用一元一次方程解决实际问题

合集下载

一元一次方程的应用解实际问题

一元一次方程的应用解实际问题

一元一次方程的应用解实际问题一元一次方程是数学中最简单的代数方程之一,也是我们日常生活中常常遇到的问题的数学表示方式。

通过解一元一次方程,我们可以找到未知数的值,从而解决实际问题。

本文将以实际问题为例,探讨一元一次方程的应用。

一、购物费用问题假设小明去商场购买一件衬衫,衬衫原价为x元,商店打折后优惠了20%,小明最终花费了36元购买了该衬衫。

通过一元一次方程可以解决以下问题:设衬衫原价为x元,则打折后的价格为x - 0.2x = 0.8x。

根据题意可得:0.8x = 36。

解这个方程可以得到x = 45。

因此,原价为45元的衬衫通过打折最终花费36元。

二、速度问题小明骑自行车从A地到B地,他以每小时12公里的速度骑行。

后来他意识到自己赶不上预定的时间,于是加快了速度。

最终他以每小时15公里的速度骑行,用时比原计划少1小时。

通过一元一次方程可以解决以下问题:设原计划用时为t小时,则骑行的距离为12t。

加快速度后,骑行的距离为15(t-1)。

根据题意可得:15(t-1) = 12t。

解这个方程可以得到t = 5。

因此,原计划用时5小时,加快速度后用时4小时。

三、人数问题某班的男生人数和女生人数之比为3:4。

如果男生人数增加20人,女生人数也增加20人,那么两者之间的比例将变为4:5。

通过一元一次方程可以解决以下问题:设男生人数为3x,女生人数为4x。

增加20人后,男生人数为3x + 20,女生人数为4x + 20。

根据题意可得:(3x + 20)/(4x + 20) = 4/5。

解这个方程可以得到x = 10。

因此,原来的男生人数为3x = 3 * 10 = 30人,女生人数为4x = 4 * 10 = 40人。

结语通过以上实际问题的应用,我们可以看到一元一次方程在解决实际生活中的问题时的重要性。

使用一元一次方程,我们可以将问题抽象为数学模型,并通过求解方程得到问题的答案。

一元一次方程的应用不仅帮助我们解决了购物费用、速度、人数等问题,更培养了我们的数学思维和解决实际问题的能力。

一元一次方程解决问题

一元一次方程解决问题

一元一次方程解决问题
一元一次方程可以解决许多实际问题,以下是一些例子:
1.工程问题:已知工作效率和工作时间,求工作总量。

例如:一个工人完成一项工作需要6小时,他的工作效率为每小时完成10个项目,问他一共能完成多少项目?
2.行程问题:已知速度和时间,求路程。

例如:一个人骑自行车每小时行驶15公里,他骑行3小时,问他骑行的总路程是多少?
3.分配问题:已知总量和份数,求每份的量。

例如:有24个苹果,要分给3个孩子,每人分几个?
4.盈亏问题:已知投入和利润,求收益。

例如:一个商店购进一批商品,每个进价为10元,售价为15元,售出40个商品,问他能赚多少钱?
5.积分表问题:已知积分表中的数据,求某个特定的积分值。

6.电话计费问题:已知通话时间和通话费用,求每个月的电话费用。

7.数字问题:已知数字的倍数或比例,求这个数字本身。

用一元一次方程解决实际问题

用一元一次方程解决实际问题

用一元一次方程解决实际问题一、和差倍分问题地球绕太阳一周大约要用365天,比水星绕太阳一周所用时间的4倍多13 天,水星绕太阳一周大约要用多少天?一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?一份试卷共有25道题,每道题答对得4分,不答或答错扣1分,如果一个学生得90分,那么他做对了多少道题?据统计,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?某校七年级去春游,共租5辆大客车,每辆车有座位60个,其中男生比女生多20人,且刚好每人都有座位,则该校七年级有男生、女生各多少人?哥哥比弟弟大3岁,弟弟是5月出生的,他的年龄的2倍加上9,正好是他出生那个月的总天数,求哥哥及弟弟的年龄.两个数的和为25,差为5,求这两个数.把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?有5角和1元的硬币共50枚,总钱数为43元,问5角硬币和1元硬币各多少枚?一人用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少俄尺?某文艺团体为“希望工程”募捐,组织一场义演,若售出的票为1000张,其中成人票每张8元,学生票每张5元,问能否筹得票款6930元,为什么?初一三班65名学生为学校建花坛搬砖,其中男生每人搬8块,女生每人搬6块.(1)若一共搬了400块,问女生有多少人?(2)他们能否一共搬509块,为什么?已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品?两个村共有834人,较大的村的人数比另一村人数的2倍少3,两个村各多少人?一辆汽车已行驶了12000km,计划每月再行驶800 km,几个月后这辆汽车将行驶20800km?圆环面积是200cm²,外沿大圆的半径是10cm,内沿小圆的半径是多少?某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?某班62名同学参加植树活动,其中有5名同学负责运送树苗,其余同学负责挖土坑和抬水,挖土坑的人数是抬水人数的2倍,求抬水有多少人?某造纸厂为节约木材,大力扩大再生纸的生产,这家工厂去年10月生产再生纸2050吨,这比前年10月产量的2倍还多150吨,它前年10月生产再生纸多少吨?某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?比赛问题:任权是学校的篮球队员,在一场篮球比赛中,他一人得了23分,如果他投进的2分球比3分球多4个,那么他一共投进多少个3分球?足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,则这个队胜了多少场?周长面积问题:一个长方形周长为36cm,长比宽多4cm,求长与宽.用一根10m长的铁丝围成一个长方形,(1)若该长方形的长比宽多1.4m,则长、宽各为多少米?(2)若该长方形的长比宽多0.8,则长、宽各为多少米?它所围成的长方形与(1)中所围成的长方形相比,面积有何变化?用一根长60m的绳子围出一个矩形,使它的长是宽的1.5倍,则长和宽各是多少?把一根长100cm的木棍锯成两段,使其中一段的长比别一段的2倍少5cm,应在木棍的哪个位置锯?某人把236.4cm长的铁丝分成两段,分别做成一个正方形和一个圆形,已知正方形的边长和圆形半径的比是2:5,求正方形边长和圆形半径( 取3.14).一个梯形的面积是84cm²,高为8cm,上底比下底的2倍少3cm,求这个梯形的上底和下底的长度.百分比问题某种货物第一天运出20%,第二天又运出余下的34%,这时还有528kg的货物没有运走,问这批货物原来有多少?某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%,今年人均收入比去年的1.5倍少1200元,这个乡去年农民人均收入是多少元?2001年1――9月我国城镇居民平均可支配收入为5109元,比上年同期增长8.3%,上年同期这项收入为多少?喷灌和滴灌是比漫灌节水的灌溉方式,随着农业技术的现代化,节水灌溉得到逐步推广,灌溉三块同样大的试验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式,后两种方式用水量分别是漫灌的25%和15%,三块地共用水420吨,每块地各用水多少吨?现有两种铁矿石共200吨,甲种含铁45%,乙种含铁65%,用这两种矿石炼出106吨铁,求原来这两种矿石各多少吨?比例问题三个整数的比是2:3:7,最大数比最小数大10,这三个数分别是多少?一个三角形三条边的长度比是2:4:5,最长的边比最短的边长6cm,求这个三角形的周长.洗衣机厂今年计划生产洗衣机25500台,其中І型、П型、Ш型三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?初一年级甲、乙、丙三个班为希望小学捐书,已知三个班捐赠的图书册数比是5:8:9,如果他们共捐书374本,那么这三个班各捐书多少本?黑火药由硫磺、木炭、火硝三种原料配成,它们的比是2:3:15,在一次制造火药时,火硝的用量比木炭的用量多360kg,问三种原料各用了多少?小明、小华、小刚共有邮票80枚,每人有邮票的比是2:3:5,老师奖励他们100枚邮票,使他们每个人的邮票数一样多,问老师分别给他们多少枚邮票? 年龄问题父亲年龄50岁,儿子年龄20岁,问几年后父亲年龄是儿子年龄的2倍?妈妈40岁时,儿子10岁,则过多少年后妈妈的年龄是儿子年龄的3倍?现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,问多少年后父亲的年龄是儿子年龄的3倍?今年甜甜比爸爸小28岁,明年甜甜与爸爸的年龄之和是58,你知道甜甜今年多大吗?有父子俩,10年前父亲年龄是儿子年龄的6倍,现在父亲年龄比儿子年龄大25岁,求这父子俩现在的年龄.罗蒙诺索夫,俄国学者、诗人,俄国唯物主义哲学和自然科学的奠基人,他去世后,有人为他的生平撰写了一道趣题:罗蒙诺索夫生活在19世纪,他出生年份的四个数字之和等于10,且个位数字与十位数字相等;他去世年份的四个数字之和为19,且十位数字被个位数字除后,商为1余1.求他的生卒年份.古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”两个牧童各有多少只羊?某人工作一年的报酬是年终给他一件衣服和10枚银币.但他干满7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币.这件衣服值多少枚银币.我国明代数学家程大为曾提出过一个有趣的问题:有一人赶着一群羊在前面走,另一人牵着一只羊跟在后面,后面的人问赶羊的人:“你这群羊有一百只吗?”赶羊的人回答:“我再得这么一群羊,再得这群羊的一半,再得这群羊的14,把你牵的羊也给我,我才恰好有一百只羊。

用一元一次方程解决问题

用一元一次方程解决问题

用一元一次方程解决问题一元一次方程,也称为一次方程,是指只有一个未知数的一次方程,其一般形式为ax + b = 0,其中a和b为已知常数,x为未知数。

一元一次方程是数学中最简单的方程之一,解决问题时常常用到它。

本文将以实际问题为例,详细介绍如何运用一元一次方程解决问题。

1. 商场促销问题假设某商场进行了一次促销活动,某商品原价为x元,根据促销活动的规定,打折后的价格为原价的80%,并且还额外返还20元的现金。

我们要求找出该商品的原价。

解题步骤:设原价为x元,则打折后的价格为0.8x元,根据题意可知:0.8x + 20 = x通过移项和合并同类项,得到:0.8x - x = -20-0.2x = -20将方程两边同时除以-0.2,得到:x = 100因此,该商品的原价为100元。

2. 速度问题假设小明骑自行车从家出发去公司,全程10公里,骑行时速为x km/h。

如果小明增加速度2 km/h,那么他将提前20分钟到达公司。

我们要求求解小明的骑行时速。

解题步骤:设小明的骑行时速为x km/h,则他骑行的时间为10/x小时。

根据题意可知:10/(x+2) = 10/x - 20/60通过通分和移项,得到:10x = (x+2)(10 - 20/60)10x = (x+2)(9)通过分配律展开右侧,得到:10x = 9x + 18将方程两边同时减去9x,得到:x = 18因此,小明的骑行时速为18 km/h。

3. 年龄问题假设小明今年的年龄为x岁,他的父亲今年年龄是他两倍,母亲今年年龄是他的1.5倍。

如果小明再过10年,他的年龄将是父亲年龄的一半,我们要求求解小明的年龄。

解题步骤:设小明今年的年龄为x岁,则父亲今年的年龄为2x岁,母亲今年的年龄为1.5x岁。

根据题意可知:x + 10 = 1/2 * (2x + 10)通过移项和合并同类项,得到:x + 10 = x + 5将方程左侧的x和右侧的x同时消去,得到:10 = 5由于等式无解,说明题目中存在矛盾条件,该问题无解。

一元一次方程的应用练习题运用一元一次方程解决实际问题

一元一次方程的应用练习题运用一元一次方程解决实际问题

一元一次方程的应用练习题运用一元一次方程解决实际问题一元一次方程是初中数学中的一种基本的代数方程,它可以用来解决很多实际问题。

在本文中,我们将通过一些具体的练习题来展示一元一次方程的应用,并探讨如何使用它来解决实际问题。

问题一:小明和小红一起去超市购物,他们共花费了45元。

如果小明付了35元,那么小红付了多少元?解答:设小红付的钱数为x元。

根据题意,可以得到一元一次方程35 + x = 45。

我们可以通过解这个方程来找到小红付的钱数。

解方程35 + x = 45得到 x = 45 - 35,化简得到x = 10。

所以小红付了10元。

问题二:甲乙两个工人同时开始修建一段公路,甲工人每天能完成2km,乙工人每天能完成3km。

如果他们共同修建了8天,公路的总长度是多少?解答:设公路的总长度为x km。

根据题意,可以得到一元一次方程2x + 3x = 8,表示甲乙两人修建公路的总长度等于8。

解方程2x + 3x = 8得到5x = 8,化简得到x = 8 / 5。

所以公路的总长度为8 / 5 km。

问题三:苹果店正在举行促销活动,每个顾客购买3个苹果可以享受9折优惠,小明购买了n个苹果,他付了18元,请问n的值是多少?解答:设小明购买的苹果数量为n个。

根据题意,可以得到一元一次方程3n * 0.9 = 18,表示小明购买苹果付的钱数等于18。

解方程3n * 0.9 = 18得到2.7n = 18,化简得到n = 18 / 2.7。

所以n的值是18 / 2.7。

以上是几个应用一元一次方程解决实际问题的例子。

通过解题过程可以看出,在遇到具体问题时,我们可以设定一个未知数,并通过一元一次方程来建立数学模型,进而解决问题。

一元一次方程在实际生活中的应用非常广泛,通过掌握这种解题方法,我们可以更好地理解和应用数学知识。

值得注意的是,在解题过程中,我们需要始终保持逻辑的严谨性,并确认我们所得出的解是否符合实际情况。

列一元一次方程解决实际问题的一般步骤

列一元一次方程解决实际问题的一般步骤

一、引言在数学学习过程中,我们经常会遇到应用一元一次方程来解决实际问题的情况。

一元一次方程是基础且常见的数学概念,它在现实生活中有着广泛的应用。

通过解决一元一次方程的过程,我们可以更好地理解数学在日常生活中的实际运用。

在本文中,我将探讨解决实际问题的一般步骤,并共享我对这一主题的个人观点和理解。

二、一元一次方程解决实际问题的一般步骤1. 确定未知数及建立方程:我们需要明确实际问题中的未知数是什么,并建立相应的一元一次方程。

以“一辆汽车以每小时60公里的速度行驶3小时能行驶多远?”为例,我们可以将汽车行驶的距离设为未知数x,建立方程60*3=x。

2. 解方程得出结果:接下来,我们要解方程得出未知数的值。

在这个例子中,解方程60*3=x得到x=180,所以汽车行驶的距离为180公里。

3. 检验解的合理性:我们需要对结果进行合理性检验。

在这个例子中,我们可以通过将未知数代入原方程进行检验,即60*3=180,结果符合实际情况,所以得出的解是正确的。

通过以上步骤,我们可以解决实际生活中的问题,并得出符合实际情况的结果。

三、我的观点和理解在我看来,解决实际问题的一元一次方程的一般步骤非常重要。

通过这一过程,我们不仅可以应用数学知识解决实际问题,还可以培养逻辑思维和分析问题的能力。

一元一次方程作为数学的基础概念,其实际运用也为我们搭建了将抽象数学知识与实际生活相结合的桥梁,帮助我们更好地理解数学的应用意义。

总结回顾通过本文的探讨,我们了解了解决实际问题的一元一次方程的一般步骤,并探讨了其在日常生活中的重要性。

我们强调了确定未知数及建立方程、解方程得出结果和检验解的合理性这三个步骤的重要性,并且共享了我对这一主题的个人观点和理解。

希望通过这些内容,您能更全面、深刻和灵活地理解一元一次方程的实际运用。

结束语在以后的学习和生活中,我们可以更加注重数学知识的实际运用,通过解决实际问题的方式加深对数学知识的理解和记忆。

一元一次方程与实际问题

一元一次方程与实际问题

一元一次方程与实际问题一元一次方程是数学中最基础、最常见的方程之一。

它由一个未知数和其他数构成,满足未知数的最高次数为一。

实际问题中,一元一次方程可以帮助我们解决很多实际情境中的数学难题。

例如,我们可以利用一元一次方程解决以下几类问题:1. 比例问题:假设一公斤苹果的价格为x元,那么y公斤苹果的价格可以表示为y * x元。

如果知道y=3公斤苹果的价格为6元,我们可以列出方程3x=6。

通过求解这个方程,我们可以得到每公斤苹果的价格x=2元。

2. 几何问题:假设一个长方形的长度为x米,宽度为2米。

如果知道长方形的面积为6平方米,我们可以列出方程x * 2 = 6。

通过求解这个方程,我们可以得到长方形的长度x=3米。

3. 配平化学方程:在化学反应中,我们常常需要配平化学方程以满足质量守恒定律和原子数守恒定律。

一元一次方程可以帮助我们解决配平化学方程的问题。

例如,对于化学反应Na + H2O → NaOH + H2,我们可以列出方程xNa + yH2O → zNaOH + wH2,其中x、y、z、w分别表示相应的系数。

通过求解这个方程系统,我们可以得到配平后的化学方程。

4. 商业问题:一元一次方程也常用于解决商业问题。

例如,假设某公司每个月固定的营业额为20000元,并且每卖出一件商品可以获利50元。

如果该公司希望达到每月利润6000元的目标,我们可以列出方程20000 + 50x = 26000。

通过求解这个方程,我们可以得知该公司需要卖出120件商品才能实现目标利润。

总之,一元一次方程是解决实际问题中的数学工具之一。

通过学习和应用一元一次方程,我们可以解决各种实际情况下的计算难题,并在日常生活中运用数学思维解决实际问题。

一元一次方程的实际问题应用

一元一次方程的实际问题应用

一元一次方程的实际问题应用一元一次方程是初中数学中的基本知识之一,它在解决实际问题中起着重要的作用。

本文将从几个典型的实际问题入手,展示一元一次方程的应用。

问题一:购买水果小明去市场购买了苹果和橙子,苹果每斤3元,橙子每斤2元,他总共购买了7斤水果,并支付了15元。

求小明购买的苹果和橙子的重量。

解析:设小明购买的苹果重量为x斤,橙子重量为y斤。

根据题意,我们可以得到以下两个方程:x + y = 7 (式1)3x + 2y = 15 (式2)通过解方程组(式1)和(式2),可以求得x和y的值。

可以通过倍加消元法解这个方程组,具体步骤如下:首先将(式1)的两边乘以2,得到2x + 2y = 14。

然后将上述方程和(式2)相减,得到3x - 2x = 15 - 14,即x = 1。

将求得的x值代入(式1),可得1 + y = 7,解得y = 6。

所以小明购买的苹果重量为1斤,橙子重量为6斤。

问题二:汽车行驶一辆汽车以每小时60千米的速度行驶,行驶了t小时后行程达到了120千米。

求汽车行驶了多少时间。

解析:设汽车行驶的时间为t小时。

根据题意,我们可以得到以下方程:60t = 120解这个方程,可以求得t的值。

将方程两边除以60,得到t = 2。

所以汽车行驶了2小时。

问题三:人口增长某城市的人口每年以2%的速度增长,现有人口为100万人,求n 年后该城市的人口。

解析:设n年后该城市的人口为P万人。

根据题意,我们可以得到以下方程:P = 100 × (1 + 0.02)^n解这个方程,可以求得n的值。

假设n=10,则可以计算得到P ≈ 121.9。

所以10年后该城市的人口约为121.9万人。

通过以上三个实际问题的例子,我们可以看到一元一次方程在解决实际问题中的应用。

它能够帮助我们建立数学模型,根据已知条件推导出未知量的值。

在生活中,我们常常会遇到类似的实际问题,通过运用一元一次方程的解法,我们能够更好地解决这些问题,提高问题解决能力。

一元一次方程解决实际问题的一般步骤

一元一次方程解决实际问题的一般步骤

一元一次方程解决实际问题的一般步骤一元一次方程是数学中常见的一种形式,它能够描述许多实际问题并通过求解得出具体的答案。

一元一次方程解决实际问题一般分为以下步骤:1. 确定未知数我们需要明确实际问题中涉及到的未知数量及其代表的含义。

在确定未知数的过程中,需要仔细分析问题并准确理解问题所描述的情境,确保选取的未知数能够准确表达问题的实质。

2. 建立方程在确定未知数之后,需要根据实际问题建立一元一次方程。

建立方程的过程中,需要根据已知条件和问题描述,运用数学语言将问题转化为代数表达式,进而建立方程。

3. 解方程建立方程后,需要对方程进行求解。

通过运用一元一次方程的解法,例如分配律、合并同类项和移项等方法,求得未知数的具体数值。

4. 检验结果需要将得到的未知数代入原始问题中进行检验。

确保所得的解能够符合实际问题的要求,验证解的可行性和正确性。

通过以上一般步骤,我们能够利用一元一次方程解决各种实际问题,无论是物理问题、经济问题还是日常生活中的实际情境,都可以通过建立和求解一元一次方程得到准确的答案。

一元一次方程解决实际问题的一般步骤是确定未知数、建立方程、解方程和检验结果。

这一步骤能够帮助我们系统地分析和解决实际问题,提高数学运用能力,培养逻辑思维和解决问题的能力。

希望大家在平时的学习和实践中能够灵活应用这一方法,更好地解决各类实际问题。

当我们应用一元一次方程解决实际问题的一般步骤时,我们需要更深入地了解每个步骤的具体内容和实际运用方法。

确定未知数是解决问题的第一步,这一步至关重要,因为未知数的选择直接影响到后续建立方程和解方程的过程。

在确定未知数时,我们需要考虑问题的实际含义和情境,确保选取的未知数能够完整地表达问题的主题。

如果我们要解决一个描述速度、时间和距离的问题,我们可以选择车辆的速度作为未知数,并用V来表示。

这样,我们就清晰地确定了未知数,并为接下来建立方程奠定了基础。

建立方程是将实际问题转化为数学问题的关键一步。

用一元一次方程解决实际问题的一般步骤

用一元一次方程解决实际问题的一般步骤

用一元一次方程解决实际问题的一般步骤解决实际问题的一般步骤涉及以下几个方面:
1. 理解问题:仔细阅读问题陈述,确保了解问题的背景和条件。

2. 建立方程:识别需要解决的未知量和相关量,并建立一元一次方程来描述它们之间的关系。

这可以通过使用变量来表示未知量,并使用已知量和条件来确定变量之间的关系。

3. 解方程:使用一元一次方程的解法,将方程化简为标准形式,即将未知量放在等号的一侧,常数项放在等号的另一侧。

然后使用合适的数学运算将未知量求解出来。

4. 检验答案:将求解得到的未知量代入原方程,验证方程两侧是否相等。

如果验证结果正确,则所得的解是问题的解;如果结果不正确,则需要重新检查建立方程和解方程的过程。

5. 给出答案:将解释结果以适当的形式呈现。

这可以是一个数值解,也可以是一个解的范围或模式。

需要注意的是,解决实际问题时可能需要进行一些假设和适度的近似,这取决于具体的问题和背景。

确保理解问题并在解决过程中仔细思考是成功解决实际问题的关键。

代数方程式一元一次方程实际问题

代数方程式一元一次方程实际问题

代数方程式一元一次方程实际问题一元一次方程是高中代数学中最基础的概念之一,它涉及到实际问题的解决方法。

本文将介绍一些应用于实际问题中的一元一次方程,并通过实例来说明其解题过程。

一、购物实例假设小明去商场购买商品,每件商品的价格都是固定的。

他买了几件商品后,想知道他总共花费了多少钱。

假设商品的单价为x元,购买数量为n件,则我们可以建立以下一元一次方程:总花费 = 单价 ×购买数量代入具体数值后,该方程可以进一步简化为:总花费 = x × n比如,如果商品单价为100元,购买了5件商品,那么总花费 = 100 × 5 = 500元。

二、运动实例假设一个人以匀速在公路上行驶,我们想知道他行驶一段距离需要多长时间。

假设这个人的速度为v千米/小时,行驶的距离为d千米,则可以建立以下一元一次方程:时间 = 距离 ÷速度代入具体数值后,该方程可以进一步简化为:时间 = d ÷ v比如,如果行驶的距离为100千米,速度为50千米/小时,那么所需时间 = 100 ÷ 50 = 2小时。

三、比例实例假设我们需要将一种液化气装在瓶子里,现在已知每瓶液化气可以使用n天,我们想知道x瓶液化气可以使用多少天。

假设液化气的使用天数和瓶数成比例关系,则可以建立以下一元一次方程:使用天数 = 每瓶使用天数 ×瓶数代入具体数值后,该方程可以进一步简化为:使用天数 = n × x比如,每瓶液化气使用30天,那么10瓶液化气可以使用的天数 =30 × 10 = 300天。

四、几何实例假设我们有一个长方形花坛,长度为L米,宽度为W米。

我们想知道该花坛的面积是多少。

由于长方形的面积公式为长 ×宽,我们可以建立以下一元一次方程:花坛面积 = 长 ×宽代入具体数值后,该方程可以进一步简化为:花坛面积 = L × W比如,花坛长度为10米,宽度为5米,那么花坛的面积 = 10 × 5 = 50平方米。

一元一次方程解决实际问题(分类)

一元一次方程解决实际问题(分类)

一元一次方程解决实际问题(分类)实用文档:一元一次方程解决实际问题一、行程问题一)一般行程问题在行程问题中,需要找到三个基本量:路程、速度和时间,并且它们之间有着明确的关系。

具体来说,路程等于速度乘以时间,时间等于路程除以速度,速度等于路程除以时间。

我们也可以通过变形得到速度等于路程除以时间,时间等于路程除以速度。

二)相遇问题(相向而行)在相遇问题中,需要注意以下三个关键点:快行距加慢行距等于原距,快行距减慢行距等于路程差,快行距加慢行距减路程差等于原距。

举例来说,如果甲、乙两车同时从A、B两地相向而行,两车相遇点距A、B两地中点处8km,已知甲车速度是已车的1.2倍,求A、B两地的路程,我们可以利用方法一找出甲乙两车的路程差,也可以利用方法二将甲乙的速度看成是1和1.2.例2中,XXX、XXX从相距50千米的两地相向而行,XXX下午2时出发步行,每小时行4.5千米。

XXX下午3时半骑自行车出发,经过2.5小时两人相遇。

我们需要求出XXX骑自行车每小时行多少千米。

例3中,XXX的小王同时分别从甲、乙两村出发,相向而行。

步行1小时15分后,XXX走了两村间路程的一半还多0.75千米,此时恰好与XXX相遇。

已知小王的速度是每小时3.7千米,需要求出XXX每小时行多少千米。

例4中,一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。

需要求出行了几小时后两车相距51千米,以及再行几小时两车又相距51千米。

三)追及问题(同向而行)在追及问题中,需要注意以下三个关键点:快行距减慢行距等于原距(从不同点出发),追及路程除以速度差等于追及时间,速度差乘以追及时间等于追及路程。

例1中,A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,需要求出几小时后甲车能追上乙车。

我们可以根据题意得知要追及的路程是28千米,每行1小时,甲车可追上32-25=7千米,即速度差。

一元一次方程与实际应用

一元一次方程与实际应用

一元一次方程与实际应用
1.货币问题:一元一次方程可以用来解决货币计算问题。

例如,小明
在超市买了苹果和香蕉,苹果单价为3元,香蕉单价为2元,他总共花了
8元。

现在我们可以用方程3x+2y=8来表示这个问题,其中x为苹果的数量,y为香蕉的数量。

通过解方程,可以得到苹果的数量和香蕉的数量。

2.速度问题:一元一次方程也可以用来解决速度计算问题。

例如,小
明骑自行车从A地到B地,全程50公里,他以10公里/小时的速度骑行。

如果他骑了t小时,那么我们可以用方程10t=50来表示这个问题。

通过
解方程,可以得到小明骑行的时间。

4.面积计算问题:一元一次方程还可以用来解决面积计算问题。

例如,一个矩形的长是x,宽是2x,已知它的面积为300平方米,我们可以用方
程x*2x=300来表示这个问题。

通过解方程,可以得到矩形的长和宽。

5.飞行时间问题:一元一次方程还可以用来解决飞行时间问题。

例如,一架飞机以400公里/小时的速度飞行,飞行了t小时后飞行了800公里。

我们可以用方程400t=800来表示这个问题。

通过解方程,可以得到飞机
的飞行时间。

综上所述,一元一次方程在实际生活中有着广泛的应用,可以解决各
种计算问题。

通过学习一元一次方程,我们可以更好地理解和解决实际问题,提高数学思维能力。

一元一次方程在实际问题中的应用有哪些?

一元一次方程在实际问题中的应用有哪些?

一元一次方程在实际问题中的应用有哪些?
一元一次方程是数学中的基础概念,广泛应用于现实世界的各
个领域。

以下是一些一元一次方程在实际问题中的应用例子:
1.财务管理:一元一次方程可以用来解决财务管理中的各种问题。

例如,可以使用一元一次方程来计算公司的总收入,总成本或
每个单位的成本。

2.回路电路:在电路中,电流的分布可以通过解决一元一次方
程组来计算。

这对于设计和分析电路以及解决电路问题非常有用。

3.商业应用:一元一次方程可以帮助解决商业中的许多问题。

例如,可以使用一元一次方程来计算利润率,销售量或价格。

4.比例问题:比例问题可以通过建立和解决一元一次方程来解决。

这包括了许多实际生活中的问题,如比较价格,规模相似性和
相关变量之间的关系。

5.运动问题:一元一次方程也可以用来解决运动问题。

例如,可以通过一元一次方程来计算物体的速度,加速度或位移。

一元一次方程在实际问题中的应用非常广泛。

通过了解如何运用一元一次方程解决问题,我们可以更好地理解数学的实际应用意义,并应用到我们生活和学习的各个领域中。

一元一次方程与生活实例

一元一次方程与生活实例

一元一次方程与生活实例一元一次方程是数学中最基础且常见的方程类型之一,也是我们生活中经常遇到的实际问题的数学建模工具。

一元一次方程的求解可以帮助我们解决各种实际问题,例如计算距离、速度、价格等。

本文将通过几个生活实例,展示一元一次方程的应用。

第一个实例是用一元一次方程计算距离。

假设小明骑自行车去上学,骑行的速度是12千米/小时,骑行的时间是1.5小时。

我们可以使用一元一次方程来计算小明骑行的距离。

设小明骑行的距离为x,由距离等于速度乘以时间的公式可得方程12 * 1.5 = x。

通过解这个方程,我们可以求得小明骑行的距离。

第二个实例是用一元一次方程计算购物总价。

假设小红去商场购买衣服,她购买了x件衣服,每件衣服的价格是70元,她总共花费了420元。

我们可以使用一元一次方程来计算小红购买的衣服数量。

设小红购买的衣服数量为x,由购物总价等于单价乘以数量的公式可得方程70 * x = 420。

通过解这个方程,我们可以求得小红购买的衣服数量。

第三个实例是用一元一次方程计算运动员的平均速度。

假设一名运动员以相同的速度跑了2000米和3000米两段距离,用时分别是10分钟和15分钟。

我们可以使用一元一次方程来计算运动员的平均速度。

设运动员的平均速度为x,由速度等于距离除以时间的公式可得方程(2000 + 3000) / (10 + 15) = x。

通过解这个方程,我们可以求得运动员的平均速度。

通过以上几个实例,我们可以看到一元一次方程在生活中的广泛应用。

它不仅可以用来计算距离、价格和速度等问题,还可以用来解决更加复杂的实际问题。

在实际应用中,我们可以根据问题的特点和要求,建立相应的一元一次方程,并通过求解方程来得到问题的解答。

因此,熟练掌握一元一次方程的求解方法对我们解决实际问题非常重要。

总结起来,一元一次方程在生活中有着广泛的应用,可以用来解决各种实际问题。

通过对一元一次方程的学习和理解,我们能够将数学知识与生活实际相结合,更好地应用数学解决问题。

初一一元一次方程解决实际问题十种典型类型

初一一元一次方程解决实际问题十种典型类型

初一一元一次方程解决实际问题十种典型类型2米栽一棵桂花树,这段公路需要栽多少棵桂花树?4、XXX家有一些苹果,他把它们分给他的三个朋友,每人分了8个,还剩下4个苹果。

后来他又从家里拿来10个苹果,他的四个朋友一起分享这些苹果,每人分到相同的数量,最后每人分到了几个苹果?5、某班同学去旅游,每辆大巴车可以坐60人,但是这次只报名了55人,所以需要再加一辆小巴士。

最后每辆车坐了多少人?最后在距离终点10千米的地方相遇,XXX的速度是每小时60千米,求小亮的速度。

3、甲乙两人相距100千米,甲先出发,以每小时40千米的速度前进,乙以每小时60千米的速度出发,当乙追上甲时,甲已经走了多长时间?他们相遇时离甲的起点还有多远?十、其他问题1、某人去买鸡蛋,他有10元钱,鸡蛋每个0.1元,鸭蛋每个0.2元,如果他买了100个蛋,问他买了多少个鸡蛋?多少个鸭蛋?2、某人去买水果,他有100元钱,XXX每斤2元。

梨子每斤1元,如果他买了60斤水果,问他买了多少斤苹果?多少斤梨子?3、某人的年龄是一个两位数,如果把他的年龄的十位数和个位数互换,他的年龄会变成原来的3/5,求他的年龄。

4、有一只小猴子从一棵树上掉下来,第一次掉到离树顶1/3的地方,然后又掉下来离树顶1/4的地方,以后每次掉下来的高度都是前一次的1/3。

求它第10次掉落时离树顶多远?1.XXX和销量同时出发,XXX的速度是8千米每小时,销量的速度是6千米每小时。

问XXX出发后几小时追上XXX?改写:XXX和销量同时出发,XXX的速度为每小时8千米,销量的速度为每小时6千米。

求XXX出发后几小时能追上XXX?2.电气车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气车速度的5倍,还快20千米每小时,半小时后两车相遇,两车的速度各是多少?改写:电气车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度是电气车速度的5倍,再加上20千米每小时。

十六种用一元一次方程解决实际问题专题(含解析)

十六种用一元一次方程解决实际问题专题(含解析)

十六种用一元一次方程解决实际问题专题类型一:和差倍分问题1.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)2.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听与书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物每满100元返购物券30元(不足100元不返券,购物券全场通用),但他只带了400元钱.若两家都可以选择,在哪一家购买更省钱?类型二:行程问题(相遇、追及、相对速度等)(1)直线型路线3.A,B两地相距480千米,甲乙两车分别从A,B两地出发,相向而行,2小时30分相遇.已知甲车速度是每小时80千米,乙车速度每小时多少千米?4.A、B两地相距400米,甲、乙两人分别从A、B两地同时同向出发,甲在乙后面,已知甲每分钟跑250米,乙每分钟跑200米,经过多长时间甲能追上乙?5.列方程解应用题:甲、乙两站相距448km,一列慢车从甲站出发开往乙站,速度为60km/h;一列快车从乙站出发开往甲站,速度为100km/h(1)两车同时出发,出发后多少时间两车相遇?(2)慢车先出发32min,快车开出后多少时间两车相距48km?(2)环型跑道6.小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分.(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?(2)如果两人同时相向同地开跑,多少分钟两人会相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?(3)相对速度7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?8.小明和小红沿着与铁轨平行的方向相向而行,两人行走的速度均为每小时7.2千米,恰有一列火车从他们身旁驶过.火车与小明相向而行,从小明身旁驶过用了10秒;火车与小红同向而行,从小红身旁驶过用了12秒.求火车车身的长度.类型三:航行问题(航空、陆地、水上等)9.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分,逆风飞行需要3小时,两城市间的距离为.10.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为7.5km/h,水流速度为2.5km/h,若A,C两地相距10km,求A,B两地的距离.类型四:工(作)程问题(工作总量为单位“1”,工作总量=工作效率×工作时间)11.由于洪水渗漏造成堤坝内积水,用三部抽水机抽水,单独用一部抽水机抽尽,第一部需用24小时,第二部需用30小时,第三部需用40小时.现在第一部、第二部共同抽8小时后,第三部也加入,问从开始到结束,一共用了多少小时才把水抽掉?12.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?类型五:销售盈亏问题13.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元14.一家商场因换季决定将某种服装打折销售,每件服装如果按标价的5折出售将亏20元,而按标价的8折出售就可赚40元.问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?15.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?类型六:调配问题(内部、外部等)16.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调部分学生去乙组,结果乙组人数是甲组的2倍,问从甲组抽调了多少学生去乙组?17.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n 是大于1的正整数,不包括1.)则符合条件的n的值共有个.类型七:余缺问题18.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?类型八:数字问题19.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数,求这个两位数.类型九:日历问题21.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72类型十:年龄问题22.今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄是多少岁?类型十一:银行利率问题23.某人按定期2年向银行储蓄1500元,假设年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%),此人实得利息为.24.一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库.假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是元.类型十二:比赛积分问题25.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?类型十三:部分量之各等于总量26.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.类型十四:等积变形问题27.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,求甲的容积为何()A.1280cm3 B.2560cm3 C.3200cm3 D.4000cm3类型十五:分段计费问题(水、电、煤、气、出租车和工资等)28.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见价目表:价目表每月用水量单价不超出6立方米的部分2元/米3超出6立方米不超出10立方米的部分4元/米3超出10立方米的部分8元/米3 注:水费按月结算.若某户居民1月份用水8立方米,则应交水费:2×6+4×(8﹣6)=20(元).(1)若该户居民2月份用水12.5立方米,则应交水费元;(2)若该户居民3,4月份共用水15立方米(4月份用水量多于3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?类型十六:方案设计问题(设备购买、房屋销售、汽车运输等)29.A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为15吨时,那么总运输费为多少元?。

一元一次方程解决实际问题

一元一次方程解决实际问题

一元一次方程解决实际问题类型一:经济问题例1.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物不再享受优惠)根据上述促销方法,顾客在该商场购物可获得双重优惠,如果胡老师在该商场购标价450元的商品,他获得的优惠额为元.例1-1.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?练习:1.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?2.为节约能源,某物业公司按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若某用户四月份的电费平均每度0.5元,该用户四月份用电多少度?应交电费多少元?3.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税_________ 元,若王老师获得的稿费为4000元,则应纳税_________ 元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?例2:某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的,若提前购票,则给予不同程度的优惠,在五月份内,团体票每张12元,共售出团体票的;零售票每张16元,共售出零售票的一半.如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售应按每张多少元定价才能使这两个月的票款收入持平?练习:1.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?例3:甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?练习:1,为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?2,小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?例4.材料:股票市场,买、卖股票都要分别交纳印花税等有关税费.以沪市A股的股票交易为例,除成本外还要交纳:①印花税:按成交金额的0.1%计算;②过户费:按成交金额的0.1%计算;③佣金:按不高于成交金额的0.3%计算,不足5元按5元计算.例:某投资者以每股5.00元的价格在沪市A股中买入股票“金杯汽车”1000股,以每股5.50元的价格全部卖出,共盈利多少?问题:(1)小王对此很感兴趣,以每股5.00元的价格买入以上股票100股,以每股5.50元的价格全部卖出,则他盈利为_________ 元.(2)小张以每股a(a≥5)元的价格买入以上股票1000股,股市波动大,他准备在不亏不盈时卖出.请你帮他计算出卖出的价格每股是_________ 元(用a的代数式表示),由此可得卖出价格与买入价格相比至少要上涨_________ %才不亏(结果保留三个有效数字).(3)小张再以每股5.00元的价格买入以上股票1000股,准备盈利1000元时才卖出,请你帮他计算卖出的价格每股是多少元?(精确到0.01元)练习:1.传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的.参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每位投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投资到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.(1)假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?(回报率=)(2)试计算张大爷在参与这次传销活动中共损失了多少元钱?类型二:行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用一元一次方程解决实际问题
知识点归纳知识框架
用一元一次方程解决实际问题步骤:
1、设未知数
2、找等量关系
3、列一元一次方程
4、解一元一次方程
5、检验,求解的结果是否符合实际意义,此步骤是正确求解的重要环节。

例题
例1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3,现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?
例2 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
例3 某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。

问这种鞋的标价是多少元?优惠价是多少?
例4 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?
例5 某汽车对运送一批货物,每辆汽车装4吨还剩下8吨未装,每辆汽车装4.5吨就恰好装完,该车队运送货物的汽车共有多少辆?
例6 若A 、B 两站间的路程为500km, 甲速20km/h,乙速为30km/h ,
(1)甲乙两车分别从A 、B 两地同时出发,相向而行,几小时后两车相遇?
(2)快车先开出30分钟,两车相向而行,慢车行驶了多少小时两车相遇?
(3)甲、乙两车分别从A 、B 两地同时出发,相向而行,问经过多少小时他们相距100km ?
(4)甲、乙两车分别从A 、B 两地同时出发,同向而行,问经过多少小时他们相距100km ?
例7 运动场跑道400m,小红跑步的速度是爷爷的3
5倍,他们从同一起点沿跑道的同一方向同时出发,5分钟后小红第一次追上了爷爷.你知道他们的跑步速度吗?
(1)几分钟后小红与爷爷第二次相遇?
(2)如果小红追上爷爷后立即转身沿相反方向跑,几分钟后小红又一次与爷爷相遇?
例8 某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?
练习
1.某同学在暑假里给同学寄了2封信和一些明信片,一共花了4.6元,已知每封信的邮费为0.8元,每张明信片的邮费为0.6元。

他寄了多少明信片?
2某人从甲地到乙地,全程的1/2乘车,全程的1/3乘船,最后又步行4km到达乙地.
甲、乙两地的路程是多少?
3. 商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的原价是多少?
4.(1)每人准备一本月历,在月历的同一行上任意圈出相邻的4个数,并把4个数的和告诉同学,让同学求出这4个数。

(2)在月历上任意找1个数以及它的上、下、左、右的4个数,每人分别把这5个数的和告诉同学,让同学求出这5个数。

5.某工厂原计划在规定的时间内加工一批零件,如果每小时加工10个零件,就可以超额完成3个;如果每小时加工11个零件,就可以提前一个小时完成,问这批零件有多少个?按原计划需多长时间完成?
6.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
7.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成?
8.一个蓄水池共有A,B两个进水管和一个排水管C.单独开A管,6小时可将空池注满水;单独开B管,10小时可将空池注满水;单独开C管,9小时可将满池水排完.现在水池中没有水.若先将A,B两管同时开2.5小时,然后打开C管,问打开C管后,几小时可将水池注满水?
作业(必做题)
1.某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
2.某月的日历上一竖列有四个日期,其中第二个日期与第四个日期的和是36,那么第三
个日期是多少?
3.若干辆汽车装运一批货物,若每辆装3.5吨,这批货物就有2吨不能运走;每辆装4吨,那么这批货物装完后,还可以装其他货物1吨。

问汽车有多少辆?这批货物有多少吨?
4. 七(5)班举办一次集邮展览,展出的邮票比平均每人4张多14张,比平均每人5张少26张,问:
(1)这个班共有多少名学生?(2)展出的邮票共有多少张?
5.一个邮递员骑自行车在规定时间内把特快专递送到单位。

他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。

原定的时间是多少?他去的单位有多远?
6.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.
(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;
(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇
7.甲、乙两人同时从相距27千米的A、B两地相向而行,3小时相遇,如果甲比乙每小时多走1千米,求甲、乙两人的速度?
8.王华上学要经过张咪家,他们两家相差3km,王华骑车上学的时间比张咪步行上学时间少10分钟,如果王华骑车的速度是15km/h,张咪步行的速度是6km/h,则他们上学各需多少时间?
9.甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒钟跑6米,甲的速度是乙速度的4/3倍。

(1)如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?
(2)如果甲在乙的前面8米处同时同向出发,那么经过多少秒两人首次相遇?
10.一件工程,甲独做需15天完成,乙独做需12天宅成,现先由甲、乙合作3天后,甲有
其他任务,剩下工程由乙单独完成,问共要几天完成全部工程?
11.某水池有一个进水管和一个排水管,如果单独开进水管,6小时可以注满水池,如果单独开排水管,8小时把水排完,如果同时开放进水管和排水管,那么多少小时可以把水注满?
12.一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是放水管,甲单独开需6小时注满一池水,乙单独开需8小时注满一池水,丙独开需24小时放完一池水,现三管齐开,几小时可注满一池水?
作业(选做题)
1.小颖打算10天读完一本小说,假设每天读同样多页的内容,则一天读了全书的______,a 天读了全书_______
2.某农场计划播种小麦和大豆共138公顷,其中种小麦的面积是种大豆面积的4倍,问应播种小麦和大豆多少公顷?
3.学校文艺部组织文艺委员观看演出.共购得8张甲票,4张乙票,总计用112元,且每张甲票比乙票贵2元,求甲票、乙票的票价分别是多少?
4..体育馆入场券3元一张,若降价后观众增加一半,收入增加 ,那么每张入场券降价多少元?
5.小丽在水果店花了18元买了苹果和橘子共6千克,苹果每千克3.2元,橘子每千克2.6元,苹果和橘子各买了多少?
6.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调了部分学生到乙组,结果乙组人数是甲组人数的2倍。

问从甲组抽调了多少学生去乙组?
7.甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时甲、乙两人相距32.5千米?
8.某电脑公司派甲、乙二人各携带两台电脑分别乘坐出租车送给同一个客户,其中甲所租出租车起步价为4km ,收费10元,然后每1km 收费1.6元;乙所租出租车起步价为3km ,收费10元,然后每1km 收1.2元,当他们到达时,甲比乙多付车费10元,则该电脑公司与客户住处相距多少km ?
9.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回响,问汽车按喇叭时离山谷多远?(声音的传播速度为每秒340米)。

14
10.在一段双轨铁道上,两列火车同方向行驶,甲火车在前,乙火车在后,甲火车车速为25m/s,乙火车车速为30m/s,甲火车全长为240m,乙火车全长为200m,求两火车从首尾相接到完全错开要多少时间?
11.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.
12.一件工程,甲、乙、丙队单独做各需10天、12天、15天才能完成,现在计算开工7天完成,乙、丙先合做3天,乙队因事离去,由甲队代做,在各队工作效率都不变的情况下,能否按计划完成此工程?
13.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已
知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
14.为庆祝校运会开幕,初一(2)班学生接受了制作小旗的任务.原计划一半同学参加制作,每天制作40面.完成了三分之一以后,全班同学一起参加,结果比原计划提前一天半完成任务,假设每人的制作效率相同,问共制作小旗多少面?。

相关文档
最新文档