ,∴∠1=∠CAB ,∠CAB=∠2, ∴∠1=∠2;∵∠ADC=∠AEC=90°,AC=AC , ∴△ADC ≌△AEC , ∴CD=CE ;∵∠FDC=∠GEC=90°,∠3=∠4, ∴△FDC ≌△GEC ,∴CF=CG .(2)解:由(1)知,CE=CD=2, ∴BE=4CE=8,∴AB=BC=CE+BE=10,∴在Rt △ABE 中,AE= AB 2-BE 2 =6, ∴在Rt △ACE 中,AC= AE 2+CE 2 =102 由(1)知,△ADC ≌△AEC , ∴CD=CE ,AD=AE ,∴C 、A 分别是DE 垂直平分线上的点, ∴DE ⊥AC ,DE=2EH ;(8分) 在Rt △AEC 中,S △AEC =21 AE •CE=21AC •EH , ∴EH=AC CEAE ⋅ =10226⨯ =5103∴DE=2EH=2×5103=5106 4、如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于点E ,交BC 于点P ,连接OP ,OQ ;求证:(1)△BCQ ≌△CDP ; (2)OP=OQ .证明:∵四边形ABCD 是正方形, ∴∠B=∠PCD=90°,BC=CD , ∴∠2+∠3=90°,又∵DP ⊥CQ , ∴∠2+∠1=90°, ∴∠1=∠3,在△BCQ 和△CDP 中,∠B=∠PCD BC=CD ∠1=∠3 . ∴△BCQ ≌△CDP . (2)连接OB . 由(1):△BCQ ≌△CDP 可知:BQ=PC , ∵四边形ABCD 是正方形, ∴∠ABC=90°,AB=BC , 而点O 是AC 中点, ∴BO=21AC=CO ,∠4=21∠ABC=45°=∠PCO , 在△BCQ 和△CDP 中, BQ=CP ∠4=∠PCO BO=CO∴△BOQ ≌△COP , ∴OQ=OP .5、在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD,∠ABC=60°,延长AD 到E,使DE=AD,延长DC 到F ,使DC=CF,连接BE 、BF 和EF.⑴求证:△ABE ≌△CFB; ⑵如果AD=6,tan ∠EBC 的值. 解:(1)证明:连结CE , 在△BAE 与△FCB 中,∵ BA=FC ,∠A=∠BCF ,, AE=BC , ∴△BAE ≌△FCB ;(2)延长BC 交EF 于点G ,作AH ⊥BG 于H ,作AM ⊥BG ,∵△BAE ≌△FCB ,∴∠AEB=∠FBG ,BE=BF ,∴△BEF 为等腰三角形,又∵AE ∥BC , ∴∠AEB=∠EBG ,∴∠EBG=∠FBG ,∴BG ⊥EF ,∵∠AMG=∠EGM=∠AEG=90°, ∴四边形AMGE 为矩形,∴AM=EG , 在Rt △ABM 中,AM=AB •sin60°=6×23=33 ,∴EG=AM=33, BG=BM+MG=6×2+6×cos60°=15,∴tan ∠EBC=531533==BG EG 6、如图,在梯形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 的中点,EF ∥AB 交BC 于点F(1)求证:BF=AD+CF ;ABDECF(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.(1)证明:如图(1),延长AD交FE的延长线于N∵∠NDE=∠FCE=90°∠DEN=∠FEC DE=EC∴△NDE≌△FCE ∴DN=CF ∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形∴BF=AD+DN=AD+FC(2)解:∵AB∥EF,∴∠ABN=∠EFC,即∠1+∠2=∠3,又∵∠2+∠BEF=∠3,∴∠1=∠BEF,∴BF=EF,∵∠1=∠2,∴∠BEF=∠2,∴EF=BF,又∵BC+AD=7+1∴BF+CF+AD=8而由(1)知CF+AD=BF∴BF+BF=8∴2BF=8,∴BF=4,∴BF=EF=47、已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF分别交AB于G、H点(1)求证:FG=FH;(2)若∠E=60°,且AE=8时,求梯形AECD 的面积.(1)证明:连接BF∵ABCD为矩形∴AB⊥BC AB⊥AD AD=BC∴△ABE为直角三角形∵F是AE的中点∴AF=BF=BE∴∠FAB=∠FBA∴∠DAF=∠CBF∵AD=BC, ∠DAF=∠CBF ,AF=BF ,∴△DAF≌△CBF∴∠ADF=∠BCF∴∠FDC=∠FCD∴∠FGH=∠FHG ∴FG=FH ;(2)解:∵AC=CE ∠E=60° ∴△ACE 为等边三角形 ∴CE=AE=8 ∵AB ⊥BC ∴BC=BE=CE 21=4 ∴根据勾股定理AB=34 ∴梯形AECD 的面积=21×(AD+CE)×CD=21×(4+8)×34=3248、如图,直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,且CD=2AD ,tan ∠ABC=2,过点D作DE ∥AB ,交∠BCD 的平分线于点E ,连接BE . (1)求证:BC=CD ;(2)将△BCE 绕点C ,顺时针旋转90°得到△DCG ,连接EG .求证:CD 垂直平分EG ; (3)延长BE 交CD 于点P .求证:P 是CD 的中点. 证明:(1)延长DE 交BC 于F ,∵AD ∥BC ,AB ∥DF ,∴AD=BF ,∠ABC=∠DFC . 在Rt △DCF 中,∵tan ∠DFC=tan ∠ABC=2, ∴CFCD=2, 即CD=2CF ,∵CD=2AD=2BF , ∴BF=CF , ∴BC=BF+CF=21CD+21CD=CD . 即BC=CD .(2)∵CE 平分∠BCD ,∴∠BCE=∠DCE , 由(1)知BC=CD , ∵CE=CE ,∴△BCE ≌△DCE , ∴BE=DE ,由图形旋转的性质知CE=CG ,BE=DG , ∴DE=DG ,∴C ,D 都在EG 的垂直平分线上, ∴CD 垂直平分EG . (3)连接BD , 由(2)知BE=DE , ∴∠1=∠2. ∵AB ∥DE ,∴∠3=∠2.∴∠1=∠3.∵AD ∥BC ,∴∠4=∠DBC .由(1)知BC=CD ,∴∠DBC=∠BDC ,∴∠4=∠BDP . 又∵BD=BD ,∴△BAD ≌△BPD(ASA)∴DP=AD . ∵AD=21CD ,∴DP=21CD .∴P 是CD 的中点. 9.(2011南岸二诊)如图,已知点P 是正方形ABCD 的对角线AC 上一点,过点P 作EF ⊥DP ,交AB 于点E ,交CD 于点G ,交BC 的延长线于点F ,连接DF .(1)若23=DF ,求DP 的长; (2)求证:CF AE =.10.如图,正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上(CG >BC ),M 是线段AE 的中点,DM 的延长线交CE 于N . (1)线段AD 与NE 相等吗?请说明理由; (2)探究:线段MD 、MF 的关系,并加以证明.11、如图,梯形ABCD 中,AD ∥BC ,AB=DC=10cm ,AC 交BD 于G ,且∠AGD=60°,E 、F 分别为CG 、AB 的中点.(1)求证:△AGD 为正三角形; (2)求EF 的长度.G 24题图PFEDCBA解答:(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.12、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解答:解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)13.在梯形ABCD中,AD∥BC,AB=CD,且DE⊥AD于D,∠EBC=∠CDE,∠ECB=45°.⑴求证:AB=BE ;⑵延长BE ,交CD 于F .若CE =2,tan ∠CD E =31,求BF 的长. 13.⑴证明:延长DE ,交BC 于G .∵DE ⊥AD 于D ,∴∠ADE =90°又AD ∥BC , ∴∠DGC =∠BGE =∠ADE =90°, 而∠ECB =45°, ∴△EGC 是等腰直角三角形, ∴EG=CG在△BEG 和△DCG 中,EBG CDG EGB CGD EG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEG ≌△DCG (AAS ) ∴BE=CD=AB ⑵连结BD .∵∠EBC=∠CDE ∴∠EBC +∠BCD =∠CDE +∠BCD =90°,即∠BFC =90° ∵CE=2,∴EG=CG=1又tan ∠CDE =31,∴13CG DG =,∴DG =3 ∵△BEG ≌△DCG ,∴BG=DG=3∴2210BE BG EG =+=∴CD=BE=10法一:∵1122BCDSBC DG CD BF ==,11431022BF ⨯⨯=⨯∴6105BF = 法二:经探索得,△BEG ∽△BFC ,∴BE BCBG BF=,∴1043BF = ∴6105BF = 14.如图,直角梯形ABCD 中,,90,45,AD BC ADC ABC AB ∠=∠=∥的垂直平分线EG 交BC 于F ,交DC 的延长线于.G求证:(1)CG CF =;(2).BC DG =AB CDEF证明:(1) ,AB EF ⊥ 45B ∠=904545EFB ∴∠=-=45CFG ∴∠=//,90AD BC ADC ∠=90FCG ∴∠=45,FCG ∴∠= CG CF =∴(2)连接AF , EF 是AB 的中垂线,AF BF FE AB ∴=⊥45=∠=∠∴BFE AFE90=∠∴AFB DCB AFB ∠=∠∴BC AD CD AF //,// ∴,AF DC BF DC ∴=∴=由(1)知CG CF = ,CG DC CF BF +=+∴即:DG BC =二、有关“截长补短”题型1、在ABCD 中,对角线,BD BC G BD ⊥为延长线上一点且ABG ∆为等边三角形,BAD ∠、CBD ∠的平分线相交于点E ,连接AE BD F 交于,连接GE 。

8利用平行线性质计算角度

8利用平行线性质计算角度

8利用平行线性质计算角度平行线的性质是几何学中非常重要的一部分,它常常被用来计算角度。

在本文中,我们将讨论一些关于平行线性质的例子,以及如何利用这些性质计算角度。

例子1:垂直平行线考虑两条平行线AB和CD,其中线段AC与线段BD相交于点E。

我们要计算角度AEB和角度CED。

根据平行线的定义,线段AC和线段BD之间的所有角度都是相等的。

因此,角度AED和角度CED是相等的。

另一方面,角度AEB和角度CED是互补的,因为它们的和是180度。

因此,我们可以通过计算角度AEB或角度CED的任意一个,然后再计算另一个来得到结果。

假设我们要计算角度CED。

从点C和点D分别画一条线段CE'和DF'垂直于线段AB,并延长它们到相交于点F。

这样我们可以得到一个直角三角形CEF',其中角度CEF'是所需的角度CED的补角。

在这个三角形CEF'中,我们可以使用三角函数来计算角度CEF'。

假设我们知道边CE'的长度为a,边CF'的长度为b。

根据正弦定理,我们有:sin(CEF') = a / CF'然后根据三角函数表格,我们可以计算出角度CEF'的值。

最后,我们可以计算角度CED的值,这可以通过180度减去角度CEF'的值来实现。

例子2:角的外切角在这个例子中,我们考虑一个由四条平行线形成的平行四边形ABCD。

我们想计算由平行线AB和线段CD之间的两个相邻边所形成的角度。

首先,我们可以观察到,这两个所需的角度是外切角。

根据平行四边形的定义,对于任何一个外切角,它的度数等于180度减去它所对应的相邻内角的度数。

因此,我们可以计算出角度ABD和角度CDB,然后通过180度减去这两个角度得到结果。

例子3:相交角考虑两条平行线AB和CD,线段AC和线段BD相交于点E,如上图所示。

我们想要计算角度AEC和角度BED。

我们可以看到,这两个所需的角度是相交角。

三角形的面积计算与角度计算

三角形的面积计算与角度计算

三角形的面积计算与角度计算三角形是几何学中最基本的形状之一,它由三条线段组成,这三条线段相交于三个顶点。

计算三角形的面积和角度是研究和应用三角形的重要内容。

在本文中,我们将介绍三角形面积计算和角度计算的方法和公式。

一、三角形的面积计算1.1 面积计算方法三角形的面积计算可以使用不同的方法,其中常用的方法有以下三种:1.1.1 海伦公式海伦公式是一种计算任意三角形面积的公式,它基于三角形的三条边的长度来计算。

假设三角形的三条边分别为a、b、c,半周长为s,那么三角形的面积S可以通过以下公式计算:S = √(s * (s - a) * (s - b) * (s - c))其中s = (a + b + c) / 2。

使用海伦公式可以计算任意形状的三角形的面积。

1.1.2 底边高公式对于底边为a、高为h的三角形,它的面积可以通过以下公式计算: S = (a * h) / 2底边高公式适用于已知底边和高的等腰三角形或直角三角形。

1.1.3 正弦公式对于已知两条边a、b和它们夹角的三角形,可以使用正弦公式来计算面积。

假设夹角为θ,那么三角形的面积S可以通过以下公式计算:S = (a * b * sin(θ)) / 2正弦公式适用于已知两边和夹角的任意三角形。

1.2 面积计算示例为了更好地理解三角形面积的计算方法,我们来看一个具体的示例。

假设我们要计算一个三角形ABC的面积,已知三边分别为AB=5、BC=7、AC=8。

我们可以使用海伦公式来计算:首先计算半周长s:s = (5 + 7 + 8) / 2 = 10然后套用海伦公式计算面积S:S = √(10 * (10 - 5) * (10 - 7) * (10 - 8)) = √120 = 10.95所以,三角形ABC的面积约为10.95平方单位。

二、三角形的角度计算2.1 角度计算方法三角形的角度计算是确定三个内角或外角的大小和关系。

常用的方法有以下几种:2.1.1 正弦定理正弦定理是用于计算三角形任意角度的公式之一。

初中几何模型与解法中考几何专题:等面积法

初中几何模型与解法中考几何专题:等面积法

初中几何模型与解法:等面积法教学目标1、学会寻找同一个图形两种计算面积的方法,列出等量关系;2、学会运用等面积法建立等式求解线段长或证明线段之间的数量关系3、学会运用等面积法巧妙求解一些不规则图形的面积重、难点重点:运用等面积法建立等式;难点:运用等面积法巧妙求解一些不规则图形的面积知识导图知识梳理方法概述:运用同一图形的两种计算面积的方法,列出等量关系,从而求解线段的长度,或者证明线段之间的等量关系,甚至求解不规则图形的面接!技巧归纳:1、当图形中出现两个(或者以上)的垂直关系时,常用此法.2、计算多边形面积的常用方法:(1)面积计算公式(2)对于公式⑤的证明(如右图):S=S △ABD +S △CBD===*(3)割补法:将不规则图形“分割或补全’为规则图形.+=又∵ABC =AC AB∴该直角三角形斜边AB上的高CD=导学一:等面积法在直角三角形的应用知识点讲解1在直角三角形中,两条直角边、斜边以及斜边上的高,知道任意两个可以运用勾股定理、等面积思想求出剩余两个。

如图:基本公式:①勾股定理:②等面积法:证明②:即:,例题1.如图,在Rt ABC ,∠C=90°,当直角边AC =4,斜边AB =5时,求该直角三角形斜边AB上的高CD ?【参考答案】=2.如图,在Rt ABC (BC AC ),∠C=90°,当斜边AB =10cm,斜边AB上的高CD =4.8cm 时,求该直角三角形直角边AC和BC的长度?【参考答案】解:设AC =x,BC =y,(y由勾股定理:==100又∵ABC =AC AB ∴x y=48再由.得到解得:答:AC =6,BC =8同步练习1.如图,在Rt ABC,∠C=90°,且AC=24,BC=7,作ABC的三个内角的角平分线交于点P,再过点P依次作PD⊥AB于D,作PE⊥BC于E,作PF⊥AC于F.(1)求证:PD=PE=PF;(2)求出:PD的值.【参考答案】(1)证明∵AP平分∠CAB,且PD⊥AB,PF⊥AC∴PD=PF同理,PD=PE综上,PD=PE=PF(2)解:C、=5设:PD=PE=PF=dABC =AC =84sp;ABC&en=APBBPC CPA 84=++d =3,PD=32.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则BC边长的高为()B、D、A、【参考答案】C 解:∵S△ABC =3×4−×2×3−×2×1−×2×4=4∵BC==,∴BC边长的高==故选:C.导学二:等面积法在等腰三角形的应用知识点讲解1在等腰三角形中,可以运用“割补法”的等面积思想,先建立有关“腰以及腰上的高”的等式,再通过等式两边约分来探索出线段之间的数量关系!例题1.如图,在△ABC中,AB=AC,AC边上的高BD=10cm.(1)如图1,求AB边上高CE的长;(2)如图2,若点P为BC边上任意一点,PM⊥AB于点M,PN⊥AC于点N,求PM+PN的值;(3)如图3,若点P为BC延长线上任意一点,PM⊥AB于M,PN⊥AC于点N,在①PM+PN;②PM PN中有一个是定值,判断出来并求值.【参考答案】(1)由S△ABC=×AB×CE=×AC×BD∵AB=AC,BD=10∴CE=10(2)如图,连接AP由S△ABP+S△ACP=S△ABC×AB×PM+×AC×PD=×AC×BD∵AB=AC,BD=10∴PM+PN=10(3)如图,连接APPM−PN是定值理由如下:连接AP,由S△ABP−S△ACP=S△ABC×AB×PM−×AC×PD=×AC×BD∵AB=AC,BD=10∴PM−PN=102.已知等边△ABC和内部一点P,设点P到△ABC三边的AB、BC、AC的距离分别是h1,h2,h3,△ABC的高为h,问h1、h2、h3与h之间有怎样的数量关系?请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题(八)之几何计算角度及面积计算
考点分析:证明与计算,是几何命题的两大核心内容。

几何计算主要包括:线段长度的计算、角度计算、面积计算,通常需要借助几何中的概念、定义、定理、公理等知识,求解相关几何元素的数值。

在解题时,要求能准确灵活地选用有关知识,采用各种数学方法(既可以是几何方法,也可以是代数方法),加以求解。

为了能在有限的时间内,迅速准确地解题,就需要在平时练习中,强化基础题,多采用一题多解、优化方案等训练方法,积累经验,达到熟能生巧的效果。

一、线段长度计算
线段长度计算的四种基本模型:
1.将线段长度的求解转化为线段和、差或等量线段的计算.
例1.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q
为BC延长线一点,当PA=CQ时,连接PQ交AC于D,则DE的长为
2.利用直角三角形的边角关系求线段长度.
例2 (2018·黄冈中考)如图,在Rt△ABC中,∠ACB=90°,CD为AB边
上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )
A.2 B.3 C.D.23
3.利用相似构造线段比例关系求线段长,
例3.(2019·济南市)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点
A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点
D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若
AD=8,AB=5,则线段PE的长等于.
4.利用图形面积关系求线段长
例4(2017·济南市)如图,正方形ABCD的对角线AC,BD相交于点O,AB
=3,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与
BD交于点G,则BF的长是()
A.B.2 C. D.
建模:初中几何中关于线段长度的计算,主要有四种模型:
①利用线段和、差或等量关系求线段长;
②解直角三角形求线段长;
③利用相似关系求线段长;
④利用面积关系求线段长,
大家在解决线段长度的计算时,注意利用图形信息,选择合适的模型.
二、面积计算问题
基本策略:1.直接计算:三角形面积公式s=12ah= 12(a +b+c)r(r 是三角形内切圆半径),S=12铅直高x 水平宽(坐标系中)
2.割补转化.
3.等积变形:等底等高的两三角形面积相等.
4.面积比问题{
直接求比{找相似三角形找等底等高的三角形关注基本单元进行拓展计算无法直接求比无法直接求比:分别计算各自面积,再求比值
例1.△ABC 中,∠C =90°,内切圆与AB 相切于点D ,AD =2,BD =3,则△ABC 的面积为( )
A .3
B .6
C .12
D .无法确定
例2.(2019·济南市)如图,在菱形ABCD 中,点E 是BC 的中点,以C
为圆心、CE 为半径作弧,交CD 于点F ,连接AE 、AF .若AB =6,∠B =
60°,则阴影部分的面积为( )
A .9﹣3π
B .9﹣2π
C .18﹣9π
D .18﹣6π
例3.(2019·槐荫一模)如图,线段AB =4,点C 为线段AB 上任意一点
(与端点不重合),分别以AC 、BC 为边在AB 的同侧作正方形ACDE 和正
方形CBGF ,分别连接BF 、EG 交于点M ,连接CM ,设AC =x ,S 四边形ACME
=y ,则
y 与x 的函数表达式为y =____________.
例4.(2019·常德中考)如图,在等腰三角形ABC 中,AB =AC ,图中所
有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则
四边形DBCE 的面积是( )
A .20
B .22
C .24
D .26
三.角度相关计算
1、求角度
基本策略:利用多边形内角和、外角关系、互余、互补、等角转化以及
圆中的等角关系,进行具体角度的计算,重点是关注角度的和、差关系
转化;
例1、(2019·德州中考)如图,点O 为线段BC 的中点,点A ,C ,D 到
点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )
A .130°
B .140°
C .150°
D .160°
2、求三角函数值
基本策略:把所求角放到直角三角形中,往往作高构造直角三角形,解决这类题目要思维灵活,如果直接构造直角三角形,求解条件不够充分或是数据非常复杂时,应当关注是否存在
等角转化,有时等角转化后再解直角三角形可以大大降低解题难度.大家在练习中逐步培养等角转化的意识,提高此类问题的解决能力.
例2.(2019济南市中一模)有这样一道题:如图,在正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,连接DH,如果BC=12,BF=3,
则tan∠HDG的值为()
A.B. C. D.
例3.(2019·上海中考)如图,在正方形ABCD中,E是边AD的中点.将
△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切
值是.
针对性练习
A组
1.(2018·福建中考)如图,等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15° B.30° C.45° D.60°
2.(2018·青岛中考)如图,点A,B,C,D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )
A.70°B.55° C.35.5°D.35°
3.(2016济南)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD 的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()
A.B.4C.2D.
1题图 2题图 3题图
4.(2019历下二模)如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,则tan∠DEC的值是()
A.1 B.C.D.
5.(2019历城一模)如图,在扇形OEF中,∠EOF=90°,半径为2,正方形ABCD的顶
点C是的中点,点D在OF上,点A在OF的延长线上,则图中阴影部分的面积为.
4题图 5题图 6题图
6.如图,D,E分别是△ABC的边AB,BC上的点,且DE∥AC,AE,CD相交于点O,若S△DOE∶S△COA
=1∶16,则S△BDE与S△CDE的比是_________.
7.(2019历城一模)如图,在Rt△ACB中,∠ACB=90°,AC=BC,点D是AB上的一个动
点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC
相交于点F,连接AE,若,AD=2BD,则CF等于()
A.B.C.D.
8.(2019年青岛中考)如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长为 cm .
7题图 8题图 9题图
B组.
9、(2018·枣庄中考)如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为. 10、(2016济南中考)如图,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.。

相关文档
最新文档