液晶显示屏背光驱动集成电路工作原理

合集下载

液晶屏背光驱动与保护原理分析

液晶屏背光驱动与保护原理分析

液晶屏背光驱动与保护原理分析液晶屏是一种广泛应用于电子产品的显示屏,其中的背光驱动与保护是其正常工作所必需的部分。

本文将对液晶屏背光驱动与保护原理进行分析。

背光驱动是液晶屏的核心组成部分,它主要负责为液晶屏提供亮度和色彩。

液晶屏背光驱动一般采用恒流源驱动方式,即通过恒流源来提供背光模组所需的工作电流。

背光驱动电路需要实现对背光的调光和调色,一般采用PWM(脉宽调制)方式实现。

PWM方式可以通过调整脉冲时间的长短来控制背光的亮度,从而实现液晶屏的亮度调节。

此外,背光驱动还需要支持不同的色彩显示需求,一般通过改变电流源的工作方式来实现对色彩的控制。

液晶屏的背光保护主要是为了延长背光的使用寿命和避免过度使用背光导致的功耗过大。

背光保护通常包括两个方面的考虑:背光的开关和亮度的调整。

背光的开关是指在液晶屏不使用时,将背光关闭以节省能源。

一般情况下,液晶屏的背光保护采用的是根据用户操作行为来实现背光的开关,比如在一段时间内未出现用户操作时,系统会自动关闭背光。

而液晶屏亮度的调整主要是为了适应不同环境光照强度下的显示效果。

液晶屏一般会自动感知环境光照的强度,并根据环境光照的变化来自动调整屏幕背光的亮度,以保持适宜的显示效果。

在液晶屏背光的保护中,还需要考虑背光灯的寿命问题。

背光灯一般采用冷白炽灯、荧光灯或LED作为光源,随着使用时间的增长,背光灯的亮度逐渐减弱,影响显示效果。

因此,液晶屏背光保护的另一个重要任务就是要延长背光灯的寿命,减少灯丝的老化和磨损。

一般液晶屏背光保护采用的是自动调节背光亮度的方式,根据背光灯的使用时间和亮度的变化,调整背光的亮度至合适的水平。

此外,还可以采用灯丝预热等方式进一步延长背光的寿命。

总体来说,液晶屏的背光驱动与保护是保证液晶屏正常工作的重要组成部分。

背光驱动负责为液晶屏提供亮度和色彩,而背光保护则是为了延长背光的使用寿命和节省能源。

通过合理设计背光驱动电路和背光保护的算法,可以实现液晶屏的正常工作和长久使用。

液晶显示屏背光灯及高压驱动电路原理与故障维修

液晶显示屏背光灯及高压驱动电路原理与故障维修
大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析
(目前液晶电视的销量和社会保有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。目前对于该部分的原理电路分析维修的资料很少,该文对于背光灯管及驱动电路的特性、构造、组成、要求、电路原理分析比较详尽,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础)
1、全桥架构;
全桥架构功率放大电路图8,放大元件由4只MOSFET(两只N沟道及两只P沟道)组成,应用的供电电压范围宽(6V~24V)最适合在低电源电压的场合应用。适合低电源电压的设备如笔记本电脑等低压供电的设备。
2、半桥架构;
半桥架构功率放大电路如图9;和全桥架构相比,节省了两只功率放大管(一只N沟道和一只P沟道的MOSFET)。在相同的输出功率和负载阻抗情况下,供电电压比全桥架构要提高一倍(电流为全桥架构的一半),用在供电电压较高的设备上(大于12V)。
输出电路的处理方式是;在高压变压器的输出端(输入端也可以)和灯管连接处串连一只电容器C图12,电容器C和输出高压变压器输出端L及负载R(灯管)组成了一个低Q值的串连谐振电路。等效电路图13。在图中对于功率输出信号的频率作用于电感L和电容C,来说,在此频率下,当电感L的感抗XL等于电容C的容抗XC时,电路产生谐振,在此谐振电路中即产生谐振,由于组成是串连谐振电路,所以谐振时;电流达到最大值,此最大电流即是流过冷阴极荧光灯管的电流。其谐振时达到的最大值,也意味着功率输出的能量,最大限度的输送给了灯管,由于灯管也串连在电路中的一部分,形成了串连谐振电路的电阻份量,所以该谐振电路是低Q值电路,即使是振荡频率略有偏差,也能保证能量的传输。

背光驱动原理

背光驱动原理

背光驱动原理背光驱动技术是液晶显示器中至关重要的一环,它直接影响到显示效果和功耗。

在液晶显示器中,背光模块是用来提供光源的,通过背光模块的发光,可以使得液晶屏幕显示出清晰的图像。

背光驱动原理是指如何通过电路控制背光模块的亮度和颜色,从而实现优质的显示效果。

首先,我们来看一下背光驱动原理中的基本组成部分。

背光模块通常由LED灯珠组成,LED灯珠是一种半导体器件,具有高亮度、高效率和长寿命的特点。

背光驱动电路则是用来控制LED灯珠的亮度和颜色的,通常采用PWM调光技术来实现。

此外,背光驱动电路还包括了电源管理模块、信号处理模块等组成部分。

在背光驱动原理中,PWM调光技术是一种常用的调光方式。

PWM调光是通过改变LED灯珠的通电时间比例来控制亮度的一种技术。

当需要降低亮度时,调光电路会降低LED灯珠的通电时间比例,从而降低亮度;当需要增加亮度时,调光电路会增加LED灯珠的通电时间比例,从而增加亮度。

这种调光方式具有响应速度快、稳定性好的特点,因此在背光驱动中得到了广泛的应用。

另外,背光驱动原理中还涉及到了电源管理模块。

电源管理模块主要用来为LED灯珠提供稳定的电源,以确保LED灯珠的正常工作。

在电源管理模块中,通常会包括过压保护、过流保护、短路保护等功能,以保证LED灯珠的安全可靠运行。

除了以上提到的组成部分外,背光驱动原理中还包括了信号处理模块。

信号处理模块主要用来接收来自显示控制器的信号,并将其转换成LED灯珠可以识别的信号,以控制LED灯珠的亮度和颜色。

信号处理模块的设计和性能直接影响到显示效果的质量和稳定性。

总的来说,背光驱动原理是液晶显示器中至关重要的一环,它直接影响到显示效果和功耗。

通过对背光模块、PWM调光技术、电源管理模块和信号处理模块的深入了解,可以更好地理解背光驱动原理,并在实际应用中取得更好的显示效果和功耗表现。

希望本文能够帮助读者更好地理解背光驱动原理,为液晶显示器的设计和应用提供一定的参考。

液晶电视机中背光灯驱动电路的组成及工作原理介绍

液晶电视机中背光灯驱动电路的组成及工作原理介绍

液晶电视机中背光灯驱动电路的组成及工作原理介绍液晶电视机中的背光灯驱动电路是将电能转换为光能,通过背光灯照亮液晶屏幕,使显示画面的背景明亮、色彩鲜艳。

背光灯驱动电路主要由背光灯电源、背光灯驱动器和控制电路组成。

背光灯电源是为背光灯提供直流电能的电路。

一般液晶电视机的背光灯电源采用开关电源。

开关电源的主要优点是高效率、小体积、适用范围广。

其工作原理是利用电源的电能,经过变压器将交流电转换成直流电,然后通过整流电路将直流电转换为稳定的低电压直流电,以供背光灯使用。

背光灯驱动器是将低电压直流电转换成高电压交流电,以驱动背光灯发光的电路。

背光灯驱动器一般采用逆变器,逆变器的工作原理是利用交流电输入,通过变压器将低电压升高到足够驱动背光灯发光的高电压。

逆变器还具有调节电压和电流的功能,以保证背光灯工作的稳定性和亮度。

控制电路是控制背光灯开关和亮度的电路。

液晶电视机的控制电路通常由主控芯片和各种传感器组成。

主控芯片是整个电视机的控制中心,可以接收用户的指令,并根据不同情况对背光灯进行开关控制和亮度调节。

传感器可以感知环境亮度、温度等因素,根据感知结果调节背光灯的亮度和温度,以提供更好的视觉效果和用户体验。

总结一下,液晶电视机中背光灯驱动电路的主要组成部分包括背光灯电源、背光灯驱动器和控制电路。

背光灯电源将电能转换为直流电以供背光灯使用,背光灯驱动器将低电压直流电转换成高电压交流电以驱动背光灯发光,而控制电路则负责控制背光灯的开关和亮度调节。

这些组成部分相互配合,将电能转换为光能,最终照亮液晶屏幕,展现出清晰亮丽的画面。

lcd背光驱动电路原理

lcd背光驱动电路原理

LCD背光驱动电路的原理是控制背光板的电流,以调节背光板的亮度。

恒流源芯片是实现这一功能的关键元件。

LCD显示驱动通过驱动电路控制液晶分子的排列和背光源的亮度,从而实现像素的控制和图像显示。

在控制电路中,输入信号被转化为相应的驱动信号,通过驱动电路控制液晶的排列方式和背光的亮度,最终将图像显示在LCD屏幕上。

对于背光驱动,其控制原理是将恒流源芯片与背光板LED连接,选取一个恒流源芯片来为背光板提供电压和电流。

恒流源芯片可以通过确定一个反馈电阻来控制输出电流,从而控制流过LED的电流。

这个原理是基于三极管的恒流回路,基极电压大于三极管的导通电压时,B点电压被钳位在A点电压减去三极管的导通压降,那么流过接地电阻的电流就是确定的。

以上信息仅供参考,如需了解更多信息,建议查阅专业书籍或咨询专业技术人员。

液晶屏电路工作原理

液晶屏电路工作原理

液晶屏电路工作原理
液晶屏电路是指用于驱动液晶显示器的电路,其工作原理主要分为两部分:显示驱动电路和背光驱动电路。

1. 显示驱动电路:液晶屏显示驱动电路主要负责控制液晶显示器中液晶分子的定向,从而实现图像的显示。

其工作原理如下: a. 对于每个像素点,显示驱动电路会给出相应的控制信号,
这些像素控制信号被送入液晶屏,引起液晶中对应的液晶分子定向。

b. 通过改变这些分子的定向,液晶可以通过光的偏振来调节
光的透过度,进而实现对图像的显示。

通过控制不同的像素点的液晶分子定向,可以显示出完整的图像。

2. 背光驱动电路:背光驱动电路用于提供足够的亮度和均匀的背光光源。

其工作原理如下:
a. 背光驱动电路通过直流电源提供给液晶显示器的背光光源,通常是利用冷阴极荧光灯(CCFL)或发光二极管(LED)来
提供背光。

b. 背光驱动电路中的逆变器部分将直流电源转换成所需的交
流高电压,用于激活冷阴极荧光灯。

对于LED背光,背光驱
动电路则根据LED的特性提供适当的直流电压和电流。

c. 通过调整背光驱动电路的输出电压和电流,可以控制背光
亮度的大小。

综上所述,液晶屏电路通过显示驱动电路控制液晶分子的定向,从而实现图像的显示,同时通过背光驱动电路提供合适的背光亮度,使图像在液晶屏上清晰可见。

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理液晶显示屏已经成为现今个人电子设备的主要显示技术之一。

在许多种液晶显示屏中,背光驱动器集成电路(IC)是控制屏幕亮度和对比度的关键组件。

本文将介绍背光驱动器集成电路的工作原理和其对液晶显示屏的影响。

1.液晶显示屏的类型在谈论液晶显示屏背光驱动集成电路之前,我们需要先了解液晶显示屏的种类。

液晶显示器可以分为直接驱动型和间接驱动型两种。

直接驱动显示器中每个像素都被控制,而在间接驱动显示器中,一个像素由若干个液晶单元(LCU)组成。

LDC 需要通过背光来显示亮度和对比度,因而需要背光驱动集成电路来控制背光的亮度和色调。

2.背光驱动器集成电路基础背光驱动器集成电路是一种控制和供电背光的芯片。

基本上,这个芯片将电能转化为光能,控制屏幕亮度,并在使用时保存能源。

集成电路包括控制器和转换器,其中控制器处理来自计算机或其他设备的信号以控制背光亮度,而转换器将光转换为背光的适当电压和电流。

背光驱动器集成电路包括一些主要结构块:控制器、逆变器、放大器、电容和电感。

控制器和电源面板可以与显示器电路板上其他元件交换数据来控制背光。

逆变器可将直流电能转换为交流电,供给灯管的点灯。

放大器被用于发出液晶屏幕所需的强烈信号,以获得最好的效果。

在电容和电感方面,它们被用来维持逆变器的稳定工作并减少噪声。

一些背光驱动器集成电路可以自动调节背光的亮度,这有助于减少屏幕耗电量并更好地适应不同环境下的需求。

此外,这些芯片还可以实现颜色调整,以改善图像的质量,并击败背景光线的影响。

3.背光驱动器集成电路的使用领域背光驱动器集成电路常应用于数字相框、平板电视、笔记本电脑、便携式媒体播放器等具有液晶显示屏的设备。

它们被广泛用于任何需要高分辨率和力量控制的设备中。

4.背光驱动器集成电路的工作原理在显示器被打开时,大约80V到100V的直流电压被导入背光驱动集成电路。

该电路将电压转换为高频交流电,以控制高压直流电的输入,并在有需要时调整背光的亮度。

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修一、背光灯原理冷阴极灯管(CCFL)由冷阴极发射电子极和阳极构成,极之间通过电解质溶液隔开。

当极中有电流通过时,冷阴极发射电子极会产生电子,这些电子会被阳极电场吸引,从而释放出光线。

为了使冷阴极发射电子极产生电子,需要通过高压驱动电路提供足够的电压和电流。

一般冷阴极发射电子极的工作电压为600V至1500V,工作电流为3mA至6mA之间。

二、高压驱动电路原理高压驱动电路主要用于提供极高的电压和电流,以驱动冷阴极发射电子极。

高压驱动电路主要由变压器、整流电路和驱动电路组成。

变压器是高压驱动电路的核心部件,其作用是将输入的低压交流信号转变为高压交流信号。

在一般的液晶显示屏背光灯中,变压器主要采用高频变压器。

高频变压器通常采用磁导材料作为磁芯,以提高变压器的性能和效率。

整流电路用于将高压交流信号转换为高压直流信号,以供冷阴极发射电子极使用。

整流电路一般采用桥式整流电路,其具有整流效果好、波动小的特点。

驱动电路用于控制高压驱动电路的输入和输出。

驱动电路通常由高压电荷泵和高压切换电路组成。

高压电荷泵用于将输入的低压信号转换为高压信号,以供后续的驱动电路使用。

高压切换电路用于控制高压输出的开关,以实现对冷阴极发射电子极的驱动。

三、维修方法在维修大屏幕液晶显示屏的背光灯及高压驱动电路时,常见的故障有背光灯不亮、背光灯亮暗不均等。

下面将介绍一些常见的故障排除方法。

首先,可以检查背光灯驱动线路是否有松动或断开的情况,需要检查传输线路、接头和电源控制板是否有损坏。

如果有松动或断开的情况,需要重新连接或更换。

其次,可以检查高压驱动电路是否正常工作,需要使用万用表测量驱动电路的输入和输出是否符合规格。

如果发现输入或输出不正常,需要检查电路板上是否有元件损坏或焊接问题,需要重新焊接或更换损坏的元件。

最后,如果以上方法都没有解决问题,可能需要更换整个背光灯驱动电路模块。

这需要具备一定的电子维修技能和相关工具,建议找专业的维修人员进行更换。

液晶屏驱动与背光原理

液晶屏驱动与背光原理
32寸三星液晶屏背光灯驱动 及保护电路原理分析
济南分公司用户服务部
2009-05-25
目录
背光灯管的特性介绍 背光灯驱动电路介绍
保护电路的原理
前言
液晶背光灯驱动电路、保护电路是故障多发部
位,通过对背光灯管及驱动电路的特性、构造、组
成、要求、电路原理分析,可以帮助我们更好地理
解并维修液晶电视背光板。
图十八
3、工作过程: 在液晶电视开机后,24V电源即加于背光灯驱动电路板上, 该电压直接加于 Q1~Q4 功率输出模块,并经过降压、稳压为 6V 后, 加到BD9884FV 的#28 脚作为 VCC 电压。此时CPU 送来开机 on/off 信号进入#16脚,BD9884FV 内部振荡器开始工作,产生 100KHz 方波信号送入调制器,并和CPU送来经过BD9884FV的#1 脚输入的PWM亮度控制信号进行调制、放大。由#26 脚、#27脚输 出激励信号,加到全桥架构功率输出电路 Q1、Q2 的两只 N 沟道 MOS 管的栅极(G1)上;从图 18等效电路中可以看到,Q1、Q2 中 的四只 MOS 管组成了全桥架构的四个桥臂,由#26 脚、#27 脚输 出激励信号,分别加到 Q1 和 Q1 功率模块的 N沟道 MOS 管上,使 其轮流导通。
3.2 1.28 1.28 测量时影响频率 3.1 2.65 0.03 5.26 1.04 0 1.04 5.26 6.2
图十七
BD9884FV 是具有两通道输出的驱动集成电路,图16方案是两个 通道分别点亮各自一只背光灯管的激励驱动原理图,两个通道均同时受 #16 脚输入的 on/off 启动信号及#1 脚输入的 PWM 亮度控制信号的控
基准电压、电流读出 保护状态输出
0.74

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。

这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。

也是一个独立的整体。

这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。

液晶显示屏背光驱动集成电路工作原理(图)

液晶显示屏背光驱动集成电路工作原理(图)

液晶显示屏背光驱动集成电路工作原理(图)振荡控制电路主要包括振荡器、调制器、激励输出、保护控制电路,位于背光板的输入控制接口和功率放大电路之间,其主要功能如下:①接受CPU的控制指令(ON/OFF),产生高频振荡信号。

②接受CPU送来的亮度控制信号(PWM),对高频振荡进行PWM调制。

③把PWM调制信号放大并输出。

④接受输出电路反馈来的电压、电流取样信号,进行保护控制。

振荡控制电路是背光板部分的前端电路,功率小、电路复杂,电路功能较多。

为了液晶屏生产厂家为了便于配套,这部分电路均采用一块集成了上述功能的集成电路。

目前,市场上有很多此类背光板前端集成电路提供。

这些集成电路都是考虑到不同的屏幕尺寸、不同的电路形式、不同的控制方式及不同的供电电压精心设计的,功能齐全、稳定可靠。

采用这种集成电路的背光板,功能强大、外电路简单、成本下降,故障率也减小很多。

图5.1是一个采用6只CCFL灯管的26寸液晶屏背光板,图5.2是一个采用EEFL灯管的32寸液晶屏背光板。

可以看出,振荡控制集成电路只占了极小的位置,整个电路板非常简洁、工整,维修也极其方便。

目前比较常见的、背光板上应用较多的振荡控制集成电路有以下几种。

①美国仙童(FAIRCHILD)公司的FAN7316、FAN7317、FAN7313等。

②微科(MICRO)公司的OZ960、OZ964、OZ9910、OZ9925、OZ9938等。

③硕颉( Bitek)公司的BIT3101、BIT3109、BIT3105、BIT3106等。

④MSP(Mstart)公司的MP1026、MP1029、MP1038等。

⑤罗姆(Rohm)公司的BD9883、BD9884、BD9886等。

还有很多集成电路的型号不胜枚举。

对于维修人员来说,把这些集成电路的资料收集起来,了解各集成电路的引脚功能,对背光板维修的帮助极大。

5.1典型振荡控制集成电路的工作流程图5.3是一块典型振荡控制集成电路的内部框图。

背光驱动原理

背光驱动原理

背光驱动原理背光驱动技术是指在液晶显示器中,利用背光源来照亮液晶屏幕,从而实现图像显示的一种技术。

背光驱动原理是液晶显示器技术中的重要组成部分,下面将对背光驱动原理进行详细介绍。

首先,我们需要了解液晶显示器的结构。

液晶显示器主要由液晶屏和背光源组成。

液晶屏是由一层薄膜晶体组成的,通过控制电场来改变液晶分子的排列状态,从而实现图像的显示。

而背光源则是为了照亮液晶屏幕,使图像能够被观察到。

背光驱动原理的核心在于如何控制背光源的亮度和色彩,以达到最佳的显示效果。

目前常用的背光源包括冷阴极管(CCFL)和LED。

在液晶显示器中,背光源通常是位于液晶屏幕的背面,因此被称为背光源。

背光驱动原理的基本工作原理是利用电路控制背光源的亮度和色彩。

在液晶显示器中,背光源的亮度和色彩会影响到图像的显示效果,因此需要精确的控制。

一般来说,背光源的亮度是通过调节电流来实现的,而色彩则是通过控制不同颜色的LED来实现的。

在液晶显示器中,背光源的控制电路通常由PWM调光控制器和电源管理单元组成。

PWM调光控制器可以通过调节脉冲宽度来控制LED的亮度,从而实现背光源的亮度调节。

而电源管理单元则负责为背光源提供稳定的电源,并监测背光源的工作状态,以保证其正常工作。

除了亮度和色彩的控制,背光驱动原理还涉及到背光源的均匀性和稳定性。

在液晶显示器中,背光源的均匀性和稳定性对图像的质量有着重要的影响。

因此,背光驱动原理还需要考虑如何实现背光源的均匀照明和稳定工作。

总的来说,背光驱动原理是液晶显示器技术中的重要组成部分,它通过精确的控制背光源的亮度、色彩、均匀性和稳定性,实现了液晶显示器的高质量图像显示。

随着技术的不断进步,背光驱动原理也在不断演进,为液晶显示器的发展提供了强大的支持。

背光驱动原理

背光驱动原理

背光驱动原理背光驱动技术是液晶显示器中至关重要的一环,它直接影响到显示效果的质量和稳定性。

在了解背光驱动原理之前,我们首先需要了解液晶显示器的工作原理。

液晶显示器是一种利用液晶材料的光学特性来显示图像的平面显示器。

它的基本结构包括液晶屏和背光源两部分。

液晶屏是由一层薄膜晶体组成的,通过控制电场来改变液晶分子的排列状态,从而控制光的透过程度,实现图像显示。

而背光源则是为了提供光源,使得图像可以被看到。

背光驱动原理主要包括两种类型,CCFL(冷阴极荧光灯)和LED(发光二极管)。

CCFL是传统的背光驱动技术,它采用冷阴极荧光灯作为光源。

CCFL的工作原理是利用电场激发荧光粉发出白光,从而提供背光。

CCFL背光源的优点是成本低廉,但缺点也很明显,比如功耗高、寿命短、易受环境温度影响等。

LED背光源则是近年来发展起来的新型背光驱动技术。

LED背光源采用发光二极管作为光源,它的工作原理是电流通过半导体材料时,激发电子跃迁,产生光。

LED背光源相比CCFL有诸多优势,比如功耗低、寿命长、色彩表现好、启动响应快等。

因此,LED背光源已经逐渐取代了CCFL成为液晶显示器中的主流背光驱动技术。

在LED背光源中,又分为直下式和边光式两种类型。

直下式LED背光源是将LED灯直接放置在液晶屏的后面,能够提供更均匀的光源,但厚度较厚。

而边光式LED背光源则是将LED灯放置在液晶屏的边缘,通过导光板将光源均匀地导向整个屏幕,厚度相对较薄。

总的来说,背光驱动原理是液晶显示器中至关重要的一环。

随着LED技术的不断发展,LED背光源已经成为了液晶显示器中的主流,它的出色性能和稳定性为显示效果提供了良好的保障。

希望通过本文的介绍,您对背光驱动原理有了更深入的了解。

背光驱动原理

背光驱动原理

背光驱动原理
背光驱动原理是指控制液晶显示器的背光模块亮度和色彩的技术。

液晶显示器的背光模块通常由冷阴极灯(CCFL)或LED 组成。

背光驱动原理主要有两种:直接驱动和间接驱动。

直接驱动是指将背光与液晶显示器的像素点一一对应,每个像素点都有背光模块提供背光。

这种驱动方式在较小尺寸的液晶显示器上应用较多,它需要大量电源和控制电路,成本较高。

间接驱动则是将整个背光区域分为若干个区块,每个区块由多个像素点共享一个背光模块。

这种方式能够提高背光的亮度和均匀性,并降低成本。

其中最常用的背光模块是LED,它具有低功耗、亮度高、寿命长等优点。

在液晶显示器中,背光驱动电路会根据输入信号的强弱控制电流大小,从而调整背光的亮度。

这一过程通过PWM(脉冲宽度调制)技术实现,即在一个固定的周期内,通过改变脉冲的宽度来控制电流的大小。

背光的色彩也可以通过背光驱动电路进行控制。

一般来说,使用RGB LED组成的背光模块可以通过PWM调整每个颜色通道的亮度,从而实现不同的颜色显示。

总的来说,背光驱动原理是通过电源和控制电路控制背光模块
的亮度和色彩,使液晶显示器能够正常显示图像。

不同的驱动方式和技术可以根据不同应用需求选择。

液晶背光电源电路原理

液晶背光电源电路原理

控制电路的主要元件
时钟芯片
产生控制信号,控制背光灯的 开关和亮度调节。
微处理器
接收来自外部信号的控制指令 ,控制背光灯的工作状态。
传感器
检测环境光亮度或背光灯的工 作状态,自动调节背光灯的亮 度。
接口芯片
与外部设备连接,实现数据的 传输和控制。
驱动电路的主要元件
驱动芯片
根据控制电路的指令,调 节背光灯的工作电流,实 现亮度的调节。
测量输入电源电压是否符合设计要求,确保 电源正常工作。
电流测试
测量电源电路的输出电流,确保电流在安全 范围内。
波形测试
使用示波器检查电源电路的输出波形,确保 波形稳定且符合设计要求。
保护功能测试
检查过流保护、过压保护等保护功能是否正 常工作。
背光灯的优化方案
调整背光灯亮度
根据需要调整背光灯亮度,以提高显示效果或节录
• 液晶背光电源电路概述 • 液晶背光电源电路的工作原理 • 液晶背光电源电路的元件与组件 • 液晶背光电源电路的设计与实现 • 液晶背光电源电路的调试与优化
01 液晶背光电源电路概述
液晶背光电源电路的定义
• 液晶背光电源电路是一种为液晶显示面板提供背光的电源电路, 它通过控制电流和电压,使液晶显示面板能够正常工作。
液晶背光电源电路的功能
提供稳定的电流和电压
保护液晶显示面板
液晶背光电源电路能够为液晶显示面 板提供稳定的电流和电压,保证液晶 显示面板的正常工作。
液晶背光电源电路还具有过流保护、 过压保护等功能,能够有效地保护液 晶显示面板免受损坏。
控制亮度
液晶背光电源电路可以通过调节电流 和电压,控制液晶显示面板的亮度, 从而实现不同的显示效果。

lcd背光驱动电路原理图

lcd背光驱动电路原理图

lcd背光驱动电路原理图lcd背光驱动电路原理图
具有数字与PWM调光功用的小型LCD背光驱动芯片
TPS61160/1
TPS61160/1描写TPS61160/1具有40V的集成型开关FET,是一种可驱动多达10个串联LED的升压改换器。

该升压改换器容许选用一般照明范畴的高亮度LED,固定作业频率为1.2MHz,开关流限为0.7A。

如下列典型的运用原理图所示,选用外部查看电阻器RSET可设置默许的白光LED(WLED)电流。

可将反响电压安稳在200mV。

LED 的电流能够经过单线数字接口(EasyScaletrade;协议)由CTRL引脚操控。

此外,还能够在CTRL引脚上施加PWM信号,以便由占空比来断定反响参阅电压。

不论是数字仍是PWM办法,TPS61160/1都不会在猝发状况下供应LED电流,因此也就不会在输出电容上发作音频噪声。

在开路LED维护状况下,TPS61160/1具有的集成型电路体系能够避免输出逾越最大必定额外值。

1。

液晶电视背光驱动板的原理与维修

液晶电视背光驱动板的原理与维修

液晶电视背光驱动板的原理与维修一、液晶电视背光驱动板的原理液晶电视的背光驱动板主要由背光源、LED驱动芯片和电源组成。

其工作原理如下:1.电源供电:首先,背光驱动板需要接收电源的供电,通常为12V或24V直流电源。

电源会将交流电转换成直流电,并经过滤波和稳压等处理,确保供电稳定可靠。

2.亮度控制:背光驱动板通过亮度控制信号来控制LED背光的亮度。

亮度控制信号可以通过外部按钮或遥控器发送给背光驱动板,然后驱动芯片将信号转换成对应的电流或电压输出,以控制背光的亮度。

3.LED工作方式:LED背光可以分为两种方式,一种是直接驱动模式,另一种是串并联驱动模式。

在直接驱动模式中,LED背光同时接通,背光亮度由电流大小控制。

在串并联驱动模式中,多组LED串联并与驱动电源并联,则电流相同而电压叠加,背光亮度由电压大小控制。

4.驱动芯片:驱动芯片是背光驱动板的核心部件,它能根据输入的信号来控制背光的亮度。

驱动芯片一般使用PWM调整激活时间来控制电流或电压大小,从而实现对背光亮度的调节。

5.保护电路:背光驱动板会设计一些保护电路,以保证电路的稳定性和安全性。

例如过流保护电路和过压保护电路等,一旦出现异常情况,会自动切断电源供电,避免对其他电路和液晶屏产生损坏。

二、液晶电视背光驱动板的维修方法1.检查电源供电:首先,检查背光驱动板的电源供电是否正常,是否存在电压过高或过低的情况。

如发现电源供电异常,建议更换稳压器或滤波电容等元件。

2.检查亮度控制信号:用万用表或示波器检测亮度控制信号的波形和电压情况,确保信号正常。

如发现亮度控制信号异常,可以检查外部按钮、遥控器或背光驱动板上的控制芯片。

3.检查驱动芯片:检查驱动芯片是否损坏或焊接不良。

如发现芯片损坏,建议更换芯片。

如果发现焊接不良,可以重新焊接芯片。

4.检查背光灯:检查背光灯是否亮或故障。

可以使用万用表进行背光灯的电阻、电压测试,或直接用电源给背光灯供电,观察背光灯是否亮。

液晶显示屏背光灯及高压驱动电路原理与故障维修

液晶显示屏背光灯及高压驱动电路原理与故障维修

液晶显示屏背光灯及高压驱动电路原理与故障维修背光灯有多种类型,包括冷阴极荧光灯(CCFL)和LED背光灯。

CCFL背光灯通常使用高压交流电驱动,而LED背光灯通常使用低压直流电驱动。

CCFL背光灯由一个或多个冷阴极荧光灯管组成,每个灯管包含一个或多个气体填充的玻璃管,内部涂有荧光粉。

高压驱动电路将交流电转换为高频高压输出,并通过电极将电流传导到荧光灯管。

当电流通过荧光灯管时,气体被激发并产生紫外线,荧光粉则将紫外线转换为可见光,从而提供背景照明。

LED背光灯由多个发光二极管(LED)组成,通常分为边光源和全阵列光源两种。

边光源是将LED安装在液晶显示屏的边缘并通过导光板分散光线,而全阵列光源是将LED直接安装在背板上以提供均匀的背光。

LED背光灯通常使用恒流驱动电路,为LED提供稳定的电流以确保均匀的亮度。

1.背光灯管烧坏:如果CCFL背光灯管损坏,通常需要更换新的灯管。

而LED背光灯管一般寿命较长,一旦烧坏,则需要更换整个背光模组。

2.驱动电路故障:驱动电路可能会出现电容故障、保险丝烧断等问题。

这种情况下,需要检查并更换损坏的元件。

3.驱动电路控制芯片故障:控制芯片(例如逆变器驱动芯片)的故障可能导致背光灯无法正常开关。

这种情况下,需要检查并更换故障的芯片。

4.光源均匀性问题:如果LED背光灯的亮度不均匀,可能是导光板损坏或LED发光不一致所导致。

维修方法包括重新安装导光板或调整LED的位置。

5.供电问题:背光灯的供电电源可能存在问题,例如电源电压稳定性不好或电源线损坏等。

这种情况下,需要检查电源电压和线路连接,并进行必要的修复或更换。

总之,液晶显示屏背光灯及高压驱动电路的故障维修需要具备一定的电子维修知识和技能。

由于涉及到高压电路和精密器件,建议遇到故障时请寻求专业的技术人员来进行维修或更换。

液晶屏驱动与背光原理

液晶屏驱动与背光原理

液晶屏驱动与背光原理被动驱动:被动驱动也称为多路驱动。

它通过一组驱动电极将输入信号分配到像素上,通过对应驱动电极上的电压激活液晶分子,控制光的透过程度。

被动驱动的优点是简单、成本低;缺点是刷新率较低,图像质量较差,仅适用于小尺寸的液晶显示器。

主动驱动:主动驱动也称为TFT技术。

它采用薄膜晶体管(TFT)作为驱动器件,每个像素都有一个对应的TFT,通过控制TFT上的电压来驱动液晶分子。

主动驱动具有刷新率高、图像质量好、可适用于大尺寸液晶显示器等优点。

但是,主动驱动的成本较高。

背光原理:液晶屏为了显示图像需要光源提供背光照明。

背光源的主要作用是产生光线,以提供足够的光亮度,使得液晶屏能够显示出清晰的图像。

常见的背光源有冷阴极管(CCFL)和LED背光。

-冷阴极管(CCFL):冷阴极管是一种通过电子束激发荧光粉发光的光源。

它包括玻璃管、阴极、阳极等构件。

当高压电流通过阴极时,会释放出大量的电子束,电子束击打玻璃管内的荧光粉,从而产生可见光。

CCFL背光源的优点是亮度高、色彩还原度好;缺点是功耗较大、寿命较短、制造成本较高。

- LED背光:LED(Light Emitting Diode)背光是一种通过LED发光的光源。

它由许多小型发光二极管组成,结构紧凑、节能高效。

LED背光源的优点是节能、寿命长、响应速度快;缺点是成本较高、颜色还原度相对较低。

背光源的工作原理是将背光源的光线通过液晶分子的旋转、吸收和透过来实现对图像的显示。

当光线通过液晶分子时,液晶分子的定向状态会改变光线透过的程度,从而产生不同的亮度。

通过控制液晶屏的驱动电压和信号,可以调整液晶分子的定向状态,进而控制背光通过液晶屏的亮度,实现显示图像的效果。

总之,液晶屏驱动和背光原理是液晶显示器工作的两个关键环节。

液晶屏驱动将输入信号转换为液晶分子的定向状态,控制光的透过程度,从而产生显示图像;背光源提供光亮度,使得液晶屏能够显示出清晰的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液晶显示屏背光驱动集成电路工作原理对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。

这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。

也是一个独立的整体。

这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。

为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。

是非常重要也是故障率极高的部分(开关电源都是故障率最高的部分,要重点考虑)。

图1所示是液晶屏驱动系统框图。

从图中可以看出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。

图1这个独立的液晶屏驱动电路的供电系统;主要产生4个液晶屏驱动电路所需的电压:1 VDD 屏驱动电路工作电压,类似一般模拟集成电路的VCC。

一般为3.3V。

2 VGL 屏TFT薄膜开关MOS管的关断电压,一般为-5V。

3 VGH 屏TFT薄膜开关MOS管的开通电压,一般为20V~30V。

4 VDA 屏数据驱动电压,VDA经基准处理后,由伽马电路用以产生灰阶电压,一般为14V~20V。

以上电压不同的屏;电压值不同。

这些输出的任一电压出现问题,都会出现不同的图像显示故障,可见其重要性。

并且也是故障多发部位。

也是液晶电视维修人员必须掌握的部分,这个电路在某些文章、资料里称为:液晶屏逻辑板TFT偏压电路。

这篇文章的推出;显然是“及时雨、雪中送碳”,并且此文是介绍的目前普片采用的TFT偏压供电芯片TPS65161作为典型进行分析,怀着欣喜的心情细细的阅读此文章,看完后感到非常的遗憾、失望,此文把VDD、VDA、VGL和VGH四种电压产生的原理阐述错了,对关键电压的产生过程没有任何交代(模糊词汇一语而过),例如图6中CP22、DP8组成的半波负压整流电路(产生VGL)的工作原理、CP18、DP5组成的半波叠加整流电路(产生VGH)的工作原理,这些都是这个TFT偏压电路的重点,文中并把产生VDA电压的并联型的开关电源误认为是滤波电路(12V电压莫名其妙的经过滤波电路就能上升成为近20多伏的VDA电压???)、把产生VDD电压的串联型的开关电源的蓄能电感(LP2)也误认为是滤波电感、把串联开关电源的续流二极管DP3误认为是稳压二极管等,这样的叙述无法正确的分析故障,误导读者、也容易误导维修人员对电路、故障进行分析。

便于对照,以下是复制原文:也请精通此电路的师傅们参加讨论,把液晶的维修技术广为传播。

(以上是某杂志某一段原文复制)下面把我们分析的结果提供给大家以便对照参考(如有不对也请指正)。

TPS65161集成电路是美国德州仪器公司(Texas Instruments)出品的一款专门为32寸以上尺寸TFT液晶屏驱动电路提供偏置电压的开关电源芯片。

内部有一个高于500K 振荡频率的振荡激励电路,该芯片12V供电;可以支持4组经过稳压的输出电压;即VDD、VGL、VGH、VDA电压,特别是能提供较大的电流容量,并且电压幅度可以调整以适应不同类型的液晶屏。

集成电路具有短路保护及过温度保护。

下面对VDD、VDA、VGH、VGL产生的原理及过程进行分析,原理图就仍然采用上面作者绘制的电路原理图。

(上面图4中原作者把Q2 P沟道误绘制成N沟道)。

VDD电压产生:图3所示(仍旧采用原文图片序号)是TPS65161芯片VDD 电压产生部分原理图;图3原文中VDD电压产生插图图3原文中VDD电压产生插图(局部放大)在图3中,TPS65161内部的MOS管Q3、外部的LP2及DP3组成了一个串联型的开关电源,由TPS65161内部的振荡激励信号控制Q3开关电源工作。

等效电路如图3.1所示。

图3.1在图3.1中;串联开关电源的开关管是集成电路TPS65161内部的Q3,工作过程如下;在T1时间:图3.2所示;集成电路的22脚输入12V电压经Q3、LP2流通向负载供电,由图3.2图3.3于LP2内部自感电势的作用(自感电势方向为:左正右负),由于流经LP2的电流线性的增长,输出端电压逐步上升,并且线性增长的电流在LP2内部以磁能的形式存储起来,图3.2中红色箭头所示是电流方向、蓝色箭头所示是LP2的自感电势方向。

在T2时间;输出端电压上升到3.3V时经过分压取样电路RP20、RP12、RP22、RP14组成的分压取样电路的取样电压反馈至TPS65161的稳压控制15脚,控制Q3断开,这时12V 输入电压形成的电流被切断;LP2内部的电流也被切断,电流被切断LP2内部存储的磁能也无法继续维持,磁能即迅速转换成方向为左负右正的感生电势(楞次定律)图3.3中蓝色箭头所示感生电势方向,这个左负右正的感生电势的方向正好继续维持着在T1时间流过RP23的电流方向,由于Q3的断开,这个左负右正的感生电势经过LP2、RP23、DP3(续流二极管)流通继续维持着对负载的供电。

这就是VDD产生的过程,其中由于输出电压较低3.3V,续流二极管DP3采用了低压降的肖特基管,此管故障率比较高,维修过程中应特别加以注意,此管绝不是稳压管。

由于篇幅太长关于VDA、VGL、VGH电压产生的原理与原文不同的认识之处下篇继续叙述借此并整理出一套完整的电路分析及故障检修方法剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(中)VDA电压的产生:VDA电压是列驱动电路的数据驱动电压;该电压最终要经过一定的处理产生非线性的阶梯电压以控制液晶屏的分子不同扭曲角度,这个电压就叫灰阶电压,如果没有这个电压或者电压不正常,图像就会没有或者出现严重的层次失真(灰度失真)。

不同特性的屏这个电压的高低不同,一般在14V至20V左右的范围内。

在“剖析液晶屏逻辑板TFT偏压电路”一文中介绍;VDA电压是先由12V供电电压经过升压成为20V左右的VAA_FB电压(不能超过23V否则过压保护电路启控工作),再经过控制就成为VDA电压(VAA_FB电压就是VDA电压)。

原文的图4所示,该VAA_FB电压再经过QP1开关控制由L11输出VDA电压,原文中的图5所示。

图4 原文中图4(图中Q2应为P沟道MOS)(图4中上面的V12表示主板送来的12V电压)原文图4的局部图原文由VAA_FB产生VDA原理图(原文中的图5 所示是VAA_FB电压经过QP1控制后成为VAA经过RP9、L11成为VDA)以下是原文中对VAA_FB产生的原理及过程的一段叙述(黑体字是原文):VAA_FB电压产生电路VAA_FB电压产生电路由UP1(TPS65161)的1—5、28脚内部电路及外围电路构成,其电路如图4所示。

UPl(TPS65161)12脚为主升压转换器工作方式设置,决定其内部电路是工作在脉冲宽度调制或500/750kHz固定开关频率方式。

本方案中,12脚经RP25(0Ω电阻)接12V输入电压,工作在750kHz固定开关频率。

主升压转换器有一个可调节的软启动电路,以防止在启动过程中的高涌流。

软启动时间由连接到28脚的外部电容器CP26设置。

28脚内部连接一恒流源,与内部电流限制与软启动脚电压成正比。

在达到内部软启动的阈值电压时,比较器被释放电流限制。

软启动电容器值愈大,软开始时间越长。

上电后,12V输入电压经CP5、CP6、LP3滤波后,一路加到DP1、CP7、CP8、CP9、CPl0组成的滤波电路,产生VAA_FB 电压;另一路加到UPl(TPS65161)的4、5脚。

VAA_FB电压经CPl6滤波后加到UPl(TPS65161)的3脚,3脚内接一个过电压保护开关Q2和过电压保护比较器,过电压保护比较器将3脚电压与内部基准电压进行比较,当3脚电压上升到23V时,TPS65161内部驱动控制器关掉N通道MOSFET,只有输出电压低于过电压阈值后,内部驱动控制器才会再开始工作。

在上面的图4中,VDA电压是如何产生的?以上原文中的失误在于:12V电压经过电感LP3 (文中误认为是滤波元件)及DP1就莫名其妙的上升为近20V的VAA_FB 电压?,原文;根本没有看到LP3、Q1、DP1的组合实际上是一个并联型的开关电源,LP3在此处是一个储能电感的作用,所以原文的电路的分析也不能是合理的。

图中的关键是LP3、Q1、DP1的组合是一个典型的并联型开关电源(图4.1所示),其中LP3是开关电源的储能电感,Q1是开关电源的开关管,DP1是开关电源的整流二极管。

图4.1所示是组成的并联型开关电源的等效电路,集成电路TPS65161的1(FB)脚是这个并联型开关电源的稳压控制端,由输出端RP2、RP5、RP4、RP3组成的取样电路送来取样信号,控制激励Q1开关管激励信号的脉冲宽度,以达到稳压的目的。

相关文档
最新文档