2019年全国高考数学·分类汇编 专题23 不等式选讲(解析版)

合集下载

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

2019年新课标全国卷1理科数学考点讲评与真题分析10.不等式选讲一、考试大纲(一)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+ (2)a b a c c b -≤-+-(3)会利用绝对值的几何意义求解以下类型的不等式:ax b c +≤;ax b c +≥;x a x b c -+-≥2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)a b a b ⋅≥⋅;(2)22222()()()a b c d ac bd ++≥+;(3)222222121223231313()()()()()()x x y y x x y y x x y y -+-+-+-≥-+-. (此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:222111()n nni ii i i i i a ba b ===⋅≥∑∑∑4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. (二)基本不等式 1.基本不等式:(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.二、考点讲评与真题分析不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。

2007-2019年新课标全国卷理——不等式选讲.docx

2007-2019年新课标全国卷理——不等式选讲.docx

2007- 2019 年全国课标卷不等式选讲试题( 2007 年宁夏卷)C(本小题满分10 分)选修4 5 ;不等式选讲设函数 f ( x) 2x 1 x 4 .( I)解不等式 f (x) 2 ;( II)求函数y f (x) 的最小值.( 2008 年宁夏卷)24、(本小题满分10 分)选修4- 5:不等式选讲已知函数 f (x) | x 8 | | x 4 | 。

(1)作出函数y f ( x) 的图像;(2)解不等式| x 8 | | x 4 | 2 。

(2009 年宁夏卷)(24)(本小题满分 10 分)选修 4-5:不等式选讲如图,O 为数轴的原点, A,B,M 为数轴上三点, C 为线段 OM 上的动点,设 x 表示 C 与原点的距离, y 表示C 到 A 距离 4 倍与 C 到 B 距离的 6 倍的和 .(1)将 y 表示成 x 的函数;(2)要使 y 的值不超过 70,x 应该在什么范围内取值?( 2010 年课标全国卷)24.(本小题满分10 分)选修4-5,不等式选项设函数 f ( x) | 2x 4 |1(Ⅰ)画出函数y f ( x) 的图像(Ⅱ)若不等式 f (x) ≤ ax 的解集非空,求 a 的取值范围。

( 2011 年课标全国卷)24.(本小题满分10 分)选修4- 5:不等式选讲设函数 f (x) | x a |3x ,其中a0.(Ⅰ)当 a=1 时,求不等式 f ( x)3x2的解集.(Ⅱ)若不等式 f ( x)0的解集为{x|x1} ,求a的值.( 2012 年课标全国卷)24. ( 本小题满分10 分) 选修4 5 :不等式选讲已知函数 f ( x) x a x2( 1) 当a3时,求不等式 f ( x) 3 的解集;( 2) 若f (x)x 4 的解集包含[1,2],求a的取值范围.(2013 年课标全国卷Ⅰ)(24)(本小题满分 10 分)选修 4— 5:不等式选讲已知函数 f ( x) =| 2 x1| | 2x a |, g( x) =x 3 .(Ⅰ)当 a =-2时,求不等式 f ( x) < g ( x) 的解集;(Ⅱ)设a> -1,且当xa1a∈ [,)时,f ( x)≤,求的取值范围 .g( x)2 2(2013 年课标全国卷Ⅱ)(24)(本小题满分 10 分)选修 4-5;不等式选讲设 a, b, c 均为正数,且 a + b + c =1,证明:(Ⅰ) ab + bc + ac1;a2b2c21≥≤( 2014 年课标全国卷Ⅰ)24. (本小题满分10 分)选修4—5 :不等式选讲若a0, b 011,且ab .a b(Ⅰ)求 a3b3的最小值;(Ⅱ)是否存在a, b ,使得2a3b 6 ?并说明理由.( 2014 年课标全国卷Ⅱ)24.(本小题满分 10)选修 4-5:不等式选讲设函数 f x= x1x a ( a 0)a(Ⅰ)证明:f x≥ 2;(Ⅱ)若f35,求 a 的取值范围.(2015 年课标全国卷Ⅰ)(24)(本小题满分 10 分)选修 4— 5:不等式选讲已知函数 f ( x) | x 1| 2 | x a |, a0 .(Ⅰ)当 a 1 时,求不等式 f ( x) 1 的解集;(Ⅱ)若 f ( x) 的图像与 x 轴围成的三角形面积大于6,求a的取值范围( 2015 年课标全国卷Ⅱ)24.(本小题满分10 分)选修 4 - 5:不等式选讲设 a, b,c, d 均为正数,且 a + b = c + d,证明:( 1)若 ab > cd;则a b c d ;( 2)a b c d 是 | a b | | c d | 的充要条件。

不等式选讲--2019年高考真题和模拟题分项汇编数学(理)+Word版含解析

不等式选讲--2019年高考真题和模拟题分项汇编数学(理)+Word版含解析
解得 ,从而 .
于是只需证明 ,
即证 ,
因为
所以 ,证毕.
【点睛】本题主要考查了绝对值不等式的解法和证明,主要注意先确定参数的值,进而对定义域进行分类讨论,确定解所在的区间,属于中档题.
11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】设函数 .
(1)当 时,求不等式 的解集;
(2)当 时, ,求 的取值范围.
7.【安徽省合肥市2019届高三第一次教学质量检测数学】设函数 .
(1)若 ,求实数 的取值范围;
(2)设 ,若 的最小值为 ,求 的值.
【答案】(1) ;(2) .
【解析】(1) ,即
或 ,
∴实数 的取值范围是 .
(2)∵ ,∴ ,∴ ,
易知函数 在 单调递减,在 单调递增,
∴ .
∴ ,解得 .
【点睛】本道题考查了含绝对值不等式的解法,考查了结合单调性计算函数最值,关键得到函数解析式,难度中等.
【答案】(1) ;(2)
【解析】(1)当a=1时, ,
可得 的解集为 ;
(2)当 时,

因为 ,
所以 .
所以 ,所以 .
所以a的取值范围是[–3,–1].
【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用.
【点睛】主要考查了绝对值不等式的求解、不等式证明、以及基本不等式的应用,属于中档题.对于绝对值不等式的求解,主要运用零点分段法,也可以运用图像法.而不等式的证明,关键是灵活运用不等式的性质以及基本不等式.

2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)

2017-2019年高考真题“不等式”全集(含详细解析)一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .62.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .123.(2019•北京)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .74.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .455.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .37.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .68.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2a ba ab b +<<+ B .21log ()2ab a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 9.(2017•山东)已知x ,y 满足约束条件250302x y x y -+⎧⎪+⎨⎪⎩………则2z x y =+的最大值是( )A .3-B .1-C .1D .310.(2017•浙江)若x 、y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞11.(2017•北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( )A .1B .3C .5D .912.(2017•新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是() A .15-B .9-C .1D .913.(2017•新课标Ⅲ)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]14.(2017•新课标Ⅰ)设x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩………,则z x y =+的最大值为( )A .0B .1C .2D .3二.填空题(共23小题) 15.(2020•上海)不等式13x>的解集为 . 16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 .17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 . 18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 . 19.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为 .21.(2019•天津)设0x >,0y >,25x y +=的最小值为 .22.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩………则3z x y =-的最大值是 .23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .24.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 ,最大值为 .25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 . 26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 ,最大值是 .27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 .28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 .29.(2018•新课标Ⅱ)若x ,y 满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩………,则z x y =+的最大值为 .30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 . 31.(2017•上海)不等式11x x->的解集为 . 32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 .33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 . 36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .37.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 .三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. 39.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +….2017-2019年高考真题“不等式”全集(含详细解析)参考答案与试题解析一.选择题(共14小题)1.(2019•天津)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………则目标函数4z x y =-+的最大值为( ) A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩…………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .2.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩………则32z x y =+的最大值是( )A .1-B .1C .10D .12【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+⎧⎪--⎨⎪+⎩………作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.3.(2019•北京)若x,y满足||1x y-…,且1y-…,则3x y+的最大值为() A.7-B.1C.5D.7【解答】解:由||11x yy-⎧⎨-⎩……作出可行域如图,联立110yx y=-⎧⎨+-=⎩,解得(2,1)A-,令3z x y=+,化为3y x z=-+,由图可知,当直线3y x z=-+过点A时,z有最大值为3215⨯-=.故选:C.4.(2018•天津)设变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,则目标函数35z x y =+的最大值为( ) A .6B .19C .21D .45【解答】解:由变量x ,y 满足约束条件52410x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩…………,得如图所示的可行域,由51x y x y +=⎧⎨-+=⎩解得(2,3)A .当目标函数35z x y =+经过A 时,直线的截距最大, z 取得最大值.将其代入得z 的值为21, 故选:C .5.(2018•北京)设集合{(,)|1A x y x y =-…,4ax y +>,2}x ay -…,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a …时,(2,1)A ∉ 【解答】解:当1a =-时,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y -+>,2}x y +…,显然(2,1)不满足,4x y -+>,2x y +…,所以A 不正确;当4a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,44x y +>,42}x y -…,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-…,4ax y +>,2}{(,)|1x ay x y x y -=-剠,4x y +>,2}x y -…,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .6.(2017•天津)设变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ) A .23B .1C .32D .3【解答】解:变量x ,y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图:目标函数z x y =+结果可行域的A 点时,目标函数取得最大值, 由30y x =⎧⎨=⎩可得(0,3)A ,目标函数z x y =+的最大值为:3.故选:D .7.(2017•山东)已知x ,y 满足约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( )A .0B .2C .5D .6【解答】解:画出约束条件3035030x y x y x -+⎧⎪++⎨⎪+⎩………表示的平面区域,如图所示;由30350x x y +=⎧⎨++=⎩解得(3,4)A -,此时直线1122y x z =-+在y 轴上的截距最大,所以目标函数2z x y =+的最大值为 3245max z =-+⨯=.故选:C .8.(2017•山东)若0a b >>,且1ab =,则下列不等式成立的是( ) A .21log ())2ab a a b b +<<+ B .21log ()2a b a b a b<+<+C .21log ()2a b a a b b +<+< D .21log ())2aba b a b +<+< 【解答】解:0a b >>,且1ab =,∴可取2a =,12b =. 则14a b +=,2112228a b ==,22215log ()(2)(1,2)22a b log log +=+=∈,∴21log ()2a b a b a b<+<+. 故选:B .9.(2017•山东)已知x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………则2z x y=+的最大值是()A.3-B.1-C.1D.3【解答】解:x,y满足约束条件250302x yxy-+⎧⎪+⎨⎪⎩………的可行域如图:目标函数2z x y=+经过可行域的A时,目标函数取得最大值,由:2250yx y=⎧⎨-+=⎩解得(1,2)A-,目标函数的最大值为:1223-+⨯=.故选:D.10.(2017•浙江)若x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,则2z x y=+的取值范围是()A.[0,6]B.[0,4]C.[6,)+∞D.[4,)+∞【解答】解:x、y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩………,表示的可行域如图:目标函数2z x y=+经过C点时,函数取得最小值,由3020x yx y+-=⎧⎨-=⎩解得(2,1)C,目标函数的最小值为:4目标函数的范围是[4,)+∞.故选:D.11.(2017•北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩………,则2x y+的最大值为()A.1B.3C.5D.9【解答】解:x,y满足32xx yy x⎧⎪+⎨⎪⎩………的可行域如图:由可行域可知目标函数2z x y=+经过可行域的A时,取得最大值,由3xx y=⎧⎨=⎩,可得(3,3)A,目标函数的最大值为:3239+⨯=.故选:D.12.(2017•新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩………,则2z x y=+的最小值是()A .15-B .9-C .1D .9【解答】解:x 、y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………的可行域如图:2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是:15-. 故选:A .13.(2017•新课标Ⅲ)设x ,y 满足约束条件3260x y x y +-⎧⎪⎨⎪⎩………则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【解答】解:x ,y 满足约束条件32600x y x y +-⎧⎪⎨⎪⎩………的可行域如图: 目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值, 由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-, 目标函数的取值范围:[3-,2]. 故选:B .14.(2017•新课标Ⅰ)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.二.填空题(共23小题)15.(2020•上海)不等式13x>的解集为1(0,)3.【解答】解:由13x>得13xx->,则(13)0x x->,即(31)0x x-<,解得13x<<,所以不等式的解集是1(0,)3,故答案为:1(0,)3.16.(2019•全国)若12log (41)2x ->-,则x 的取值范围是 15(,)44 .【解答】解:1122log (41)2log 4x ->-=,∴410414x x ->⎧⎨-<⎩,∴1544x <<,x ∴的取值范围为15(,)44.故答案为:15(,)44.17.(2019•上海)已知x ,y 满足002x y x y ⎧⎪⎨⎪+⎩………,则23z x y =-的最小值为 6- . 【解答】解:作出不等式组002x y x y ⎧⎪⎨⎪+⎩………表示的平面区域, 由23z x y =-即23x zy -=,表示直线在y 轴上的截距的相反数的13倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-, 故答案为:6-.18.(2019•上海)若x ,y R +∈,且123y x +=,则yx的最大值为 98 .【解答】解:132y x =+…∴298y x =…;故答案为:9819.(2019•天津)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03x x +-<;由一元二次不等式的解法“小于取中间,大于取两边” 可得:213x -<<; 即:2{|1}3x x -<<;或2(1,)3-;故答案为:2(1,)3-;20.(2019•天津)设0x >,0y >,24x y +=,则(1)(21)x y xy ++的最小值为 92.【解答】解:0x >,0y >,24x y +=, 则(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+; 0x >,0y >,24x y +=,由基本不等式有:42x y =+…, 02xy ∴<…, 552xy …, 故:5592222xy ++=…; (当且仅当22x y ==时,即:2x =,1y =时,等号成立), 故(1)(21)x y xy ++的最小值为92;故答案为:92.21.(2019•天津)设0x >,0y >,25x y +=的最小值为【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:64xyxy=当且仅当时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:22.(2019•新课标Ⅱ)若变量x,y满足约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………则3z x y=-的最大值是9.【解答】解:由约束条件2360,30,20,x yx yy+-⎧⎪+-⎨⎪-⎩………作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.故答案为:9.23.(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【解答】解:①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元), 即有顾客需要支付14010130-=(元); ②在促销活动中,设订单总金额为m 元, 可得()80%70%m x m -⨯⨯…, 即有8mx …恒成立, 由题意可得120m …, 可得120158x =…, 则x 的最大值为15元. 故答案为:130,1524.(2019•北京)若x ,y 满足2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………则y x -的最小值为 3- ,最大值为 .【解答】解:由约束条件2,1,4310,x y x y ⎧⎪-⎨⎪-+⎩………作出可行域如图,(2,1)A -,(2,3)B ,令z y x =-,作出直线y x =,由图可知,平移直线y x =,当直线z y x =-过A 时,z 有最小值为3-,过B 时,z 有最大值1. 故答案为:3-,1.25.(2018•上海)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,【解答】解:设1(A x ,1)y ,2(B x ,2)y , 1(OA x =,1)y ,2(OB x =,2)y ,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且111cos 2OA OB AOB =⨯⨯∠=, 即有60AOB ∠=︒,即三角形OAB 为等边三角形,1AB=,的几何意义为点A ,B 两点 到直线10x y +-=的距离1d 与2d 之和,显然A ,B 在第三象限,AB 所在直线与直线1x y +=平行, 可设:0AB x y t ++=,(0)t >, 由圆心O到直线AB 的距离d =,可得1,解得t1=,+26.(2018•浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………,则3z x y =+的最小值是 2- ,最大值是 .【解答】解:作出x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩………表示的平面区域,如图:其中(4,2)B -,(2,2)A . 设(,)3z F x y x y ==+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化, 可得当l 经过点B 时,目标函数z 达到最小值.()4,22z F ∴=-=-最小值.可得当l 经过点A 时,目标函数z 达到最最大值:()2,28z F ==最大值. 故答案为:2-;8.27.(2018•新课标Ⅲ)若变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………,则13z x y =+的最大值是 3 .【解答】解:画出变量x ,y 满足约束条件23024020x y x y x ++⎧⎪-+⎨⎪-⎩………表示的平面区域如图:由2240x x y =⎧⎨-+=⎩解得(2,3)A .13z x y =+变形为33y x z =-+,作出目标函数对应的直线,当直线过(2,3)A 时,直线的纵截距最小,z 最大, 最大值为12333+⨯=,故答案为:3.28.(2018•北京)若x ,y 满足12x y x +剟,则2y x -的最小值是 3 . 【解答】解:作出不等式组对应的平面区域如图: 设2z y x =-,则1122y x z =+, 平移1122y x z =+, 由图象知当直线1122y x z =+经过点A 时, 直线的截距最小,此时z 最小, 由12x y y x +=⎧⎨=⎩得12x y =⎧⎨=⎩,即(1,2)A ,此时2213z =⨯-=, 故答案为:329.(2018•新课标Ⅱ)若x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………,则z x y=+的最大值为9.【解答】解:由x,y满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩………作出可行域如图,化目标函数z x y=+为y x z=-+,由图可知,当直线y x z=-+过A时,z取得最大值,由5230xx y=⎧⎨-+=⎩,解得(5,4)A,目标函数有最大值,为9z=.故答案为:9.30.(2018•新课标Ⅰ)若x ,y 满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩………,则32z x y =+的最大值为 6 . 【解答】解:作出不等式组对应的平面区域如图: 由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=, 故答案为:631.(2017•上海)不等式11x x->的解集为 (,0)-∞ . 【解答】解:由11x x->得: 111100x x x->⇒<⇒<, 故不等式的解集为:(,0)-∞, 故答案为:(,0)-∞.32.(2017•天津)若a ,b R ∈,0ab >,则4441a b ab++的最小值为 4 .【解答】解:【解法一】a ,b R ∈,0ab >,∴4441a b ab ++2241a b ab +=144ab ab ab ab=+=…,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,即2222214a b a b ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.【解法二】a ,b R ∈,0ab >,∴44334141142222a b a b ab b a ab ab a ab ab++=+++=…, 当且仅当44414ab ab ab ⎧=⎪⎨=⎪⎩,即2222214a b ab ⎧=⎪⎨=⎪⎩,即a =,b 或a =,b =时取“=”; ∴上式的最小值为4.故答案为:4.33.(2017•新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 5- . 【解答】解:由x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………作出可行域如图,由图可知,目标函数的最优解为A , 联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -.32z x y ∴=-的最小值为31215-⨯-⨯=-.故答案为:5-.34.(2017•江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 30 .【解答】解:由题意可得:一年的总运费与总存储费用之和6000644240x x =⨯+⨯=…(万元).当且仅当30x =时取等号. 故答案为:30. 35.(2017•山东)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为 8 . 【解答】解:直线1(0,0)x ya b a b+=>>过点(1,2),则121a b +=,由12442(2)()2244448a b a b a b a b a b b a b a +=+⨯+=+++=++++=…,当且仅当4a bb a=,即12a =,1b =时,取等号,2a b ∴+的最小值为8,故答案为:8.36.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数;()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则424x y y x >⎧⎪>⎨⎪⨯>⎩,即48y x <<<, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1237.(2017•新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为 1- . 【解答】解:由34z x y =-,得344zy x =-,作出不等式对应的可行域(阴影部分), 平移直线344z y x =-,由平移可知当直线344zy x =-, 经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值, 将B 的坐标代入34341z x y =-=-=-, 即目标函数34z x y =-的最小值为1-. 故答案为:1-.三.解答题(共3小题)38.(2018•江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解答】解:由柯西不等式得2222222()(122)(22)x y z x y z ++++++…, 226x y z ++=,2224x y z ∴++… 是当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,222x y z ∴++的最小值为439.(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.()I 用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; ()II 问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【解答】(Ⅰ)解:由已知,x ,y 满足的数学关系式为70606005530200x y x y x y x y +⎧⎪+⎪⎪⎨⎪⎪⎪⎩……………,即766062000x y x y x y x y +⎧⎪+⎪⎪-⎨⎪⎪⎪⎩…………….该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z 万,则目标函数为6025z x y =+. 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大. 又x ,y 满足约束条件,∴由图可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大. 解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.40.(2017•江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +…. 【解答】证明:224a b +=,2216c d +=, 令2cos a α=,2sin b α=,4cos c β=,4sin d β=.8(cos cos sin sin )8cos()8ac bd αβαβαβ∴+=+=-….当且仅当cos()1αβ-=时取等号.因此8ac bd +….另解:由柯西不等式可得:22222()()()41664ac bd a b c d +++=⨯=…,当且仅当a bc d=时取等号.88ac bd ∴-+剟.。

2019年高考数学一轮复习 热点难点精讲精析 选修系列(第2部分:不等式选讲)

2019年高考数学一轮复习 热点难点精讲精析 选修系列(第2部分:不等式选讲)

2019年高考一轮复习热点难点精讲精析:选修系列(第2部分:不等式选讲)一、绝对值不等式(一)绝对值三角不等式性质定理的应用〖例〗“|x-a|<m,且|y-a|<m 是“|x-y|<2m ”(x,y,a,m ∈R)的(A )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )非充分非必要条件思路解析:利用绝对值三角不等式,推证||||x a m y a m-<⎧⎨-<⎩与|x-y|<2m 的关系即得答案。

解答:选A 。

|||()()|||||2,||,||||23,1,2, 2.5,||252,||5,|| 2.5,||||||2.x y x a y a x a y a m m m x a m y a m x y m x y a m x y m x a x a m x a m y a m x y m -=---≤-+-<+=∴-<-<-<===-=-=<=-=-<=-<-<-<且是的充分条件.取则有但不满足故且不是的必要条件(二)绝对值不等式的解法〖例〗解下列不等式: 2(1)1|2|3;(2)|25|7;(3)|9|3;(4)|1||2| 5.x x x x x x x <-≤+>+-≤+-++<思路解析:(1)利用公式或平方法转化为不含绝对值的不等式。

(2)利用公式法转化为不含绝对值的不等式。

(3)利用绝对值的定义或|()|(0)|()|f x a a a f x a ≤>⇒-≤≤去掉绝对值符号或利用数形结合思想求解。

(4)不等式的左边含有绝对值符号,要同时去掉这两个绝对值符号,可以采用“零点分段法”,此题亦可利用绝对值的几何意义去解。

解答:(1)方法一:原不等式等价于不等式组|2|1,|2|3x x ->⎧⎨-≤⎩即13,15x x x <>⎧⎨-≤≤⎩或解得-1≤x <1或3<x ≤5,所以原不等式的解集为{x|-1≤x <1或3<x ≤5}.(2)由不等式|25|7x x +>+,可得250257x x x +≥⎧⎨+>+⎩或250,25(7)x x x +<⎧⎨+<-+⎩解得x>2或x<-4.∴原不等式的解集是{x| x<-4或x>2}(3)原不等式⇔①229093x x x ⎧-≥⎪⎨-≤+⎪⎩或②2290,93x x x ⎧-<⎪⎨-≤+⎪⎩ 不等式①⇔3333 4.34x x x x x ≤-≥⎧⇔=-≤≤⎨-≤≤⎩或或 不等式②⇔332 3.32x x x x -<<⎧⇔≤<⎨≤-≥⎩或∴原不等式的解集是{x|2≤x ≤4或x=-3}.(4)分别求|x-1|,|x+2|的零点,即1,-2。

高考数学十年真题专题解析—不等式选讲

高考数学十年真题专题解析—不等式选讲

不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。

2019年高考数学真题考点52 不等式选讲

2019年高考数学真题考点52 不等式选讲

考点52 不等式选讲一、解答题1.(2019·全国卷Ⅰ理科·T23同2019·全国卷Ⅰ文科·T23)已知a,b,c为正数,且满足abc=1,证明:(1)++≤a2+b2+c2.(2)(a+b)3+(b+c)3+(c+a)3≥24.【命题意图】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.【解题指南】(1)利用abc=1将所证不等式可变为证明:a2+b2+c2≥bc+ac+ab,利用基本不等式可证得2(a2+b2+c2)≥2ab+2bc+2ac,从而得到结论.(2)利用基本不等式可得++≥3,再次利用基本不等式可转化为++≥24,在取等条件一致的情况下,可得结论.【解析】(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca==++.当且仅当a=b=c时,取等号.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3()()()=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.当且仅当a=b=c时,取等号.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国卷Ⅱ理科·T23同2019·全国卷Ⅱ文科·T23)[选修4-5:不等式选讲](10分)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集.(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.【命题意图】考查不等式的求解以及利用不等式求参数的范围.【解析】(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0,所以,a的取值范围是[1,+∞).3.(2019·全国卷Ⅲ理科·T23同2019·全国卷Ⅲ文科·T23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值.(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.【命题意图】本题考查利用不等式求最值、不等式的证明,意在考查考生式子的构造求值,逻辑推理证明的求解能力.【解析】(1)由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故(x-2)2+(y-1)2+(z-a)2≥(),当且仅当x=-,y=-,z=-时等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为().由题设知()≥,解得a≤-3或a≥-1.4.(2019·江苏高考·T21·C)C.[选修4-5:不等式选讲]设x∈R,解不等式|x|+|2x-1|>2.【命题意图】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【解析】当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为-或.。

2019年高考数学试题分项版—不等式(解析版)

2019年高考数学试题分项版—不等式(解析版)

2019年高考数学试题分项版——不等式(解析版)一、选择题1.(2019·全国Ⅲ文,11)记不等式组+ , -表示的平面区域为D .命题p :∃(x ,y )∈D,2x+y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②(p ⌝)∨q ;③p ∧(q ⌝);④(p ⌝)∧(q ⌝). 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案 A解析 方法一 画出可行域如图中阴影部分(含边界)所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 在y 轴上的截距.显然,当直线过点A (2,4)时,z min =2×2+4=8, 即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.方法二 取x =4,y =5,满足不等式组 + , - ,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.2.(2019·天津文,2)设变量x ,y 满足约束条件+ - , - + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.3.(2019·天津文,3)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由|x-1|<1可得0<x<2,所以“|x-1|<1的解集”是“0<x<5的解集”的真子集.故“0<x<5”是“|x-1|<1”的必要不充分条件.4.(2019·浙江,3)若实数x,y满足约束条件-+,--,+,则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.5.(2019·浙江,5)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab ≤4时,取a =8,b =,满足ab ≤4,但a +b ≥4,所以必要性不成立,所以“a+b ≤4”是“ab ≤4”的充分不必要条件. 6.(2019·全国Ⅱ理,6)若a >b ,则( ) A .ln(a -b )>0 B .3a <3b C .a 3-b 3>0 D .|a |>|b |答案 C解析 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.7.(2019·北京理,5)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .7【思路分析】由约束条件作出可行域,令3z x y =+,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:由||11x y y -⎧⎨-⎩……作出可行域如图,联立110y x y =-⎧⎨+-=⎩,解得(2,1)A -,令3z x y =+,化为3y x z =-+,由图可知,当直线3y x z =-+过点A 时,z 有最大值为3215⨯-=. 故选:C .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 8.(2019·天津理,2)设变量x ,y 满足约束条件+ - ,- + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6答案 C解析画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.9.(2019·天津理,3)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由x2-5x<0可得0<x<5.由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要不充分条件.二、填空题1.(2019·全国Ⅱ文,13)若变量x,y满足约束条件+-,-,则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由+-=,+-=,解得=,=,即C点坐标为(3,0),故z max=3×3-0=9.2.(2019·北京文,10)若x,y满足,-,-+,则y-x的最小值为________,最大值为________.答案-3 1解析x,y满足的平面区域如图(阴影部分)所示.设z=y-x,则y=x+z.把z看作常数,则目标函数是可平行移动的直线,z的几何意义是直线y=x+z在y轴上的截距,通过图象可知,当直线y=x+z经过点A(2,3)时,z取得最大值,此时z max=3-2=1. 当经过点B(2,-1)时,z取得最小值,此时z min=-1-2=-3.3.(2019·天津文,10)设x∈R,使不等式3x2+x-2<0成立的x的取值范围为________.答案解析3x2+x-2<0变形为(x+1)(3x-2)<0,解得-1<x<,故使不等式成立的x的取值范围为.4.(2019·天津文,13)设x>0,y>0,x+2y=4,则的最小值为________.答案解析===2+.∵x>0,y>0且x+2y=4,∴4≥2(当且仅当x=2,y=1时取等号),∴2xy≤4,∴≥,∴2+≥2+=.5.(2019·天津理,13)设x>0,y>0,x+2y=5,则的最小值为________.答案4解析===2+.由x+2y=5得5≥2,即≤,即xy≤,当且仅当x=2y=时等号成立.所以2+≥2=4,当且仅当2=,即xy=3时取等号,结合xy≤可知,xy可以取到3,故的最小值为4.三、解答题1.(2019·全国Ⅰ文,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国Ⅱ文,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).3.(2019·全国Ⅲ文,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.4.(2019·江苏,21)C.[选修4-5:不等式选讲]设x∈R,解不等式|x|+|2x-1|>2.解当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为或.5.(2019·全国Ⅰ理,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.6.(2019·全国Ⅱ理,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).7.(2019·全国Ⅲ理,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.。

2019高考数学(艺体生文化课)第十二章选做题第3节不等式选讲课件

2019高考数学(艺体生文化课)第十二章选做题第3节不等式选讲课件
(2)若f(3)<5,求a的取值范围.
(2) f (3) | 3 1 | | 3 a |, a
当a 3时, f (3) a 1 ,由f (3) 5得3 a 5 21 ,
a
2
当0 a 3时, f (3) 6 a 1 ,由f (3) 5得1 5 a 3,
2
2
2
2
当x 1 时,由f (x) 2即2x 2, 解得 1 x 1.
2
2
综合得到 1 x 1,所以f (x) 2的解集M {x | 1 x 1}.
9.(2016新课标Ⅱ卷)已知函数
f
(x)
|
x

1 2
|
|
x

1 2
| ,M为不等式
f(x)<2的解集.
2 所以当x R时, f (x) g(x) 3等价于 |1 a | a 3.① 当a 1时, ①等价于1 a a 3,无解; 当a 1时, ①等价于a 1 a 3, 解得a 2, 所以a的取值范围是[2, ).
9.(2016新课标Ⅱ卷)已知函数 f (x) | x 1 | | x 1 | ,M为不等式
(1)证明:f(x)≥2;
【解析】 (1)证明:由a 0,
有f (x) | x 1 | | x a || x 1 (x a) | 1 a 2,所以f (x) 2.
a
a
a
【例】 (2014新课标Ⅱ卷)设函数 f (x) | x 1 | | x a | (a 0). a
3.(2012新课标Ⅱ卷)已知函数f(x)=|x+a|+|x-2|. (2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

《高考真题》专题23 不等式选讲-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

《高考真题》专题23 不等式选讲-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 【答案】(1)43;(2)见解析. 【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立.专题23不等式选讲因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.【名师点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型. 【母题原题2】【2018年高考全国Ⅲ卷理数】设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求a b +的最小值.【答案】(1)见解析;(2)最小值为5.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5. 【名师点睛】本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题. 【母题原题3】【2017年高考全国Ⅲ卷理数】已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(1){}1x x ≥;(2)54⎛⎤∞ ⎥⎝⎦-,【解析】(1)()31211232,x f x x ,x ,x -<-⎧⎪=--≤≤⎨⎪>⎩,当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >. 所以()1f x ≥的解集为{}1x x ≥.(2)由()2f x x x m ≥-+得212m x x x x ≤+---+,而2223551212244x x x x x x x x x ⎛⎫+---+≤++--+=-+≤ ⎪⎝⎭-,且当32x =时,25124x x x x +---+=. 故m 的取值范围为54⎛⎤∞ ⎥⎝⎦-,.【名师点睛】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.柯西不等式的几种不同形式,理解它们的几何意义,并会证明;了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.主要考查考生的数学运算能力,以及对分类讨论思想和数形结合思想的应用.【命题规律】主要考查绝对值不等式的求解、恒成立问题、存在性问题以及不等式的证明,多以解答题的形式呈现,难度中等,分值10分. 【知识总结】 1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a=b 时,等号成立.定理2:(基本不等式)如果a ,b>0,那么2a b+,当且仅当a=b 时,等号成立. 即两个正数的算术平均不小于(大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么3a b c ++a=b=c 时,等号成立. 即三个正数的算术平均不小于它们的几何平均.推广:对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即12…na a a n+++≥a 1=a 2=…=a n 时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a 与|x|>a 的解集:(2)|ax+b|≤c和|ax+b|≥c型不等式的解法:①若c>0,则|ax+b|≤c等价于–c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤–c,然后根据a,b的值解出即可;②若c<0,则|ax+b|≤c的解集为⌀,|ax+b|≥c的解集为R.(3)|x–a|+|x–b|≥c(或≤c)(c>0),|x–a|–|x–b|≤c(或≥c)(c>0)型不等式的解法:注意:分区间讨论时,一是不要把分成的区间的端点遗漏;二是原不等式的解集是若干个不等式解集的并集,而不是交集.(4)|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法:①|f(x)|>g(x)⇔f(x)>g(x)或f(x)<–g(x);②|f(x)|<g(x)⇔–g(x)<f(x)<g(x).3.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a–c|≤|a–b|+|b–c|,当且仅当(a–b)(b–c)≥0时,等号成立.上述定理还可以推广到以下两个不等式:(1)|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |; (2)||a|–|b||≤|a±b|≤|a|+|b|. 4.证明不等式的基本方法 (1)比较法①作差法:要证明a>b ,只需证a –b>0. ②作商法:要证明a>b ,b>0,只要证ab>1. (2)综合法从已知条件、不等式的性质和基本不等式等出发,通过逻辑推理,推导出所要证明的结论. (3)分析法从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立. (4)反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立. (5)放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的. 5.柯西不等式(1)二维形式的柯西不等式定理1:若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac+bd )2,当且仅当ad=bc 时,等号成立. (2)柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立.(3)二维形式的三角不等式定理3:设x 1,y 1,x 2,y 2∈R . (4)一般形式的柯西不等式定理:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(21a +22a +…+2n a )·(21b +22b +…+2n b )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i=1,2,…,n )或存在一个数k ,使得a i =kb i (i=1,2,…,n)时,等号成立.【方法总结】1.解绝对值不等式的常用方法(1)基本性质法:对a∈R+,|x|<a⇔–a<x<a,|x|>a⇔x<–a或x>a.(2)平方法:两边平方去掉绝对值符号.(3)零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值问题转化为数轴上两点的距离问题求解.(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.2.含绝对值不等式的恒成立问题的常见类型及其解法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立问题中的参数范围问题.求最值的思路:①利用基本不等式和不等式的相关性质解决;②将函数解析式用分段函数形式表示,作出函数图象,求得最值;③利用性质“||a|–|b||≤|a±b|≤|a|+|b|”求最值.(2)更换主元法:求解含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法:在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可更直观解决问题.注意:不等式的解集为R是指不等式恒成立问题,而不等式的解集为⌀的对立面也是不等式恒成立问题,如f(x)>m的解集为⌀,则f(x)≤m恒成立.3.不等式能成立问题(1)在区间D上存在实数x使不等式f(x)>A成立,等价于在区间D上f(x)max>A;(2)在区间D上存在实数x使不等式f(x)<B成立,等价于在区间D上f(x)min<B.4.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.5.证明不等式的常用方法有比较法、综合法、分析法.如果已知条件与待证结论直接联系不明显,可考虑用分析法;如果待证命题是否定性命题、唯一性命题或以“至少”“至多”等方式给出的,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法.在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明,用换元法证明不等式时,要注意新元的取值范围.证明不等式常用的思路:利用基本不等式、绝对值三角不等式、绝对值的含义将问题转化为函数问题求解.6.利用基本不等式、柯西不等式求最值的方法(1)在运用基本不等式求函数的最大(小)值时,常需要对函数式作“添、裂、配、凑”变形,使其完全满足基本不等式要求的“正、定、等”三个条件.(2)在应用柯西不等式求最大值时,要注意等号成立的条件,柯西不等式在排列上规律明显,具有简洁、对称的美感,运用柯西不等式求解时,按照“一看、二构造、三判断、四运用”可快速求解此类问题.1.【广西桂林市、崇左市2019届高三下学期二模联考数学】已知函数()2f x x a x =-+,其中0a >. (1)当1a =时,求不等式()2f x ≥的解集;(2)若关于x 的不等式()()222f x a f x +-≤恒成立,求实数a 的取值范围. 【答案】(1)[)1,+∞;(2)10,2⎛⎤ ⎥⎝⎦.【解析】(1)当1a =时,()31,11,1x x f x x x -≥⎧=⎨+<⎩.当1x ≥时,由()23121f x x x ≥⇒-≥⇒≥, 当1x <时,由()2121f x x x ≥⇒+≥⇒≥不成立. 综上所述,当1a =时,不等式()2f x ≥的解集为[)1,+∞.(2)记()()()22=h x f x a f x =+-2x x a a --+,则()0,04,04,x h x x x a ax a ≤⎧⎪=<<⎨⎪≥⎩,∴()()max |22|4f x a f x a +-=. 依题意得42a ≤,∴12a ≤. 所以实数a 的取值范围为10,2⎛⎤ ⎥⎝⎦.【名师点睛】本题主要考查分类讨论法解绝对值不等式,考查绝对值不等式的恒成立的问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知函数()|3|2f x x =+-. (1)解不等式()||<1f x x -;(2)若x ∃∈R ,使得()|21|f x x b ≥-+成立,求实数b 的取值范围. 【答案】(1){}|0x x <;(2)32⎛⎤-∞ ⎥⎝⎦,.【解析】(1)由()1f x x <-,可得321x x +-<-, 当1x ≥时,321x x +-<-不成立,当31x -<<时,321x x +-<-,∴30x -<<, 当3x ≤-时,321x x ---<-,51-<成立, ∴不等式()1f x x <-的解集为{}|0x x <. (2)依题意,3212x x b +---≥,令()6,3132123,3212,2x x g x x x x x x x ⎧⎪-≤-⎪⎪=+---=-<<⎨⎪⎪-+≥⎪⎩,易知()max 1322g x g ⎛⎫==⎪⎝⎭,则有32b ≥,即实数b 的取值范围是32⎛⎤-∞ ⎥⎝⎦,. 【名师点睛】本题主要考查含绝对值不等式,熟记分类讨论的思想即可求解,属于常考题型. 3.【广西南宁市2019届高三毕业班第一次适应性测试数学】已知函数f (x )=|ax ﹣1|﹣|2x +a |的图象如图所示.(1)求a 的值; (2)设g (x )=f (x 12+)+f (x ﹣1),g (x )的最大值为t ,若正数m ,n 满足m +n =t ,证明:49256m n +≥.【答案】(1)2a =;(2)见解析.【解析】(1)由()01f =-,得11a -=-,即2a =±. 由()13f -=,得123a a +--=,所以2a =. (2)由(1)知()2122f x x x =--+,所以()()1123232g x f x f x x x ⎛⎫=++-=--+ ⎪⎝⎭36,2334,2236,2x x x x ⎧≤-⎪⎪⎪=--<≤⎨⎪⎪->⎪⎩,显然()g x 的最大值为6,即6t =. 因为6(0,0)m n m n +=>>, 所以()491491491366n m m n m n m n m n ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭.因为4912n m m n +≥=(当且仅当125m =,185n =时取等号),所以()49125131266m n +≥⨯+=. 【名师点睛】本题主要考查了绝对值函数性质的研究,基本不等式的应用,属于中档题. 4.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】(1)如果关于x 的不等式15x x m ++-≤无解,求实数m 的取值范围;(2)若,a b 为不相等的正数,求证:0a b b a a b a b ->.【答案】(1)(),6-∞;(2)见解析.【解析】(1)令15y x x =++-=24,16,1524,5x x x x x -+≤-⎧⎪-<<⎨⎪-≥⎩,则当1x ≤-时,6y ≥;当15x -<<时,6y =;当5x ≥时,6y ≥, 综上可得6y ≥,即156x x ++-≥. 故要使不等式15x x m ++-≤的解集是空集, 则有6m <,所以实数m 的取值范围为(),6-∞. (2)由,a b 为不相等的正数,得要证0a b b a a b a b ->,即证a b b a a b a b >, 只需证1a b b aab-->,整理得1a ba b -⎛⎫> ⎪⎝⎭,①当a b >时,0,1a a b b ->>,可得1a ba b -⎛⎫> ⎪⎝⎭,②当a b <时,0,01a a b b -<<<,可得1a ba b -⎛⎫> ⎪⎝⎭,综上可得当,a b 均为正数时1a ba b -⎛⎫> ⎪⎝⎭,从而0a b b a a b a b ->成立.【名师点睛】(1)解得第一问的关键在于转化,即转化为函数15y x x =++-的图象与直线y m =无公共点,结合函数的最小值及图象易得答案.(2)证明不等式时,要根据不等式的特点选择合适的方法进行证明,常用的方法有综合法、分析法、放缩法等.5.【四川省巴中市2019届高三零诊考试数学】已知函数f (x )=|x –a |+|x |. (1)当a =2时,解不等式f (x )≥3的解集;(2)若存在x ∈R ,使得f (x )<3成立,求实数a 的取值范围.【答案】(1){x |x ≤–12或x ≥52};(2)(–3,3). 【解析】(1)由()f x x a x =-+,2a =时,不等式()3f x ≥为23x x -+≥,等价于0223x x <⎧⎨-+≥⎩,解得12x ≤-;或0223x ≤≤⎧⎨≥⎩,解得x ∈∅;或2223x x ≥⎧⎨-≥⎩,解得52x ≥;所以不等式()3f x ≥的解集是{12x x ≤-或52x ⎫≥⎬⎭. (2)若存在x ∈R ,使得()3f x <成立,则()min 3f x <,①当0a >时,()2,0,02,a x x f x a x a x a x a -<⎧⎪=≤<⎨⎪-≥⎩,()min f x a ∴=,即3a <,a ∴的取值范围是0<<3a ;②当0a =时,()2f x x =,()()min 003f x f ∴==<,0a ∴=符合题意;③当0a <时,()2,,02,0a x x a f x a a x x a x -<⎧⎪=-≤<⎨⎪-≥⎩,()min 3f x a ∴=-<,即3a >-,a ∴的取值范围是33a -<<;综上,实数a 的取值范围是()3,3-.【名师点睛】本题考查绝对值不等式的解法,含参数绝对值函数的分类讨论,属于中档题.6.【广西南宁市、玉林市、贵港市等2019届高三毕业班摸底考试数学】已知函数()29f x x x =+-. (1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围. 【答案】(1){}311x x <<;(2)9a >.【解析】(1)由题意,()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,∴931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解不等式得所求解集为{}311x x <<. (2)依题意,求()f x 的最小值即可,()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩的最小值为9,∴9a >.【名师点睛】求解含参数的不等式存在性问题需要过两关:第一关是转化关,先把存在性问题转化为求最值问题;不等式的解集为R 是指不等式的恒成立问题,而不等式的解集为∅的对立面也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .第二关是求最值关,求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法. 7.【贵州省遵义市绥阳中学2019届高三模拟(二)数学】已知函数()3()f x x a x x =-++∈R . (1)当2a =时,求()5f x x ≥-的解集;(2)若()7f x ≥对任意[3,)x ∈+∞恒成立,求实数a 的取值范围. 【答案】(1)R ;(2)(,2][4,)-∞+∞.【解析】(1)当2a =时,不等式()5f x x ≥-为235x x x -++≥-. 当3x <-时,4235,3x x x x ---≥-≤,解得3x <-; 当32x -≤≤时,235,10x x x x -++≥-≤,解得32x -≤≤; 当2x >时,235,6x x x x -++≥-≥-,解得2x >. 综上,所求不等式的解集为R .(2)据题意,得37x a x -++≥对任意[)3,x ∈+∞成立,40x a x ∴-+-≥对任意[)3,x ∈+∞成立.当4x ≥时,a ∈R ;当34x ≤<时,4x a x -≥-,∴2222168x ax a x x -+≥-+, ∴()()()4424a a a x +-≥- 若4a =,分析知,满足题设;若4a >,则42a x +≥,∴48,4a a +≥≥,4a ∴>满足题设; 若4a <,则42a x +≤,∴46,2a a +≤≤ 综上,所求实数a 的取值范围是][(),24,-∞+∞.【名师点睛】本题主要考查了含绝对值不等式的求解,以及含绝对值不等式的恒成立问题,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.8.【四川省名校联盟2019届高考模拟信息卷(一)数学】已知函数()2f x x a a =-+,()1g x x =+. (1)当1a =时,解不等式()()3f x g x -≤;(2)当x ∈R 时,()()4f x g x +≥恒成立,求实数a 的取值范围. 【答案】(1)1,2⎡⎫-+∞⎪⎢⎣⎭;(2)[)1,+∞. 【解析】(1)当1a =时,不等式()()3f x g x -≤,等价于111x x --+≤; 当1x ≤-时,不等式化为()()111x x --++≤,即21≤,解集为∅; 当11x -<<时,不等式化为()()111x x ---+≤,解得112x -≤<; 当1x ≥时,不等式化为()()111x x --+≤, 即21-≤,解得1x ≥; 综上,不等式的解集为1,2⎡⎫-+∞⎪⎢⎣⎭. (2)当x ∈R 时,()()2112f x g x x a a x x a x a +=-+++≥---+12a a =++,()()4f x g x +≥等价于124a a ++≥,若1a <-,则()124a a -++≥,∴a ∈∅;若1a ≥-,则124a a ++≥,∴1a ≥. 综上,实数a 的取值范围为[)1,+∞.【名师点睛】本题考查了绝对值不等式的解法,函数恒成立问题,体现了转化、分类讨论的数学思想. 9.【云南省玉溪市第一中学2019届高三上学期第二次调研考试数学】已知函数()=413f x x x -+--. (1)求不等式()4f x ≤的解集;(2)若函数1-=ax y 的图象与()f x 的图像有公共点,求a 的取值范围. 【答案】(1){|16}x x -≤≤;(2)1(,2)[,)4-∞-+∞. 【解析】(1)由题意()4f x ≤即是417x x -+-≤,由绝对值的几何意义可得解集为{|16}x x -≤≤.(2)()22,10,1428,4x x f x x x x -≤⎧⎪=<<⎨⎪-≥⎩,所以a 的取值范围是1(,2)[,)4-∞-+∞. 【名师点睛】本题考查含绝对值的函数,求参数范围要先去函数绝对值,是常考题型. 10.【四川省宜宾市2019届高三第三次诊断性考试数学】设函数()()2241,f x x x g x x m x m=+-+=++-,其中0m ≠. (1)解不等式()4f x ≤;(2)设()(),f x g x 的值域分别为,A B ,若A B ⊆,求实数m 的取值范围. 【答案】(1)713⎡⎤⎢⎥⎣⎦,;(2)][2,11,2⎡⎤--⎣⎦.【解析】(1)()33,25,2x x f x x x -≥⎧=⎨-+<⎩,由4f x ≤()得,2334x x ≥-≤⎧⎨⎩或254x x <-+≤⎧⎨⎩,解得713x ≤≤,∴4f x ≤()的解集为713⎡⎤⎢⎥⎣⎦,.(2)()33,25,2x x f x x x -≥⎧=⎨-+<⎩,根据函数的单调性得[3A =+∞,),()()222g x x m x x m x m m m m ⎛⎫=++-≥+--=+ ⎪⎝⎭,当x =–m 时取等号, ∴B =2m m ⎡⎫++∞⎪⎢⎣⎭,时,A ⊆B , ∴23m m+≤,即23m m +≤, ∴2||320m m -+≤,化简得12m ≤≤, ∴m 的取值范围[–2,–1]∪[1,2].【名师点睛】本题考查了绝对值不等式的解法,根据集合的关系求参数的取值范围,属中档题. 11.【四川省百校2019届高三模拟冲刺卷文科数学】设函数()31,f x x x x =++-∈R ,不等式()6f x ≤的解集为M . (1)求M ;(2)当x M ∈时,()1f x a x ≥-恒成立,求正数a 的取值范围. 【答案】(1){}|4 2 M x x =-≤≤;(2)(]0,1【解析】(1)()()()()223,31431,221,x x f x x x x x x ⎧--<-⎪=++-=-≤≤⎨⎪+>⎩ 当3x <-时,226x --≤,解得43x -≤<-; 当31x -≤≤时,46≤,可得31x -≤≤; 当1x >时,226x +≤,解得12x <≤.综上,不等式()6f x ≤的解集{}|4 2 M x x =-≤≤.(2)当43x -≤≤-时,()1f x a x ≥-等价于()22a x a -≥+,得01a <≤, 当31x -≤≤时,()1f x a x ≥-等价于40ax a -+≥,得01a <≤, 当12x <≤时,()1f x a x ≥-等价于()220a x a ---≤得06a <≤,综上,实数a 的取值范围为(]0,1.【名师点睛】本题考查了含有绝对值的不等式恒成立应用问题,也考查了分类讨论思想与集合的应用问题,是中档题.12.【四川省双流中学2019届高三第一次模拟考试数学】已知函数()13f x x x =-+-的最小值为m .(1)求m 的值并指出此时x 的取值集合: (2)求不等式()4f x ≤的解集.【答案】(1)2m =,{}|1 3 x x ≤≤;(2){}|0 4 x x ≤≤.【解析】(1)设()(),01,0,(3,0)P x A B ,13x x -+-的几何意义是P 点到,A B 两点距离之和,由平面几何知识可知:当P 点在线段AB 上时,13x x -+-有最小值,且最小值为2,即2m =,此时[]1,3x ∈,所以x 的取值集合为{}|1 3 x x ≤≤;(2)当3x ≥时,()13244434f x x x x x x =-+-=-≤⇒≤∴≤≤; 当13x <<时,()132413f x x x x =-+-=≤⇒<<;当1x ≤时,()13244001f x x x x x x =-+-=-+≤⇒≥⇒≤≤,综上所述 不等式()4f x ≤的解集为{}|0 4 x x ≤≤,【名师点睛】本题考查了利用绝对值的几何意义求函数的最小值问题,以及用零点法求绝对值不等式问题,考查了分类讨论思想、数形结合思想.13.【四川省内江市2019届高三第三次模拟考试数学】已知函数()(0,0)f x x a x b a b =-++>>.(1)当1a =,2b =时,解不等式()5f x x <+; (2)若()f x 的值域为[)2,+∞,证明:1111311a ab b +++≥++. 【答案】(1){|24}x x -<<;(2)见证明.【解析】(1)当1a =,2b =时,()125f x x x x =-++<+, ①当2x <-时,不等式可化为215x x --<+,即2x >-,无解, ②当21x -≤≤时,不等式可化为35x <+,即2x >-,得21x -<≤, ③当1x >时,不等式可化为215x x +<+,即4x <,得14x <<,综上,不等式的解集为{|24}x x -<<. (2)()f x x a x b a b =-++≥+,∵()f x 的值域为[)2,+∞,0a >,0b >,∴2a b +=, 故114a b +++=, ∴1112a b a b a b a b ++⎛⎫+=+ ⎪⎝⎭()11222222b a a b ⎛⎫=++≥+= ⎪⎝⎭, 111111111411a b a b a b a b ++++++⎛⎫+=+ ⎪++++⎝⎭1112411b a a b ++⎛⎫=++ ⎪++⎝⎭()12214≥+=. ∴1111311a ab b +++≥++. 【名师点睛】本题考查了解绝对值不等式问题,考查基本不等式的性质以及分类讨论思想,转化思想,是一道中档题.14.【四川省攀枝花市2019届高三下学期第三次统考数学】设函数()|1|3||f x x x a =++-.(1)当1a =时,解不等式()22f x x ≤+;(2)若关于x 的不等式()4|22|f x x a ≥+-恒成立,求实数a 的取值范围. 【答案】(1)1,22⎡⎤⎢⎥⎣⎦;(2)(,5][3,)-∞-+∞.【解析】(1)()|1|3||22f x x x a x =++-≤+, 可转化为14222x x x ≥⎧⎨-≤+⎩或114222x x x -<<⎧⎨-≤+⎩或12422x x x ≤-⎧⎨-≤+⎩,解得12x ≤≤或112x ≤<或无解, 所以不等式的解集为1,22⎡⎤⎢⎥⎣⎦.(2)依题意,问题等价于关于x 的不等式|1|||4x x a ++-≥恒成立, 即min (|1|||)4x x a ++-≥,又|1||||1||1|x x a x x a a ++-≥+-+=+,当(1)()0x x a +-≤时取等号. 所以|1|4a +≥,解得3a ≥或5a ≤-, 所以实数a 的取值范围是(,5][3,)-∞-+∞.【名师点睛】解绝对值不等式的基本方法有零点分段讨论法、图像法(或几何法)、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图像法(或几何法)求解时注意图像的正确刻画.15.【四川省成都市外国语学校2019届高三一诊模拟考试数学】已知函数()22f x x x a =-++,a ∈R .(1)当1a =时,解不等式()5f x ≥;(2)若存在0x 满足00()23f x x +-<,求a 的取值范围. 【答案】(1)4(,][2,)3-∞-+∞;(2)(7,1)--. 【解析】(1)当1a =时,2215x x -++≥, 由()5f x ≥得4(,][2,)3-∞-+∞.当2x ≥时,不等式等价于2215x x -++≥,解得2x ≥,所以2x ≥;当122x -<<时,不等式等价于2215x x -++≥,即2x ≥,所以此时不等式无解; 当12x ≤-时,不等式等价于2215x x ---≥,解得43x ≤-,所以43x ≤-.所以原不等式的解集为()2222f x x x x a +-=-++. (2)()2422244x x a x a x a =-++≥+--=+43a +<. 因为原命题等价于()221f x x x =-++,所以43a +<,所以71a -<<-,即实数a 的取值范围为(7,1)--.【名师点睛】本题主要考查不等式的求解,根据绝对值不等式的解法,利用分类讨论的数学思想进行讨论是解决本题的关键,属于中档题.。

高考专题16 不等式选讲-2019年高考数学(理)考试大纲解读 Word版含解析

高考专题16 不等式选讲-2019年高考数学(理)考试大纲解读 Word版含解析

2019年考试大纲解读16 不等式选讲选考内容(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1).(2).(3)会利用绝对值的几何意义求解以下类型的不等式:.2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)柯西不等式的向量形式:(2).(3).(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.6.会用数学归纳法证明伯努利不等式:了解当n为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等.2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等.3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注.考向一 绝对值不等式的求解样题1 (2018新课标全国Ⅱ理科)设函数.(1)当时,求不等式的解集;1a =()0f x ≥(2)若,求的取值范围.()1f x ≤a样题2 (2018新课标全国Ⅲ理科)设函数.(1)画出的图象;()y f x =(2)当,,求的最小值.[)0x +∞∈,a b +【解析】(1)的图象如图所示. ()y f x =。

(2017-2019)高考理数真题分类汇编专题20 不等式选讲(学生版)

(2017-2019)高考理数真题分类汇编专题20 不等式选讲(学生版)

专题20 不等式选讲1.【2019年高考全国Ⅰ卷理数】已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.2.【2019年高考全国Ⅱ卷理数】已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.3.【2019年高考全国Ⅲ卷理数】设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.4.【2019年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -.5.【2018年高考全国Ⅰ卷理数】已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.6.【2018年高考全国Ⅱ卷理数】设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求的取值范围.7.【2018年高考全国Ⅲ卷理数】设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.8.【2018年高考江苏卷数学】若,y ,为实数,且+2y +2=6,求222x y z ++的最小值.9.【2017年高考全国Ⅰ卷理数】已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g .(1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.10.【2017年高考全国Ⅱ卷理数】已知330,0,2a b a b >>+=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.11.【2017年高考全国Ⅲ卷理数】已知函数f ()=│+1│–│–2│.(1)求不等式f ()≥1的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.12.【2017年高考江苏卷数学】已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤。

高考数学真题分类十年(2014-2023)高考 专题27 不等式选讲(解析版)

高考数学真题分类十年(2014-2023)高考 专题27  不等式选讲(解析版)
(1)当 = 1时,求不等式() < 0的解集;
(2)当 ∈ (−∞, 1)时,() < 0,求的取值范围.
【答案】 (1) (−∞, 1); ( 2) 1, +∞)
【官方解析】
(1)当 = 1时,() = | − 1| + | − 2|( − 1).
当 < 1时,() = −2( − 1)2 < 0;当 ≥ 1时,() ≥ 0.
2
【答案】(Ⅰ){| 3 < < 2} (Ⅱ)(2,+∞)
分析:(Ⅰ)利用零点分析法将不等式 f(x)>1 化为一元一次不等式组来解;(Ⅱ)将()化
为分段函数,求出()与轴围成三角形的顶点坐标,即可求出三角形的面积,根据题
意列出关于的不等式,即可解出的取值范围.
解析:(Ⅰ)当 a=1 时,不等式 f(x)>1 化为|x+1|-2|x-1|>1,
( − 1)2 (当且仅当2 − 1 ≤ ≤ 2 时取等号),
∴ ( − 1)2 ≥ 4,解得: ≤ −1或 ≥ 3,
a 的取值范围为−∞, −1 ∪ 3, +∞).
【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于
常考题型.
3.(2020 江苏高考·第 23 题)设 ∈ ,解不等式2| + 1| + || ≤ 4.
1
【答案】{ | ≤ −5 或 ≥ − 3}
分可
3
解析:原不等式可化为{
1
解得 ≤ −5或 ≥ − 3.
3
< −2
≥ −2
或{

− − 3 ≥ 2 3 + 3 ≥ 2
1

第11题 不等式性质、不等式解法、 线性规划与基本不等式--2019年高考数学23题试题分析与考题集训含答案

第11题 不等式性质、不等式解法、 线性规划与基本不等式--2019年高考数学23题试题分析与考题集训含答案

第11题 不等式性质、不等式解法、 线性规划与基本不等式【考法】本主题考题类型为选择题、填空题,以函数、不等式、三角函数等为载体,考查不等式的性质、简单不等式解法、简单线性规划解法和基本不等式(重要不等式)应用等,考查运算求解能力、数形结合思想,难度为基础题或中档题,分值为5至10分.【考前回扣】1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0,Δ=0,Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)a +b 2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,满足基本不等式中“正”、“定”、“等”的条件. 5.线性规划(1)可行域的确定,“线定界,点定域”.(2)线性目标函数的最大值、最小值一般在可行域的顶点处取得.(3)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.【考前回扣】1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax2+bx+c>0时,易忽视系数a的讨论导致漏解或错解,要注意分a>0,a<0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f(x)g(x)≤0直接转化为f(x)·g(x)≤0,而忽视g(x)≠0. 4.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f(x)=x2+2+1x2+2的最值,就不能利用基本不等式求最值;求解函数y=x+3x(x<0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y-2x+2是指已知区域内的点(x,y)与点(-2,2)连线的斜率,而(x-1)2+(y-1)2是指已知区域内的点(x,y)到点(1,1)的距离的平方等.【考向】考向一不等关系与不等式的性质应用【解决法宝】1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,有时需要应用相关函数的性质,也可以用作差比较法或作商比较法.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.例1【2019届河北衡水十三中质检(四)】设,,则下列不等式中不一定成立的是()A.B.C.D.【分析】举反例否定D,而A,B,C可结合函数与不等式性质给予证明.【解析】因为在上是增函数,所以,因为-c在上是减函数,所以,因为,所以,当时,,所以D不成立,选D.考向二不等式的解法【解决法宝】(1)对于一元二次不等式,首先要看二次项系数a是否为正,若为负,则将其变为正数,再求相应一元二次方程的根,再利用大于0的不等式在两边,小于零的不等式在中间,写出一元二次不等式的解集.(2)对简单的分式、指数、对数不等式的基本思想是分别利用实数运算性质、指数函数的单调性、对数函数的单调性等价转化为整式不等式(一般为一元二次不等式)求解.(3)对含参数不等式,常用分类讨论的方法,关键是找到对参数进行讨论的原因,确定好分类标准,有理有据、层次清楚地求解.(4)解不等式与集合结合命题时,先解不等式确定集合,再按集合的关系与运算求解. (5)分段函数与不等式结合命题,应注意分段求解.(6)对函数不等式问题,先判断函数图像与性质,再借助函数图象与单调性,将函数不等式化为简单不等式求解,注意函数定义域.例2【河北省唐山市2018届上学期期末】已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足的x 的取值范围是( )A.B.C.D.【分析】由实数乘积符号法则知不等式等价于或,再由函数()f x 的性质,即可画出函数()f x 的图象,结合函数图象即可列出关于x 的不等式,即可解出x 的范围.考向三 不等式恒成立问题【解决法宝】不等式恒成立问题一般用分离参数法转化为函数最值求解或用赋值法讨论求解.注意区分几类问题的解法:①对任意x ∈A ,f(x)>M(或f(x)<M)恒成立;②存在x ∈A ,使f(x)>M(或f(x)<M)成立. 例3【2019届浙江省宁波市期末】已知不等式对任意正整数均成立,则实数的取值范围___【分析】首先利用转换思想把分式不等式转换为整式不等式,进一步利用赋值法和集合法求出实数的范围. 【解析】由,得:,记.,则或;或,或;或,当时,或,所求范围为.考向四 简单线性规划的应用【解决法宝】解简单线性规划的应用基本思路是:画、移、解、代.技巧是:往往在“角点”处取得最值,直接代入点的坐标即可;若目标为非线性,关键点是理解目标函数的几何意义,常见代数式的几何意义:(1)表示点),(y x 与点),(b a 之间的距离;(2)表示),(y x 到直线距离的22B A +倍;(3)ax by --表示点),(y x 与点),(b a 连线的斜率. 例4【2019届贵州省遵义市绥阳中学模拟(一)】若实数,满足不等式组则的最大值为( ) A .B .C .D .【分析】由约束条件作出可行域,再令,因此要取最大值只需取最小值,结合图像即可得出结果.【解析】由约束条件作出可行域如下,令,所以要取最大值只需取最小值,又可化为,所以表示直线在轴截距的相反数,由图像可得,直线过点时,截距最大,即最小,易得,所以,因此的最大值为4,故选D考向五简单线性规划”逆向”问题,确定参数的取值(范围)【解决法宝】1.当参数在线性规划问题的约束条件中时,作可行域要意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.2.在线性规划问题可行域下的恒成立问题,一定要结合“可行域”将“恒成立”加以控制,使之转化为平面区域间关系的恒成立,再进行解答.3.在约束条件中的二元不等式若含有参数且给定了该参数的取值范围的问题,就意味着直线是“动直线”,则应将该动直线运动的“最大”“最小”位置固定下来,根据运动的趋势确定好不同情况下的可行域,再针对解答目标逐步分析方能获解.学-科网4.目标函数中含有参数时,要根据问题的实际意义注意转化成“直线的斜率”、“点到直线的距离”等模型进行讨论研究.例5.【2019届山东省菏泽市一模】已知实数满足约束条件,若目标函数的最大值为2,则的值为()A.-1 B.C.1 D.2【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【解析】由约束条件作出可行域如图所示,其中,,,目标函数可化为,当直线过点时最大,所以,解得,故选C考向六基本不等式应用【解决法宝】利用基本不等式求最值时应注意:(1)在应用基本不等式求最值时,要把握三个方法,即“一正——各项(因式)都为正数;二定——和或积为定值;三相等——等号能取等号”,这三个方法缺一不可. (2)若无明显“定值”,则用配凑的方法,使和为定值或积为定值.当多次使用不等式时,一定要注意每次是否保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法. (3)必须掌握的三个不等式:(1)a ,b R ∈,则(当且仅当a b =时取等号).(2)a ,b R ∈,则(当且仅当a b =时取等号).(3)a ,b R +∈,则(当且仅当a b =时取等号)。

2019高考数学复习不等式选讲第2课时不等式的证明与柯西不等式课件理

2019高考数学复习不等式选讲第2课时不等式的证明与柯西不等式课件理

∴f(x)min=1,
∴只需|m-1|≤1,解得-1≤m-1≤1,
∴0≤m≤2,∴实数 m 的最大值 M=2.
②证明:方法一:(综合法) ∵a2+b2≥2ab, ∴ab≤1, ∴ ab≤1,当且仅当 a=b 时取等号,(ⅰ) 又 ab≤a+2 b,∴a+abb≤12, ∴a+abb≤ 2ab,当且仅当 a=b 时取等号,(ⅱ) 由(ⅰ)(ⅱ)得,a+abb≤12,∴a+b≥2ab.
当且仅当 2x2=1-x2,即 x= 33时,取“=”,
∴y≤29
3.∴ymax=2
9
3 .
【答案】
23 9
★状元笔记★ 利用基本不等式必须要找准“对应点”,明确“类比对 象”,使其符合几个著名不等式的特征,注意检验等号成立的条 件,特别是多次使用基本不等式时,必须使等号同时成立.
思考题 1 设 a,b,c 为正实数,求证:a13+b13+c13+abc ≥2 3.
【解析】 方法一:由柯西不等式,得 (x2+y2)(32+42)≥(3x+4y)2,① 得 25(x2+y2)≥4,所以 x2+y2≥245. 不等式①中当且仅当x3=y4时等号成立,为求最小值点,需解 方程组3x3= x+y44,y=2,解得xy= =226855, . 因此当 x=265,y=285时,x2+y2 取得最小值,最小值为245, 最小值点为(265,285).
方法二:(综合法) |1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1). ∵|a|<1,|b|<1,∴a2-1<0,b2-1<0. ∴|1-ab|2-|a-b|2>0,∴|1-ab|>|a-b|. ∴|1a--abb|=|1|a--abb||>1. 【答案】 略
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题23不等式选讲
【母题来源一】【2019年高考全国Ⅱ卷理数】已知()|||2|().f x x a x x x a =-+--
(1)当1a =时,求不等式()0f x <的解集;
(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.
【答案】(1)(,1)-∞;(2)[1,)+∞
【母题来源二】【2018年高考全国Ⅱ卷理数】设函数()5|||2|f x x a x =-+--.
(1)当1a =时,求不等式()0f x ≥的解集;
(2)若()1f x ≤,求a 的取值范围.
【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞U .
【母题来源三】【2017年高考全国Ⅱ卷理数】已知33
0,0,2a b a b >>+=.证明:
(1)55()()4a b a b ++≥;
(2)2a b +≤.
【答案】(1)证明略;(2)证明略.
【命题意图】
1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:
(1)a b a b +≤+.
(2) a b a c c b -≤-+-.
(3)会利用绝对值的几何意义求解以下类型的不等式:
; ; ax b c ax b c x a x b c +≤+≥-+-≥.
2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.
3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心
【命题规律】
从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等.
【方法总结】
(一)解绝对值不等式的常用方法有:
(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;
(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );
(3)零点分段法:对于形如|f (x )|±
|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;
(4)几何法:对于形如|x±
a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.
②定理2:如果a ,b ,c 是实数,那么|a −c|≤|a −b|+|b −c|,当且仅当(a −b )(b −c )≥0时,等号成立.
③推论1:||a|−|b||≤|a+b|.
④推论2:||a|−|b||≤|a −b|.
(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数.
(二)含绝对值不等式的恒成立问题的常见类型及其解法:
(1)分享参数法
运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.
求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.
(2)更换主元法
不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.
(3)数形结合法
在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题.
(三)不等式的证明
(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.
(2)基本不等式:如果a ,b>0,那么2
a b +≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.
(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它
们的几何平均数,即12n a a a n
+++≥L a 1=a 2=…=a n 时,等号成立.
1.【陕西省汉中市2019届高三全真模拟考试数学试题】已知函数()f x x a x b =++-.
(1)当1a =,1b =时,求不等式()4f x ≤的解集;
(2)若0a >,0b >,()f x 的最小值为2,求
12a b +的最小值.
【答案】(1){}22x x -≤≤;(2)
32+
2.【重庆西南大学附属中学校2019届高三第十次月考数学试题】设函数
()333()442f x x x g x x a x =-+-=-++,. (1)解不等式()10f x >;
(2)若对于任意1x ∈R ,都存在2x ∈R ,使得12()()f x g x =成立,试求实数a 的取值范围.
【答案】(1){}
41x x x ><-或;(2)[4,0]-.
3.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学试题】已知函数()|3|f x x =-.
(1)若()1f x ≤,求x 的取值范围;
(2)在(1)的条件下,求()g x =.
【答案】(1)[2,4];(2.
4.【甘肃省、青海省、宁夏回族自治区2019届高三5月联考数学试题】已知函数()|2|f x x =+.
(1)求不等式()(2)4f x f x x +-<+的解集; (2)若x ∀∈R ,使得()()(2)f x a f x f a ++…
恒成立,求a 的取值范围. 【答案】(1){}|22x x -<<;(2)22,3⎡⎤--⎢⎥⎣⎦
.
5.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】
(1)已知,,a b c +
∈R ,且1a b c ++=,证明1119a b c
++≥;
(2)已知,,a b c +∈R ,且1abc =111a b c ≤++. 【答案】(1)见解析(2)见解析
6.【宁夏石嘴山市第三中学2019届高三四模考试数学试题】已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >.
(1)求m 的值;
(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c a a b c
++≥. 【答案】(1)2m =;(2)见证明.
7.【海南省海口市2019年高考调研测试卷数学试题】已知函数()221f x x x =++-.
(1)求()f x 的最小值;
(2)若不等式()0f x x a +-<的解集为(,)m n ,且6n m -=,求a 的值.
【答案】(1)3(2)8a =
8.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考数学试题】已知
()2321f x x x =+--.
(1)求不等式()2f x <的解集;
(2)若存在x ∈R ,使得()32f x a >-成立,求实数a 的取值范围.
【答案】(1)(),0-∞;(2)2,23⎛⎫-
⎪⎝⎭.
9.【新疆乌鲁木齐市2019届高三第二次诊断性测试数学试题】已知函数0,))0((f x x a x b a b =+-->>. (1)当1,2a b ==时,解关于x 的不等式()2f x >;
(2)若函数()f x 的最大值是3,求12a b
+的最小值.
【答案】(1)32x x ⎧
⎫>⎨⎬⎩⎭;(2)(133+.
10.【重庆市南开中学2019届高三第三次教学质量检测考试数学试题】已知函数()2145f x x x =++-的最小
值为M .
(1)求M ;
(2)若正实数a ,b ,c 满足a b c M ++=,求证:2222227a b a c b c c b a
+++++≥. 【答案】(1)
72
;(2)详见解析.。

相关文档
最新文档