中考数学专题训练:实数的运算、化简求值(含答案)

合集下载

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。

2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。

3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。

4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。

5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。

7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。

【答案】解:原式=4×2+1-6 =-+1+6 =7。

8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。

11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。

13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。

初三中考数学先化简后求值计算题训练(含答案)

初三中考数学先化简后求值计算题训练(含答案)

先化简后求值计算题训练一、计算题(共23题;共125分)1.化简求值:;其中2.先化简,再求值:,其中a为不等式组的整数解.3.先化简,再求值:(m+ )÷(m﹣2+ ),其中m=3tan30°+(π﹣3)0.4.先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.5. 先化简,再求值:÷(1- ),其中m=2.6.先化简,再求值:,其中,.7.先化简,再求值:,其中.8.先化简,再求代数式的值:,其中x=3cos60°.9.先化简,再求值:,其中.10.先化简,再求值:(﹣)÷ ,其中x=3+ .11.化简求值:,其中.12. 先化简,再求值:,其中.13.先化简(1- )÷ ,再将x=-1代入求值。

14.先化简,再求值:,其中.15.先化简,再求值:,其中.16.先化简,再求值,其中满足17.先化简:,再从1,2,3中选取一个适当的数代入求值.18.先化简,然后从中选出一个合适的整数作为的值代入求值.19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.先化简,再求值:,其中.21.先化简,再求值:,其中.22.先化简,再求值:,其中.23.先化简,再从中选一个适合的整数代入求值.答案解析部分一、计算题1.【答案】解:原式,当时,原式【考点】利用分式运算化简求值【解析】【分析】先将括号里的分式加减通分计算,再将分式的除法转化为乘法运算,约分化简,然后代入求值。

2.【答案】解:原式,解不等式得,∴不等式组的整数解为,当时,原式【考点】利用分式运算化简求值,一元一次不等式组的特殊解【解析】【分析】把整式看成分母为1的式子,通分计算括号内异分母分式的加法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;解出不等式组中每一个不等式的解集,根据大小小大取中间得出该不等式组的解集,求出其整数解得出a的值,将a的值代入分式化简的结果按有理数的混合运算法则即可算出答案.3.【答案】解:原式=÷=,m=3tan30°+(π﹣3)0=3× +1=,原式===【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】把整式看成分母为1的式子,通分计算异分母分式的加减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置将除法转变为乘法,然后约分化为最简形式;根据特殊锐角三角函数值、0指数的意义分别化简,再根据实数的混合运算法则算出m的值,进而将m的值代入分式化简的结果,按实数的混合运算法则算出答案.4.【答案】解:,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子与分母交换位置,将除法转变为乘法,然后约分化为最简形式;接着利用0指数的意义、负指数的意义分别化简,再根据有理数加法法则算出a的值,最后将a的值代入分式运算化简的结果按有理数的加减法法则就可算出答案.5.【答案】解:原式= ÷( - )= •= ,当m=2时,原式= =【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】把整式看成分母为1的式子,通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入m的值按有理数的混合运算法则算出答案.6.【答案】解:原式,当,时,原式【考点】利用分式运算化简求值【解析】【分析】把整式看成分母为1的式子,然后通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入a,b的值,按实数的混合运算顺序算出答案.7.【答案】解:原式当时,原式【考点】利用分式运算化简求值【解析】【分析】先计算分式的除法,将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式,然后将整式看成分母为1的式子,通分计算异分母分式的减法,最后代入x的值按实数的混合运算法则算出答案.8.【答案】解:原式===,当x=3cos60°=3× =时,原式==【考点】利用分式运算化简求值,特殊角的三角函数值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据特殊锐角三角函数值化简x的值,再将x的值代入分式化简的结果,按有理数的混合运算法则即可算出答案.9.【答案】解:原式,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据绝对值及负指数的意义将a的值进行化简,再将a的值代入分式化简的结果,按有理数的混合运算法则即可算出答案. 10.【答案】解:原式=当x=3+ 时,原式=【考点】利用分式运算化简求值【解析】【分析】将各个分式的分子分母能分解因式的分别分解因式,然后通分计算括号内异分母分式的减法,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入x的值按实数的混合运算顺序算出答案.11.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值【解析】【分析】将括号内通分,进行同分母相减,然后将除法化为乘法进行约分,即化为最简,将x值代入计算即可.12.【答案】解:,当时,原式.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值先将括号内第一个分式约分,接着进行同分母分式相减,然后将除法化为乘法,进行约分即化为最简,最后将a值代入计算即可.13.【答案】解:原式==x+2当x=-1时原式=-1+2=1【考点】利用分式运算化简求值【解析】【分析】将括号里通分,进行同分母加减,然后将除法化为乘法进行约分化为最简,最后将x值代入计算即可.14.【答案】解:原式== ,当时,原式【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加法,然后计算括号外分式的除法,将各个分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;再代入x的值按实数的运算方法即可算出答案。

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。

2024陕西中考数学二轮专题训练 题型三 简单计算题 (含答案)

2024陕西中考数学二轮专题训练 题型三 简单计算题 (含答案)

2024陕西中考数学二轮专题训练题型三简单计算题类型一实数的运算【类型解读】实数的运算近7年在解答题考查6次,仅2020年未考查,分值均为5分,考查点涉及:①去绝对值符号;②二次根式运算;③0次幂;④分数的负整数指数幂;⑤立方根.考查形式:含3个考查点的加减混合运算.1.计算:20-|2-5|+(-2)2.2.计算:2×6+|3-2|-(-2022)0.3.计算:4×(-8)-|3-22|-(-13)-1.4.计算:-2×28+|7-1|+(-1)2022.5.计算:(-3)2×3-64-|-23|+(12)-2.6.计算:3×12-|2-6|-2tan45°.7.计算:-13×24+|22-2|-(-77)0+(-1)3.8.计算:13×(-327)-|1-3|+(-12)-3-2sin60°.类型二整式的化简(求值)1.计算:x (x +2)+(1+x )(1-x ).2.化简:(m+1)(m-3)-(m-2)2.3.化简:(x-3y)2-(x+2y)(x-2y).4.化简:(x-1)2-x(x-2)+(-x-3)(x-3).5.先化简,再求值:2x(1-x)-(x-3)(x+5),其中x=2.6.已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.7.先化简,再求值:(x+2y)2+(x-2y)(x+2y)-2x(x+4y),其中x=2,y= 3.8.下面是小颖化简整式x(x+2y)-(x+1)2+2x的过程,仔细阅读后解答所提出的问题.解:原式=x2+2xy-(x2+2x+1)+2x第一步=x2+2xy-x2+2x+1+2x第二步=2xy+4x+1.第三步(1)小颖的化简过程从第________步开始出现错误,错误的原因是__________________________;(2)写出正确的解题过程.类型三分式的化简(求值)与解分式方程【类型解读】分式化简(求值)近10年考查6次,其中选择题1次(2017.5),解答题5次.其中分式化简考查5次,均为三项,形式包含:(A+B)÷C、(A-B)÷C;分式化简求值考查1次,形式为A-B,所给值为负数.解分式方程近10年考查5次,分值均为5分.考查形式:分式方程均为三项,其中两项为分式,另一项为常数1或-1.分式化简与解分式方程对比练习:针对分式化简与解分式方程过程中容易混淆的步骤,特设对比练习,让学生掌握基本步骤,明确解题方法,避免失分.对比练习①化简:12-x÷(2-2x2+x).解分式方程:12-x+2=2x2+x.解题过程对比练习②化简:(1-xx+1)÷1x2-1.解分式方程:1-xx+1=1x2-1.解题过程对比练习③化简:4x2-9÷(2x-3-1x+3).解分式方程:4x2-9-2x-3=1x+3.解题过程注意事项 1.分式化简时,分母始终存在,分 1.解分式方程时,第1步是利用等式式的每一项属于恒等变形;2.分式化简时,若遇到异分母分式相加或者相减,要进行通分,通分是将几个异分母的分式分别化成与原来的分式相等的同分母的分式;3.在化简的过程中,分子或分母能因式分解的先因式分解,以便看能否约去公因式的基本性质,去分母,因此分母不存在;2.解分式方程时,去分母是给方程两边同乘最简公分母,从而将分式方程化为整式方程;3.分式方程要检验,即检验所求的解是否是该方程的根考向一分式的化简(求值)1.化简:(1+1m-1)÷mm2-1.2.化简:a-ba+b-a2-2ab+b2a2-b2÷a-ba.3.化简:(x-2x+2-8x4-x2)÷x2+2xx-2.4.计算:x2-9x2+2x+1÷(x+3-x2x+1).5.已知A=2x-1,B=x+1x2-2x+1,C=x+13x-3,将它们组合成A-B÷C或(A-B)÷C的形式,请你从中任选一种组合形式,先化简,再求值,其中x=-3.考向二解分式方程1.解分式方程:xx+1=x3x+3+1.2.解分式方程:xx-3-6x=1.3.解分式方程:xx-2-1=4x2-4x+4.4.下面是小颖同学解分式方程的过程,请认真阅读并完成相应任务.解方程:x+2x-2-1=84-x2.解:(x+2)2-(x2-4)=-8,·················第一步x2+4x+4-x2-4=-8,····················第二步4x=0,···································第三步x=0,····································第四步所以原分式方程的解是x=0.················第五步任务一:①以上解分式方程的过程中,缺少的一步是________;②第________步开始出现错误,这一步错误的原因是________________________;任务二:请直接写出该分式方程的解;任务三:除纠正上述错误外,请你根据平时的学习经验,就解分式方程时还需要注意的事项给其他同学提一条建议.类型四一次方程(组)(常在一次函数的实际应用、二次函数综合题中涉及)1.解方程:x-32+x-13=4.2.=2y -y=6.3.x-y=-4-2y=-3.4.x-4(x+2y)=5+2y=1.5.2y=3-2+y3=-12.6.x+y=7=y-1的解也是关于x、y的方程ax+y=4的一个解,求a的值.7.x+2y=5①x+2y=-3②时的部分过程:x+2y=5①x+2y=-3②,①-②,得-2x=8,…(1)上述解法中,使用的方法是____________;(填“代入消元法”或“加减消元法”)(2)解方程组的基本思想是________;(3)请选择不同于题中的方法求解该方程组.类型五一元二次方程(常在二次函数综合题中涉及)1.解方程:(x+1)2-4=0.2.解方程:2x2+6x-3=0.3.解方程:x(x-7)=8(7-x).4.解方程:(x+1)(x-3)=1.5.若x=-1是关于x的一元二次方程(m-1)x2-x-2=0的一个根,求m的值及另一个根.6.已知关于x的一元二次方程x2-2x+1-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你给出一个k的值,并求出此时方程的根.7.已知关于x 的一元二次方程x 2-4mx +3m 2=0.(1)求证:该方程总有两个实数根;(2)若m >0,且该方程的两个实数根的差为2,求m 的值.类型六不等式(组)【类型解读】解不等式组近10年考查5次,其中解答题2次(近两年连续考查),选择题3次.1.-1≥2①x +3<13②.2.x <x +8(x +1)≤7x +10.3.x -1)≤1x -53.4.(x +1)≤7x +13-4<x -83.5.解不等式:3x +24≤x -13,并把解集在数轴上表示出来,同时写出它的最大整数解.第5题图6.6≤x+16,并把它的解集在数轴上表示出来.第6题图7.(1+x)>-1①1-x)>-2②的解答过程.解:由①,得2+x>-1,所以x>-3.由②,得1-x>2,所以-x>1,所以x>-1;所以原不等式组的解是x>-1.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.参考答案类型一实数的运算1.解:原式=25-(5-2)+4=25-5+2+4=5+6.2.解:原式=2×6+(2-3)-1=23+2-3-1=3+1.3.解:原式=2×(-22)-(3-22)+3=-42-3+22+3=-2 2.4.解:原式=-2×27+(7-1)+1=-47+7-1+1=-37.5.解:原式=3×(-4)-23+4=-12-23+4=-8-2 3.6.解:原式=3×23-(6-2)-2=6-6+2-2=6- 6.7.解:原式=-13×24+(22-2)-1-1=-22+22-2-2=-4.8.解:原式=13×(-3)-(3-1)-8-2×32=-1-3+1-8-3=-23-8.类型二整式的化简(求值) 1.解:原式=x2+2x+1-x22.解:原式=m2+m-3m-3-(m2-4m+4)=m2-2m-3-m2+4m-4=2m-7.3.解:原式=x2-6xy+9y2-(x2-4y2)=x2-6xy+9y2-x2+4y2=-6xy+13y2.4.解:原式=x2-2x+1-x2+2x-(x+3)(x-3)=1-(x2-9)=1-x2+9=10-x2.5.解:原式=2x-2x2-(x2-3x+5x-15)=2x-2x2-x2+3x-5x+15=-3x2+15.当x=2时,原式=-3×22+15=3.6.解:原式=9x2-4+x2-2x=10x2-2x-4,∵5x2-x-1=0,∴5x2-x=1,∴原式=2(5x2-x)-4=-2.7.解:原式=x2+4xy+4y2+x2-4y2-(2x2+8xy)=x2+4xy+4y2+x2-4y2-2x2-8xy=-4xy.当x=2,y=3时,原式=-4×2×3=-4 6.8.解:(1)二;括号前是“-”号,去括号时里面的各项没有变号;(2)原式=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1.类型三分式的化简(求值)与解分式方程解:原式=12-x ÷2(2+x )-2x 2+x=12-x ÷42+x=12-x ·2+x 4=2+x 8-4x.解:方程两边同乘(2+x )(2-x ),得2+x +2(2+x )(2-x )=2x (2-x ),2+x +8-2x 2=4x -2x 2,-3x =-10.解得x =103.检验:当x =103时,(2+x )(2-x )≠0,∴原分式方程的解是x =103.对比练习②解:原式=x +1-x x +1÷1(x +1)(x -1)=1x +1·(x +1)(x -1)=x -1.解:方程两边同乘(x +1)(x -1),得(x +1)(x -1)-x (x -1)=1,x 2-1-(x 2-x )=1,解得x =2.检验:当x =2时,(x +1)(x -1)≠0,∴原分式方程的解是x =2.对比练习③解:原式=4(x +3)(x -3)÷2(x +3)-(x -3)(x +3)(x -3)=4(x +3)(x -3)÷2x +6-x +3(x +3)(x -3)=4(x +3)(x -3)·(x +3)(x -3)x +9=4x +9.解:方程两边同乘(x +3)(x -3),得4-2(x +3)=x -3.4-(2x +6)=x -3.-3x =-1.解得x =13检验:当x =13时,(x +3)(x -3)≠0,∴原分式方程的解是x =13.考向一分式的化简(求值)1.解:原式=m -1+1m -1·(m +1)(m -1)m =m m -1·(m +1)(m -1)m=m +1.2.解:原式=a -b a +b -(a -b )2(a -b )(a +b )·a a -b=a -b a +b -a a +b=-b a +b.3.解:原式=(x -2x +2+8x x 2-4)÷x (x +2)x -2=x 2-4x +4+8x (x +2)(x -2)·(x -2)x (x +2)=x 2+4x +4(x +2)(x -2)·(x -2)x (x +2)=(x +2)2(x +2)(x -2)·(x -2)x (x +2)=1x.4.解:原式=(x +3)(x -3)(x +1)2÷x 2+x +3-x 2x +1=(x +3)(x -3)(x +1)2·x +1x +3=x -3x +1.5.解:A -B ÷C :2x -1-x +1x 2-2x +1÷x +13x -3原式=2x -1-x +1(x -1)2·3(x -1)x +1=2x -1-3x -1=-1x -1,当x =-3时,原式=-1-3-1=14;(A -B )÷C :(2x -1-x +1x 2-2x +1)÷x +13x -3原式=[2x -1-x +1(x -1)2]·3(x -1)x +1=[2x -2(x -1)2-x +1(x -1)2]·3(x -1)x +1=x -3(x -1)2·3(x -1)x +1=3x -9x 2-1,当x =-3时,原式=3×(-3)-9(-3)2-1=-94.考向二解分式方程1.解:方程两边同乘3(x +1),得3x =x +3x +3,解得x =-3.检验:当x =-3时,3(x +1)≠0,∴原分式方程的解为x =-3.2.解:方程两边同乘x (x -3),得x 2-6(x -3)=x (x -3).-3x =-18.解得x =6.检验:当x =6时,x (x -3)≠0,∴原分式方程的解为x =6.3.解:方程两边同乘(x -2)2,得x (x -2)-(x -2)2=4,2x=8.解得x=4.检验:当x=4时,(x-2)2≠0.∴原分式方程的解为x=4.4.解:任务一:①检验;②二,去括号时,括号前是“-”号,括号里面第二项没有变号;任务二:该分式方程的解为x=-4;【解法提示】x+2x-2-1=84-x2,(x+2)2-(x2-4)=-8,x2+4x+4-x2+4=-8,4x=-16,x=-4,检验:当x=-4时,x2-4≠0,∴原分式方程的解为x=-4.任务三:答案不唯一,如:去分母时,注意方程中的每项都要乘最简公分母;去括号时,注意正确运用去括号法则;解分式方程必须验根等.类型四一次方程(组)1.解:3(x-3)+2(x-1)=24,3x-9+2x-2=24,3x+2x=24+9+2,5x=35,x=7.∴原方程的解为x=7.2.解:=2y①-y=6②,把①代入②,得2y-y=6,解得y=6.把y=6代入①,得x=12.=12=6.3.解x-y=-4①-2y=-3②,①×2,得6x-2y=-8③,③-②,得5x=-5,解得x=-1,把x=-1代入①,得y=1.=-1=.4.解x-8y=5①+2y=1②,①+②得:-6y=6,解得y=-1,把y=-1代入②得:x-2=1,解得x=3,=3=-1.5.解:将原方程组整理,得:+2y=3①x-2y=1②,①+②,得4x=4,解得x=1,将x=1代入①,得1+2y=3,解得y=1,=1=1.6.解x+y=7=y-1②,把②代入①得:2(y-1)+y=7,解得y=3,代入①中,解得x=2,把x=2,y=3代入方程ax+y=4得,2a+3=4,解得a=12.7.解:(1)加减消元法;(2)消元;(3)由②得2y=-3-5x③.将③代入①得,3x+(-3-5x)=5,去括号,移项、合并同类项得-2x=8,解得x=-4,将x=-4代入①,得-12+2y=5,解得y=172,=-4=172.类型五一元二次方程1.解:(x+1)2=4,∴x+1=±2,解得x1=1,x2=-3.2.解:∵a=2,b=6,c=-3,∴b2-4ac=60>0,∴x=-b±b2-4ac2a=-6±602×2=-6±2154=-3±152.∴x1=-3+152,x2=-3-152.3.解:x(x-7)+8(x-7)=0,(x-7)(x+8)=0,解得x1=7,x2=-8.4.解:将方程整理为一般式为x2-2x-4=0,∵a=1,b=-2,c=-4,∴b2-4ac=(-2)2-4×1×(-4)=20>0,∴x=-b±b2-4ac2a=2±252=1±5,∴x1=1+5,x2=1-5.5.解:将x=-1代入原方程得m-1+1-2=0,解得m=2,当m=2时,原方程为x2-x-2=0,即(x+1)(x-2)=0,∴x1=-1,x2=2,∴方程的另一个根为x=2.6.解:(1)∵关于x的一元二次方程x2-2x+1-k=0有两个不相等的实数根.∴b2-4ac=(-2)2-4×1×(1-k)>0,∴4k>0,解得k>0;(2)由(1)知,实数k的取值范围为k>0,故取k=1,则x2-2x=0,即x(x-2)=0,解得x1=0,x2=2.7.(1)证明:∵b2-4ac=(-4m)2-4×1×3m2=4m2≥0,∴该方程总有两个实数根;(2)解:x2-4mx+3m2=0可化为(x-m)(x-3m)=0,解得x1=m,x2=3m.∵m>0,∴m<3m.∵该方程的两个实数根的差为2,∴x2-x1=3m-m=2m=2,解得m=1.类型六不等式(组) 1.解:解不等式①,得x≥3,解不等式②,得x<5,∴原不等式组的解集为3≤x<5.2.解x<x+8①(x+1)≤7x+10②,解不等式①,得x<4,解不等式②,得x≥-2,∴原不等式组的解集是-2≤x<4.3.解x-1)≤1①x-53②,解不等式①,得x≥1,解不等式②,得x<3.∴原不等式组的解集是1≤x<3.4.解(x +1)≤7x +13①-4<x -83②,解不等式①,得x ≥-3,解不等式②,得x <2.∴原不等式组的解集是-3≤x <2.5.解:去分母,得3(3x +2)≤4(x -1),去括号,得9x +6≤4x -4,移项、合并同类项,得5x ≤-10,解得x ≤-2.将不等式的解集在数轴上表示如解图,第5题解图∴不等式的最大整数解为x =-2.6.解6①≤x +16②,解不等式①,得x >-3,解不等式②,得x ≤2,∴这个不等式组的解集是-3<x ≤2.解集在数轴上表示如解图.第6题解图7.解:圆圆的解答过程有错误.正确的解答过程如下:由①,得2+2x >-1,∴2x >-3,∴x >-32,由②,得1-x <2,∴-x <1,∴x >-1.∴原不等式组的解集是x >-1.。

初三实数运算练习题及答案

初三实数运算练习题及答案

初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。

1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。

中考数学专题练习 实数(含解析)

中考数学专题练习 实数(含解析)

实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。

初三中考数学先化简后求值计算题训练(含答案)

初三中考数学先化简后求值计算题训练(含答案)

先化简后求值计算题训练一、计算题(共23题;共125分)1.化简求值:;其中2.先化简,再求值:,其中a为不等式组的整数解.3.先化简,再求值:(m+ )÷(m﹣2+ ),其中m=3tan30°+(π﹣3)0.4.先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.5. 先化简,再求值:÷(1- ),其中m=2.6.先化简,再求值:,其中,.7.先化简,再求值:,其中.8.先化简,再求代数式的值:,其中x=3cos60°.9.先化简,再求值:,其中.10.先化简,再求值:(﹣)÷ ,其中x=3+ .11.化简求值:,其中.12. 先化简,再求值:,其中.13.先化简(1- )÷ ,再将x=-1代入求值。

14.先化简,再求值:,其中.15.先化简,再求值:,其中.16.先化简,再求值,其中满足17.先化简:,再从1,2,3中选取一个适当的数代入求值.18.先化简,然后从中选出一个合适的整数作为的值代入求值.19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.先化简,再求值:,其中.21.先化简,再求值:,其中.22.先化简,再求值:,其中.23.先化简,再从中选一个适合的整数代入求值.答案解析部分一、计算题1.【答案】解:原式,当时,原式【考点】利用分式运算化简求值【解析】【分析】先将括号里的分式加减通分计算,再将分式的除法转化为乘法运算,约分化简,然后代入求值。

2.【答案】解:原式,解不等式得,∴不等式组的整数解为,当时,原式【考点】利用分式运算化简求值,一元一次不等式组的特殊解【解析】【分析】把整式看成分母为1的式子,通分计算括号内异分母分式的加法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;解出不等式组中每一个不等式的解集,根据大小小大取中间得出该不等式组的解集,求出其整数解得出a的值,将a的值代入分式化简的结果按有理数的混合运算法则即可算出答案.3.【答案】解:原式=÷=,m=3tan30°+(π﹣3)0=3× +1=,原式===【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】把整式看成分母为1的式子,通分计算异分母分式的加减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置将除法转变为乘法,然后约分化为最简形式;根据特殊锐角三角函数值、0指数的意义分别化简,再根据实数的混合运算法则算出m的值,进而将m的值代入分式化简的结果,按实数的混合运算法则算出答案.4.【答案】解:,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子与分母交换位置,将除法转变为乘法,然后约分化为最简形式;接着利用0指数的意义、负指数的意义分别化简,再根据有理数加法法则算出a的值,最后将a的值代入分式运算化简的结果按有理数的加减法法则就可算出答案.5.【答案】解:原式= ÷( - )= •= ,当m=2时,原式= =【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】把整式看成分母为1的式子,通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入m的值按有理数的混合运算法则算出答案.6.【答案】解:原式,当,时,原式【考点】利用分式运算化简求值【解析】【分析】把整式看成分母为1的式子,然后通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入a,b的值,按实数的混合运算顺序算出答案.7.【答案】解:原式当时,原式【考点】利用分式运算化简求值【解析】【分析】先计算分式的除法,将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式,然后将整式看成分母为1的式子,通分计算异分母分式的减法,最后代入x的值按实数的混合运算法则算出答案.8.【答案】解:原式===,当x=3cos60°=3× =时,原式==【考点】利用分式运算化简求值,特殊角的三角函数值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据特殊锐角三角函数值化简x的值,再将x的值代入分式化简的结果,按有理数的混合运算法则即可算出答案.9.【答案】解:原式,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据绝对值及负指数的意义将a的值进行化简,再将a的值代入分式化简的结果,按有理数的混合运算法则即可算出答案. 10.【答案】解:原式=当x=3+ 时,原式=【考点】利用分式运算化简求值【解析】【分析】将各个分式的分子分母能分解因式的分别分解因式,然后通分计算括号内异分母分式的减法,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入x的值按实数的混合运算顺序算出答案.11.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值【解析】【分析】将括号内通分,进行同分母相减,然后将除法化为乘法进行约分,即化为最简,将x值代入计算即可.12.【答案】解:,当时,原式.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值先将括号内第一个分式约分,接着进行同分母分式相减,然后将除法化为乘法,进行约分即化为最简,最后将a值代入计算即可.13.【答案】解:原式==x+2当x=-1时原式=-1+2=1【考点】利用分式运算化简求值【解析】【分析】将括号里通分,进行同分母加减,然后将除法化为乘法进行约分化为最简,最后将x值代入计算即可.14.【答案】解:原式== ,当时,原式【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加法,然后计算括号外分式的除法,将各个分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;再代入x的值按实数的运算方法即可算出答案。

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值(含答案)

中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。

2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。

3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。

4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。

5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。

7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。

【答案】解:原式=4×2+1-6 =-+1+6 =7。

8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。

11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。

13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。

实数综合应用(化简求值与简单计算)(人教版)(含答案).docx

实数综合应用(化简求值与简单计算)(人教版)(含答案).docx

学生做题前请先回答以下问题问题2: —个正数有—个平方根,它们____________ ; 0有 _____ 个平方根,是_______ ;负数______ 平方根.问题2:求一个数a的平方根的运算叫做 _______ ,其中a叫做 _______ .问题3:正数的立方根是____ , 0的立方根是______ ,负数的立方根是_______ .问题4:数a的相反数是_______ .一个正实数的绝对值是_______ ;一个负实数的绝对值是_____ ; 0的绝对值是_______ .实数综合应用(化简求值与简单计算)(人教版)一、单选题(共14道,每道7分)4击-玺1. 计算2的结果是()3若7羽9馅戸A・〒B. 丁c.〒D.何答案:B4筋一适=仏一斗毎心解题思路: 2 I 2丿 2 故选B.试题难度:三颗星知识点:实数的混合运算2. 计算血(血+2)的结果是()A 2+J2B 4+2c 2~i~2\/2 D 44~-\/2答案:C解题思路:血(血+2)="尸+2血=2+2血.故选c.试难度:三颗星知识点:实数的混合运算A 6 -厉B.64■厉C. 2升少D. 26-昉答案:A-妈=(的尸+1-辰6-詰解题思路: 故选A. 试题难度:三颗星知识点:实数的混合运算4计算(40洁-1" + W )三馆的结果是()A.30B.90C.20D.6答案:A解题思路:观察式子结构,应先合并同类二次根式,再做乘除运(40^3一 18筋 + 8^3)壬书=30击三筋二 30击-^ = 30 算. 筋 .故选A .试题难度:三颗星知识点:实数的混合运算(4馆-2击)三屈丄=5.计算:答案:B答案:B解题思路:观察式子结构,有乘除有加减,先算乘除再算加减,按照对应的法则计算即 解:原式=2顾-遁X A-』X “)22 ^/10 2= 2V10-l--x2 2 2= 2^10-1-3 2= 2V10--可. 2 故选B .试题难度:三颗星知识点:实数的混合运算7, 十算:區外7+炜=()A 筋+3B 2y/2-y/3-3c 费-2血-3。

实数计算题专题训练(含答案)

实数计算题专题训练(含答案)

实数计算题专题训练(含答案)实数计算题专题训练(含答案)在数学学习中,实数计算题是一个重要的训练内容。

通过解答实数计算题,可以提高我们的计算能力和逻辑思维能力。

本文将为大家提供一些实数计算题的专题训练,以帮助大家巩固和提升自己的实数计算能力。

一、有理数运算1. 计算:(-2/3) + (5/6) - (1/4)解:首先,将两个分数的分母取最小公倍数4,然后进行计算:(-2/3) + (5/6) - (1/4) = (-8/12) + (10/12) - (3/12) = (-1/12)答案:(-1/12)2. 计算:-3/5 × 4/7 ÷ (-2/3)解:首先,将除法转化为乘法,然后计算:-3/5 × 4/7 ÷ (-2/3) = -3/5 × 4/7 × (-3/2) = (-36/70)答案:(-36/70)二、无理数运算1. 计算:√2 + √18 - √8解:将每个无理数化简到最简形式,然后进行计算:√2 + √18 - √8 = √2 + 3√2 - 2√2 = 2√2答案:2√22. 计算:4√5 × √8 ÷ (√20)²解:首先,将除法化简为乘法,然后计算:4√5 × √8 ÷ (√20)² = 4√5 × √8 ÷ 20 = 4/5 × 2√2 = 8/5√2答案:8/5√2三、复数运算1. 计算:(3 + 2i) + (4 - 5i)解:将实部与虚部相加,得到结果:(3 + 2i) + (4 - 5i) = (3 + 4) + (2i - 5i) = 7 - 3i答案:7 - 3i2. 计算:(2 + 3i) × (-4 - i)解:使用分配律展开并进行计算:(2 + 3i) × (-4 - i) = -8 - 2i - 12i - 3i² = -11 - 14i + 3 = -8 - 14i 答案:-8 - 14i四、实数绝对值计算1. 计算:|3 - 7|解:将绝对值内的表达式求值:|3 - 7| = |-4| = 4答案:42. 计算:|4 - 6| + |8 - 10|解:将绝对值内的表达式求值,并进行加法运算:|4 - 6| + |8 - 10| = |-2| + |-2| = 2 + 2 = 4答案:4通过以上的实数计算题的专题训练,我们可以加深对有理数、无理数和复数的运算规则和性质的理解,并提高自己的计算技巧。

初三化简求值练习题及答案

初三化简求值练习题及答案

初三化简求值练习题及答案如下是一些初三化简求值的练习题及其解答,希望能帮助大家提高数学能力。

第一题:化简并求值:(4x - 5)+ (2x + 3)解答:将表达式中的括号去掉,并合并同类项:4x - 5 + 2x + 3合并同类项:(4x + 2x) - 5 + 3 = 6x - 2所以,化简并求值后的结果为:6x - 2第二题:化简并求值:(2a + 3b) - (a - 4b)解答:将表达式中的括号去掉,并分配符号:2a + 3b - a + 4b合并同类项:(2a - a) + (3b + 4b) = a + 7b所以,化简并求值后的结果为:a + 7b第三题:化简并求值:3(x + y) - 2(2x - y) + 5(x + y)解答:将表达式中的括号去掉,并分配符号:3x + 3y - 4x + 2y + 5x + 5y合并同类项:(3x - 4x + 5x) + (3y + 2y + 5y) = 4x + 10y 所以,化简并求值后的结果为:4x + 10y 第四题:化简并求值:4(x + 2) - 5(x - 3) + 2(2 + x)解答:将表达式中的括号去掉,并分配符号:4x + 8 - 5x + 15 + 4 + 2x合并同类项:(4x - 5x + 2x) + (8 + 15 + 4) = x + 27所以,化简并求值后的结果为:x + 27第五题:化简并求值:2(x - 3) - 3(x + 2) + 4(2 - x)解答:将表达式中的括号去掉,并分配符号:2x - 6 - 3x - 6 + 8 - 4x合并同类项:(2x - 3x - 4x) + (-6 - 6 + 8) = -5x - 4所以,化简并求值后的结果为:-5x - 4以上就是初三化简求值练习题及对应答案。

希望能帮助大家更好地理解和掌握化简求值的方法。

在解题过程中,注意合并同类项和分配符号的原则,可以帮助我们简化表达式并求得准确的结果。

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•福建)计算:﹣20+|﹣1|.2.(2021•福建)计算:.二.分式的化简求值(共2小题)3.(2023•福建)先化简,再求值:(1﹣)÷,其中x=﹣1.4.(2022•福建)先化简,再求值:(1+)÷,其中a=+1.三.零指数幂(共1小题)5.(2022•福建)计算:+|﹣1|﹣20220.四.二元一次方程组的应用(共1小题)6.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.五.解一元一次不等式组(共2小题)7.(2023•福建)解不等式组:.8.(2021•福建)解不等式组:.六.一次函数的应用(共1小题)9.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?七.全等三角形的判定与性质(共3小题)10.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.11.(2021•福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.12.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.八.切线的性质(共1小题)13.(2023•福建)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.九.弧长的计算(共1小题)14.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).一十.作图—复杂作图(共1小题)15.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.一十一.解直角三角形(共1小题)16.(2022•福建)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A 相切于点G,求tan∠ADB的值.一十二.列表法与树状图法(共1小题)17.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A 马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.福建省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•福建)计算:﹣20+|﹣1|.【答案】3.【解答】解:原式=3﹣1+1=2+1=3.2.(2021•福建)计算:.【答案】.【解答】解:原式=2+3﹣﹣3=.二.分式的化简求值(共2小题)3.(2023•福建)先化简,再求值:(1﹣)÷,其中x=﹣1.【答案】.【解答】解:原式=•=﹣•=﹣,当时,原式==.4.(2022•福建)先化简,再求值:(1+)÷,其中a=+1.【答案】,.【解答】解:原式=÷=•=,当a=+1时,原式==.三.零指数幂(共1小题)5.(2022•福建)计算:+|﹣1|﹣20220.【答案】.【解答】解:原式=2+﹣1﹣1=.四.二元一次方程组的应用(共1小题)6.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】见试题解答内容【解答】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:,解得:.∵8×2=16,16<38,∴符合题意.答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,依题意得:m≥2(46﹣m),解得:m≥.设购买两种绿植的总费用为w元,则w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的增大而增大,又∵m≥,且m为整数,∴当m=31时,w取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.五.解一元一次不等式组(共2小题)7.(2023•福建)解不等式组:.【答案】﹣3≤x<1.【解答】解:解不等式①,得x<1.解不等式②,得x≥﹣3.所以原不等式组的解集为﹣3≤x<1.8.(2021•福建)解不等式组:.【答案】1≤x<3.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<3,则不等式组的解集为1≤x<3.六.一次函数的应用(共1小题)9.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?【答案】(1)该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.【解答】解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100﹣x)箱,依题意得70x+40(100﹣x)=4600,解得:x=20,100﹣20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m箱,则批发这种农产品(1000﹣m)箱,依题意得0<m≤1000×30%,解得0<m≤300,设该公司获得利润为y元,依题意得y=70m+40(1000﹣m),即y=30m+40000,∵30>0,y随着m的增大而增大,∴当m=300时,y取最大值,此时y=30×300+40000=49000(元),∴批发这种农产品的数量为1000﹣m=700(箱),答:该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.七.全等三角形的判定与性质(共3小题)10.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.【答案】证明见解答过程.【解答】证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.11.(2021•福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.【答案】见试题解答内容【解答】证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠B=∠C.12.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.【答案】见解析.【解答】证明:∵∠AOD=∠COB,∴∠AOD﹣∠BOD=∠COB﹣∠BOD,即∠AOB=∠COD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD.八.切线的性质(共1小题)13.(2023•福建)如图,已知△ABC内接于⊙O,CO的延长线交AB于点D,交⊙O于点E,交⊙O的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO平分∠BAC.【答案】(1)见解析;(2)见解析.【解答】证明:(1)∵AF是⊙O的切线,∴AF⊥OA,即∠OAF=90°,∵CE是⊙O的直径,∴∠CBE=90°,∴∠OAF=∠CBE,∵AF∥BC,∴∠BAF=∠ABC,∴∠OAF﹣∠BAF=∠CBE﹣∠ABC,即∠OAB=∠ABE,∴AO∥BE;(2)∵∠ABE与∠ACE都是所对的圆周角,∴∠ABE=∠ACE,∵OA=OC,∴∠ACE=∠OAC,∴∠ABE=∠OAC,由(1)知,∠OAB=∠ABE,∴∠OAB=∠OAC,∴AO平分∠BAC.九.弧长的计算(共1小题)14.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).【答案】(1)证明过程见解析;(2).【解答】证明:(1)∵AD∥BC,DF∥AB,∴四边形ABED为平行四边形,∴∠B=∠D,∵∠AFC=∠B,∠ACF=∠D,∴∠AFC=∠ACF,∴AC=AF.(2)连接AO,CO,如图,由(1)得∠AFC=∠ACF,∵∠AFC==75°,∴∠AOC=2∠AFC=150°,∴的长l==.一十.作图—复杂作图(共1小题)15.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.【答案】见解答.【解答】(1)解:如图,四边形ABCD为所作;(2)证明:设PQ交AD于G,BC交AD于G′,∵DQ∥AP,∴=,∵DC∥AB,∴=,∵P,Q分别为边AB,CD的中点,∴DC=2DQ,AB=2AP,∴===,∴=,∴点G与点G′重合,∴直线AD,BC,PQ相交于同一点.一十一.解直角三角形(共1小题)16.(2022•福建)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A 相切于点G,求tan∠ADB的值.【答案】(1)作图见解答过程;(2).【解答】解:(1)根据题意作图如下:(2)设∠ADB=α,⊙A的半径为r,∵BD与⊙A相切于点E,CF与⊙A相切于点G,∴AE⊥BD,AG⊥CG,即∠AEF=∠AGF=90°,∵CF⊥BD,∴∠EFG=90°,∴四边形AEFG是矩形,又AE=AG=r,∴四边形AEFG是正方形,∴EF=AE=r,在Rt△AEB和Rt△DAB中,∠BAE+∠ABD=90°,∠ADB+∠ABD=90°,∴∠BAE=∠ADB=α,在Rt△ABE中,tan∠BAE=,∴BE=r•tanα,∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,又∠AEB=∠CFD=90°,∴△ABE≌△CDF,∴BE=DF=r•tanα,∴DE=DF+EF=r•tanα+r,在Rt△ADE中,tan∠ADE=,即DE•tanα=AE,∴(r•tanα+r)•tanα=r,即tan2α+tanα﹣1=0,∵tanα>0,∴tanα=,即tan∠ADB的值为.一十二.列表法与树状图法(共1小题)17.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A 马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.【答案】(1)田忌首局出“下马”才可能获得胜利,概率P=.(2)见上述解题过程.P=.【解答】解:(1)田忌首局应出“下马”才可能获胜,此时,比赛所有可能的对阵为:(A1C2,B1A2,C1B2),(A1C2,C1B2,B1A2),(A1C2,B1B2,C1A2),(A1C2,C1A2,B1B2),共四种,其中获胜的有两场,故此田忌获胜的概率为P=.(2)不是.当齐王的出马顺序为A1,B1,C1时,田忌获胜的对阵是:(A1C2,B1A2,C1B2),当齐王的出马顺序为A1,C1,B1时,田忌获胜的对阵是:(A1C2,C1B2,B1A2),当齐王的出马顺序为B1,A1,C1时,田忌获胜的对阵是:(B1A2,A1C2,C1B2),当齐王的出马顺序为B1,C1,A1时,田忌获胜的对阵是:(B1A2,C1B2,A1C2),当齐王的出马顺序为C1,A1,B1时,田忌获胜的对阵是:(C1B2,A1C2,B1A2),当齐王的出马顺序为C1,B1,A1时,田忌获胜的对阵是:(C1B2,B1A2,A1C2),综上所述,田忌获胜的对阵有6种,不论齐王的出马顺序如何,也都有相应的6种可能对阵,所以田忌获胜的概率为P=.。

中考数学化简求值及参考答案

中考数学化简求值及参考答案

中考数学化简求值及参考答案1.先化简再求值:y 2−4y+4y−1÷(y +1−3y−1),其中y 的值是不等式组{2y +1≤5−y <1的一个正整数解.2.先化简(3m+1−m +1)÷m 2−4m+4m+1,再从−√2<m <√2的范围内选取一个合适的整数作为m 的值代入求值.3.先化简再求值:x−33x 2−6x ÷(x +2−5x−2),其中x 是方程t 2+3t −4=0的根.4.先化简再求值:m−n m+3n ÷m 2−n 2m 2+6mn+9n 2−2n+1m+n ,其中其中2m=1-2n.5.先化简再求值:(y−1y −y−2y+1)÷2y 2−y y 2+2y+1,其中y 是方程t 2−t −1=0的一个根.6.先化简t 2−4t+4t 2−2t ÷(t −4t ),再从−√5<t <√5的范围内选取一个合适的整数作为m 的值代入求值.7.先化简再求值:(1x+y +1x−y )÷2x x 2+y 2+2xy ,其中x,y 是方程x 2−y 2=5的解.8.先化简再求值:x x 2−4÷x 2−3x x+2−12−x ,其中2,3,x 是△ABC 三边的长,且x 为整数.9.先化简再求值:(m +2−5m−2)÷m 2−3m+2m+3,其中m 是方程x 2−4x −√3=0的解.10.先化简再求值:(3y y−1−y y+1)÷y y 2−1,其中y=4sin45°-2cos60°.11.先化简再求值:(x x+1+1x−1)÷1x 2−1,其中x=√2−112先化简再求值:x 2−2x+1x 2−1÷(x −1−x−1x+1),其中x=√3.13.先化简再求值:(x 2−2x−2−x)÷x−1x2−4x+4,其中,x=−12.14.先化简再求值:(1y+1+y2−2y+1y2−1)÷y−1y+1,其中y=√2.15.先化简再求值:1y−3∙y3−6y2+9yy2−2y−1−y2−y,其中y是不等式组{y+13>2y3y>y−2的整数解.16.先化简再求值:n 2+4−4nn−1÷(3n−1−n−1),其中n=√2−2.17.先化简再求值:(m+2m2−2m −m−1m2−4m+4)÷m2−16m2+4m,其中m是方程m2−4m−1=0根.参考答案1.y−1y+2=02.2+m2−m=1或33.13(x2+3x)=1124.m+n−1m+n=−15.y+1y2,因为y2=y+1,所以原式=1.6.1t+2=1或137.x+yx−y =5或158.1x−3,当x=4时,原式=1.9.m2−4m+3=3+√310.2y+4=4√2+211.x2+1=4−2√212.1x =√3313.2x-4=-614.yy−1=2+√215.22−y ,−1<y<15,y=0,原式=1.16.2−nn+2=2√2−117.1(m−2)2=15。

中考复习 实数的计算(含答案)

中考复习   实数的计算(含答案)

实数的计算一.解答题(共30小题)1.计算:+(2﹣π)0﹣|1﹣|2.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.3.计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.4.计算:+()﹣3+20160.5.计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.6.计算:cos60°﹣2﹣1+﹣(π﹣3)0.7.化简求值:(),其中a=2+.8.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.9.计算:|﹣3|﹣+()0.10.计算:﹣|﹣5|+()﹣1.11.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.12.计算:.13.计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.14.计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+ 83×(﹣0.125)3.15.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.16.计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|17.计算:()﹣1﹣6cos30°﹣()0+.18.计算:.19.计算:.20.计算:()0+(﹣1)2016﹣|﹣|+2sin60°.21.计算:20160+2|1﹣sin30°|﹣()﹣1+.22.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.23.计算:()﹣1﹣+2tan60°﹣(2﹣)0.24.计算:﹣14+sin60°+()﹣2﹣()0.25.计算:.26.计算:20160+﹣sin45°﹣3﹣1.27.计算:||+()0+2sin45°﹣2cos30°+()﹣1.28.计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.29.计算:.30.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.实数的计算答案参考答案与试题解析一.解答题(共30小题)1.(2017•新城区校级模拟)计算:+(2﹣π)0﹣|1﹣|【分析】本题涉及零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+(2﹣π)0﹣|1﹣|=+1+1﹣3=+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算.2.(2017•罗平县一模)|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.(2017•曲靖一模)计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.【分析】先计算|﹣2|、(﹣1)2017、(π﹣3)0、()﹣2的值,再计算最后的结果.【解答】解:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2=2+(﹣1)×1﹣2+4=2﹣1﹣2+4=5﹣2.【点评】本题考查了0指数幂、负整数指数幂及实数的运算.实数的运算顺序是先乘方,再乘除最后加减.4.(2017秋•海宁市校级月考)计算:+()﹣3+20160.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+8+1﹣=9+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(2016•达州)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.【分析】原式利用二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1+3﹣4×=2.【点评】此题考查了平方根,绝对值,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.6.(2016•安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣+2﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(2016•黄石)计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.9.(2016•莆田)计算:|﹣3|﹣+()0.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解:原式=3﹣﹣4+1=﹣.【点评】本题考查了绝对值的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.注意零指数幂的意义.10.(2016•天门)计算:﹣|﹣5|+()﹣1.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=9﹣1﹣5+2=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2016•绵阳)计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.12.(2016•毕节市)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.13.(2016•随州)计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+2×﹣4+1=﹣1+3﹣4+1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.(2016•铜仁市)计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+83×(﹣0.125)3.【分析】根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可.【解答】解:原式=1﹣3+2+1﹣1=0.【点评】本题考查的是实数的运算,掌握有理数的乘方法则、零次幂的性质、特殊角的三角函数值是解题的关键.15.(2016•朝阳)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.16.(2016•通辽)计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|【分析】根据零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值计算即可.【解答】解:原式=4﹣1﹣2×+﹣1=4﹣1﹣+﹣1=2.【点评】本题考查的是实数的运算,掌握零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值是解题的关键.17.(2016•德阳)计算:()﹣1﹣6cos30°﹣()0+.【分析】根据锐角三角函数,负整数和零指数幂的法则,二次根式的性质即可求出答案.【解答】解:=2﹣6×﹣1+3=2﹣3﹣1+3=1,【点评】本题考查实数运算,涉及锐角三角函数,二次根式的性质,属于基础题型.18.(2016•眉山)计算:.【分析】分别利用零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质分别化简求出答案.【解答】解:原式=1﹣3×+1﹣2=1﹣+1﹣2=﹣.【点评】此题主要考查了零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质等知识,正确化简各数是解题关键.19.(2016•张家界)计算:.【分析】首先计算绝对值、零次幂、负整数指数幂、特殊角的三角函数值,然后再计算乘法,最后计算加减即可.【解答】解:原式=+1+2﹣2×,=+3﹣,=3.【点评】此题主要考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(2016•郴州)计算:()0+(﹣1)2016﹣|﹣|+2sin60°.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式()0+(﹣1)2016﹣|﹣|+2sin60°的值是多少即可.【解答】解:()0+(﹣1)2016﹣|﹣|+2sin60°=1+1﹣+2×=2﹣+=2.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.21.(2016•怀化)计算:20160+2|1﹣sin30°|﹣()﹣1+.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式20160+2|1﹣sin30°|﹣()﹣1+的值是多少即可.【解答】解:20160+2|1﹣sin30°|﹣()﹣1+=1+2×|1﹣|﹣3+4=1+2×+1=1+1+1=3.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.22.(2016•娄底)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【分析】直接利用特殊角的三角函数值以及绝对值、零指数幂的性质分析得出答案.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.(2016•常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.25.(2016•凉山州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质,正确化简各数是解题关键.26.(2016•乐山)计算:20160+﹣sin45°﹣3﹣1.【分析】原式利用零指数幂、负整数指数幂法则,分母有理化,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+﹣﹣=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2016•鄂州)计算:||+()0+2sin45°﹣2cos30°+()﹣1.【分析】直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、特殊角的三角函数值分别化简求出答案.【解答】解:||+()0+2sin45°﹣2cos30°+()﹣1=﹣+1+2×﹣2×+2015=﹣+1+﹣+2015=2016.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.28.(2016•龙岩)计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.29.(2016•荆州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.【解答】解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.30.(2016•赤峰)计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)2016的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)2016=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.第11页(共11页)。

初中数学化简求值经典练习题(含答案)

初中数学化简求值经典练习题(含答案)

初中数学化简求值经典练习题(含答案)先化简再求值: 1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ;2.1-(1x−1-1)( 1x-1),其中:x=√5+2 ;3.25x -12x−3y ·(4x 2-9y 2+4x−6y 5x),其中:x=√3+12,y= √3−13;4.2(x-2y )+3(2x-3y )-4(3x-4y ),其中:x= - 34,y= 23;5.7x 3-2x (3x-5)-(4+5x-6x 2+7x 3),其中:x=2;6.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;7.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ;9.x−2y 3x+4y ÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1 ;10.12(2x+4)(x-2)+x−5x 2−10x+25·(x 2-x-20),其中:x 是大于3且小于6的自然数; 11.(4x+31x−5+x+5)-x 2−9x−5·x−2x+3,其中:x 满足|x |=4 ;12.(x+3)÷ x 2+x−6x 2−6x+8-x−1x+1×2x 2−x−3x−1,其中:x=2sin60°-1 ;参考答案1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ; 解:(1+ 1x + 1x+1)÷x (x+1)+2(x+1)−1x 2−1-1=(x+1x+ 1x+1)÷x 2+x+2x+2−1(x+1)(x−1)-1=x 2+3x+1x (x+1)÷x 2+3x+1(x+1)(x−1)-1 = x 2+3x+1x (x+1) ·(x+1)(x−1)x 2+3x+1-1=x−1x-1=1 - 1x-1 = - 1x将x=√2-1代入 原式= - √2−1= -√2+1(√2−1)(√2+1)= -√2−1故当 x=√2-1时原代数式的值是:-√2−1 2. 1-(1x−1-1)( 1x-1),其中:x=√5+2 ;解:1-(1x−1 -1)( 1x-1)=1-(1x−1-x−1x−1)( 1x- xx)=1- −x+2x−1 ·1−xx=1-x−2x=1-(1- 2x) = 2x将x=√5+2代入 原式= √5+2=√5−2(√5+2)(√5−2)=2√5-4故当 x=√5+2时原代数式的值是:2√5-4 3.25x -12x−3y ·(4x 2-9y 2+4x−6y5x ),其中:x= √3+12,y= √3−13 ; 解:25x - 12x−3y (4x 2-9y 2+4x−6y 5x)= 25x -12x−3y〔(2x+3y )(2x-3y ) +2(x−3y )5x〕= 25x - 〔(2x+3y )+ 25x〕 = -(2x+3y ) = -2x-3y将x= √3+12,y= √3−13代入原式= -2·√3+12 -3·√3−13= -(√3+1)-(√3−1)=2√3故当x= √3+12,y= √3−13时原代数式的值是:2√34.2(x-2y)+3(2x-3y)-4(3x-4y),其中:x= - 34,y= 23;解:2(x-2y)+3(2x-3y)-4(3x-4y) =2x-4y+6x-9y-12x+16y= -4x+3y将x= - 34,y= 23代入原式= -4·(- 34)+3·23=3+2=5故当 x=2时原代数式的值是:55. 7x3-2x(3x-5)-(4+5x-6x2+7x3),其中:x=2;解:7x3-2x(3x-5)-(4+5x-6x2+7x3)=7x3-6x2+10x-4-5x+6x2-7x3=5x-4将x=2代入原式=5·2-4=6故当 x=2时原代数式的值是:66.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;解:(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕) = x 2-2x-3+3x 2-2〔2(x 2-x-2)+(5x+4〕) =4x 2-2x-3-2〔2x 2-2x-4+5x+4) =4x 2-2x-3-2(2x 2+3x ) =4x 2-2x-3-4x 2-6x = -8x-3 将x= 34 代入原式= -8·34-3= -9故当 x= 34 时原代数式的值是:-97.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;解:x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )]=x 2-x-(x 2+x-6)+ [6*32(6+x )+ 6*13(5-x )]=-2x+6+[9(6+x )+ 2(5-x )] =6-2x+(54+9x+10-2x ) =6-2x+(64+7x )=70+5x 将x= -1.2代入 原式=70+5×(-1.2)=64故当x= -1.2时原代数式的值是:64 8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ; 解:x−9x 2−9·x 2−6x+99−x +(4x−142x 2−x−21 +3)=x−9(x+3)(x−3)·(x−3)2−(x−9)+〔2(2x−7)(2x−7)(x+3)+3〕= - x−3x+3+2x+3+3= 5−x x+3+3= 5−x+3x+9x+3= 2x+14x+3=(2x+6)+8x+3=2+8x+3将x=√3-3代入 原式=2+(√3−3)+3=2+8√33故当x=√3-3时原代数式的值是:2+ 8√339.x−2y 3x+4y÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1;解:x−2y3x+4y ÷(x + −2xy+4y2x−2y)·3x2+7xy+4y2x2−y2= x−2y3x+4y ÷x2−4xy+4y2x−2y·(3x+4y)(x+y)(x+y)(x−y)=x−2y3x+4y ÷(x−2y)2x−2y·3x+4yx−y=x−2y3x+4y ·1x−2y·3x+4yx−y= 1x−y将x=√5-1,y=√3-1代入原式=(√5−1)−(√3−1)=√5−√3= √5+√3(√5−√3)(√5+√3)= √5+√35−3= √5+√32故当x=√5-1,y=√3-1时原代数式的值是:√5+√3210.12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20),其中:x是大于3且小于6的自然数;解:12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20)=(x+2)(x-2)+ x−5(x−5)2·(x+4)(x-5)=x2 -4 +x+4=x2 +xx是大于3且小于6的自然数那么x 是自然数4或5,但是当x=5时,分式 x−5x 2−10x+25的分母等于0,故x 不能为5,所以x 只能是自然数4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题训练:实数的运算、化简求值
1. (2012黑龙江)计算:3
2
02)1(2
)3
30cos (
-+--︒-π.
【答案】解:原式
=2111
11==0444--+-。

2. (2012内蒙古)
20sin 30(2)-︒+--; 【答案】解:原式=
111
1=1424
-+--。

3. (2012青海)
计算:)
2
152cos60++

-⎛⎫
-- ⎪⎝⎭
【答案】解:原式=21
52+2+1=92
-⨯。

4. (2012甘肃)计算:0
2
112sin 30( 3.14)(2
π---︒+-+ 【答案】解:原式=1
1214=52
-⨯
++。

5. (2012广西)
计算:0
2012
64sin 45(1)
-++-. 【答案】
解:原式64172
=+⨯
+=6. (2012广西)计算:|-3|+2-
1+12(π-3)0-tan60°;
【答案】解:原式=3+12+1
2
×1-3=1。

7. (2012广西)计算:4cos45°+(π+3)0
1
16-⎛⎫
⎪⎝⎭。

【答案】解:原式=

2
+1-
6 =

+1+6 =7。

8. (2012山东)
计算:(
1
013tan 60+13-⎛⎫
-- ⎪
⎝⎭
【答案】解:原式
=32--- 9. (2012山东)
计算:2012
022(1)
(3)(2)π--+-⨯---
【答案】解:原式
=113
21144
+⨯-=- 10. (2012贵州)
计算:
)
()
2
2012
12sin 30+
13π
-⎛⎫
---- ⎪⎝⎭
【答案】解:原式=1
29+12+1=102
-⨯
---。

11. (2012贵州)
计算:
)
2
0111+2sin 602-⎛⎫
---

⎝⎭
【答案】解:原式
=4+11+2- 12. (2012贵州)
计算:0
2
2
2214sin 60+3π⎛
⎫--- ⎪⎝
⎭.
【答案】解:原式
=4143131=4---------。

13. (2012四川)计算:()
(
)
1
2012
1312π-⎛⎫-⨯- ⎪⎝⎭
14. (2012四川)计算:16
1)1
(130sin )2(2
+
-+-+--o o π
. 【答案】解:原式=
111
11=2424
+-++。

15. (2012四川)计算:-+-8)2012(0
4sin 1
)2
1
(45-+
【答案】解:原式
=142=12=3++。

16. (2012四川)
计算:0
1
201211(1)883π-⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭
【答案】
解:原式11143=++-+=
17. (2012四川)
计算:()0
0212sin 45+3014+2π----.
【答案】解:原式
111121=2444
---。

18. (2012四川)
计算:(()0
2
04cos45+1π-
【答案】解:原式
=4-。

33. (2012新疆)先化简2
1
1x x 1x+12x 2
⎛⎫-÷ ⎪--⎝⎭,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值. 【答案】解:原式=
()
()()
()()()()()()x+1x 12x+1x 1x 2
4==x+1x 12x+1x 1x+1x 1x x
---÷
⋅---。

由解集﹣2≤x≤2中的整数解为:﹣2,﹣1,0,1,2,
当x=1,﹣1,0时,原式没有意义; ∴取x=2,原式=
4=22
=2(也可取x=﹣
2,原式=4
=
22--)。

34. (2012河南)先化简22
x 4x+44x x x 2x -⎛⎫
÷- ⎪-⎝
⎭,然后从x 的范围内选取一个合适的整数作为x 的值代入求值。

【答案】解:原式=()(
)()(
)2
222x 2x 4x+4
x 4x 1=
=x x x 2x+2
x 2x+2x 2x
---÷⋅---。

∵x 且x 为整数,∴x=-2,-1,0,1,2。

又∵x=-2,0, 2时,分式无意义,选取x=-1或1。

36. (2012广西)先化简,再求值:2
1a 4
1a 32a 6-⎛⎫+÷ ⎪--⎝⎭
;其中a =5。

【答案】解:原式=()()()()()()2a 32a 31
a 3a 22==a
3a 3a 2a 2a 3a
2a 2a 2
----⎛⎫+⋅⋅ ⎪
--+--+-+⎝⎭。

当a =5时,原式=22
=527
+。

37. (2012山东)已知:1,,求
222
2
x 2xy+y x y
--的值.
【答案】解:原式=()()()2x y x y
=x+y x y x+y
---。

当1,时,原式1
-
38. (2012贵州)先化简:22
4x 2x+2x 4

⎫-÷ ⎪-⎝⎭,然后求当x=1时,这个代数式的值。

【答案】解:原式=
()()()()22
x+2x 2x+2x 22x+442x 2x 4
==
x+2x+2x x x ----⋅⋅。

当x=1时,原式=
24
=21
-- 39.(2012贵州)先化简代数式22
3a 2a+11a+2a 4-⎛
⎫-÷ ⎪-⎝⎭
,再从﹣2,2,0三个数中选一个恰当的数作为a 的值代入求值.
【答案】解:原式=()()()()()()2
2
a 1a+2a 2a+23a 1a 2
==a+2a+2a 2a+2a 1a 1-----÷⋅---。

取a=0,原式=
02
01
--=2。

40. (2012贵州)先化简,再求值:2213x x +x
x+1x 3
x 6x+9--÷
--,其中【答案】解:原式=
()()()()213x x 311x 11x 1x x 1x 1x x 1x x 1x
x 3--+-⋅=+==+++++-。

当2。

41. (2012辽宁)在数学课上,教师对同学们说:“你们任意说出一个x 的值(x ≠0,1,2),我 立刻就知道式子x
x x x 21
)211(2
--÷-+的计算结果”.请你说出其中的道理. 【答案】解:∵()21121112(1)===22221
2x x x x x x x x x x x x x x --+---+
÷÷⋅------。

∴任意说出一个x 的值(x ≠0,1,2),立刻就知道式子2
11
(1)22x x x x
-+
÷--的计算结果x 。

相关文档
最新文档