大学物理作业(一)答案
大连理工大学大学物理作业及答案详解1-22
[解] 取半径为 r 、 厚度为 dr 的球壳。 认为球壳内电荷分 布是均匀的
dQ 4 r 2 dr (r ) 4A r 3 dr
R Q0 4r 2 (r )dr
A 4r 3 dr R 4 A
0
R
6.如图所示,一质量 m 1.6 10 kg 的小球,带电量 q 2 10
作业 2
1. 如图所示, 把点电荷 q 从高斯面外 P 移到 R 处 OP OR , ] O 为 S 上一点,则[ A. 穿过 S 的电通量 e 发生改变, O 处 E 变
B. e 不变, E 变。 C. e 变, E 不变。 D. e 不变, E 不变。
答案: 【B】 [解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说, 闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重 新分布,或者说改变电荷的分布,因此改变了 O 点的场强。 2.半径为 R 的均匀带电球面上,电荷面密度为 ,在球面上取小面元 S ,则 S 上的电 荷受到的电场力为[ ]。
y a/ 2
y a / 2 处电场最强。
4. 如图所示, 在一无限长的均匀带点细棒旁垂直放置一均匀带电的细棒 MN 。 且二棒共面, 若二棒的电荷线密度均为 ,细棒 MN 长为 l ,且 M 端距长直细棒也为 l ,那么细棒 MN 受到的电场力为 。
答案:
[解] 坐标系建立如图: MN 上长为 dx 的元电荷 dq dx 受力 dF Edq 。 无限长带电直线场强 E
2 2 dx ln 2 ;方向沿 x 轴正向。 2 0 x 2 0
根据叠加原理, 圆心处场强可以看成是半径为 R ,电荷线密度为 的均匀带电园环 (带 电量为 Q1 2R ) 在圆心处产生的场强 E1 与放在空隙处长为 l , 电荷线密度为 的均 匀带电棒(可以看成是点电荷 q l )在圆心产生的场强 E 2 的叠加。即:
大学物理(西南交大)作业参考答案1
NO.1 质点运动学和牛顿定律班级 姓名 学号 成绩一、选择1. 对于沿曲线运动的物体,以下几种说法中哪种是正确的: [ B ] (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动.2.一质点作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V,平均速率为V ,它门之间的关系为:[ D ](A )∣V ∣=V ,∣V ∣=V ; (B )∣V ∣≠V ,∣V∣=V ; (C )∣V ∣≠V ,∣V ∣≠V ; (D )∣V ∣=V ,∣V∣≠V .3.质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a τ表示切向加速度,下列表达式中, [ D ](1) d /d t a τ=v , (2) v =t r d /d , (3) v =t S d /d , (4) d /d t a τ=v .(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C) 只有(2)是对的. (D) 只有(1)、(3)是对的.(备注:经过讨论认为(1)是对的)4.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是 [ C ](A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 5.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) [ D ](A) t d d v .(B) 2v R . (C) R t 2d d vv +.(D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v .6.质点沿x 方向运动,其加速度随位置的变化关系为:a=31+3x 2. 如在x=0处,速度v 0=5m.s -1,则在x=3m处的速度为:[ A ](A )9 m.s -1; (B )8 m.s -1; (C )7.8 m.s -1; (D )7.2 m.s -1 .7.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?[ E ](A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.8.物体作圆周运动时,正确的说法是:[ C ] (A )加速度的方向一定指向圆心;(B )匀速率圆周运动的速度和加速度都恒定不变; (C )必定有加速度,且法向分量一定不为零;(D )速度方向一定在轨道的切线方向,法向分速度为零,所以法向加速度一定为零;9.以下五种运动形式,a保持不变的运动是 [ E ]A(A )单摆的运动;(B )匀速圆周运动;(C )圆锥摆运动;(D )行星的椭圆轨道运动;(E )抛体运动; 二、填空1.已知一质点在Oxy 平面内运动,其运动学方程为22(192)r ti t j =++;r的单位为m ,t 的单位为s ,则位矢的大小rv = 24i t j + ,加速度a =4(/)j m s 。
《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案
《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
232838北交《大学物理》在线作业一15秋答案讲解
北交《大学物理》在线作业一一、单选题(共 10 道试题,共 40 分。
)1. 在下列情况下,能使做简谐运动的单摆振动周期变小的是(). 将摆的振幅减为原来的一半. 将摆从平地移到高山上. 将摆从赤道移到两极. 用一个装满砂的漏斗做成单摆,在摆动过程中让砂逐渐漏出正确答案:2. 在简谐波传播过程中,沿传播方向相距1/2λ(λ为波长)的两点,其振动速度必定[ ] . 大小相同,而方向相反. 大小方向均相同. 大小不同,方向相同. 大小不同,而方向相反正确答案:3. 一定量的刚性双原子分子理想气体,开始时处于压强为 p0 = 1.0×105 P,体积为V0 =4×10-3 m3,温度为T0 = 300 K的初态,后经等压膨胀过程温度上升到T1 = 450 K,再经绝热过程温度降回到T2 = 300 K,气体在整个过程中对外作的功(). 700 J. 800 J. 900 J. 1000 J正确答案:4. 某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见(). 力是使物体产生运动的原因. 力是维持物体运动速度的原因. 力是使物体速度发生改变的原因. 力是使物体惯性改变的原因正确答案:5. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和在两极板间的位置不同,对电容器电容的影响为. 使电容减小,但与介质板相对极板的位置无关. 使电容减小,且与介质板相对极板的位置有关. 使电容增大,但与介质板相对极板的位置无关. 使电容增大,且与介质板相对极板的位置有关正确答案:6. 以下表述正确的是[ ]. 功可以全部转化为热,但热不可以全部转化为功. 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体. 开尔文表述指出热功转换的可逆性. 克劳休斯表述指出了热传导的不可逆性正确答案:7. 固体和液体很难被压缩,这是因为 [ ]. 分子之间没有空隙. 分子之间只有很小的空隙,稍经压缩就不存在了. 分子之间距离较小,稍经压缩,斥力增长比引力增长大得多. 分子在不停地做热运动正确答案:8. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中[ ]. 物体的加速度是不断变化的. 物体在最高点处的速率为零. 物体在任一点处的切向加速度均不为零. 物体在最高点处的法向加速度最大正确答案:9. 有两个大小不相同的金属球,大球直径是小球的两倍,大球带电,小球不带电,两者相距很远.今用细长导线将两者相连,在忽略导线的影响下,则大球与小球的带电之比为:. 1. 2. 1/2. 0正确答案:10. 一质点在光滑平面上,在外力作用下沿某一曲线运动,若突然将外力撤消,则该质点将作[ ]. 匀速率曲线运动. 匀速直线运动. 停止运动. 减速运动正确答案:北交《大学物理》在线作业一二、多选题(共 10 道试题,共 40 分。
大学物理作业学生新版答案
班级________学号_________姓名_________成绩_______
一、选择题
1.一质点在平面上作一般曲线运动,其瞬时速度为 ,瞬时速率为 ,某一段时间内的平均速度为 ,平均速率为 ,它们之间的关系有
[](A) (B)
(C) (D)
2.某物体的运动规律为 ,式中的k为大于零的常数。当t=0时,初速为 ,则速度v与t的函数关系是
(C)顶点a、c处是正电荷,b、d处是负电荷.
(D)顶点a、b、c、d处都是负电荷.
6、下面说法正确的是:
[](A)等势面上,各点场强的大小一定相等;
(B)在电势高处,电势能也一定高;
(C)场强大处,电势一定高;
(D)场强的方向总是从电势高处指向电势低处。
7、两个薄金属同心球壳,半径各为 和 ( ),分别带有电荷 和 ,两者电势分别为 和 (设无穷远处为电势零点),将两球壳用导线连起来,则它们的电势为:
[ ](A) (B)
(C) (D)
3.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距离分别为r1和r2,如图所示。则在电荷移动过程中电场力做的功为
[](A) ;(B) ;
(C) ;(D) 。
4.某电场的电力线分布情况如图所示,一负电荷从M点移到N点。有人根据这个图得出下列几点结论,其中哪点是正确的?
(A)1>2,S=q/0.
(B)1q/0.
(D)1<2,S=q/0
4、关于高斯定理的理解有下面几种说法,其中正确的是()
(A)如果高斯面上 处处为零,则该面内必无电荷;
(B)如果高斯面内无电荷,则高斯面上 处处为零;
(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析
dt dx dt
dx
K
0
v0 K
K
答案 (1)3°36′;(2)0.078
解析 (1)轮胎不受路面左右方向的力,而法向力应在水平方向上.
因而有 Nsin θ=mv21,Ncos θ=mg,所以 tan θ= v21 ,代入数据可得θ=3°36′.
R
Rg
(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为μN′,这里 N′为该时刻地面对车的支
Rcot α. at
(2)S=1att2=1Rcot α. 22
2-4 2-5
答案
R-b cc
解析 v=s′=b+ct,at=c,an=vR2=(b+Rct)2,令 at=an,得 t=
R-b. cc
答案 北偏东 19.4°,170 km/h
解析 设下标 A 指飞机,F 指空气,E 指地面,由题可知:
v0 v
0
作业 2
ABBCF
2-2
(1)gsin θ;gcos θ;(2)-g;2 3v2;(3)v0+bt; 2 3g
b2+(v0+bt)4;(4)1ct3;2ct;c2t4;(5)69.8 m/s
R2
3
R
2-3 答案 (1) Rcot α;(2)1Rcot α
at
2
解析 (1)物体的总加速度 a 为 a=at+an,tan α=aant=(aattt)2=aRtt2,t= R
解析 (1)dx=vdt,dx=vdt=v,adx=vdv, adx = vdv , (-kx)dx = vdv ,-1kx2=1v2+C,因
dv dv a
22
为质点静止于 x=x0,所以 C=-1kx20,所以 v=± k(x20-x2). 2
大学物理期末作业题与答案(一)
1.质点运动方程为求:速度、加速度、轨迹方程。
解答:由书上定义,速度V所以速度v为v = d rd t = 8tj+k加速度为v' = 8j因为i ,j , k 可以看作 x, y, z 所以轨迹方程为x = 1y = 4t^2z = t求得t = √y4所以x = √y42.一人在阳台上以30°投射角和速率20m/s向台前投出一球。
球离手时距地面10m。
试问球投出后何时着地?在何处着地?着地时速度大小和方向?解答:V。
= 20sin30°1/2gt^2 - v。
t = 10S = 20cos30°tV = (20co s30°)^2+ ( g t−V。
)^2方向tanΘ = g t−V。
20co s30°由于V。
= 20 ×1= 10 m/s2解得t = 3 s 或t = -1 s (舍去)S = 30√3 mV =10√7m/s所以球投出后3 s后落地,在距离人30√3 m的地方着地,着地时的速度为10√7 m/s,且方向向下。
3.吊扇翼片长R=0.5m,以n=180r/min的转速转动,关闭电源后,均匀减速,经t1=1.5min转动停止。
(1)求吊扇翼尖原来的转动角速度和线速度。
(2)关闭电源80s 时翼尖的角加速度、切向加速度和法向加速度及总加速度。
解答: (1)由题得吊扇翼尖原来的转动速度为 W 。
= 2πn 原来的线速度为 V 。
=W 。
R解得 W 。
= 2×3.14×180 = 1130.4 m/min V 。
= 1130.4 × 0.5 = 565.2 m/min (2)由题得 均匀减速,所以翼尖的角加速度恒定为W t = W 。
+ at , α = (W t - W 。
)/ t = 75.36 m / min^2 所以切向加速度恒定 为 a t = αR = 37.68 m / min^2 根据法相加速度为 α= a t ^2 + a n ^2t 时刻的角速度W 为 W = W 。
大学物理规范作业上册答案全
a 16 2m / s
2
7
2.一艘行驶的快艇,在发动机关闭后,有一个与它的速
度方向相反的加速度,其大小与它的速度平方成正
比, 后行驶速度与行驶距离的关系。 解: 作一个变量代换
dv kv 2 ,式中k为正常数,求快艇在关闭发动机 dt
dv dv dx dv a kv v dt dx dt dx dv dv 得 : kv 到 kdx v dx
0.5tdt 3J 2 或 v2 5i 2 j , v4 5i 4 j 1 2 2 A Ek m(v4 v2 ) 3 J 2
4
18
2. 竖直悬挂的轻弹簧下端挂一质量为m的物体后弹簧伸 长y0且处于平衡。若以物体的平衡位置为坐标原点,相 应状态为弹性势能和重力势能的零点,则物体在坐标为 y时系统弹性势能与重力势能之和是【 D 】 m gy mgy2 m gy0 m gy2 0 mgy m gy (A) (B) (C) 2 (D) 2 2 y0 2y
m 1 AG dAG L gydy m gL 32 4 L 1 A外 AG mgL 32
0
m dAG gydy L
22
三、计算题 2 1.一质点在力 F 2 y i 3xj (SI)的作用下,从原点0 出发,分别沿折线路径0ab和直线路径0b运动到b点,
小不变,受到向心力作用,力的方向时刻变化
物体运动一周后,速度方向和大小不变,动量
变化量为0,冲量为0
11
二、填空题 1 .一物体质量为10 kg,受到方向不变的力F=30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于 ________;若物体的初速度为10m·-1,方向与力方 s 140kg.m/s 24m/s 向相同,则在t =2s时物体速度的大小等于________。
大学物理上学习指导作业参考答案(1)
第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v 2分()x x xd 62d 02⎰⎰+=v vv2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解:=a d v /d t 4=t , d v4=t d t⎰⎰=vv 00d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 tt x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ctbt S += 其中b 、c 是大于零的常量,求从0=t开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+= 解得 cb cR t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt=ω (k 为常量).已知st2=时,质点P 的速度值为32 m/s .试求1=ts 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad4//sRttk ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s/32/m R a n ==v1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率20=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度9.4522='=gh v m/s 1分离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gtt t-+=v v v 1分08.420==gt v s 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222shl+=将上式对时间t 求导,得 ts st l ld d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s hslv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船第二章 运动与力课 后 作 业μ1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得θμθμs i n c o s +=Mg F 2分令)s i n (c o s )c o s s i n (d d 2=++--=θμθθμθμθMg F∴ 6.0tg ==μθ,637530'''︒=θ2分且d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)解:人受力如图(1) 图2分am g m N T 112=-+ 1分N底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=-- ∴5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-=1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2 / L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有 rr L M TLr r T d )/(d 2)(⎰⎰-=ω∴)2/()()(222L r L M r T -=ω 3分O第三章 动量与角动量课 后 作 业1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分 设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分将t q m m ∆=∆代入得vm x q f =,v m y q f =∴14922=+=y x f f fN 2分f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分32、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分 即mgt μμ≥-)3(5,s 256.0t t =≥ 1分物体开始运动后,所受冲量为⎰-︒=tt tN F I 0d )30cos(μ)(96.1)(83.30202t t t t---=t = 3 s, I = 28.8 N s 2分 则此时物体的动量的大小为 I m =v 速度的大小为 8.28==m I vm/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2) 解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的. 利用2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分 设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221 ③0==+yy m m m vv v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求:(1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分 负号表示冲量方向与0v方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为 jt b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F以及当质点从A 点运动到B点的过程中F的分力xF 和yF 分别作的功.解:(1)位矢 j t b i t a rωωs i n c o s += (SI) 可写为 t a x ωc o s = , t b y ωs i n = ta tx xωωs i n d d -==v , tb tyωωc o s d dy -==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m yx=+vv2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m yx=+vv 2分(2) jmai ma F yx+==jt mb i t maωωωωsin cos 22--2分由A →B ⎰⎰-==02d c o s d aax x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==bby y t b m y F W 02dysin d ωω=⎰-=-bmb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kLkxx L F -=+- ② 2分由② 解出kF L x 2-=使小球继续保持静止的条件为Fk F L k x k ≤-=2 ③ 2分所求L 应同时满足①、③式,故其范围为 kF <L kF 3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为gly mf μ= 1分摩擦力的功 ⎰⎰--==0d d al al fygy l m y f Wμ2分=022al ylmg -μ =2)(2a l l mg --μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v vm m -其中 ∑W = W P +W f ,v 0 = 0 1分 W P =⎰l axP d =la l mg x x lmg la2)(d 22-=⎰2分由上问知 l a l mg Wf2)(2--=μ所以222221)(22)(vm a l lmg la l mg =---μ得 []21222)()(a l a llg ---=μv 2分4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有m g h m fs -=2021v2分ααμαμsin cos sin mghNh fs ==mgh m mgh -==2021ctg v αμ 2分)c t g 1(220αμ+=g h v =4.5 m 2分 (2)根据功能原理有 fsm mgh =-221v1分αμc t g 212m g h m g h m -=v1分[]21)c t g 1(2αμ-=gh v =8.16 m/s 2分第五章刚体的转动课后作业1、一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr.将由两个定滑轮以及质量为m和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示.2分2mg-T1=2ma1分T2-mg=ma1分T1 r-T r=β221mr1分T r-T2 r=β221mr1分a=rβ2分解上述5个联立方程得:T=11mg / 82分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为M / 4,均匀分布在其边缘上.绳子的A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为21M的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=MR2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分 对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at, a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分aOAmm 1 ,l1v2v俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131lm J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分 m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为glm x x lm gMlf10121d μμ-=⋅-=⎰② 2分由角动量定理 ω210310l m dt Mtf-=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 2201cx x v -=,0y y=,0z z=.相应体积为2201cV xyz V v -== 3分 观察者A测得立方体的质量2201cm m v -=故相应密度为 V m /=ρ22022011/cV cm v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为aa x 221=,aa y221=面积可表示为:xy a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中 2)/(1c a a x xv -=' =0.6×a221aa a y y 221=='在O '系中测得的图形为菱形,其面积亦可表示为 606.022=='⋅'='a a a S x y cm 2 3分x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则 ∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vS t年 2分以飞船上的时钟计算:≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆,22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分 那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 22分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴)1111(22122220ccc m W v v ---==4.72×10-14 J =2.95×105 eV2分第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为 4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得 x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分 即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分 2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1 因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25c o s /==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x(SI) 1分 (2) 速率)434s i n (41025d d 2π-π⨯π-==-t t xv (SI) 2分当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t xvm/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动,k = π2. 3分 又 m m k π==ω 4分mT 22=π=ω3分4、一物体同时参与两个同方向的简谐振动:)212c o s (04.01π+π=t x (SI),)2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )c o s (φω+=t A x 则)c o s (2122122212φφ-++=A A A A A① 2分以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分又 22112211c o s c o s s i n s i n a r c t gφφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=Ts, 可得角频率 Tπ=2ω,2ωm k =∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分 221007.121-⨯==vm E K J 2分2222)/4(2121xT m kxEpπ=== 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分 (2) 总能量221011.12121-⨯===FA kAE J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.O解:设物体的运动方程为 )c o s (φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分 当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kAJ , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成)/27c o s (1.0φλ+π-π=x t y (SI) 2分t = 1 s 时 0])/1.0(27c o s [1.0=+π-π=φλy因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy 且π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y(SI) 2分 或 ]3112.07cos[1.0π+π-π=x t y(SI)(m ) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时c o s 0==φA y , 0sin 0>-=φωA v所以 π-=21φ2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为]2)4.05(2c o s [04.0π--π=x t y(SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分 ∴ )2121c o s (5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=,而另一平面简谐波沿Ox 轴负方向传播,波的表达式为)/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212c o s (1π-π=t A y ν,)212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 AA A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212c o s (π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212s i n (2/d d π+ππ-==vt A t y νν)2c o s (2π+ππ=t A νν 3分5、设入射波的表达式为)(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2c o s [2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2c o s ()21/2c o s (2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21=, n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2c o s [1φλν+-π=x t A y 2分则反射波的表达式是])(2c o s [2ππ++-+-=φλνxOP OP t A y2分合成波表达式(驻波)为 )2c o s ()/2c o s (2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y , 故得 π=21φ2分因此,D 点处的合成振动方程是 )22c o s ()6/4/32c o s (2π+π-π=t A y νλλλt A νπ=2s i n 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000 A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解:223131vvρ==nm p∴ 90.1/32==v p ρkg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w v m/s 3分(2)()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: RR i R i C P +=+=222,∴()5122=⎪⎭⎫ ⎝⎛-=-=R C RR C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt =TiR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kw T 32== 300 K 3分第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).233)5解:(1) A →B :))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E νJ .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1))(25)(112212V p V p T T C E V -=-=∆2分(2)))((211221V V p p W -+=,W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分(3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分 (4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分p 1p p12(摩尔热容C =TQ ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:p (×105P a)10-3m 3)(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分 (2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分 (3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R , T a T c = (p a V a p c V c )/R 2=(12×104)/R 2 T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量)ABCDOVp解: 121Q Q -=ηQ 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C AB DC T T T T T T T T T T Q Q --=--=4分根据绝热过程方程得到:γγγγ----=DD AA T p T p 11,γγγγ----=CC BB T p T p 11∵ p A = p B , p C = p D ,∴ T A / T B = T D / T C 4分 故 %251112=-=-=BC T T Q Q η2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η2111T T T WQ -= 且1212T T Q Q =∴ Q 2 = T 2 Q 1 /T 1 即212122112T T T W T T T T T Q -=⋅-==24000 J 4分由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分(2) ='-='η121T T 425 K 2分。
大学物理作业答案(上)
A在时间t内作匀加速运动,t秒末的速度vA=at.当子弹射入B时,B将加速
而A则以vA的速度继续向右作匀速直线运动.
vA=at=6 m/s
取A、B和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动
量守恒,子弹留在B中后有
mv 0 mAv A (m mB )v B
vB
mv 0 mAv A m mB
量m1=
1m 2
的小球.将右边小球约束,使之不动. 使左边两小球绕竖直轴对称匀速
地旋转, 如图所示.则去掉约束时, 右边小球将向上运动, 向下运动或
保持不动?说明理由.
答:右边小球不动
理由:右边小球受约束不动时,
在左边对任一小球有
1m 2
1
m2
m
m
式中T1为斜悬绳中张 力,这时左边绳竖直
T1 cos m1g 0
质量以及滑轮与其轴之间的摩擦都可忽略不
计,绳子不可伸长,m1与平面之间的摩擦也
可不计,在水平外力F的作用下,物体m1与
F
m1
T
m2
F m2 g
m2的加速度a=___m__1____m__2___,
绳中的张力T=_m__1m__2m__2_(_F____m_1_g_)_.
4.质量相等的两物体A和B,分别固定在弹簧的两端, A 竖直放在光滑水平面C上,如图所示.弹簧的质量 与物体A、B的质量相比,可以忽略不计.若把支持 面C迅速移走,则在移开的一瞬间,
dx dt dx
10 6x2 2 vdv
v
2 vdv
4 (10 6x2 )dx v 13m/ s
dx 0
0
解2:用动能定理,对物体
大学物理第一卷活页作业答案刘兆龙
大学物理第一卷活页作业答案刘兆龙1、通电线圈在磁场中受到磁场力的作用而转动时,将机械能转化为电能[判断题] *对错(正确答案)答案解析:电能转化为机械能2、在足球比赛中,下列说法正确的是()[单选题]A.飞行过程中,足球不受力的作用B.头顶足球时头会感到疼,说明力的作用是相互的(正确答案)C.下落过程中,足球的惯性变大D.足球在地面上越滚越慢,说明物体的运动需要力来维持3、小林在水平路面上匀速直线骑自行车,自行车受到的重力跟地面对自行车的支持力二力平衡[判断题] *对错(正确答案)答案解析:以自行车与小林整体为研究对象,他们的总重力跟地面对自行车的支持力二力平衡4、42.下列场景与所蕴含的物理知识对应完全正确的是()[单选题] *A.体育训练后满头大汗,回到教室不停扇风——提高液体温度加快蒸发B.手拿着一瓶冰冻矿泉水,一段时间后冰减少,手感到凉——熔化吸热(正确答案)C.清晨操场边的双杠上铺满了一层霜——霜是水蒸气凝固形成的D.戴眼镜的小卉从寒冷教室外走进温暖的教室内,眼镜镜片模糊不清——汽化放热5、17.影视剧中,为了防止演员受伤,砸向演员的道具石头一般是用泡沫塑料制成的。
将小石块和道具石头分别放在调节好的天平左右盘,横梁静止后的情景如图所示。
下列说法正确的是()[单选题] *A.道具石头的质量比小石块的质量大B.道具石头的密度比小石块的密度大C.质量相同时,道具石头的体积比小石块的体积小D.体积相同时,道具石头的质量比小石块的质量小(正确答案)6、77.小明研究液体密度时,用两个完全相同的容器分别装入甲、乙两种液体,并绘制出总质量m与液体体积V的关系图象如图所示,由图象可知()[单选题] *A.容器的质量是40kgB.甲液体的密度是5g/cm3C.乙液体的密度是0g/cm3(正确答案)D.密度是0g/cm3 的液体的m﹣V图象应位于Ⅲ区域7、14.自习课上,老师能根据声音辨别出哪位同学在说话,依据的是声音的()[单选题] *A.音调B.音色(正确答案)C.响度D.频率8、下列事例中,利用热传递改变物体内能的是()[单选题]A.流星坠入大气层与空气摩擦生热B.用锯条锯木头,锯条发热C.人站在阳光下暴晒,感到很热(正确答案)D.古时候,人们利用钻木取火9、动圈式扬声器利用了电磁感应的原理[判断题] *对错(正确答案)答案解析:动圈式扬声器利用了通电导体在磁场中受力的原理,动圈式话筒利用了电磁感应的原理10、4.在周一的升旗仪式上,海右中学的全体师生高唱国歌。
大学物理标准化作业答案
2(3817)一简谐振动的表达式为 x Acos(3t )
,已知 t = 0时的初位移为0.04 m,初速度为0.09 m/s,
则振幅A
0.05 m =_____________
,初相
=______-_3_6_._9_°_____.
5.一物体作简谐振动,其速度最大值vm = 3×10-2 m/s,其振幅 A = 2×10-2 m.若t = 0时,物体位于平衡位置且向x轴的负方向 运动. 求:(1) 振动周期T; (2) 加速度的最大值am ;
(C)
x
1 2
(2k
1)
其中的k = 0,1,2,3, ….
(B) x 1 k
2
(D) x (2k 1) / 4
[ D]
二、填空题
2、(3445).沿弦线传播的一入射波在x = L处(B点)发生反射,
反射点为自由端(如图).设波在传播和反射过程中振幅不变,
且反射波的表达式为
2、(3045) 一质点作简谐振动,其振动方程为x
=
0.24
cos(1
pt
1
p)
试用旋转矢量法求出质点由初始状态(t = 0的状2态)运3动到
(SI),
x = -0.12 m,v < 0的状态所需最短时间Dt.
解:旋转矢量如图所示. 由振动方程可得
1π
2
D 1 p
3
Dt D / 0.667 s
86400
mm = 2.99 mm
即摆锤应向上移2.99 mm,才能使钟走得准确.
一、选择题
标准化作业(2)
1.一个质点作简谐振动,振幅为A, 在起始时刻质点的位移为 1 A
大学物理习题与答案解析
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy
则
a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s
2019级大学物理1作业一刚体的定轴转动
第二次作业:刚体的定轴转动一、选择题(答案填入下表)1. 一质点作匀速率圆周运动时,[答案填入上表](A) 它的动量不变,对圆心的角动量也不变;(B) 它的动量不变,对圆心的角动量不断改变;(C) 它的动量不断改变,对圆心的角动量不变;(D) 它的动量不断改变,对圆心的角动量也不断改变。
2. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B。
用L 和E k分别表示卫星对地心的角动量及其动能的瞬时值,则应有[答案填入上表] (A) L A> L B,E kA> E kB;(B) L A =L B , E kA < E kB ; (C) L A =L B , E kA > E kB ; (D) L A < L B , E kA < E k B 。
3. 一质量为m ,半径为R 的匀质圆盘对其中心垂直轴的转动惯量为J ,若在保持其质量不变的情况下,使之变成半径为2R 的匀质圆盘,则其对中心垂直轴的转动惯量的大小为 [答案填入上表] (A) 因圆盘的质量不变,所以转动惯量仍为J ; (B) 因半径变为2R ,所以转动惯量为2J ; (C) 转动惯量为3J ; (D) 转动惯量为4J 。
4. 如图所示,一静止的均匀细棒,长为L ,质量为M 。
可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。
一质量为m 、速率为 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为υ21,则此时棒的角速度应为 [答案填入上表] (A) ML m υ ; (B) ML m 23υ; (C) ML m 35υ ; (D) MLm 47υ。
5. 三个完全相同的轮子绕一公共轴转动,角速度的大小都相同,但其中一个轮子的转动方向与另外两轮的转动方向相反。
如果使三个轮子靠近并啮合在一起,系统的角速度大小是原来角速度大小的[答案填入上表](A) 1/9; (B) 1/3; (C) 3 ; (D) 9。
大连理工大学大学物理练习题答案
S dt | 9t 6t 2 | dt 2 y(1.5) y(1) y( 2) 2.25( m)
1 6. 燃料匀速燃烧的太空火箭,其运动函数可表示为x ut u t ln(1 bt ) b 式中常量 u是喷出气流相对火箭的速度,常量b与燃烧速率成正比。求:
3 1 3 1 (1)火箭的速度函数和加速度函数; (2)设u 3.0 10 m s , b 7.5 10 s
燃料在120秒内燃烧完,求t=0s和 t=120s 时的速度; (3) t=0s 和 t=120s时的
加速度。 (1): v dx u ln( 1 bt ) x dt (2): vx (0) 0,
a a , v 的夹角 满足 cos t a
夹角变大
作业02 (质点运动学2)
1. 一质点作半径为 R 的变速圆周运动,写出速率、加速度和半径之间的 关系
dv v2 at , an dt R
a at an n, n
2 a at2 an
7.一质点在 xy 平面上运动,运动函数为 x 2t , y 4t 2 8 (SI) ,求: (1)质点运动的轨迹方程并画出轨道曲线; (2)t1=1s 时和 t2=2s 时质点的位置、速度和加速度。 (1) 轨道方程 y x 2 8 (2) 位置 r (1) ( 2i 12 j ) m r ( 2) (4i 24 j )m 2 速度 v (1) ( 2i 8 j ) m/s v ( 2) ( 2i 16 j ) m/s 2
t 0
v( t ) v(0) at dt 3t ( m / s)
大学物理活页作业答案(全套)马文蔚(一)2024
大学物理活页作业答案(全套)马文蔚(一)引言概述:本文提供了马文蔚编写的大学物理活页作业答案(一)的全套内容。
这份答案包含了大学物理课程中一系列活动练习的详细解答,旨在帮助学生巩固和加深对物理知识的理解。
下面将从五个大点展开讨论,每个大点下包含了5-9个具体小点的解答。
一、力和运动1. 描述力的性质和单位2. 计算力的合成和分解3. 分析力的平衡和不平衡状态4. 探讨惯性和摩擦力的作用5. 研究稳定和不稳定的力系统二、能量和动能1. 解释和计算势能和动能2. 探讨能量转化和守恒定律3. 分析弹性势能和弹性系数的关系4. 计算动能和功的关系5. 研究动能定理和机械能守恒的应用三、物体的平衡1. 描述物体的平衡状态2. 计算物体受力平衡的条件3. 探讨平衡力和摩擦力的作用4. 研究力矩和转动平衡的关系5. 分析平衡问题的实际应用四、电磁场的基本原理1. 解释电荷和电场的概念2. 探讨电场线和电势的特性3. 分析电场中带电粒子的运动4. 计算电场的强度和电势差5. 研究电势能和电场能的关系五、电磁感应和电磁波1. 描述磁感线和磁场的性质2. 解释法拉第电磁感应定律3. 计算感应电动势和感应磁场的大小4. 探讨电磁波的产生和传播5. 分析电磁波和电磁辐射的应用总结:本文提供了马文蔚编写的大学物理活页作业答案(一)的全套内容。
这份答案涵盖了大学物理课程中涉及的力和运动、能量和动能、物体的平衡、电磁场的基本原理以及电磁感应和电磁波等五个大点的重要知识点。
希望这份答案能够对学生们的学习和理解提供有益的帮助。
14秋北交《大学物理》在线作业一答案
北交《大学物理》在线作业一
一,单选题
1. 下列说法中正确的是[ ]
A. 在圆周运动中,加速度的方向一定指向圆心。
B. 匀速率圆周运动的速度和加速度都恒定不变。
C. 物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒等于零,因此其法向加速度也一定等于零。
D. 物体做曲线运动时,必定有加速度,加速度的法向分量一定不等于零。
?
正确答案:D
2. 将一重物匀速推上一个斜坡,因其动能不变,所以()
A. 推力不作功
B. 推力功与摩擦力的功等值反号
C. 推力功与重力的功等值反号
D. 此重物所受的外力的功之和为零
?
正确答案:D
3. 固体和液体很难被压缩,这是因为[]
A. 分子之间没有空隙
B. 分子之间只有很小的空隙,稍经压缩就不存在了
C. 分子之间距离较小,稍经压缩,斥力增长比引力增长大得多
D. 分子在不停地做热运动
?
正确答案:C
4. 自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是
A. 在入射面内振动的完全偏振光
B. 平行于入射面的振动占优势的部分偏振光
C. 垂直于入射面振动的完全偏振光
D. 垂直于入射面的振动占优势的部分偏振光
?
正确答案:C
5. 能均分定理中KT/2指的是[ ]
A. 气体的内能
B. 分子的平均动能
C. 分子每个自由度的平均动能
D. 分子的平均总能量
?
正确答案:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级______学号________姓名_________成绩______________
一. 填空:
1. 已知质点的运动方程:22,2t y t x -==(S I制),则(1)t =1s 时质点的位置矢量2i j +,速度22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -______,平均速度___23i j -_______.
2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________.
3. 一质点沿线x 轴运动,其加速度为t a 4=(S I制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103
t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为_
_
____,法向加速度为
_____.
二. 选择:
1. 以下说法错误的是:(ABC )
(A) 运动物体的加速度越大,物体的速度也越大.
(B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小.
(C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的.
(D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等.
2. 下面叙述哪一种正确: ( B )
(A)速度为零,加速度一定为零.
(B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加.
(C)速度很大加速度也一定很大.
3. 如图河中有一小船,人在离河面一定高度的岸上通过
绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率
为:( C )
(A )0v (B)θcos 0v (C ) θcos /0v (D)
θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(
不计空气
阻力):( D )
(A)g v /20
(B))2/(20g v (C)g v /sin 220θ (D)g v /cos 220θ 5. 某人骑自行车以速率v向西行驶,今有风以相同速率从北偏东 30方向吹来,问人感到风从哪个方向吹来? ( C )
(A)北偏东 30 (B)南偏东 30(C )北偏西 30(D)西偏南 30
三. 计算题
1. 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.
解:∵t t
v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得122
34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 2234t t v +
= 又因为 2234d d t t t x v +==
分离变量, t t t x d )2
34(d 2+= 积分得 2322
12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 521232++
=t t x 所以s 10=t 时 m 70551021102s m 190102310432101
210=+⨯+⨯=⋅=⨯+
⨯=-x v 2. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 背离路灯沿直线行走,试证
明人影顶端的移动速度大小为:)/(21112h h v h v -=
经过时间t 后,人到灯的距离为x+vt,影子到灯的距离为Y+V2·t,再由三角形相似可得)/(21112h h v h -=所以为匀速直线。