初中数学提高训练 (2)
人教版初中数学九年级上册课后提升训练试卷(22.1.4 二次函数y=ax2+bx+c第的图象和性质)
2020年秋绵阳南山双语学校初中数学(人教版)九年级上册第二十二章二次函数22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c第的图象和性质1.(2020湖北十堰丹江口期中)关于抛物线y=x2-2x-1,下列说法中错误的是 ( )A.开口方向向上B.对称轴是直线x=1C.当x>1时,y随x的增大而减小D.顶点坐标为(1,-2)2.(2019吉林四平铁西期中)二次函数y=-2x2-3x+1的图象大致是 ( )3.(2020重庆八中月考)如图,已知抛物线y=ax2+bx+c(a≠0)经过点(-2,0),对称轴为直线x=1,下列结论中正确的是 ( ) A.abc>0 B.b=2aC.9a+3b+c<0D.8a+c=04.(2020天津和平期中)抛物线的顶点为(1,-4),与y轴交于点(0,-3),则该抛物线的解析式为 ()A.y=x2-2x-3B.y=x2+2x-3C.y=x2-2x+3D.y=2x2-3x-35.(2020浙江嘉兴秀洲期中)二次函数y=ax2+bx+c的图象经过点A(-4,0)、B(-1,0)和C(-2,-2),则下列说法正确的是 ()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是直线x=- 526.(2020天津和平期中)二次函数y=x2+bx+c(b,c是常数)中的自变量x与函数值y的部分对应值如下表:下列结论正确的是 ( )A.当x=2时,y有最大值1B.当x<2时,y随x的增大而增大C.点(5,9)在该函数的图象上D.若A(m,y1),B(m+1,y2)两点都在该函数的图象上,则当m>3/2 时,y1<y27.(2019天津南开期中)函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的 ( )8.(2019重庆中考)抛物线y=-3x2+6x+2的对称轴是 ()A.直线x=2B.直线x=-2C.直线x=1D.直线x=-19.(2019辽宁葫芦岛中考)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是 ( )10.(2019四川遂宁中考)二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是 ()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大11.(2020独家原创试题)已知A(a,m),B(b,n)是抛物线y=x2-2x-2 020上的两点,且a<b<1.若k=a-b,c=m-n,则一次函数y=kx+c的图象经过的象限是 ()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限12.(2019江苏徐州铜山二模)二次函数y=x2+2x+2的图象先向上平移2个单位长度,再向右平移3个单位长度,则平移后二次函数图象的顶点坐标是.13.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.14.(2020山东青岛莱西期中)顶点为(-6,0),开口向下,形状与函数x2的图象相同的抛物线的表达式是. y= 1215.(2019北京西城期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其中自变量x与函数值y之间满足下面的对应关系:则a+b+c= .16.(2020重庆巴南期中)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:若一次函数y=bx+ac的图象不经过第m象限,则m=17.(2020湖北孝感孝南期中)如图,抛物线y=ax2+bx+c的图象经过(-1,0),对称轴为x=1,则下列三个结论:①abc<0;②10a+3b+c>0;③am2+bm+a≥0,其中正确的结论为(填序号).18.(2019福建莆田秀屿月考)若函数y=a(x-h)2+k的图象经过原点,最小值为-8且形状与抛物线y=-2x2-2x+3相同,则此函数关系式为.19.(2020北京三十九中期中)把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是.20.(2019福建龙岩上杭月考)如图,二次函数图象过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式.21.(2019山东淄博临淄期中)已知二次函数y=ax2+bx+c中,y与x的部分对应值如下表:(1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标.参考答案1.答案 C∵a=1>0,∴开口方向向上,故A说法正确;对称轴是故B说法正确;当x>1时,y随x的增大而增大,故C说法错误;y=x2-2x-1=(x-1)2-2,顶点坐标为(1,-2),故D说法正确.故选C.2.答案 B因为a=-2<0,所以抛物线y=-2x2-3x+1开口向下,故C、D不符合题意;抛物线y=-2x2-3x+1的对称轴是直线故A不符合题意.故选B.3.答案 D ∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴-b/2a =1,∴b=-2a>0,故B错误;∵抛物线与y轴的正半轴相交,∴c>0,∴abc<0,故A错误;∵对称轴为直线x=1,又点(-2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(-2,0),∴4a-2b+c=0,∵b=-2a,∴4a+4a+c=0,即8a+c=0,故D正确.故选D.4.答案 A 设抛物线的解析式为y=a(x-1)2-4,将(0,-3)代入y=a(x-1)2-4,得-3=a(0-1)2-4,解得a=1,∴抛物线的解析式为y=(x-1)2-4=x2-2x-3.故选A.5.答案 D ∵二次函数y=ax2+bx+c的图象经过点A(-4,0)、B(-1,0)和C(-2,-2),∴a>0,∴抛物线开口向上,故A错误;对称轴为直线y随x的增大而增大,故B错误,D正确;∴函数的最小值小于-2,故C错误.故选D.6.答案 D 观察表格知,函数的图象经过点(1,2)和(3,2),∴对称轴为x=2.∵函数图象开口向上且经过点(2,1),∴x=2时,y有最小值1,故A错误.易知当x<2时,y随x的增大而减小,故B错误.∵对称轴是直线x=2,点(-1,10)关于x=2的对称点是(5,10),∴点(5,10)在该函数的图象上,点(5,9)不在该函数的图象上,故C错误.∵当m>3/2 时,|2-m|<|m+1-2|,∴y1<y2,故D正确.故选D.7.答案 C 在函数y=ax2+ax+a(a≠0)中,当a<0时,该函数图象开口向下,顶点在y轴左侧,抛物线与y轴的负半轴相交,故C正确、D错误;当a>0时,该函数图象开口向上,顶点在y轴左侧,抛物线与y轴的正半轴相交,故A、B错误.故选C.8.答案 C9.答案 D10.答案 C 由题意得,对称轴为直线x=2,∴a=4,故A正确;当b=-4时,y=x2-4x-4=(x-2)2-8,∴顶点的坐标为(2,-8),故B正确;当x=-1时,由图象知此时y<0,即1+4+b<0,∴b<-5,故C不正确;∵对称轴为直线x=2且图象开口向上,∴当x>3时,y随x的增大而增大,故D正确.故选C.11.答案 B y=x2-2x-2 020=(x-1)2-2 021,∴抛物线开口向上,对称轴为x=1,当x<1时,y随x的增大而减小.∵A(a,m),B(b,n)是抛物线y=x2-2x-2 020上的两点,且a<b<1,∴m>n.∵k=a-b<0,c=m-n>0,∴一次函数y=kx+c 的图象经过的象限是第一、二、四象限.故选B.12.答案(2,3)∵y=x2+2x+2=(x+1)2+1,顶点为(-1,1),∴将图象向上平移2个单位长度,再向右平移3个单位长度,平移后的二次函数图象的顶点坐标为(2,3).13.答案一14.解析设所求的抛物线的表达式为y=a(x-h)2+k,∵顶x2点为(-6,0),∴h=-6,k=0,又∵开口向下,形状与函数y= 12 ,∴抛物线的表达式为的图象相同,∴a=-1215.答案-1.5∵x=3时,y=2.5;x=5时,y=2.5,∴抛物线的对称轴为直线x=4,∴x=1和x=7的函数值相等,而x=7时,y=-1.5,∴x=1时,y=a+b+c=-1.5.16.答案 3解析由表中的数据可知抛物线开口向上,顶点为(1,3),与y轴的交点为(0,4),∴b<0,∴ac>0,∴函数y=bx+ac的图象经过第一、二、四象限,不经过第三象限,∴m=3.17.答案②③解析①观察图象可知,a>0,b<0,c<0,∴abc>0.∴①错误.②观察图象可知,当x=3时,y=0,即9a+3b+c=0,∵a>0,∴10a+3b+c>0.∴②正确.③∵对称轴为x=1,∴b=-2a,∴am2+bm+a=am2-2am+a=a(m-1)2≥0,∴am2+bm+a≥0.∴③正确.18.答案y=2x2+8x或y=2x2-8x函数y =a (x -h )2+k 的图象经过原点,把(0,0)代入解析式,得ah 2+k =0,∵最小值为-8,∴函数图象的开口向上,a >0,顶点的纵坐标k =-8,又∵形状与抛物线y =-2x 2-2x +3相同,∴二次项系数a =2,把a =2,k =-8代入ah 2+k =0中,得h =±2,∴函数解析式是y =2(x +2)2-8或y =2(x -2)2-8,即y =2x 2+8x 或y =2x 2-8x .19. 答案 y =-x 2-2x -2 ∵抛物线y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1),将顶点向左平移3个单位,再向下平移2个单位得到的点是(-1,-1),则变换后的抛物线解析式为y =-(x +1)2-1=-x 2-2x -2.20. 解析 (1)∵点A 的坐标为(-1,0),点B 的坐标为(4,0),∴AB =4-(-1)=5,∵AB =OC ,∴OC =5,∴点C 的坐标为(0,5).(2)解法一:设过点A ,B ,C 的抛物线的解析式为y =ax 2+bx +c , 把A (-1,0),B (4,0),C (0,5)分别代入y =ax 2+bx +c 中,得 解得 -0,1640,5,a b c a b c c +=⎧⎪++=⎨⎪=⎩5-,415,45,a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩所以二次函数的解析式为解法二:设过点A ,B 的抛物线的解析式为y =a (x +1)(x -4), 把点C (0,5)代入,得5=a (0+1)(0-4),所以二次函数的解析式为21. 解 (1)把(0,1),(1,-2),(2,1)代入y =ax 2+bx +c 中,得 解得 所以二次函数解析式为y =3x 2-6x +1.(2)由(1)知抛物线解析式为y =3x 2-6x +1,即y =3(x 2-2x )+1=3(x 2-2x +1-1)+1=3(x -1)2-2,所以抛物线的顶点坐标为(1,-2).1,-2,421,c a b c a b c =⎧⎪++=⎨⎪++=⎩3,-6,1,a b c =⎧⎪=⎨⎪=⎩。
【初中数学】人教版八年级下册专题训练(二)中点四边形(练习题)
人教版八年级下册专题训练(二)中点四边形(146) 1.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.2.四边形ABCD为边长等于1的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连接四边形EFGH的各边中点组成第二个中点四边形……则按上述规律组成的第八个中点四边形的边长等于.3.如图所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点.(1)当四边形ABCD是矩形时,四边形EFGH是形,并说明理由;(2)当四边形ABCD满足什么条件时,四边形EFGH是正方形?并说明理由.4.如图,在四边形ABCD中,E,F,G,H分别是BC,AD,BD,AC的中点.(1)求证:EF与GH互相平分;(2)当四边形ABCD的边满足条件时,EF⊥GH.5.顺次连接对角线相等的四边形的各边中点,所得四边形是()A.矩形B.平行四边形C.菱形D.任意四边形6.顺次连接菱形各边中点所得到的四边形是()A.梯形B.矩形C.菱形D.正方形7.若四边形的对角线互相垂直,则顺次连接这个四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.正方形8.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当中点四边形EFGH是菱形时,四边形ABCD是矩形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确的是(填序号).9.如图,在四边形ABCD中,AD=CD,AB=CB,E,F,G,H分别是AD,AB,CB,CD的中点.求证:四边形EFGH是矩形.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.正方形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,四边形ABCD的边AB,CD应满足的条件是.13.如图所示,E,F,G,H为四边形ABCD各边的中点,若对角线AC,BD的长都为20,则四边形EFGH的周长是()A.80B.40C.20D.1014.如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60∘,则四边形EFGH的面积为cm2.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.16.如图,在四边形ABCD中,AC=8,BD=6,且AC⊥BD,E,F,G,H分别是AB,BC,CD,DA 的中点,则EG2+FH2=.参考答案1.【答案】:如图,连接EF ,FG ,GH ,EH ,∵E ,H 分别是AB ,DA 的中点,∴EH 是△ABD 的中位线,∴EH =12BD =3. 同理可得EF ,FG ,GH 分别是△ABC ,△BCD ,△ACD 的中位线, ∴EF =GH =12AC =3,FG =12BD =3,∴EH =EF =GH =FG =3,∴四边形EFGH 为菱形,∴EG ⊥HF ,且垂足为O ,∴EG =2OE ,FH =2OH .在Rt △OEH 中,根据勾股定理得:OE 2+OH 2=EH 2=9,等式两边同时乘4得4OE 2+4OH 2=9×4=36,∴(2OE)2+(2OH)2=36,即EG 2+FH 2=36.【解析】:连接EH,HG,GF,FE ,根据题目条件提供的四个中点,结合中位线的性质,证明四边形EFGH 为菱形,再根据菱形的性质及勾股定理求出结果.2.【答案】:116【解析】:根据题意,结合图形寻找规律:第二、四、六、八个中点四边形为菱形,第一个菱形边长为12,第二个菱形边长为14,第三个菱形边长为18,第四个菱形边长为116,即为第八个菱形的边长3(1)【答案】当四边形ABCD 是矩形时,四边形EFGH 是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD .∵E ,F ,H 分别是AB ,BC ,AD 的中点,∴EF=12AC,EH=12BD,∴EF=EH.同理可得EF=GH=GF,∴四边形EFGH是菱形【解析】:利用矩形及中位线的性质,结合菱形的判定方法进行推导证明.(2)【答案】当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH是正方形.理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12AC,同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC.∵AC=BD,∴EF=EH=GH=GF,∴四边形EFGH是菱形.∵AC⊥BD,∴EF⊥EH,∴菱形EFGH是正方形【解析】:根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,得到四边形ABCD满足的条件.4(1)【答案】证明:连接GE,GF,HF,EH.∵E,G分别是BC,BD的中点,∴EG=12CD.同理FH=12CD,FG=12AB,EH=12AB,∴EG=FH,GF=EH,∴四边形EHFG是平行四边形.∴EF与GH互相平分【解析】:根据题中提供的四个中点,得到几组中位线,利用中位线的性质,及平行四边形的判定方法,推导出四边形EHFG是平行四边形,进而推导出结论(2)【答案】当四边形ABCD的边满足条件AB=CD时,EF⊥GH.【解析】:理由如下:当EF⊥GH时,四边形EGFH是菱形,此时GF=EG.∵EG=12CD,FG=12AB,∴AB=CD.∴当四边形ABCD的边满足条件AB=CD时,EF⊥GH5.【答案】:C【解析】:顺次连接对角线相等的四边形的各边中点,所得四边形是菱形.如图,∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的中位线,∴EH∥BD,EH=12BD,FG∥BD,FG=12BD,∴EH∥FG,EH=FG=12BD,∴四边形EFGH为平行四边形.又∵EF为△ABC的中位线,∴EF=12AC.又∵EH=12BD,且AC=BD,∴EF=EH,∴平行四边形EFGH为菱形.故选C.6.【答案】:B【解析】:利用菱形的性质、矩形的判定方法及中位线的性质推导出结果.7.【答案】:B【解析】:如图,在四边形ABCD中,AC⊥BD,连接各边的中点E,F,G,H,则EH∥AC,FG∥AC,EF∥BD,GH∥BD.又因为对角线AC⊥BD,所以GH⊥EH,EH⊥EF,EF⊥FG,FG⊥HG.故可判定该四边形是矩形.故选B.8.【答案】:①④【解析】:如图四边形ABCD,连接AC,BD.∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形,故①正确.若四边形ABCD是矩形,则AC=BD.∵EF=12AC,EH=12BD,∴EF=EH,∴平行四边形EFGH是菱形,故②错误.若四边形EFGH是菱形,则AC=BD,但四边形ABCD不一定是矩形,故③错误.若四边形ABCD是正方形,则AC=BD,AC⊥BD,∴四边形EFGH是正方形,故④正确.∴正确的叙述是①④.9.【答案】:连接AC,BD,交于点O,如图.∵E,F,G,H分别是AD,AB,CB,CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=12BD,EH=FG=12AC,∴四边形EFGH是平行四边形.∵AD=CD,AB=CB,∴点D,B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴四边形EFGH是矩形【解析】:利用三角形的中位线解题.10.【答案】:D【解析】:若得到的四边形是矩形,那么邻边互相垂直,根据三角形中位线定理,故原四边形的对角线必互相垂直,由此得解.11.【答案】:C【解析】:若得到的四边形是菱形,那么四条边都相等,根据三角形中位线定理,故原四边形的对角线必相等,由此得解.12.【答案】:AB=CD【解析】:若四边形EFGH是菱形,则GH=EH,又根据题中条件所给的四个中点,利用中位线的性质推导出AB=2GH,CD=2EH,所以AB=CD.13.【答案】:B【解析】:∵E,F,G,H是四边形ABCD各边的中点,∴HG=EF=12AC,GF=HE=12BD,∴四边形EFGH的周长=HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40 14.【答案】:9√3【解析】:连接AC,BD,相交于点O,如图所示, ∵点E,F,G,H分别是菱形四边的中点,∴EH=12BD=FG,EH∥BD∥FG, EF=12AC=HG,∴四边形EHGF是平行四边形.∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.∵四边形ABCD是菱形,∠ABC=60∘,∴∠ABO=30∘.∵AC⊥BD,∴∠AOB=90∘,∴AO=12AB=3cm,∴AC=6cm.在Rt△AOB中,由勾股定理,得OB=√AB2−OA2=3√3cm, ∴BD=6√3cm.∵EH=12BD,EF=12AC,∴EH=3√3cm,EF=3cm,∴矩形EFGH的面积=EF·EH=9√3cm2. 故答案为9√315.【答案】:12【解析】:∵E,F,G,H分别为边AD,AB,BC,CD的中点,∴HE=12AC=4,HE∥AC,GF∥AC,∴HE∥GF.同理,HG∥EF,HG=12BD=3,∴四边形EFGH是平行四边形.∵AC⊥BD,∴∠EHG=90∘,∴四边形EFGH是矩形,∴四边形EFGH的面积为3×4=1216.【答案】:50【解析】:连接HG,EH,EF,FG,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴HG=EF=12AC=4,EH=FG=12BD=3,∵E,H分别是AB,AD的中点,∴HE∥BD,HE=12BD,同理FG∥BD,FG=12BD,∴四边形HEFG是平行四边形.∵AC⊥BD,∴HG⊥EH,∴四边形HEFG为矩形,∴EG2+FH2=EF2+FG2+EF2+EH2=52+52=50。
初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)
初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)1.若a 为整数,关于x 的不等式组22340x x x a ≤+⎧⎨-<⎩有且只有3个整数解,且关于x 的分式方程1122ax x x-=--有负整数解,则整数a 的个数为( ) A .4B .3C .2D .1 2.若a 为整数,关于x 的不等式组2(1)4340x x x a +≤+⎧⎨-<⎩有且只有3个非正整数解,且关于x 的分式方程11222ax x x -+=--有负整数解,则整数a 的个数为( )个. A .4 B .3 C .2 D .13.若a 使得关于x 的分式方程21224a x x -=-- 有正整数解,且方程2420ax x --=有解,则满足条件的所有整数a 的个数为( )A .1B .2C .3D .44.若数a 使关于x 的不等式组111(1){3223(1)x x x a x -≤--≤-,有且仅有三个整数解,且使关于y 的分式方程31222y a y y++--=1有整数解,则满足条件的所有a 的值之和是( ) A .﹣10B .﹣12C .﹣16D .﹣18 5.若关于x 的分式方程21133x m x x --=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( )A .﹣7B .﹣9C .﹣12D .﹣14 6.关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠ 7.若数a 使关于x 的分式方程41332a x x +=--的解为正数,使关于y 的不等式组12255(2)34y y a y y --⎧⎪⎨⎪+-⎩><无解,则所有满足条件的整数a 的值之积是( ) A .360B .90C .60D .15 8.若关于x 的方程x a c b x d -=-有解,则必须满足条件( ) A .a ≠b ,c ≠d B .a ≠b ,c ≠-d C .a ≠-b , c ≠d D .a ≠-b , c ≠-d 9.从7-,5-,1-,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩的解集为x 1>,且关于x 的分式方程1x m 32x x 2-+=--有非负整数解,则符合条件的m 的值的个数是( )A .1个B .2个C .3个D .4个10.若数a 使关于x 的不等式组112352x x x x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a a y y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .211.如果关于x 的分式方程2ax x 3+--2=43x -有正整数解,且关于x 的不等式组()4x 3x 3x a 0<-⎧-≥⎨⎩无解,那么符合条件的所有整数a 的和是( )A .16-B .15-C .6-D .4-12.若关于x 的分式方程21x a x --=1的解为正数,则字母a 的取值范围是( ) A .a <2B .a≠2C .a >1D .a >1且a≠213.已知关于x 的方程33+3a x x -+=1的解为负数,且关于x 、y 的二元一次方程组27358x y x y a -=⎧⎨+=+⎩的解之和为正数,则下列各数都满足上述条件a 的值的是( ) A .23,2,5 B .0,3,5 C .3,4,5 D .4,5,614.若关于x 的分式方程412a x x -=-的解为正整数,且关于x 的不等式组1282{630x x a x -+-≤>有解且恰有6个整数解,则满足条件的所有整数a 的值之和是( )A .4B .0C .-1D .-315.(山东省济南市槐荫区2018届九年级下学期学业水平阶段性调研测试(一模)数学试题)若关于x 的分式方程m 1x 1--=2的解为非负数,则m 的取值范围是 A .m >−1B .m≥−1C .m >−1且m≠1D .m≥−1且m≠1 16.若关于x 的方程2622x a x x--=--1的解为正数,则所有符合条件的正整数a 的个数为( )A .1个B .2个C .3个D .4个 17.若数a 使关于x 的分式方程1133x a x x++=--有非负整数解,且使关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5B .﹣3C .0D .2 18.若关于x 的方程3344x m m x x ++=--的解为正数,则m 的取值范围是( ). A .92m < B .94m >-且34m ≠- C .6m < D .6m <且2m ≠ 19.已知关于x 的分式方程6111m x x+=--的解是非负数,则m 的取值范圈是( ) A .5m > B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 20.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠ 21.若关于 x 的分式方程3111m x x-=-- 的解是非负数,则 m 的取值范围是( )A .m ≥-4B .m ≥-4 且 m ≠-3C .m ≥2 且 m ≠3D .m ≥2 22.关于x 的方程2211x m m x x -+=--的解为正数,则m 的取值范围是( ) A .23m < B .23m > C .23m <且13m ≠ D .23m <且0m ≠ 23.若关于x 的方程232x m x +=-的解是正数,则m 的取值范围是( ) A .6m >- B .6m >-且2m ≠ C .6m >-且4m ≠- D .6m <-且4m ≠- 24.已知关于x 的分式方程11m x ---1=21x -的解是正数,则m 的取值范围是( ) A .m <4 且m ≠3B .m <4C .m ≤3且m ≠3D .m >5且m ≠625.已知二次函数y =(a+2)x 2+2ax+a ﹣1的图象与x 轴有交点,且关于x 的分式方程1ax x ++1=71x +的解为整数,则所有满足条件的整数a 之和为( ) A .﹣4B .﹣6C .﹣8D .3 26.若关于x 的分式方程121m x +=-的解为非负数,则m 的取值范围是( ) A .3m >- B .3m ≥-C .3m >-且1m ≠-D .3m ≥-且1m ≠- 27.对于二次函数y =2x 2﹣(a ﹣2)x +1,当x >1时,y 随x 的增大而增大;且关于x 的分式方程22x -﹣3=2ax x --有整数解,则满足条件的整数a 的和为( ) A .5 B .6 C .10 D .1728.若关于y 的不等式组122y-k 46y k k -⎧≥⎪⎨⎪≤+⎩有解,且关于x 的分式方程32222kx x x x +=---有非负整数解,则符合条件的所有整数k 的和为( )A .-5B .-9C .-10D .-16 29.关于x 的方程2334ax a x +=-的解为1x =,则a =( ) A .1 B .3 C .-1 D .-330.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1 B .2 C .3 D .431.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( ) A .m =-1 B .m =2C .m =3D .m =0或m =3 32.(2017龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( )A .1a >B .1a ≥C .1a ≥且9a ≠D .1a ≤ 33.已知分式方程312(1)(2)x k x x x +=++-+的解为非负数,求k 的取值范围( ) A .5k ≥ B .1k ≥- C .5k ≥且6k ≠ D .1k ≥-且0k ≠ 34.已知关于x 的一次函数()210y a x a =--+的图象过一、三、四象限,且关于y 的分式方程93322ay a y y--=--有整数解,求所有满足条件的整数a 的和为( ) A .11 B .15 C .21 D .2435.若关于x 的方程3133x ax x x ++=--有正整数解,且关于y 的不等式组252510y a y -⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a 有( )个A .0B .1C .2D .3参考答案1.C【解析】【分析】先解出不等式组,然后由不等式组有且只有3个整数解可得a 的范围;再解分式方程可得x=31a-,根据分式方程有负整数解可得a 的值,两者结合最终确定a 的值. 【详解】解:解不等式223x x ≤+,得:x≥-2,解不等式4x-a <0,得:x <4a , ∵不等式组有且只有3个整数解,∴0<4a ≤1, 解得:0<a ≤4, 由方程1122ax x x -=--得:x=31a- ∵方程有负整数解,∴a=2,4又∵0<a ≤4,∴a=2,4故选:C .【点睛】本题主要考查解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.2.C【解析】【分析】由不等式组有且只有3个非正整数解可得014a <≤,即0<a ≤4,再求分式方程可得x 22a=-,根据分式方程有负整数解可得a 的值. 【详解】解不等式2(x +1)≤4+3x ,得:x ≥﹣2,解不等式4x ﹣a <0,得:x 4a <, ∵不等式组有且只有3个非正整数解, ∴014a <≤, 解得:0<a ≤4, 由方程得:x 22a =-且是负整数,∴2-a=-1或-2, ∴a =3,4.故选C .【点睛】本题考查了解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.3.D【解析】【分析】先解分式方程,求得a 的值,再由方程2420ax x --=有解得a 的取值范围,则可求得a 的值,可求得答案.【详解】 解分式方程21224a x x -=--可得x=4-2a ,x≠2, ∵a 使得关于x 的分式方程21224a x x -=--有正整数解, ∴a 的值为0、2、6,方程2420ax x --=,当a=0时,方程有实数解,满足条件,当a≠0时,则有△≥0,即16+8a≥0,解得a≥-2且a≠0,∴满足条件的a 的值为-2,0、2、6,共4个,故选:D .【点睛】本题主要考查方程的解,求得a 的整数值是解题的关键.4.B【解析】【分析】根据不等式的解集,可得a 的范围,根据方程的解,可得a 的值,根据有理数的加法,可得答案.【详解】()()111132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②, 解①得x≥-3,解②得x≤35a +, 不等式组的解集是-3≤x≤35a +. ∵仅有三个整数解,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y++--=1, 3y-a-12=y-2.∴y=102a +, ∵y≠2,∴a≠-6,又y=102a +有整数解, ∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .【点睛】本题考查了分式方程的解,利用不等式的解集及方程的解得出a 的值是解题关键. 5.A【解析】【分析】根据题意可以求得m 的取值范围,从而可以得到符合条件的m 的整数值,从而可以解答本题.【详解】 解:由方程21133x m x x--=--,解得:x =﹣2﹣m , 则2023m m -->⎧⎨--≠⎩ 可得:m <﹣2且m≠﹣5,212625y y y m +⎧+>⎪⎨⎪-≤⎩①②, 由①知,y >﹣2,由②知,y≤52m +, ∵关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,∴y =﹣1和0∴5+m≥0,解得:m≥﹣5,又m <﹣2且m≠﹣5,∴-5<m <﹣2,∴m 的整数值为﹣4,﹣3,∴符合条件的所有整数m 的值之和=﹣4+(﹣3)=﹣7,故选:A.【点睛】本题考查分式方程的解、解一元一次不等式(组)、一元一次不等式组的整数解,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.6.D【解析】【分析】先根据分式方程的解法,求出用m 表示x 的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【详解】2322x m m x x++=-- 去分母,得x+m+2m=3(x-2)解得x=62m -+ ∵关于x 的分式方程2322x m m x x ++=--的解为正实数 ∴x-2≠0,x >0 即62m -+≠2,62m -+>0, 解得m≠2且m <6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m 的式子表示x 解分式方程,构造不等式组是解题关键.7.B【解析】【分析】表示出分式方程的解,由分式方程解为正数,得到a 的取值范围;不等式组变形后,根据不等式组无解,确定出a 的范围,进而求出a 的值,得到所有满足条件的整数a 的值之积.【详解】解:分式方程去分母得:2a ﹣8=x ﹣3,解得:x =2a ﹣5,由分式方程的解为正数,得到:2a ﹣5>0且2a ﹣5≠3,解得:a >52且a ≠4. 不等式组整理得:527y a y -⎧⎨-⎩><,由不等式组无解,得到:5﹣2a ≥﹣7,即a ≤6,∴a 的取值范围是:52<a ≤6且a ≠4,∴满足条件的整数a 的值为3,5,6,∴整数a 的值之积是90.故选B .【点睛】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解. 8.B【解析】【分析】把a 、b 、c 、d 都看做已知数解方程,去分母,转化为关于x 的整式方程,讨论x 的系数,再讨论最简公分母≠0,得出结论.【详解】方程两边都乘以d(b-x),得d(x-a)=c(b-x),∴dx-da=cb-cx ,即(d+c)x=cb+da ,∴当d+c ≠0,即c ≠-d 时,原方程的解为x=cb da d c ++, 由题意知还要满足b-x ≠0,即cb da d c++≠b , 所以b ≠a ,当c+d=0时,c=-d ,0x=d(a-b),∴当a=b 时,方程有无数个解,故选B.【点睛】本题考查了解字母系数的分式方程,解含有字母系数的方程和解数字系数的方程一样,均是通过去分母,将分式方程转化为整式方程,但因为分式方程中字母的取值决定着方程的解,故对转化后的整式方程中的未知数系数应加以限制,对解出的解还要进行检验. 9.A【解析】【分析】根据分式方程有非负整数解,即可从7-,5-,1-,0,4,3这六个数中找出符合要求的m 的值,综上即可得到答案.【详解】()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩①②, 解不等式①得:x m >,解不等式②得:x 1>,该不等式组的解集为:x 1>,m 1∴≤,即m 取7-,5-,1-,0;1x m 32x x 2-+=--, 方程两边同时乘以()x 2-得:()x 1m 3x 2-+=-,去括号得:x 1m 3x 6-+=-,移项得:x 3x 16m -=--,合并同类项得:2x 5m -=--,系数化为1得:m 5x 2+=, 该方程有非负整数解,∴即m 502+≥,m 522+≠,且m 52+为整数, m ∴取5-,3,综上:m 取5-,即符合条件的m 的值的个数是1个,故选A .【点睛】本题考查了分式方程的解,解一元一次不等式组,一元一次不等式组的整数解,正确掌握解不等式组的方法,解分式方程的方法是解题的关键.10.C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a 的取值范围,解分式方程后根据解为非负数,可得关于a 的不等式组,解不等式组求得a 的取值范围,即可最终确定出a 的范围,将范围内的整数相加即可得.【详解】解不等式112352x x x x a-+⎧<⎪⎨⎪-≥+⎩,得524x a x <⎧⎪⎨+≥⎪⎩, 由于不等式组只有四个整数解,即254a a +≤<只有4个整数解, ∴2014a +<≤, ∴22a -<≤; 解分式方程2211y a a y y++=--,得2y a =-, ∵分式方程的解为非负数,∴20210a a -≥⎧⎨--≠⎩, ∴a≤2且a≠1,∴22a -<≤且a≠1,∴符合条件的所有整数a 为:-1,0,2,和为:-1+0+2=1,故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.11.D【解析】【分析】根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意a 的值,求出之和即可.【详解】分式方程去分母得:2+ax ﹣2x +6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x =﹣122a -,由分式方程有正整数解,得到:a =1,0,﹣1,﹣4,﹣10,不等式组整理得:9x x a -⎧⎨≥⎩<,解得:a ≤x <﹣9,由不等式组无解,即a ≥﹣9,∴a =1,0,﹣1,﹣4,之和为﹣4.故选D .【点睛】本题考查了分式方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解答本题的关键.12.D【解析】去分母得:21,1x a x x a -=-=- ,则10,110a a ->--≠且 ,解得:a >1且a≠2.故选D.13.A【解析】【分析】先解分式方程得:x =a ﹣6,根据分式方程的解是负数列不等式求出a 的取值;再解方程组,把方程的解相加得:x +y =a +3+2a ﹣1=3a +2>0,得出a 的取值.【详解】3a x +﹣33x +=1,去分母得:a ﹣3=x +3,(a ≠3),x =a ﹣6. 由题意得:a ﹣6<0且x ≠-3,解得:a <6且a ≠3.27358x y x y a -=⎧⎨+=+⎩①②,①+②得:5x =5a +15,x =a +3③,把③代入①得:2(a +3)﹣y =7,y =2a ﹣1,∴x +y =a +3+2a ﹣1=3a +2>0,∴a >﹣23,则a 的取值为:﹣23<a <6且a ≠3. 故选A .【点睛】本题考查了分式方程和二元一次方程组以及不等式,解分式方程时要先去分母,化成整式方程后再求解,注意分母不为0,解二元一次方程组时常运用加减法解方程组,根据已知要求列不等式,最后求其解集即可.14.B【解析】【分析】【详解】分析:根据分式方程的解为正数求a的范围,注意使x=2的a的值;由不等式组有6个整数解求a的范围,综合得到a的范围后,取整数值求解.详解:把分式方程去分母,整理得,(a+3)x=8,当a≠-3时,x=83a+,所以83a+>0,解得a>-3.因为当x=2时,a=1,所以a>-3且a≠1.解不等式组128263xxa x+>-⎧⎪⎨⎪-≤⎩得,a≤x<5.因为有解且恰有6个整数解,所以-2<a≤-1.则满足条件的所有整数a的值是-1,0和是-1.故选B.点睛:由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15.D【解析】去分母得,m−1=2(x−1),去括号得,m−1=2x−2,移项,合并同类项得,2x=m+1,系数化为1得,x=1 2m+.因为x≥0,所以12m+≥0,解得m≥−1.把x=1代入m−1=2x−2,得m=1,所以m≥−1且m≠1.故选D.16.B【解析】【分析】分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.【详解】2622x a x x--=-- 1 去分母得:2x +a ﹣6=x ﹣2,解得:x =4﹣a ,由分式方程有正数解,得到4﹣a >0,且4﹣a ≠2,解得:a <4且a ≠2,∴所有符合条件的正整数a 的个数为1,3.故选:B .【点睛】此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.17.D【解析】【分析】解出分式方程,根据题意确定a 的范围,解不等式组,根据题意确定a 的范围,根据分式不为0的条件得到a ≠﹣2,根据题意计算即可.【详解】 解:()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩①②由①得y >﹣8,由②得y ≤a ,∴不等式组的解集为:﹣8<y ≤a ,∵关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,∴a ≥﹣5, 解分式方程1133x a x x++=--,得x =42a - , ∵关于x 的分式方程1133x a x x ++=--有非负整数解,且42a -≠3, ∴a ≤4且a ≠﹣2且a 为偶数;∴﹣5≤a ≤4且a ≠﹣2且a 为偶数,∴满足条件的整数a 为﹣4,0,2,4,∴所有整数a 的和=﹣4+0+2+4=2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.18.D【解析】【分析】把分式方程化为整式方程,根据解为正数,得出m 的取值范围.【详解】解:去分母得:x+m-3m=3x ﹣12,整理得:2x=﹣2m+12,解得:x=2122-+m , 已知关于x 的方程3344x m m x x++=--的解为正数, 所以﹣2m+12>0,解得m <6,当x=4时,x=2122-+m =4,解得:m=2, 所以m 的取值范围是:6m <且2m ≠.故答案选:D .【点睛】本题考查了分式方程的解,以及一元一次不等式,掌握方程和不等式的解法是解题的关键,注意要排除产生增根时m 的值.19.C【解析】【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键. 20.B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x -=--, 21x k x +∴=-, 2x k ∴=+,该分式方程有解,21k ∴+≠, 1k ∴≠-,0x ,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.21.B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可.【详解】解:分式方程去分母得:m+3=x-1,解得:x=m+4,由方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m ≥-4且m ≠-3.故选:B .【点睛】此题考查了解分式方程,分式方程的解,时刻注意分母不为0这个条件.解题的关键是熟练掌握运算法则进行解题.22.A【解析】【分析】将分式方程化为整式方程解得x=2-3m ,根据方程的解是正数列得2-3m>0,即可求出m 的取值范围.【详解】2211x m m x x-+=--, x-m-2m=2(x-1),x-3m=2x-2,∴x=2-3m , ∵方程2211x m m x x-+=--的解为正数, ∴2-3m>0, ∴23m <, 故选:A.【点睛】此题考查根据分式方程的解的情况求参数,将方程化为整式方程求出整式方程的解,列出不等式是解答此类问题的关键.23.C【解析】【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】232x m x +=-, 方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x 的方程的解是正数,得:m+6>0,解得:m>−6,∴m 的取值范围是:m>−6且m≠−4,故选:C .【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键. 24.A【解析】【分析】方程两边同乘以1x -,化为整式方程,求得x ,再列不等式得出m 的取值范围.【详解】 解:12111m x x--=-- 12111m x x --=--- 方程两边同时乘以1x -()112m x ---=-4x m =-+∵已知关于x 的分式方程12111m x x--=--的解是正数,10x -≠ ∴4041m m -+>⎧⎨-+≠⎩∴4m <且3m ≠.故选:A【点睛】本题考查了分式方程的解的概念、解分式方程、数的分类、解不等式组等知识点,要注意分式的分母不为0的条件,此题是一道易错题,有一定的难度.25.A【解析】【分析】根据二次函数的定义和判别式的意义得到a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,则a≤2且a≠﹣2,再解分式方程得到x=61a+且x≠﹣1,利用分式方程的解为整数可求出解得a=0,﹣2,1,﹣3,2,﹣4,5,加上a的范围可确定满足条件的a的值,然后计算它们的和.【详解】解:根据题意得a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,解得a≤2且a≠﹣2,去分母得ax+x+1=7,解得x=61a+且x≠﹣1,因为分式方程的解为整数,所以a+1=±1,±2,±3,±6,且a≠﹣7,解得a=0,﹣2,1,﹣3,2,﹣4,5,所以满足条件的a的值为﹣4,﹣3,0,2,1.所以所有满足条件的整数a之和为﹣4+(﹣3)+0+2+1=﹣4.故选:A.【点睛】本题考查的是二次函数与x轴的交点问题,分式方程的解为整数,注意分式方程有意义的条件,掌握以上知识是解题的关键.26.D【解析】【分析】先将m视为常数,求解出分式方程的解(包含m),然后根据解的条件判断m的取值范围.【详解】121m x +=- m+1=2x-2解得:x=32m + ∵分式方程的解为非负数 ∴302m +≥ 解得:m≥-3 ∵方程是分式方程,∴312m +≠ 解得:m≠-1综上得:m≥-3且m≠-1故选:D .【点睛】本题考查解含有字母的分式方程,注意最后得到的结果,一定要考虑增根的情况. 27.C【解析】【分析】先解分式方程得x =4-3a -,根据分式方程22x -﹣3=2ax x --有整数解,可推出a 可以取的值,再根据二次函数的性质可推出a 的取值范围,即可求解.【详解】 解分式方程22x -﹣3=2ax x --, 可得x =4-3a -, ∵分式方程22x -﹣3=2ax x --有整数解, ∴a =﹣1,2,4,5,7,∵y =2x 2﹣(a ﹣2)x +1,∴抛物线开口向上,对称轴为x =24a -, ∴当x >24a -时,y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大,∴24a-≤1,解得a≤6,∴a能取的整数为﹣1,2,4,5;∴所有整数a值的和为10,故选:C.【点睛】本题考查了分式方程和二次函数的性质,掌握知识点是解题关键.28.A【解析】【分析】先解关于y的不等式组,根据不等式组有解,确定k的范围.整理分式方程,用含k的代数式表示出x,根据x有非负整数解,确定k的值,并得结论.【详解】不等式组整理得:4156 y ky k≥+≤+⎧⎨⎩,由不等式组有解,得到5k+6≥4k+1,即k≥-5,分式方程去分母得:kx=2x-4-3x-2,整理,得kx+x=-6即(k+1)x=-6,解得:x=-61k+,由方程有非负整数解,∴k+1=-6或-3或-2或-1 所以k=-7或-4或-3或-2又因为k≥-5,且-61k+≠2,所以k=-3,-2∵-3-2=-5.故选:A.【点睛】本题考查了求不等式组、求分式方程的解等知识点,题目难度较大,求分式方程非负数解的过程中,容易忘记分式方程的分母不等于0条件.29.D【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a 的新方程,解此新方程可以求得a 的值.【详解】解:把x=1代入原方程得:23314a a +=-, 去分母得,8a+12=3a-3,解得a=-3,故选:D .【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.30.B【解析】【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2.【详解】 解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数,∴1a +>0,即a>-1,又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y ≤8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.31.C【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣2=0,求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:13(2)m x x --=-,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m ﹣3=0,解得:m =3,故选:C【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.32.C【解析】【分析】【详解】解:略33.D【解析】【分析】先把分式方程转化为整式方程求出用含有k 的代数式表示的x ,根据x 的取值求k 的范围.【详解】解:分式方程转化为整式方程得,(3)(1)k (1)(2)x x x x +-=+-+解得:k 1x =+解为非负数,则k+10≥,∴k -1≥又∵x≠1且x≠-2,∴k+11k+1-2≠≠,∴k -1≥ ,且k 0≠故选D【点睛】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式.34.B【解析】【分析】先根据一次函数图像过一、三、四象限求出a 的取值范围,再解分式方程,进而确定其整数【详解】解:∵一次函数()210y a x a =--+过一、三、四象限∴20100->⎧⎨-+<⎩a a ,求得a 的取值范围为:210a << 解分式方程:93322ay a y y --=-- 得:3(2)39--=-ay y a整理得:3153(3)663333---===----a a y a a a ∵解为整数 ∴3a -能被6整除,且3a ≠∴31,2,3,6-=±±±±a解得4,2,5,1,6,0,9,3=-a又2y ≠,∴6323-≠-a ,∴9a ≠ 又210a <<∴4,5,6.=a∴所有满足条件的整数a 的和为4+5+6=15.故答案为:B.【点睛】本题考查了一次函数图像问题和分式方程解的整数个数问题,熟练掌握一次函数的图像及分式方程的解法是解决此类题的关键.35.D【解析】【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a 的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a 的值,求出之和即可.【详解】 解:3133x ax x x++=-- 解得:6x a = ∴方程有正整数解 且63a≠即2a ≠ ∴136a =、、 解不等式组252510y a y -⎧<⎪⎨⎪--≤⎩解得1521y y a ⎧<⎪⎨⎪≥-⎩关于y 的不等式组至少有两个奇数解a-≤∴15a≤∴6∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。
一二单元提高训练题 初中沪科版数学七年级
第一、 二单元提高训练题(一)2011年10月21日 姓名:__________一、 基础填空题:1、 用_________________等运算符号把______或表示数的______连接而成的式子叫代数式。
单个数或字母也是_____________。
2、 数与字母的______叫做单项式,单个字母或数字也是单项式。
单项式中,数字因数叫做这个单项式的__________,所有字母的指数和叫做这个单项式的______。
几个单项式的和叫做__________。
多项式的次数是指_______________。
3、 将下列各代数式填入相应的括号里:7-x ,x 31,ab 4,a 32,a 35-,y ,t 3,31+x ,7y x +,122++x x ,11+-m m ,28a ,1- 单项式{ };多项式{ };整 式{ }。
4、观察下列单项式:432842a a a a --,,,,……根据你发现的规律,第8个式子是________。
二、能力提升题:1、观察下列各式,你会发现什么规律?请将你猜到的规律用只含一个字母的式子表示出来。
,,,,,143131199119639735751553=⨯=⨯=⨯=⨯=⨯……2、某商场将原价为a 元的商品先提价%20后又降价%20出售,价格变化了没有?现价是多少?(用代数式表示现价)3、当4=+-b a b a 时,求代数式ba b a b a b a -+-+-)(4)(2的值。
4、 用语言叙述代数式的意义:(1)122+x (2)ab b a + 5、 若单项式1226+-n ba 与多项式814322232-+-x y x y x 的次数相同,求n 的值。
6、 计算:(1)21)20102009()1(20103---+- (2))526110132()301(-+-÷-7、符号f 表示一种运算,它对一些数的运算结果如下:(1),,,,3)4(2)3(1)2(0)1(-=-=-==f f f f …… (2),,,,5)51(4)41(3)31(2)21(-=-=-=-=f f f f ……利用以上规律计算)2011()20111(f f -的值。
初中数学因式分解综合训练培优练习2(附答案详解)
初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。
初中数学平方差公式自主学习培优提升训练题(附答案)
初中数学平方差公式自主学习培优提升训练题(附答案)1.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054B.255064C.250554D.2550242.已知a﹣b=3,a2﹣b2=9,则a=,b=.3.一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.4.能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数.引入负数后,如1,﹣3等是奇数,0,﹣2等是偶数.任意两个连续整数的平方差能确定是奇数还是偶数吗?写出你的判断并证明.5.探索题:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1(1)根据以上规律,求(x﹣1)(x6+x5+x4+x3+x2+x+1)(2)判断22013+22012+…+22+2+1的值的个位数是几?6.通过学习同学们已经体会到灵活运用乘法公式给整式的乘法运算带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200﹣5)(200+5)①=2002﹣52②=39975(1)例题求解过程中,第②步变形是利用(填乘法公式的名称).(2)用简便方法计算:9×11×101×10001.7.应用乘法公式进行计算:2006×2008﹣20072.8.已知,(a﹣b)(a+b)=a2﹣b2,求(1)(2﹣1)(2+1)=;(2)(2+1)(22+1)=;(3)求(2+1)(22+1)(24+1)(28+1)…(232+1)的值;(4)求(2+1)(22+1)(23+1)(24+1)…(230+1)+7的个位数字.9.如图,我校一块边长为2x米的正方形空地是八年级1﹣4班的卫生区,学校把它分成大小不同的四块,采用抽签的方式安排卫生区,下图是四个班级所抽到的卫生区情况,其中1班的卫生区是一块边长为(x﹣2y)米的正方形,其中0<2y<x.(1)分别用x、y的式子表示八年3班和八年4班的卫生区的面积;(2)求2班的卫生区的面积比1班的卫生区的面积多多少平方米?10.如图,将左图中的阴影部分裁剪下来,重新拼成一个如右图的长方形.(1)根据两个图中阴影部分的面积相等,可以得到一个数学公式,这个公式的名称叫.(2)根据你在(1)中得到的公式计算下列算式:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).11.乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算:(a+b﹣2c)(a﹣b+2c).12.如图,边长为a的大正方形内有一个边长为b的小正方形.(1)阴影部分面积是.(2)小欣把阴影部分的两个四边形拼成如图6所示的长方形,则这个长方形的宽是面积是.(3)由此可验证出的结论是.13.计算的值.14.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).15.探索题:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1根据前面的规律,回答下列问题:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x3+x2+x+1)=.(2)当x=3时,(3﹣1)(32015+32014+32013+…+33+32+3+1)=.(3)求:22014+22013+22012+…+23+22+2+1的值.(请写出解题过程)(4)求22016+22015+22014+…+23+22+2+1的值的个位数字.(只写出答案)16.计算:(2x﹣3)(x+4)﹣(x﹣1)(x+1)17.利用整式乘法公式进行计算:(1)899×901+1(2)1232﹣124×122.18.已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.19.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达)(4)运用你所得到的公式计算:10.3×9.7.20.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.21.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.22.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).23.用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.24.根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.(1)试将以上各乘积分别写成一个“□2﹣∅2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用a1b1,a2b2,…,a n b n表示n个乘积,其中a1,a2,a3,…,a n,b1,b2,b3,…,b n为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?26.某同学在计算3(4+1)(42+1)时,把3写成4﹣1后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=162﹣1=255.请借鉴该同学的经验,计算:.27.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.①72﹣52=8×;②92﹣()2=8×4;③()2﹣92=8×5;④132﹣()2=8×;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?28.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1,(1)根据前面各式的规律可得:(x﹣1)(x n+x n﹣1+…+x2+x+1)=(其中n为正整数).(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.29.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).参考答案:1.解:由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+…+5052﹣5032=5052﹣12=255024.故选:D.2.解:∵a2﹣b2=(a+b)(a﹣b)=9,∴a+b=3,联立方程组,解得:a=3,b=0.3.解:(1)n=1243,则m=3421,D(1243)=;(2)设“隐等数“n的千位、百位分别为a、b,则十位数为(6﹣a),个位数为(6﹣b),D(n)==,∵D(n)为正数,且D(n)能表示两个连续偶数的平方差,可设D(n)=(2k+2)2﹣(2k)2(k为自然数),∴D(n)=8k+4=4(2k+1)=a+b﹣6,即a+b﹣6为4的奇数倍,∵n的千位与十位上的数字之和为6,∴1≤a≤6,1≤b≤5,∴a+b﹣6=4,∴a+b=10,∴a=5,b=5或a=6,b=4,∴n=5511或6402.4.解:设较小数为n,较大数则为n+1,这两个数的平方差是(n+1)2﹣n2=(n+1+n)(n+1﹣n)=2n+1.所以任意两个连续整数的平方差能确定是奇数.5.解:(1)由题意可知:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1(2)22013+22012+…+22+2+1=(2﹣1)(22013+22012+…+22+2+1)=22014﹣1,21=2,22=4,23=8,24=16,25=32,26=64…2014÷4=503…2.∴22014的尾数是4.4﹣1=3.∴22013+22012+…+22+2+1的值的个位数是3.6.解:(1)平方差公式;(2)9×11×101×10001=(10﹣1)(10+1)(100+1)(10000+1)=(100﹣1)(100+1)(10000+1)=(10000﹣1)(10000+1)=108﹣1.7.解:原式=(2007﹣1)(2007+1)﹣20072=20072﹣1﹣20072=﹣1.8.(1)解:(2﹣1)(2+1)=22﹣12=3.故答案为:3;(2)解:原式=(2﹣1)(2+1)(22+1)=(22﹣1)(22+1)=24﹣12=16﹣1=15.故答案为:15;(3)解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)=(22﹣1)(22+1)(24+1)(28+1)…(232+1)=(24﹣1)(24+1)(28+1)…(232+1)=(28﹣1)(28+1)…(232+1)=(216﹣1)(216+1)(232+1)=(232﹣1)(232+1)=264﹣1.故答案为:264﹣1;(4)解:∵(2+1)(22+1)=15,(2+1)(22+1)(23+1)=135,(2+1)(22+1)(23+1)(24+1)=2295,…,∴(2+1)(22+1)(23+1)(24+1)…(230+1)的结果的个位数字是5,∵5+7=12,∴(2+1)(22+1)(23+1)(24+1)…(230+1)+7的个位数字是2.9.解:(1)八年3班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;八年4班的卫生区的面积=(x﹣2y)[2x﹣(x﹣2y)]=x2﹣4y2;(2)[2x﹣(x﹣2y)]2﹣(x﹣2y)2=8xy.答:2班的卫生区的面积比1班的卫生区的面积多8xy平方米.10.解:(1)图1的面积为a2﹣b2,图2的面积为(a+b)(a﹣b);比较两图的阴影部分面积,可以得到乘法公式a2﹣b2=(a+b)(a﹣b).(2)原式=…=…=11.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;故答案为:a2﹣b2;(2)长方形的宽为(a﹣b),长为(a+b),面积=长×宽=(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由(1)、(2)得到,(a+b)(a﹣b)=a2﹣b2 ,故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(a+b﹣2c)(a﹣b+2c)=[a+(b﹣2c)][a﹣(b﹣2c)]=a2﹣(b﹣2c)2=a2﹣b2+4bc ﹣4c2.12.解:(1)图中阴影部分的面积是:a2﹣b2,故答案为:a2﹣b2.(2)由图象可知:这个长方形的宽是:a﹣b,长方形的面积是:(a+b)(a﹣b),故答案为:a﹣b,(a+b)(a﹣b).(3)根据阴影部分的面积相等,∴(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2.13.解:===.14.解:(1)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=232﹣1;故答案为:232﹣1(2)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=;故答案为:;(3)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).当m≠n时,原式=(m﹣n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=;当m=n时,原式=2m•2m2•…•2m16=32m31.15.解:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x3+x2+x+1)=x n+1﹣1,故答案为:x n+1﹣1;(2)当x=3时,(3﹣1)(32015+32014+32013+…+33+32+3+1)=32016﹣1,故答案为:32016﹣1(3)解:原式=(2﹣1)(22014+22013+22012+…+23+22+2+1)=22015﹣1(4)22016+22015+22014+…+23+22+2+1=(2﹣1)(22016+22015+22014+…+23+22+2+1)=22017﹣1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n的末位数字是以2、4、8、6四个数字一循环.2017÷4=504…1,所以22017的末尾数字是2,22017﹣1的末尾数字是1.16.解:原式=2x2+8x﹣3x﹣12﹣(x2﹣1),=2x2+8x﹣3x﹣12﹣x2+1,=x2+5x﹣11.17.解:(1)899×901+1=(900+1)(900﹣1)+1=810 000;(2)1232﹣124×122=1232﹣(123+1)×(123﹣1)=1.18.解:∵4m+n=90,2m﹣3n=10,∴(m+2n)2﹣(3m﹣n)2=[(m+2n)+(3m﹣n)][(m+2n)﹣(3m﹣n)]=(4m+n)(3n﹣2m)=﹣900.19.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)由(1)、(2)得到,(a+b)(a﹣b)=a2﹣b2;故答案为:a2﹣b2,a﹣b,a+b,(a+b)(a﹣b),a2﹣b2;(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.20.解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b221.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.22.【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y)得:x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.23.解:(1)S=长×宽=ab;(2)根据图形可得:矩形的长=(2b+a),宽=a;正方形的边长=a+b,矩形的面积=2ab+a2,正方形的面积=a2+2ab+b2,正方形面积﹣矩形的面积=b2,∴正方形的面积大;(3)根据图形可得:a2﹣b2=(a﹣b)(a+b).24.解:(1)11×29=202﹣92;12×28=202﹣82;13×27=202﹣72;14×26=202﹣62;15×25=202﹣52;16×24=202﹣42;17×23=202﹣32;18×22=202﹣22;19×21=202﹣12;20×20=202﹣02.(4分)例如,11×29;假设11×29=□2﹣○2,因为□2﹣○2=(□+○)(□﹣○);所以,可以令□﹣○=11,□+○=29.解得,□=20,○=9.故11×29=202﹣92.(5分)(或11×29=(20﹣9)(20+9)=202﹣92.5分)(2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20.(7分)(3)①若a+b=40,a、b是自然数,则ab≤202=400.(8分)②若a+b=40,则ab≤202=400.(8分)③若a+b=m,a、b是自然数,则ab≤.(9分)④若a+b=m,则ab≤.(9分)⑤若a1+b1=a2+b2=a3+b3=a n+b n=40.且|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥≥|a n﹣b n|,则a1b1≤a2b2≤a3b3≤≤a n b n.(10分)⑥若a1+b1=a2+b2=a3+b3=a n+b n=m.且|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥…≥|a n﹣b n|,则a1b1≤a2b2≤a3b3≤…≤a n b n.(10分)说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分);给出结论⑤或⑥之一的得(3分).25.解:(1)设28和2012都是“神秘数”,设28是x和x﹣2两数的平方差得到,则x2﹣(x﹣2)2=28,解得:x=8,∴x﹣2=6,即28=82﹣62,设2012是y和y﹣2两数的平方差得到,则y2﹣(y﹣2)2=2012,解得:y=504,y﹣2=502,即2012=5042﹣5022,所以28,2012都是神秘数.(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.26.解:原式=2(1﹣)(1+)(1+)(1+)(1+)+=2(1﹣)+=2.27.解:①3;②7;③11;④11,6.(1)(2n+1)2﹣(2n﹣1)2=8n;(2)原式可变为(2n+1+2n﹣1)(2n+1﹣2n+1)=8n.28.解:(1)根据各式的规律可得:(x﹣1)(x n+x n﹣1+…+x2+x+1)=x n+1﹣1;(2)根据各式的规律得:1+2+22+23+…+262+263=(2﹣1)(263+262+…+23+22+2+1)=264﹣1,∵21=2,22=4,23=8,24=16,25=32,…,且64÷4=16,∴264个位上数字为6,则1+2+22+23+…+262+263的个位数字为5.故答案为:(1)x n+1﹣1.29.解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.2)×(10﹣0.2),=102﹣0.22,=100﹣0.04,=99.96;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2。
人教版初中数学八年级上册《全等三角形》专题综合练习(提高训练题)
一、选择题
班级:
姓名:
号数:
1.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )
A. AC=DE
B. ∠BAD=∠CAE
C. AB=AE
D. ∠ABC=∠AED
2.如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是( )
图①
图②
图③
19.在△ABC 和△DCE 中,CA=CB,CD=CE,∠CAB=∠CED=α, (1)如图 1,将 AD、EB 延长,延长线相交于点 O; ①求证:BE=AD; ②用含α的式子表示∠AOB 的度数(直接写出结果); (2)如图 2,当α=45o 时,连接 BD、AE,作 CM⊥AE 于 M 点,延长 MC 与 BD 交于点 N,求证:N 是 BD 的中点。
D。若 OM=5cm,CD=3.4cm,则四边形 CDNM 的周长为
。
三、解答题 16.如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,AB=AC,点 E 是 BD 上一点,且 AE=AD,∠EAD= ∠BAC (1)求证:∠ABD=∠ACD (2)若∠ACB=65o,求∠BDC 的度数。
则∠AFE 的度数是
;
14.已知△ABC 三边长分别为 3,5,7,△DEF 三边长分别为 3, 3x 2 , 2x 1,
若这两个三角形全等,则 x 为
;
15.如图,∠AOB=60o,点 P 在∠AOB 的平分线上,过点 P 作 OA、OB 的垂线,垂
足分别为点 M,N。以点 P 为顶点作∠CPD=60o,两边与 OA、OB 相交于点 C、
的面积是 34,则△ABC 的周长为( )
初中七年级上册数学提高训练试题
人教版初中七年级上册数学提高训练试题一、选择题1n 为( )(A )2 (B )3 (C )4 (D )5 2、2008北京奥运火炬传递的路程约为13.7万公里。
近似数13.7万是精确到( )(A )十分位 (B )十万位 (C )万位 (D )千位3、如果11x x -=-,那么( )(A )x <1 (B )x >1 (C )x ≤1 (D )x ≥14、 对于有理数a , 下面的3个说法中: ① a -表示负有理数; ② ||a 表示正有理数; ③ a 与a -中, 必有一个是负有理数. 正确说法的个数有( )(A ) 0个 (B ) 1个 (C ) 2个 (D )3个5、已知23450ab c d e <,下列判断正确的是( )(A )0abcde < (B )240ab cd e < (C )20ab cde < (D )40abcd e <6、如果四个互不相同的正整数m ,n ,p ,q 满足(6-m)(6-n)(6-p)(6-q)=4,那么m+n+p+q=( ).A 、24B 、25C 、26D 、287.若|a|=4,|b|=2,且|a+b|=-a-b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.-2或-68. x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零9.观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.651910、如果a 名同学在b 小时内共搬运c 块砖,那么c 名同还以同样速度搬运a 块砖所需的小时数是( )A 、c 2a 2bB 、c 2abC 、ab c 2D 、a 2b c 2二、填空题11、数轴上有一个点到表示-7和2的点的距离相等,则这个点所表示的数是_________.12、已知代数式bx ax +3,当x=-1时,代数式的值为5;则当x = 1时,bxax +3的值是 。
初中数学一元一次不等式(组)单元综合课后能力提升培优训练题2(附答案) (1)
初中数学一元一次不等式(组)单元综合课后能力提升培优训练题21(附答案) 1.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A .2010x x +>⎧⎨->⎩B .2010x x +>⎧⎨-<⎩C .2010x x +<⎧⎨->⎩D .2010x x +<⎧⎨-<⎩2.已知关于x 的不等式组 12x x m +≥⎧⎨-<⎩有3个整数解,则m 的取值范围是( )A .34m <≤B .4m ≤C .34m ≤<D .3m ≥3.不等式组31x x >⎧⎨≤⎩的解集在数轴上表示为( ) A .B .C .D .4.已知不等式2x−a<0的正整数解恰是1,2,3,则a 的取值范围是() A .6<a<8B .6⩽a ⩽8C .6⩽a<8D .6<a ⩽85.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .6.实数的平方根分别是和,且,则不等式的解集为( ) A .B .C .D .7.不等式组解集为 -1 ≤ x < 1 ,下列在数轴上表示正确的是( ) A .B .C .D .8.在一次“交通安全法规”如识竞赛中,竞赛题共25道题,每道题都给出4个答案,其中只有一个答案正确,选对得3分,不选或错选倒扣1分,得分不低于45分得奖,那么得奖者至少应选对的题数为( ) A .17B .18C .19D .209.甲种蔬菜保鲜适宜的温度是o o 2C~6C ,乙种蔬菜保鲜适宜的温度是o o 3C~8C ,将这两种蔬菜放在一起同时保鲜,适宜 的温度是( ) A .o o 2C~3CB .o o 2C~8CC .o o 3C~6CD .o o 6C~8C10.若a>b,则下列不等式中正确的是:( ) A .a -b<0B .-5a <-5bC .a+8<b -8D .ac 2≤bc 211.若a b >,则下列不等式成立的是( ) A .22a b -<-B .22a b >C .22a b ->-D .22a b< 12.已知关于的不等式组的解集中任意一个的值均不在...的范围内,则的取值范围是( ) A .或B .C .D .或13.已知对||3x =,||2y =,且20x y ++>,则2x y -=______.14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________. 15.12(x-m)>3-32m 的解集为x>3,则m 的值为____. 16.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________.17.不等式2552n n --<的所有正整数解是______.18.如图,已知抛物线y=x 2+bx+c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是________.19.已知关于x 的方程 2x+4 = m+x 的解为负数,则m 的取值范围是____. 20.不等式2x+5≤12的正整数解是___________21.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”).22.不等式2(x ﹣3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_____. 23.如果关于x 的不等式20.53x ->2a与关于x 的不等式5(1-x )<a -20的解集完全相同,则它们的解集为x________.24.一只纸箱质最为1kg,当放入一些苹果(每个苹果的质量为0.3kg),箱子和苹果的总质量不超过10kg,求这只纸箱内最多能装()个苹果A.30 B.31 C.32 D.3325.某单位计划组织员工到地旅游,人数估计在1025之间,甲乙两旅行社的服务质量相同,组织到H地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠,该单位怎样选择,才能使其支付的旅游总费用较少?26.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲乙两种型号设备的价格;(2)该公司决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有那几种购买方案?27.(1)解不等式113xx+<-,并将解集表示在数轴上;(2)解不等式组351,134.3xxx-≤⎧⎪⎨-<⎪⎩①②28.现计划把1240吨甲种货物和880吨乙种货物用一列火车运往某地,已知这列火车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,B型车厢每节费用8000元.如果每节A型车厢最多可装35吨甲种货物和15吨乙种货物,每节B型车厢最多可装25吨甲种货物和35吨乙种货物;(1)那么共有哪几种安排车厢的方案?(2)在上述方案中,哪种方案运费最省、最少运费为多少元?(3)在(1)问下,若两种货物全部售出,且每吨货物售出获利200元,除去运费获利154000元,问:在这种情况下是按哪种方案安排车厢的.29.已知方程组3951x y ax y a+=+⎧⎨-=+⎩的解x,y满足x>0,y>0.请化简:|4a+5|-2|a-4|.30.解方程组或不等式组(1)21321 3223x xx x++⎧->⎪⎨⎪-<⎩(2) 159317x y z x y z x y z ++=⎧⎪-+=⎨⎪-+=⎩31.解不等式:5-()()411x x ---<()223x - 32.解不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,并把其解集表示在数轴上.33.某商场决定从厂家购进甲、乙两种不同款型的名牌衬衫共150件,且购进衬衫的总金额不超过9080元,已知甲、乙两种款型的衬衫进价分别为40元/件、80元/件. (1)问该商场至少购买甲种款型的衬衫多少件?(2)若要求甲种款型的件数不超过乙种款型的件数,问有哪些购买方案?请分别写出来.34.解不等式组2+1)5733x x x x <+⎧⎪+⎨≤+⎪⎩(,并写出它的非负整数解.35.(1)计算:201(5)3tan 30|13π︒-++-.(2)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.参考答案1.B 【解析】 【分析】由数轴得出不等式组解集,据此可判断各选项是否符合此解集,从而得出答案. 【详解】解:由数轴知不等式组的解集为﹣2<x <1, 而2010x x +>⎧⎨-<⎩的解集为﹣2<x <1,故选:B . 【点睛】本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分. 2.A 【解析】 【分析】首先计算出不等式组的解集1≤x <m ,再根据不等式组的整数解确定m 的范围即可. 【详解】120x x m +≥⎧⎨-<⎩①②, 由①得:x≥1, 由②得:x <m ,不等式组的解集为:1≤x <m , ∵整数解共有3个, ∴整数解为:1,2,3, ∴34m <≤. 故选A. 【点睛】本题主要考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定m 的范围,是解决本题的关键.3.D【解析】【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【详解】解:不等式组31xx>⎧⎨≤⎩的解集在数轴上表示为.故选:D.【点睛】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D【解析】【分析】根据题目中的不等式可以求得x的取值范围,再根据不等式2x-a<0的正整数解恰是1,2,3,从而可以求得a的取值范围.【详解】由2x−a<0得,x<0.5a,∴不等式2x−a<0的正整数解恰是1,2,3,∴0.5a>3且0.5a⩽4,解得,6<a⩽8,故选D.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则.5.C【解析】 【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围. 【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限, ∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩,解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选:C . 【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限. 6.A 【解析】 【分析】先根据平方根求出a 的值,再求出m ,求出t ,再把t 的值代入不等式,求出不等式的解集即可. 【详解】∵3a−22和2a−3是实数m 的平方根, ∴3a−22+2a−3=0, 解得:a=5, 3a−22=−7, 所以m=49,=7,∵,∴,解得:,故选:A【点睛】此题考查平方根,不等式的解集,解题关键在于掌握运算法则7.C【解析】【分析】根据已知解集确定出数轴上表示的解集即可.【详解】不等式组解集为-1≤x<1,表示在数轴上为:,故选C.【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【解析】【分析】首先设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得出不等式,解得即可.【详解】解:设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得,3x-(25-x)≥45解得x ≥352又题数为整数,则至少应为18. 故答案为B. 【点睛】此题主要考查不等式的实际应用,关键是找出关系式,需要注意的是取整数. 9.C 【解析】 【分析】根据“2℃~6℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】设温度为x ℃,根据题意可知2x 63x 8≤≤⎧⎨≤≤⎩解得3≤x≤6.适宜的温度是3°C ~6°C . 故选:C 【点睛】此题主要考查了一元一次不等式组的应用,关键是弄懂题意,列出不等式,根据不等式组解集的确定规律:大小小大中间找确定出x 的解集. 10.B 【解析】 【分析】运用不等式的性质进行判断. 【详解】A 、当a >b 时,不等式两边都减b ,不等号的方向不变得a-b >0,故A 错误;B 、当a >b 时,不等式两边都乘以-5,不等号的方向改变得-5a <-5b ,故B 正确;C 、因为a>b,则a+8>b+8>b-8,故C 错误;D 、因为c 2≥0,所以ac 2≥bc 2,故D 错误. 故选B .【点睛】考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 11.B 【解析】 【分析】直接利用不等式的基本性质分别判断得出答案. 【详解】 解:A 、∵a >b ,∴a -2>b -2,故此选项错误; B 、∵a >b ,∴2a >2b ,故此选项正确; C 、∵a >b ,∴-2a <-2b ,故此选项错误; D 、∵a >b , ∴2a >2b,故此选项错误. 故选:B . 【点睛】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键. 12.D 【解析】 【分析】解不等式组,可得不等式组的解集,根据不等式组的解集与0≤x≤4的关系,可得答案. 【详解】 解:解,得a−1<x≤a +2,由不等式组的解集中任意一个x 的值均不在0≤x≤4的范围内,得a +2<0或a−1≥4, 解得:a≥5或a <−2,故选:D .【点睛】本题考查了不等式的解集,利用解集中任意一个x 的值均不在0≤x≤4的范围内得出不等式是解题关键.13.-1或7或-7.【解析】【分析】 由3x =,2y =得到3,2x y =±=±,再结合20x y ++>求出x 、y 的值,代入计算即可.【详解】 解:∵3x =,2y =,∴3,2x y =±=±,∵20x y ++>,∴2x y +>-,∴32x y =⎧⎨=⎩,32x y =⎧⎨=-⎩,32x y =-⎧⎨=⎩, 2x y ∴-=-1或7或-7.故答案是:-1或7或-7.【点睛】本题考查了绝对值的计算和不等式的知识,掌握绝对值的性质是关键.14.-0.5<m<7.【解析】【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-7+m <0,2m+1<0,求不等式组的解集即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即70 210mm-+⎧⎨+⎩<<,解得-0.5<m<7.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.3 2【解析】【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【详解】去括号得:12x−12m>3−32m,移项得:12x>3−32m+12m,合并同类项得;12x>3−m,系数化为1得;x>6-2m,∵不等式的解集为x>3,∴6-2m=3,解得:m=32,故答案为:32.【点睛】考查了解一元一次不等式,和解一元一次方程组,根据不等式的解集为x>3列出关于m的方程是解题的关键.16.12 x<【解析】【分析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =, 且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <. 故答案为:12x <【点睛】 本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键. 17.1,2【解析】【分析】先解得不等式2n-5<5-2n 的解集为n <2.5,则不等式2n-5<5-2n 的正整数解为1,2.【详解】2552n n --<移项、合并同类项得4n <10,系数化为1得n <2.5,所以不等式2n-5<5-2n 的正整数解为1,2.【点睛】本题考查一元一次不等式和正整数,解题的关键是掌握解一元一次不等式和正整数的定义. 18.1(在﹣2<b <2范围内的任何一个数)【解析】【分析】把(0,-3)代入抛物线的解析式求出c 的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【详解】把(0,-3)代入抛物线的解析式得:c=-3,∴y=x2+bx-3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx-3得:y=1+b-3<0把x=3代入y=x2+bx-3得:y=9+3b-3>0,∴-2<b<2,即在-2<b<2范围内的任何一个数都符合,故答案为1(在-2<b<2范围内的任何一个数).【点睛】本题考查了对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解题的关键.19.m<4【解析】试题分析:3x=m-4,解得:x=43m-,根据题意可得:43m-<0,解得:m<4.考点:一元一次方程.20.1,2,3【解析】【分析】先求出不等式的解集,再求出整数解即可.【详解】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为1,2,3.【点睛】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.21.>【解析】【分析】在a b <的基础上两边同时乘以b ,根据不等式的性质解题即可【详解】∵0,0a b <<,且a b <∴不等式两边同时乘以b 得:2ab b >故答案为>【点睛】本题考查不等式的性质,注意不等式两边同时乘以一个负数不等式要变号是解题的关键. 22.﹣1.5≤a <﹣0.5【解析】【分析】首先求得不等式的解集,然后根据不等式的自然数解只有0、1、2三个,即可得到一个关于a 的不等式,从而求得a 的范围.【详解】解:解不等式得:x≤a+3.5.不等式的自然数解只有0、1、2三个,则自然数解是:0,1,2.根据题意得:2≤a+3.5<3,解得:﹣1.5≤a <﹣0.5.故答案为﹣1.5≤a <﹣0.5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.23.>4【解析】【分析】根据不等式的解集相同,可得关于a 的方程,根据解方程,可得答案.【详解】由不等式20.532x a -> 解得x >314a +, 由5(1-x )<a-20解得x >25a 5-. 关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a -20的解集完全相同,得 3125a 45a +-=. 解得a=5,关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a-20解集为x >4, 故答案为:>4.【点睛】本题考查了不等式的解集,利用不等式的解集相同得出关于a 的方程式解题关键. 24.A【解析】【分析】根据“箱子和苹果的总质量不超过10 Kg”列出不等式进行求解即可.【详解】解:设这只纸箱内装了x 个苹果,根据题意得0.3x+1≤10解得x≤30所以的最大值是30.【点睛】本题主要考查不等式的应用,找出题中的等量关系列出不等式即可.25.当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【解析】【分析】去的人数是变量可设为x ,在两个旅行社提出的不同优惠条件下根据公式:旅游费用=优惠前总费用-优惠费,分别列出解析式y 1 和y 2 ,然后根据两解析式大小比较来解题.【详解】设人数为x 人,该单位选择甲乙两旅行社分别支付的旅游费用为y 1 和y 2.则y 1=200×0.75x=150xy 2=200×0.8(x-1)=160x-160由y 1=y 2得:150x=160x-160解得x=16由y 1>y 2得:150x >160x-160解得x <16由y 1<y 2得:150<160x-160解得x >16答:当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【点睛】此题考查一次函数的应用,一元一次不等式的应用,解题关键在于分情况对费用进行讨论从而得出人数.26.(1)甲设备每台12万元,乙设备每台10万元.(2)有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【解析】【分析】(1)设设甲设备每台x 万元,乙设备每台y 万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”列出二元一次方程组可以求解;(2)设购买甲设备a 台,根据购买甲型设备不少于3台,和购买甲、乙两种新设备的资金不超过110万元,列出不等式组,根据不等式组的整数解得出购买方案.【详解】(1)设甲设备每台x 万元,乙设备每台y 万元,由题意得:3216326x y y x -=⎧⎨-=⎩解得:1210x y =⎧⎨=⎩, 答:甲设备每台12万元,乙设备每台10万元.(2)设购买甲设备a 台,则购买乙设备()10a -台,由题意得:()3121010110a a a ≥⎧⎪⎨+-≤⎪⎩解得:35a ≤≤, 又∵a 为整数,∴3a =,或4a =,或5a =,因此有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【点睛】考查一元一次不等式组和二元一次方程组的应用,分析题目中数量关系是列不等式组和方程组的关键,通过方程组确定价格,通过不等式组的整数解确定购买方案.27.(1)2x >,这个不等式的解集在数轴上的表示如图所示见解析;(2)12x <≤.【解析】【分析】(1)根据不等式性质进行解不等式;(2)分别解不等式,再求不等式组的解集.【详解】(1)去分母,得133x x +<-,移项,合并同类项,得24x -<-,系数化为1,解得2x >.这个不等式的解集在数轴上的表示如图所示:(2)解不等式①,得2x ≤.解不等式②,得1x >.∴不等式组的解集为12x <≤.【点睛】考核知识点:解不等式和不等式组.掌握一般步骤是关键.28.(1)共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)当A 车厢用26节时,总运费最少,最少为268000元;(3)按A 车厢25节,B 车厢15节安排的车厢.【解析】【分析】(1)关系式为:35×A 车厢节数+25×B 车厢节数≥1240;15×A 车厢节数+35×B 车厢节数≥880;(2)运费=6000×A 车厢节数+8000×B 车厢节数,结合(1)中的自变量的取值求解;(3)算出毛利润,减去154000,得到运费,把运费代入(2)即可得到方案.【详解】(1)设A 车厢用x 节,由题意,得3525401240? 153540880x x x x +⨯-≥⎧⎨+⨯-≥⎩()() 解得24≤x≤26,∴共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)总运费为:6000x+8000×(40-x )=-2000x+320000,当x 值越大时费用越小,故当A 车厢用26节时,总运费最少,最少为268000元,答:当A 车厢用26节时,总运费最少,最少为268000元;(3)200×(1240+880)-154000=-2000x-320000,解得x=25,所以是按A 车厢25节,B 车厢15节安排的车厢.【点睛】此题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,及所求量的等量关系.29.6a -3.【解析】【分析】先解方程组,得出x 和y 的值后,满足x >0,y >0,再化简|4a +5|-2|a -4|.【详解】3951x y a x y a +=+⎧⎨-=+⎩①② ①+②,得x =4a +5.③将③代入①,得y =-a +4.∵x >0,y >0,∴4a +5>0,-a +4>0,∴a -4<0.∴|4a +5|-2|a -4|=4a +5+2(a -4)=4a +5+2a -8=6a -3.【点睛】此题重点考察学生对二元一次方程组解的应用和整式化简的应用,熟练二元一次方程组的解法是解题的关键.30.(1)原不等式组的解集是 2.x <- (2) 122.x y z =⎧⎪=-⎨⎪=⎩【解析】【分析】(1)先求出两个不等式的解集,再求其公共解;(2)先消掉z ,得到关于x 、y 的二元一次方程,联立组成方程组求出x 、y 的值,然后代入方程③求解即可.【详解】 (1)213213223x x x x ++⎧->⎪⎨⎪-<⎩①②,解不等式①,()()2213326,x x +-+>42966,x x +-->510,x <-2,x <-解不等式②,23x x -<,3x ,<所以,原不等式组的解集是 2.x <-(2) 159317x y z x y z x y z ①②③,++=⎧⎪-+=⎨⎪-+=⎩①−②得,24y =-④,③−①得,8x −4y =16,即2x −y =4⑤,联立2424,y x y =-⎧⎨-=⎩④⑤ 解得12x y =⎧⎨=-⎩, 把x =1,y =−2代入③得,9617z ++=,解得z =2,所以,原方程组的解是122.x y z =⎧⎪=-⎨⎪=⎩【点睛】考查解一元一次不等式组,解三元一次方程组,掌握解题的步骤是解题的关键.31.x <23. 【解析】【分析】先移项,再分别运用平方差公式和完全平方公式进行去括号,合并同类项,系数化为1,从而得解.【详解】5-()()411x x ---<()223x - 5-()()411x x ----()223x -<0 5+4x 2-4-4x 2+12x-9<012x <8x <23. 【点睛】此题主要考查了解一元一次不等式,运用平方差公式和完全平方公式去括号是解此题的关键.32. 2.54x-<≤【解析】【分析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【详解】131722523(1)x xx x⎧--⎪⎨⎪+>-⎩①②解不等式①,得4x≤解不等式②,得 2.5x>-,把不等式的解集在数轴上表示为:所以原不等式组的解集为{| 2.54}x x-<≤.【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则33.(1)甲至少购买73件;(2)共3种方案.见详解【解析】【分析】(1)直接利用购进衬衫的总金额不超过9080元,进而得出不等式求出答案;(2)利用甲种款型的件数不超过乙种款型的件数,得出不等式结合(1)所求,进而得出答案.【详解】解:(1)设该商场购买甲种款型的衬衫x件,则购进乙种款型的衬衫(150-x)件,根据题意可得:40x+80(150-x)≤9080,解得:x≥73,答:该商场至少购买甲种款型的衬衫73件;(2)根据题意可得:x ≤150-x ,解得:x ≤75,∴73≤x ≤75,∵x 为正整数,∴x=73,74,75,∴购买方案有三种,分别是:方案一:购买甲种款型的衬衫73件,乙种款型77件;方案二:购买甲种款型的衬衫74件,乙种款型76件;方案三:购买甲种款型的衬衫75件,乙种款型75件.【点睛】本题考查了一元一次不等式的综合运用,重点掌握解应用题的步骤.难点是正确列出不等量关系.34.13x -≤<,非负整数解是0,1,2.【解析】【分析】先求出每一个不等式的解集,得到不等式组的解集,然后找到非负整数解即可.【详解】解:解不等式①得3x <,解不等式②得1x -≥,∴此不等式组的解集是13x -≤<,∴此不等式组的非负整数解是0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.35.(1)1;(2) 1<x <4.【解析】【分析】(1)先根据零指数幂、有理数乘方的法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.(2)分别求出不等式的解集,即可解答【详解】解:(1)原式=﹣1+1+3×3+1=1;(2)3(2)42113x xxx-->⎧⎪⎨+>-⎪⎩①②,由①得:x>1,由②得:x<4,则不等式组的解集为1<x<4.【点睛】此题考查负整数指数幂,零指数幂,实数的运算,特殊角的三角函数值,解一元一次不等式组,掌握运算法则是解题关键。
七下数学综合训练2
七下数学综合练习题(2)1、计算:(1); (2).(3)2、求x,y 的值:(1)(2y ﹣3)2﹣64=0; (2)64(x +1)3=27.3、实数a 、b 在数轴上的位置如图所示,请化简:.4、设2+的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x ﹣1的算术平方根.5、已知:a 是﹣3的整数部分,b 是﹣3的小数部分,求:(1)a ,b 的值;(2)(﹣a )3+(b+4)2的平方根.6、已知x x x y 93113+---=,求323-+y x 的平方根.7. 已知:点 P (2 m +4,m -1).试分别根据下列条件,求出 P 点的坐标. (1)点 P 在 y 轴上; (2)点 P 在 x 轴上; (3)点 P 的纵坐标比横坐标大 3; (4)点 P 在过 A (2,-3)点,且与 x 轴平行的直线上.8. 如图,已知12l l ∥,射线MN 分别和直线12,l l 交于点,A B ,射线ME 分别和直线12,l l 交于点,C D ,点P 在射线MN 上运动(P 点与,,A B M 三点不重合), 设PDB α∠=,PCA β∠=,CPD γ∠=.(1)如果点P 在,A B 两点之间运动时,,,αβγ之间有何数量关系?请说明理由; (2)如果点P 在,A B 两点之外运动时,,,αβγ之间有何数量关系?9.问题:已知线段AB ∥CD ,在AB 、CD 间取一点P (点P 不在直线AC 上),连接PA 、PC ,试探索∠APC 与∠A 、∠C 之间的关系 (1) 端点A 、C 同向:如图1,点P 在直线AC 右侧时,∠APC -(∠A ﹢∠C )=_________度 如图2,点P 在直线AC 左侧时,∠APC ﹢(∠A ﹢∠C )=_________度 (2) 端点A 、C 反向:如图3,点P 在直线AC 右侧时,∠APC 与(∠A -∠C )有怎样的等量关系?写出结论并证明 如图4,点P 在直线AC 左侧时,∠APC -(∠A -∠C )=_________度10.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知A (2,4)、B (-3,-8),试求A 、B 两点间的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-1,试求A 、B 两点间的距离. (3)已知A (0,6)、B (-3,2)、C (3,2),你能判断线段AB 、BC 、AC 中哪两条是相等的?并说明理由.11.如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a=b -3+3-b -1,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.12. 对有序数对(m ,n )定义“f 运算”:)21,21(),(b n a m n m f -+=,其中a 、b 为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A (x ,y )规定“F 变换”:点A (x ,y )在F 变换下的对应点即为坐标为f (x ,y )的点A ′. (1)当a =0,b =0时,f (-2,4)=________________;(2)若点P (4,-4)在F 变换下的对应点是它本身,则a =_______,b=_______.14、 先阅读下例,再解答问题. 例:解不等式112>-x x解:把不等式112>-x x 进行整理,得,0112>--x x 即0121>--x x,则有①⎩⎨⎧>->-01201x x 或②⎩⎨⎧<-<-01201x x 解不等式组①得121<<x :解不等式组②知其无解,故原不等式的解集为121<<x 请根据以上解不等式的思想解不等式2223<-+x x15.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①310x -=,②2103x +=,③()315x x -+=-中,不等式组2531-2x x x x -+-⎧⎨-+⎩>,> 的关联方程是 ;(填序号) (2)若不等式组1212x x x ⎧-⎪⎨⎪++⎩<1,>-3的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程32x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组2x x m x m -⎧⎨-⎩<2,≤的关联方程,直接写出m 的取值范围.16、某项工程若由甲、乙两队承包,252天可以完成,需支付1800元;若由乙、丙两队承包,343天可以完成,需支付1500元;若由丙、甲两队承包,276天可以完成,需支付1600元;(1)问甲、乙、丙三队的工作效率分别是多少?(2)在保证一个星期内完成这项工程的前提下,选择哪个队单独承包费用最少17.某初中2012年九月开学时,七年级有学生x 人,八年级学生比七年级学生少10%,九年级学生比七年级学生少20人.2013年九月开学时,各年级学生变化情况如下:七年级学生比上届七年级学生多20人;上届七年级学生除了5%转校以外,都升入到本校八年级就读,同时从其它学校转入10人到本校八年级就读;上届八年级学生除了10人转校以外,都升入到本校九年级就读,没有从其它学校转入本校就读九年级的学生.(1)用含有x 的式子表示2012年九月开学时该校学生总数是 ;(2)该学校最多能提供30个教室,每个教室最多能容纳50名学生,请你通过计算说明,2013年九月开学时学生总数和2012年九月开学时学生总数是否相等.18.已知x ,y 都是有理数,且满足方程:2x ﹣y=6y +﹣20,求x 与y 的值.19.如图,在平面直角坐标系中,点O 为坐标原点,点A (3a ,2a )在第一象限,过点A 向x 轴作垂线,垂足为点B ,连接OA ,S △AOB =12,点M 从O 出发,沿y 轴的正半轴以每秒2个单位长度的速度运动,点N 从点B 出发以每秒3个单位长度的速度向x 轴负方向运动,点M 与点N 同时出发,设点M 的运动时间为t 秒,连接AM ,AN ,MN . (1)求a 的值; (2)当0<t <2时,①请探究∠ANM ,∠OMN ,∠BAN 之间的数量关系,并说明理由;②试判断四边形AMON 的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON时,请求出t的值.。
初中数学计算能力提升训练
计算能力训练(有理数的计算)1、 111117(113)(2)92844⨯-+⨯-2、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦3、33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦4、2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦5、(-315)÷(—16)÷(-2)6、 –4 + 2 ×(-3) –6÷0。
257、(—5)÷[1。
85-(2—431)×7]8、 18÷{1—[0.4+ (1—0.4)]×0.4 9、1÷( 61-31)×6110、 –3-[4-(4-3。
5×31)]×[—2+(—3) ]11、 8+(-41)— 5- (— 0。
25)15、13611754136227231++-;16、20012002200336353⨯+⨯-17、()5.5-+()2.3-()5.2---4.818、()8-)02.0()25(-⨯-⨯19、21+()23-⎪⎭⎫⎝⎛-⨯2120、81)4(2833--÷-21、100()()222---÷⎪⎭⎫⎝⎛-÷3222、(-371)÷(461-1221)÷(-2511)×(-143)23、(-2)14×(-3)15×(-61)1424、-42+5×(-4)2-(-1)51×(-61)+(-221)÷(-241)25、-11312×3152-11513×41312-3×(-11513) 26、41+3265+2131-- 27、()()4+×733×250)-(.-55、)61(41)31()412(213+---+--56、2111943+-+--60、=⨯(-4)3 57、31211+-62、=⨯0(-6)58、)]18()21(26[13-+--- 69、)8(45)201(-⨯⨯- 59、2111)43(412--+---70、53)8()92()4()52(8⨯-+-⨯---⨯66、)25()7()4(-⨯-⨯-67、)34(8)53(-⨯⨯- 68、)1514348(43--⨯71、)8(12)11(9-⨯-+⨯-78、)412()21()43(-÷-⨯-79、2411)25.0(6⨯-÷-81、)2(48-÷+-80、)21(31)32(-÷÷-82、)51(250-⨯÷-83、)3(4)2(817-⨯+-÷-84、1)101(250322-⨯÷+85、911)325.0(321÷-⨯-89、6)3(5)3(42+-⨯--⨯86、1)51(25032--⨯÷+87、])3(2[)]215.01(1[2--⨯⨯-- 88、)145()2(52825-⨯-÷+-90、)25.0(5)41(8----+91、)48()1214361(-⨯-+-92、31)321()1(⨯-÷- 93、)199(41212+-÷⨯94、)16(94412)81(-÷+÷-95、)]21541(43[21----96、13+(+7)-(-20)—(—40)—(+6) 97、)2(9449344-÷+÷- 98、22)36()33(24)12581(÷-÷---⨯-99、13)18()14(20----+-100、 8+(―41)―5―(―0。
初中数学分式方程的无解问题解答题培优训练2(附答案详解)
初中数学分式方程的无解问题解答题培优训练2(附答案详解)1.当a 取什么整数时,方程2x x -+2x x -+2(2)x a x x +-=0只有一个实根,并求此实根. 2.对于平面直角坐标系中的点(),P a b ,若点P'的坐标为,a a kb b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠)则称点P'为点P 的“k 系雅培点”;例如:()3,2P 的“3系雅培点”为3'332,23P ⎛⎫+⨯+ ⎪⎝⎭,即()'9,3P . (1)点()6,1P 的“2系雅培点”P'的坐标为 ;(2)若点P 在y 轴的正半轴上,点P 的“k 系雅培点”为P'点,若在△'OPP 中,'2PP OP =,求k 的值; (3)已知点(),A x y 在第四象限,且满足12=-xy ;点A 是点(),B m n 的“3-系雅培点”,若分式方程31813412m n cx x x -+-=--无解,求c 的值. 3.当a 为何值时,关于x 的方程223242ax x x x -=--+无解? 4.若关于x 的方程213224k x x x +=-+-无解,求k 的值. 5.解关于x 的方程﹣= 时产生了增根,请求出所有满足条件的k 的值.6.a 为何值时,关于x 的方程213242ax x x x +=--+会产生增根? 7.解方程及化简分式: (1)213x x x +=+; (2)2216124x x x --=+-; (3)化简:22221111x x x x x x --⎛⎫÷+- ⎪--⎝⎭; (4)若分式方程;21333kx x x-+=--无解,求k 的值. 8.a 为何值时,分式方程()31011x a x x x x +-+=++无解? 9.当k 为何值时,分式方程()62511x k x x x x +=--- 有增根? 10.若x =1是方程21x x +-+32x x +-=(1)(2)m x x --的增根,则m =__________.11.若关于x 的方程4233k x x x -+=--有增根,试求k 的值. 12.已知关于x 的方程4122ax x x =+--. (1)当3a =时,解这个方程;(2)若这个方程无解,求a 的值.13.若关于x 的方程22933m m x x x +=---无解,求m 的值. 14.m 为何值时,关于x 的方程223422mx x x x +=--+无解? 15.若方程223242mx x x x +=--+有增根,求m 的值. 16.若关于x 的方程32x mx 21x 33x---=---无解,求m 的值. 17.若关于x 的方程212(1)1232a a x x x x --=---+无解,求a 的值. 18.解分式方程:. 19.已知方程22611--1k x x x -=+有增根x=1,求k 的值. 20.当m 为何值时,关于x 的方程2m x -+3=12x x--无解? 21.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程14a x =-的解为正数,求a 的取值范围? 经过独立思考与分析后,小明和小聪开始交流解题思路如下:小明说:解这个关于x 的分式方程,得到方程的解为4x a =+.由题意可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面.还必须保证0a ≠才行.请回答:_______________的说法是正确的,并说明正确的理由是:__________________. 完成下列问题:(1)已知关于x 的方程233m x x x-=--的解为非负数,求m 的取值范围; (2)若关于x 的分式方程322133x nx x x --+=---无解.直接写出n 的取值范围. 22.已知关于x 的分式方程()()211122mx x x x x +=--++, (1)若方程的增根为x=1,求m 的值(2)若方程有增根,求m 的值(3)若方程无解,求m 的值.23.若解分式方程()21111x m x x x x x++-=++产生增根,则m 的值是多少? 24.若分式方程4522-x m x x=+-有增根,求m 的值。
初中数学计算能力提升训练测试题
1。
化简:b b a a 3)43(4---。
2.求比多项式22325b ab a a +--少ab a -25的多项式。
3。
先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( )。
(A )3232a a a =+ (B )a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算:(1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a -÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .902.(探究题)下列等式:①()a b c --=—a b c -;②x y x -+-=x y x -;③a b c -+=—a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5.(技能题)约分: (1)22699x x x ++-; (2)2232m m m m -+-.6。
初中数学三角形的高、中线和角平分线提高训练5套(能力题含答案)
三角形的高、中线和角平分线提高训练5套(能力题)能力训练(1)1.下列说法中正确的是( )A .三角形的三条高都在三角形内B .直角三角形只有一条高C .锐角三角形的三条高都在三角形内D .三角形每一边上的高都小于其他两边2.(易错题)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )3.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线C .132ACB ∠=∠ D .CE 是△ABC 的角平分线4.如图,若已知AE 平分∠BAC ,且∠1=∠2=∠4=15°,则∠3的度数为________,以AE 为角平分线的三角形还有________.5.如图所示:(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________.6.如图所示,△ABC 的高AD ,BE ,CF 相交于点H ,过点F 作FG ⊥AC 交AC 于点G ,请说出△ABH ,△BCH ,△ACH ,△ACF 中各边上的高.7.如图,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E ,若∠EDA =∠EAD ,试说明AD 是△ABC 的角平分线.8.不等边△ABC 的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.(1)参考答案1.C 解析 锐角三角形的三条高都在三角形内,直角三角形有两条高恰是其直角边,故选C . 2.C 解析 最长边上的高,应是过这条边所对的顶点来作它的垂线段,图形中只有C 选项是正确的,故选C .3.D 解析 因为34∠=∠,CE 交BD 于点E ,所以CE 是△BCD 的角平分线,虽然CE 将∠ACB 分为两个相等的角,但CE 未与边AB 相交,所以CE 不是△ABC 的角平分线,故选D .4.15° 解析 因为AE 平分∠BAC ,所以B A E C A E ∠=∠.又因为1215∠=∠=︒,所以12151530BAE ∠=∠+∠=︒+︒=︒,所以30CAE BAE ∠=∠=︒,即4330BAE ∠=∠+∠=︒,所以330151∠=︒-︒=︒.因为2315∠=∠=︒,所以AE 是△DAF 的角平分线.5.AB CD 解析 根据三角形的高的定义即可判断.6.解:在△ABH 中,FH 是AB 边上的高,AE 是BH 边上的高,BD 是AH 边上的高;在△BCH 中,HD 是BC 边上的高,CE 是BH 边上的高,BF 是CH 边上的高;在△ACH 中,HE 是AC 边上的高,CD 是AH 边上的高,AF 是CH 边上的高;在△ACF 中,FG 是AC 边上的高,CF 是AF 边上的高,AF 是CF 边上的高.7.解:∵DEAC ,∴EDA CAD ∠=∠.∵EDA EAD ∠=∠,∴CAD EAD ∠=∠, ∴AD 是△ABC 的角平分线. 8.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.能力训练(2)1.若AD 是△ABC 的中线,则下列结论中错误的是( ) A .AD 平分∠BAC B .BD =DC C .AD 平分BC D .BC =2DC2.已知D ,E 分别是△ABC 的边AC ,BC 的中点,那么下列说法不正确的是( ) A .DE 是△BCD 的中线 B .BD 是△ABC 的中线 C .AD =DC ,BE =EC D .AD =EC ,DC =BE3.如图,△D 是△ABC 的中线,AE 是△ABD 的中线,若CE =9 cm ,则BC =________cm . 4.如图,BD 是△ABC 的中线,AB =6 cm ,BC =4 cm ,则△ABD 与△BCD 周长的差是________.5.如图所示,AE 和AF 分别是△ABD 和△ACD 的中线,根据条件填空.因为AE 是△ABD 的中线(已知),所以1______________________2==.因为AF 是△ACD 的中线(已知),所以1______________________2==.所以111__________________222EF =+=6.如图,在△ABC 中,D ,E 分别是BC ,AD 的中点,S △ABC =24 cm 2,求S △ABE .7.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为12 cm 和15 cm 两部分,求三角形的各边长.8.已知:△ABC 中,AB =AC ,BD 是AC 边上的中线,如果D 点把三角形ABC 的周长分为12cm 和15cm 两部分,求此三角形各边的长.9.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形. (2)已知一个任意三角形,将其剖分成4个等积的三角形.(2)参考答案1.A 解析 AD 是△ABC 的中线,它不一定平分∠BAC .2.D 解析 由三角形的中线定义可知A ,B 选项正确;由题意可明显得出AD DC =,BE EC =,C 选项正确.故选项D 错误.3.12 解析 ∵AD 是△ABC 的中线,AE 是△ABD 的中线,∴12CD BD BC ==,12DE BD =, ∴34CE DE CD BC =+=.∵9cm CE =,∴12cm BC =.4.2cm 解析 因为BD 是△ABC 的中线,所以A D C D =,所以△ABD 与△BCD 的周长差是()()()642cm AB BD AD BC BD DC AB BC ++-++=-=-=.5.BE DE BD CF FD CD BD CD BC6.解:由D ,E 分别是BC ,AD 的中点,且等底同高的三角形面积相等,得()2112412cm 22ABD ADC ABC S S S ∆∆∆===⨯=,ABE DBE S S ∆∆=,所以()211126cm 22ABE ABD S S ∆∆==⨯=7.解:设cm AB AC x ==.则1cm 2AD DC x ==.(1)若12cm AB AD +=, 即1122x x +=,则8x =, 所以8cm AB AC ==,4cm DC =.故()15411cm BC =-=.此时,AB AC BC +>,三角形存在.所以三角形的三边长分别为8cm ,8cm ,11cm .(2)若15cm AB AD +=,即1152x x +=,则10x =,所以5cm DC =,故()1257cm BC =-=. 显然,此时三角形存在,所以三角形三边长分别为10cm ,10cm ,7cm . 综上所述,此三角形的三边长分别为8cm ,8cm ,11cm 或10cm ,10cm ,7cm . 8.提示:有两种情况,分别运用方程思想,设未知数求解. ⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 9.(1)(2)下列各图是答案的一部分:能力训练(3)1.如图,在△ABC中,BD为角平分线,且∠ABC=60°,则∠ABD的度数是()A.60°B.45°C.30°D.15°2.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=()A.1 B.2 C.3 D.43.如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个4.如图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC的中线,则图中相等的角有________,相等的线段有________.5.如图,AD,BE分别是△ABC中BC,AC边上的高,AD=4cm,BC=6 cm,AC=5 cm,则BE=________.6.如图所示,在平面直角坐标系中,A点坐标为(3,3),B点坐标为(5,0),则△AOB的面积为________.7.有一块肥沃的三角形土地ABC,其中一边与灌渠相邻,如图,政府要将这块地按人口数分给甲、乙、丙三家,若甲家有3口人,乙家有3口人,丙家有6口人,且每家所分土地与灌渠相邻,请你帮忙设计一个合理的分配方案.8.如图所示,网格小正方形的边长都为1,在△ABC中,试分别画出三条边的中线,然后探究三条中线的位置关系,你发现了什么?9.如图,AD是∠CAB的平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:(1)DO是∠EDF的平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将DO是∠EDF的平分线与AD是∠CAB的平分线,DE∥AB,DF∥AC中的任何一个条件交换,所得命题正确吗?若正确,请选择一个证明.(3)参考答案1.C 解析 因为BD 为角平分线,所以ABD CBD ∠=∠,而60ABC ∠=︒,所以1302ABD ABC ∠=∠=︒.2.B 解析 ∵BD 是△ABC 的中线,∴162ABD CBD ABC S S S ∆∆∆===.∵2EC BE =,∴2AEC ABE S S ∆∆=,∴143AEE ABC S S ∆∆==,∴()642ADF BEF ADF ABF BEF ABF ABD ABE S S S S S S S S ∆∆∆∆∆∆∆∆-=+-+=-=-=.3.B 解析 由12∠=∠知AD 平分∠BAE ,但AD 不是△ABE 的线段,故①错误,而正确的说法为AD 为△ABC 的角平分线;BE 经过△ABD 的边AD 的中点G ,但BE 不是△ABD 内的线段,故②错误,而正确的说法为BG 为△ABD 的边AD 上的中线;由于CF AD ⊥于点H ,所以CH 是△ACD 的边AD 上的高,故③正确;AH 平分∠FAC ,且H 在△AFC 的边FC 上,因而AH 为△AFC 的角平分线,又因为AH FC ⊥,故AH 也为△AFC 的高,所以④正确.4.BAE CAE ∠=∠,ADB ADC ∠=∠ B F C F = 解析 ∵AE 是△ABC 的角平分线,∴BAE CAE ∠=∠.∵AD 是△ABC 的高,∴90ADB ADC ∠=∠=︒.∵AF 是△ABC 的中线,∴BF CF =.5.24cm 5解析 由1122BC AD AC ⋅=,得1164522BE ⨯⨯=⨯⨯,得24cm 5BE =.6.7.5 解析 如图,过A 点作AD x ⊥轴于点D ,则D 点坐标为(3,0),3AD =,所以11537.522ACB S OB AD ∆=⋅=⨯⨯=.7.解:因为人口数分别为3,3,6,且336+=,所以先找△ABC 的边BC 上的中线AD ,AD 将△ABC 分成两部分:△ABD 和△ADC .若将△ADC 分给丙家,则将△ABD 分给甲、乙两家,由于甲、乙两家人口数相等,因此找△ABD 的边BD 上的中线AE ,AE 将△ABD 分成相等的两部分:△ABE 和△AED .可将△ABE 分给甲家,△AED 分给乙家.如图所示.8.解:如图所示,由图中的信息可知:①三角形ABC的三条中线相交于一点;②三条中线交点到对边中点的距离等于它到对应顶点距离的一半.9.思路建立(1)要说明DO是∠EDF的平分线,则需说明EDA ADF∠=∠,根据角平分线的性质及平行线的性质进行等量代换即可.(2)与(1)的求证过程类似.解:(l)DO是∠EDF的平分线.证明:∵AD是∠CAB的平分线,∴EAD FAD∠=∠.∵DE AB,DF AC,∴EDA FAD∠=∠.∠=∠,FAD EAD∴EDA ADF∠=∠,∴DO是∠EDF的平分线.(2)①若与AD是∠CAB的平分线交换,正确.理由与(1)中证明过程类似.②若与DE AB交换,正确.理由:∵DF AC,∴FAD EAD∠=∠.∵AD是∠CAB的平分线,∴EAD FAD∠=∠.∠=∠.∴FAD FDA又∵DO是∠EDF的平分线,∴EDA FDA∠=∠,∴DE AB.∠=∠,∴EDA FAD③若与DF AC交换,正确,理由与②类似.能力训练(4)1.已知等腰△ABC的底边BC=8,且|AC-BC|=2,那么腰AC的长为( )A.10或6B.10C.6D.8或62.已知三角形两边的长分别是4和10,则此三角形的周长可能是( )A.19B.20C.25D.303.已知三角形三边的长分别为1、2、x,则x的取值范围在数轴上表示为( )4.如果a,b,c为三角形的三边长,且(a-b)2+(a-c)2+|b-c|=0,则这个三角形是.5.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.6.三角形两边之和为8,第三边上的高为2,面积大于5,则第三边a的范围是( )A.2<a<8B.5<a<8C.2<a<5D.不能确定7.一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是.8.一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为.9.已知a,b,c是三角形的三边长.(1)化简:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|;(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值.10.(2018浙江义乌月考,10,★★☆)边长为整数,周长为20的三角形个数是( )A.4B.6C.8D.1211.(2017山东泰安新泰中考模拟,16,★★★)已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为( )A.4B.6C.8D.1012.(2018天津西青区期末,21,★★★)如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:6(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.13.(2016江苏盐城中考,8,★★☆)若a、b、c为△ABC的三边长,且满足|a-4|+=0,则c的值可以为( )A.5B.6C.7D.814.(2016贵州安顺中考,5,★★☆)已知实数x,y满足|x-4|+=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16D.以上答案均不对15.若a、b、c为三角形的三边,且a、b满足+(b-2)2=0,则第三边c的取值范围是.16.如图,用四个螺丝钉将四条不可弯曲的木条钉成一个木框,不计螺丝钉大小,其中相邻两螺丝钉间的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝钉间的距离的最大值为( )A.6B.7C.8D.1017.不能构成三角形的三条整数长度的线段的长度和的最小值为1+1+2=4;若四条整数长度的线段中,任意三条不能构成三角形,则该四条线段的长度和的最小值为1+1+2+3=7;……,依此规律,若八条整数长度的线段中,任意三条不能构成三角形,则该八条线段的长度和的最小值为.(4)参考答案1.A ∵|AC-BC|=2,∴AC-BC=±2,∵等腰△ABC的底边BC=8,∴AC=10或6.故选A.2.C 设第三边的长为x,∵三角形两边的长分别是4和10,∴10-4<x<10+4,即6<x<14.则三角形的周长L满足20<L<28,只有C选项中25符合题意.3.A ∵三角形的三边长分别是x,1,2,∴x的取值范围是1<x<3,故选A.4.答案等边三角形解析∵(a-b)2+(a-c)2+|b-c|=0,∴a-b=0,a-c=0,b-c=0,∴a=b,a=c,b=c,∴a=b=c,∴这个三角形是等边三角形.5.解析∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解,∴a-4=±2,解得a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC 的周长为2+2+3=7,△ABC是等腰三角形.6.B ∵三角形两边之和为8,第三边为a,∴a<8,∵第三边上的高为2,三角形的面积大于5,∴a>5,∴5<a<8,故选B.7.答案1<x≤12解析∵一个三角形的3条边长分别是x cm,(x+1)cm,(x+2)cm,它的周长不超过39 cm,∴解得1<x≤12.8.答案3或4解析设腰长为x,则底边长为9-2x.∵9-2x-x<x<9-2x+x,∴2.25<x<4.5,∵三边长均为整数,∴x可取的值为3或4.9.解析(1)∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|(b+c)-a|+|b-(c+a)|-|c-(a+b)|-|(a+c)-b|=b+c-a+a+c-b-a-b+c+b-a-c=2c-2a.(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①-②,得a-c=2④,由③+④,得2a=12,∴a=6,∴b=11-6=5,c=10-6=4.当a=6,b=5,c=4时,原式=2×4-2×6=-4.10.C 8个,分别是:(9,9,2),(8,8,4),(7,7,6),(6,6,8),(9,6,5),(9,7,4),(9,8,3),(8,7,5).故选C.11.D ①当5是最大的边长时,可能的情况有3、4、5;4、4、5;3、3、5;4、2、5,共四种情况.②当5是第二大的边长时,可能的情况有2、5、6;3、5、7;3、5、6;4、5、6;4、5、7;4、5、8,共六种情况.所以共有10个三角形.故选D.12.解析(1)62(2)共连接了8个点.(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故填(n+1)(n+2).13.A ∵|a-4|+=0,∴a-4=0,b-2=0,∴a=4,b=2,则4-2<c<4+2,即2<c<6,故选A.14.B 根据题意得解得(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20.故选B.15.答案1<c<5解析由题意得,a2-9=0,b-2=0,解得a=3,b=2,∵3-2=1,3+2=5,∴1<c<5.16.B 已知相邻两螺丝钉间的距离依次为2、3、4、6,故可将4根木条的长看作2、3、4、6.①选5(2+3=5)、4、6作为三边长,5-4<6<5+4,能构成三角形,此时两个螺丝钉间的最大距离为6;②选7(3+4=7)、6、2作为三边长,6-2<7<6+2,能构成三角形,此时两个螺丝钉间的最大距离为7;③选10(4+6=10)、2、3作为三边长,2+3<10,不能构成三角形,此种情况不成立;④选8(6+2=8)、3、4作为三边长,3+4<8,不能构成三角形,此种情况不成立.综上所述,任意两个螺丝钉间的距离的最大值为7.故选B.17.答案54 解析1+1+2+3+5+8+13+21=54.能力训练(5)一、单选题(共14道,每道7分)1.下列说法正确的是( )A.三角形的三条角平分线有可能在三角形内,也可能在三角形外B.三角形的三条高都在三角形内C.三角形的三条高交于一点D.三角形的三条中线交于一点2.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线3.如图,△ABC中,AD⊥BC交BC的延长线于D,BE⊥AC交AC的延长线于E,CF⊥BC交AB于F,下列说法错误的是( )A.FC是△ABC的高B.FC是△BCF的高C.BE是△ABC的高D.BE是△ABE的高4.如图,在△ABC中,作BC边上的高,下列选项中正确的是( )A. B. C. D.5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上的一点,CF⊥AD于H.则下列判断正确的个数是( )①AD是△ABE的角平分线;②BG是△ABD的中线;③CH为△ACD中AD边上的高.A.1个B.2个C.3个D.0个6.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于E,∠BAC=60°,∠C=80°,则∠EOD的度数为( )A.20°B.30°C.10°D.15°7.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是( )A.2B.3C.6D.不能确定8.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为( )A.1B.2C.3D.49.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个10.三角形两边长为2和9,周长为偶数,则第三边长为( )A.7B.8C.9D.1011.已知三角形的两边分别为3和8,且周长为偶数,则周长为( )A.大于5,小于11B.18C.20D.18或2012.一个三角形的两边分别是5和11,若第三边是整数,则这个三角形的最小周长是( )A.21B.22C.23D.2413.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为( )A.3B.10C.6.5D.3或6.514.已知等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为( )A.7B.3C.7或3D.8(五)参考答案1.D2. D3.A4. C5.B6.A7.A8.C9.D10.C11.D12.C13.C14.B。
2021年九年级中考复习数学专题训练:《四边形》选择题专项培优(二)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2021年中考复习数学专题训练:《四边形》选择题专项培优(二)1.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°2.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO 交于D点,连接BD,当DB⊥x轴时,k的值是()A.6B.﹣6C.12D.﹣123.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长4.若一个多边形的内角和为其外角和的2倍,则这个多边形为()A.六边形B.八边形C.十边形D.十二边形5.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.八边形6.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.77.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC8.八边形的内角和为()A.180°B.360°C.1080°D.1440°9.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.610.下列说法正确的是()A.多边形的外角和与边数有关B.平行四边形既是轴对称图形,又是中心对称图形C.当两圆相切时,圆心距等于两圆的半径之和D.三角形的任何两边的和大于第三边11.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10 B.8 C.7 D.612.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+13.如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD =2S△EFBB.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC14.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)15.平行四边形ABCD中,边AB=a,对角线AC=b、BD=c,则a、b、c的取值可以是下列中的()A.a=4,b=6,c=8 B.a=6,b=4,c=8C.a=8,b=4,c=6 D.a=5,b=4,c=316.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D.417.如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为()A.B.C.2.5 D.2.318.如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△ABO =S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.其中正确的个数是()A.1个B.2个C.3个D.4个19.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°20.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个21.如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14:9 D.17:922.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:=AB2①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD其中正确的结论有()A.1个B.2个C.3个D.4个23.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE 交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S=AM2.四边形ABMD 其中正确结论的个数是()A.1 B.2 C.3 D.424.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)25.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S=.其中正确的是()△FGCA.①②B.①③C.②③D.①②③参考答案1.解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.2.解:过点C作CE⊥x轴于点E,∵顶点C的坐标为(m,3),∴OE=﹣m,CE=3,∴OC==6,∵菱形ABOC中,∠BOC=60°,∴OB=OC=6,∠BOD=∠BOC=30°,∵DB⊥x轴,∴DB=OB•tan30°=6×=2,∴点D的坐标为:(﹣6,2),∵反比例函数y=的图象与菱形对角线AO交D点,∴k=xy=﹣12.故选:D.3.解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.4.解:设这个多边形是n边形,根据题意,得(n﹣2)•180°=360°×2,解得:n=6,即这个多边形为六边形.故选:A.5.解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.6.解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:C.7.解:如图,在△AED中,∠AED=60°,∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣∠EDC,∵∠A=∠B=∠C,∴120°﹣∠ADE=120°﹣∠EDC,∴∠ADE=∠EDC,∵∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,∴∠ADE=∠ADC,故选:D.8.解:(8﹣2)•180°=6×180°=1080°.故选:C.9.解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=4.故选:B.10.解:A、多边形的外角和是360°,所以多边形的外角和与边数无关,所以答案A错误;B、平行四边形只是中心对称图形,不是轴对称图形,所以答案B错误;C、当两圆相切时,分两种情况:两圆内切和两圆外切,结果有两种,所以答案C错误;D、答案正确.故选:D.11.解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.12.解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图1中:过点A作AE⊥BC垂足为E,过点A作AF⊥DC垂足为F,由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图2中,过点A作AF⊥DC垂足为F,过点A作AE⊥BC垂足为E,∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+.故选:D.13.解:A、∵AD∥BC∴△AFD∽△EFB∴===故S△AFD =4S△EFB;B、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.14.解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选:B.15.解:根据平行四边形的对角线互相平分.则在平行四边形的对角线的一半和一边组成的三角形中,根据三角形的三边关系进行分析:A中,4,3,4符合;B中,6,2,4里,2+4=6,不能;C中,8,2,3里,2+3<8,不能;D中,5,2,1.5里,2+1.5<5,不能.故选:A.16.解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选:B.17.解:延长AF、BC交于点G.∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G.又DF=CF,∴△AFD≌△GFC.∴AG=2AF=8,CG=AD=2.7.∵AF⊥AB,AB=6,∴BG=10.∴BC=BG﹣CG=7.3.∵AE=BE,∴∠BAE=∠B.∴∠EAG=∠AGE.∴AE=GE.∴BE=BG=5.∴CE=BC﹣BE=2.3.故选:D.18.解:∵在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,∴EF∥AD∥BC,∴①正确;∵在梯形ABCD中,设梯形ABCD的高是h,则△ABD的面积是AD×h,△ACD的面积是:AD×h,∴S△ABD =S△ACD,∴S△ABD ﹣S△AOD=S△ACD﹣S△AOD,即S△ABO =S△DCO,∴②正确;∵EF∥BC,∴∠OGH=∠OBC,∠OHG=∠OCB,已知四边形ABCD是梯形,不一定是等腰梯形,即∠OBC和∠OCB不一定相等,即∠OGH和∠OHG不一定相等,∠GOH和∠OGH或∠OHG也不能证出相等,∴说△OGH是等腰三角形不对,∴③错误;∵EF∥BC,AE=BE(E为AB中点),∴BG=DG,∴④正确;∵EF∥BC,AE=BE(E为AB中点),∴AH=CH,∵E、F分别为AB、CD的中点,∴EH=BC,FG=BC,∴EH=FG,∴EG=FH,∴EH﹣GH=FG﹣GH,∴EG=HF,∴⑤正确;∴正确的个数是4个,故选:D.19.解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故选:A.20.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.21.解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:=.故选:C.22.解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;④S=AB•DE=AB•BE=AB•AB=AB2,即④正确.△ABD综上可得①②④正确,共3个.故选:C.23.解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①小题正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小题正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③小题正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,=AM2,故④小题正确,∴S四边形ABMD综上所述,正确的是①②③④共4个.故选:D.24.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点C(﹣,4).故选:B.25.解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3﹣x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3﹣x)2+22,解得,x=,∴CG=3﹣=,∴BG=CG=,即点G是BC中点,故①正确;∵tan∠AGB===2,∴∠AGB≠60°,∴∠CGF≠180°﹣60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;△CGE的面积=CG•CE=××2=,∵EF:FG=1:=2:3,=×=,故③正确;∴S△FGC综上所述,正确的结论有①③.故选:B.一天,毕达哥拉斯应邀到朋友家做客。
(必考题)初中七年级数学上册第二章《整式的加减》提高卷(答案解析)
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 3.(0分)下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( )A .2个B .3个C .4个D .5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.4.(0分)如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.5.(0分)已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】 本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.(0分)已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.(0分)小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n + B .mn m n + C .2mn m n + D .m n n m + C 解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.8.(0分)﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.9.(0分)一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 10.(0分)多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 二、填空题11.(0分)如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 13.(0分)在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.14.(0分)m,n互为相反数,则(3m–2n)–(2m–3n)=__________.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.16.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.17.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.18.(0分)为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.19.(0分)已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6.【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.20.(0分)观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 三、解答题21.(0分)已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.22.(0分)已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】 (1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.23.(0分)观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.24.(0分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.25.(0分)图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.26.(0分)一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.27.(0分)某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
初中数学分式方程的增根、无解问题填空题培优训练2(附答案详解)
初中数学分式方程的增根、无解问题填空题培优训练2(附答案详解)1.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 2.关于x 的分式方程21311x a x x--=--的解为非负数,则a 的取值范围为_______. 3.已知关于x 的方程211x m x -=-的解是正数,则m 的取值范围为__________. 4.若关于x 的方程231x m x +=-的解为正数,则m 的取值范围是__________. 5.已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是 . 6.若关于x 的分式方程321x a x --﹣112x x--=1的解为正数,且关于y 的一元一次不等式组122116212242y y y a --⎧-<⎪⎪⎨⎛⎫⎪--< ⎪⎪⎝⎭⎩的解集为无解,则符合条件的所有整数a 的和为_____. 7.若关于 x 的分式方程121m x -=+的解为正数,则 m 的取值范围是_____. 8.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是_________. 9.若方程323x x k=++的根为负数,则k 的取值范围是______。
10.若关于x 的分式方程3333x m m x x++=--有增根,则实数m 的值为_______. 11.若关于x 的方程21122x m x x +-=++有增根,则m 的值为________. 12.若分式方程11x m x x =--无解,则m 的值为__________. 13.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.若关于x 的方程2222x m x x-+=---有增根,则增根x =___. 16.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a ,则a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率为_____. 17.若关于x 的分式方程21111x m x x +-=--的解是负数,则m 的取值范围是_____. 18.关于t 的分式方程m 5t 22t +--=1的解为负数,则m 的取值范围是______.19.若关于x 的方程22x m x +=-的解是正数,则m 的取值范围为______________. 20.关于x 的分式方程3111m x x +=--的解为负数,则m 的取值范围是_____. 21.若关于x 的方程x 3x 2+=+()()k 1x-1x 2++的解不大于4的正数,则k 的取值范围是___22.若关于x 的分式方程k 12x 1-=+的解为负数,则k 的取值范围为__. 23.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 24.若解关于x 的分式方程233x m m x x-+--=3会产生增根,则m =_____. 25.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 26.若关于x 的方程333x m m x x ++--=2的解为正数,则m 的取值范围是_____. 27.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 28.若关于x 的方程22222x a a x x-+=--的解为非负数,则a 的取值范围是__________ 29.若关于x 的分式方程 k-1x 1+=2的解为非正数,则k 的取值范围为_______. 30.若分式方程1133a x x x -+=--有增根,则 a 的值是__________________. 31.关于x 的方程12x a x +=--的解是正数,则a 的取值范围是__________. 32.关于x 的方程231x a x +=-的解是正数,则a 的取值范围是___________. 33.若关于x 的分式方程3122x a x -=-的解是非负数,则a 的取值范围是__________. 34.关于x 的方程2233++=--x m x x有增根,则m 的值为_____ 35.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 36.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 37.如果关于x 的分式方程m 2x 1x 22x -=--有增根,那么m 的值为______. 38.若关于x 的方程111x m x x =---的解为正数,则m 的取值范围是________. 39.如果a 是从2,0,2,4-四个数中任取的一个数,那么关于x 的方程2122a x x -=++的根是负数的概率是________.40.若关于x的分式方程1101axx+-=-的解为正数,则a的取值范围_______.参考答案1.1【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【详解】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.2.4a ≤且3a ≠【解析】【分析】 根据解分式方程的方法和方程21311x a x x --=--的解为非负数,可以求得a 的取值范围. 【详解】 解:21311x a x x--=--, 方程两边同乘以1x -,得()2131x a x -+=-,去括号,得2133x a x -+=-,移项及合并同类项,得4x a =-,关于x 的分式方程21311x a x x--=--的解为非负数,10x -≠, ∴()40410a a -≥⎧⎨--≠⎩, 解得,4a ≤且3a ≠,故答案为:4a ≤且3a ≠.【点睛】本题主要考查根据分式方程的根求解参数,难度系数稍微有点大,但是是必考点.3.m >1且m ≠2.【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=x-1解得:x=m-1因为x >0,所以m-1>0,即m >1.①又因为原式是分式方程,所以,x≠1,即m-1≠1,所以m≠2.②由①②可得,则m 的取值范围为m >1且m≠2.故答案为:m >1且m≠2.【点睛】考核知识点:解分式方程.去分母,分母不等于0是注意点.4.3m >-且2m ≠-【解析】【分析】首先去分母化成整式方程,求得x 的值,然后根据方程的解大于0,且x -1≠0即可求得m 的范围.【详解】解:去分母,得2x +m =3(x -1),去括号,得2x +m =3x -3,解得:x =m +3,根据题意得:m +3-1≠0且m +3>0, 解得:m >-3且m ≠-2.故答案是:m >-3且m ≠-2.【点睛】本题考查了分式方程的解,注意:忽视x -1≠0是本题的易错点.5.12k >且1k ≠. 【解析】试题分析:分式方程去分母得:()()()()211121211x k x k x x x k k +--+=-⇒=-+-+≠±.∵分式方程解为负数,∴12102k k-+⇒. 由211k -+≠±得0k ≠和1k ≠∴k 的取值范围是12k >且1k ≠. 考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.6.4【解析】【分析】根据分式方程的解为正数即可得出a >0且a≠2,根据不等式组的解集为无解,即可得出a≤3,找出0<a≤3且a≠2中所有的整数,将其相加即可得出结论.【详解】解:分式方程321x a x --﹣112x x --=1的解为x =2a 且x≠12, ∵关于x 的分式方程321x a x --﹣112x x --=1的解为正数, ∴2a >0且2a ≠1,∴a >0且a≠2.122116212242y y y a --⎧-<⎪⎪⎨⎛⎫⎪--< ⎪⎪⎝⎭⎩①②,解不等式①得:y>3;解不等式②得:y<a.∵关于y的一元一次不等式组122116212242y yy a--⎧-<⎪⎪⎨⎛⎫⎪--<⎪⎪⎝⎭⎩的解集为无解,∴a≤3.∴0<a≤3且a≠2.∵a为整数,∴a=1、3,整数a的和为:1+3=4.故答案为4.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为无解,找0<a≤3且a≠2是解题的关键.7.m>3【解析】【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【详解】解:去分母得,m-1=2x+2,解得,x=3 2m-,∵方程的解是正数,∴m-3>0,解这个不等式得,m>3,∵32m-+1≠0,∴m≠1,则m的取值范围是m>3.故答案为:m>3.【点睛】本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于0.8.a>-1【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x的方程21x ax+-=1的解是正数,则x>0并且x-1≠0,即-a-1>0且-a-1≠1,解得a<-1且a≠-2.详解:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程21x ax+-=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.故答案为a<-1且a≠-2.点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.9.k>2且k≠3【解析】【分析】方程两边都乘以(x+3)(x+k),化成整式方程,然后解关于x的一元一次方程,再根据解是负数得到关于k的一元一次不等式,解不等式即可,再根据分式方程的分母不等于0求出x≠-3,列式求出k的值,然后联立即可得出答案.【详解】解:方程两边都乘以(x+3)(x+k)得,3(x+k)=2(x+3),解得x=-3k+6,∵方程的解是负数,∴-3k+6<0,解得k>2,又∵x+3≠0,x+k≠0,∴x≠-3,x≠-k∴-3k+6≠-3, -3k+6≠-k∴k≠3,∴k>2且k≠3.故答案为:k>2且k≠3.【点睛】本题考查了分式方程的解的应用,以及一元一次不等式的解法,需要注意方程的分母不等于0的情况得到k的另一范围,是一道比较容易出错的题目.10.3 2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣3=0,求出x的值,代入整式方程求出m的值即可.【详解】解:去分母,得:x+m﹣3m=3(x﹣3),由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程可得:3+m﹣3m=0,解得m=32,故答案为:32.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.11.3 ;【解析】【分析】先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.【详解】21122x m x x +-=++ 去分母得:2x+1-x-2=m解得:x=m+1∵分式方程有增根∴x=-2∴m+1=-2解得:m=-3故答案为;-3.【点睛】本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.12.1【解析】【分析】先把分式方程化为整式方程,求出方程的解,再由分式方程无解,得到1x =,代入计算,即可得到m 的值.【详解】 解:∵11x m x x =--, ∴(1)()0x x m --=,∴1x =或x m =,∵关于x 的分式方11x m x x =--无解,即是1x =, 当1x =时,1m =.故答案为:1.【点睛】本题考查了解分式方程,根据分式方程无解求参数的值,解题的关键是掌握解分式方程的方法.13.a <8,且a≠4【解析】分式方程去分母得:x=2x-8+a,解得:x=8- a,根据题意得:8- a>0,8- a≠4,解得:a<8,且a≠4.故答案为:a<8,且a≠4.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.14.n<2且3 n2≠【解析】【分析】【详解】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠.∴n的取值范围为n<2且3 n2≠.15.2【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.确定增根的可能值,让最简公分母x-2=0即可.【详解】解:∵分式方程的最简公分母是x-2,原方程有增根,∴最简公分母x-2=0,∴增根是x=2.故答案为:2.【点睛】本题考查了分式方程的增根问题,只需让最简公分母为0即可.本题需注意,分式方程的分母是多项式又能因式分解时应先因式分解.16.13. 【解析】【分析】先把分式方程化为整式方程,解整式方程得到x =61a -且x ≠2,利用有理数的整除性得到a =2或3,然后根据概率公式求解.【详解】 把分式方程26122ax x x --=--去分母得ax ﹣2﹣(x ﹣2)=6, ∴(a ﹣1)x =6,∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13. 故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.17.2m <且0m ≠【解析】【分析】解该分式方程,根据方程的解为负数且不能使分母为0,可得关于m 的不等式,解不等式可得.【详解】去分母,得:(x+1)2-m=x 2-1,去括号,得:x 2+2x+1-m=x 2-1,移项、合并,得:2x=m-2,系数化为1,得:x= 22m -,∵方程的解为负数,且x≠-1, ∴22m -<0,且22m -≠-1,解得:m <2且m≠0,故答案为:m <2且m≠0.【点睛】本题主要考查解分式方程及分式方程的解、解不等式的基本技能,根据方程的解得出不等式是解题的关键,易忽略分式方程的增根的情况,要注意.18.m <3【解析】【分析】分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m 的范围即可.【详解】去分母得:m-5=t-2,解得:t=m-3,由分式方程的解为负数,得到m-3<0,且m-3≠2,解得:m <3,故答案为:m <3.【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 19.m >-4且m≠-2【解析】【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:x+m=2x-4,解得:x=m+4,由方程的解为正数,得到m+4>0,且m+4≠2,解得:m >-4且m≠-2,故答案为:m >-4且m≠-2【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 20.m <2【解析】【分析】先将分式方程化为整式方程求出解x=m-2,根据原方程的解是负数得到20m -<,求出m 的取值范围,再由10x -≠得到3m ≠,即可得到答案.【详解】3111m x x+=--, 去分母得m-3=x-1,解得x=m-2,∵该分式方程的解是负数,∴20m -<,解得m<2,∵10x -≠,∴210m --≠,解得3m ≠,故答案为:m<2.【点睛】此题考查分式方程的解的情况求方程中未知数的取值范围,正确理解题意列得不等式求出未知数的取值范围是解此题的关键.21.-1<k≤3且k≠0.【解析】【分析】先解出关于x 的分式方程,然后再令x 小于等于4,最后解关于k 的不等式即可.【详解】解:解关于x 的方程x 3x 2+=+()()k 1x-1x 2++ 得:x=k+1根据题意:0<k+1≤4且k+1≠-2,k+1≠1,即-1<k≤3其k≠0.所以,当-1<k≤3且k≠0时,方程的解不大于4的正数.故答案为k≤3且k≠0.【点睛】本题考查了解分式方程和解不等式,根据题意列出不等式是解答本题的关键.22.k <3且k≠1.【解析】【分析】【详解】解:去分母得:122k x -=+,解得:32k x -=, 由分式方程的解为负数,得到203k -<且10x +≠, 即3 1.2k -≠- 解得:3k <且 1.k ≠故答案为:3k <且 1.k ≠23.12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析24.1【解析】【分析】 先去分母得整式方程,解整式方程得到932m x -=,然后利用方程的增根只能为3得到9332m -=,再解关于m 的方程即可. 【详解】解:去分母得()233x m m x --=-, 解得932m x -=, 因为分式方程2333x m m x x-+=--会产生增根,而增根只能为3, 所以9332m -=,解得1m =, 即当1m =时,分式方程2333x m m x x -+=--会产生增根. 故答案为:1.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.25.0【解析】【分析】根据题意先解出方程的根为x=4-2m ,由题意可知x=2,即可得4-2m=2,解出m 即可.【详解】解:方程两边同时乘以x-2,得22(2)x m x -++=-,解得:2x m =+,∵分式方程有增根,∴x=2,∴22m +=,∴0m =.故答案为:0.【点睛】本题考查分式方程的解法,熟练掌握分式方程的解法,理解增根的意义是解题的关键. 26.m <3且m ≠32【解析】【分析】分式方程去分母转化为整式方程求解,由分式方程的解为正数,满足6﹣2m >0,且6﹣2m ≠3,确定出m 的范围即可.【详解】解:去分母得:x +m ﹣3m =2x ﹣6,解得:x =6﹣2m ,由分式方程的解为正数,得到6﹣2m >0,且6﹣2m ≠3, 解得:m <3且m ≠32, 故答案为:m <3且m ≠32. 【点睛】此题考查了分式方程的解,以及解一元一次不等式,注意分式方程的解为正数包含两个含义,①所得整式方程的解不是增根,即使分式分母不为0,②解为正数.27.5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0, ∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.28.a≤1且1a 2≠【解析】【分析】先求出分式方程的解,然后结合方程的解为非负数,即可求出a 的取值范围.【详解】 解:∵22222x a a x x-+=--, ∴222(2)x a a x --=-,∴424x a x -=-,∴44x a =-;∵0x ≥,20x -≠,∴440a -≥,442a -≠,∴1a ≤,12a ≠, 故答案为:1a ≤且12a ≠; 【点睛】本题考查了解分式方程,由分式方程的解求参数的取值范围,解题的关键是正确求出分式方程的解.29.k≤3且k≠1【解析】【分析】先解出这个分式方程的解,然后再考虑分式方程的解为非正数,还要注意分母≠0得到不等式进行求解即可.【详解】解:去分母,得k-1=2x+2,解得x=k-32. 由分式方程的解为非正数, 得k-32≤0,且x+1≠0,即k-32≠-1, 解得k≤3且k≠1.【点睛】本题考查了分式方程的增根问题,分母≠0是本题的易错点,解这类题的步骤是:(1)解出分式方程的解;(2)考虑题目给的条件,注意分母≠0;(3)解不等式.30.4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x ﹣3=0,得到x =3,然后代入整式方程算出a 的值即可.【详解】方程两边同时乘以x ﹣3得:1+x ﹣3=a ﹣x .∵方程有增根,∴x ﹣3=0,解得:x =3,∴1+3﹣3=a ﹣3,解得:a =4.故答案为:4.【点睛】本题考查了分式方程的增根,先根据增根的定义得出x 的值是解答此题的关键.31.a <2且a ≠-2【解析】【分析】先求得分式方程的解,再根据x >0和分式方程有解分母不能为0,即可求出a 的取值范围.【详解】解:去分母得:2x a x +=-+,移项得:2x x a +=-,合并同类项得:22x a =-,系数化为1得:22a x -=. ∵方程的解是正数,∴202a ->,且222a -≠, 解得:a<2且a≠-2,故答案为:a<2且a≠-2.【点睛】本题考查根据分式方程解得情况求参数的取值范围.注意在解分式方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,所以可能产生增根,增根是令分母等于0的值,不是原分式方程的解.故要排除分母为0这种情况.32.a >-3且a≠-2【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求a 的取值范围.【详解】去分母得,2x+a=3x-3解得x=a+3∵分母x-1≠0即x≠1∴a+3≠1解得,a≠-2又∵x >0∴a+3>0解得,a >-3则a 的取值范围是a >-3且a≠-2.故答案为a >-3且a≠-2.【点睛】本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.33.1a ≥且6a ≠【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出a 的范围即可.【详解】去分母得:622x a x -=-,即225a x -=, 由分式方程的解为非负数,得到225a -≥0,且225a -≠2, 解得:1a ≥且6a ≠,故答案为:1a ≥且6a ≠.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 34.-1【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x−3),得2−x−m =2(x−3)∵原方程增根为x =3,∴把x =3代入整式方程,得2−3−m =0,解得m =−1.故答案为:−1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.35.4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m ,∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.36.k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.37.-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x 20-=,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】 解:m 2x 1x 22x-=--, 去分母,方程两边同时乘以x 2-,得:m 2x x 2+=-,由分母可知,分式方程的增根可能是2,当x 2=时,m 422+=-,m 4=-.故答案为4-.【点睛】考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.38.m >-1【解析】【分析】先解分式方程,再根据解的特点得到不等式,再解不等式.【详解】方程两边乘以(x-1)得x=m-(x-1)得x=12+m 因为111x m x x =---的解为正数 所以12+m >0 解得:m>-1故答案为:m>-1【点睛】考核知识点:解分式方程.去分母,把分式方程转化为整式方程是关键.39.12【解析】【分析】解分式方程得4x a =-,由方程的根为负数得出40a -<且42a -≠-,即a 的取值范围,再从所列4个数中找到符合条件的结果数,从而利用概率公式计算可得.【详解】 解:2122a x x -=++ 将方程两边都乘以2x +,得:()22a x -+=,解得4x a =-,方程的解为负数,40a ∴-<且42a -≠-,则4a <且2a ≠,所以在所列的4个数中,能使此方程的解为负数的有0、-2这2个数,则关于x 的方程2122a x x -=++的根为负数的概率为2142=, 故答案为:12. 【点睛】本题主要考查了分式方程的解法和概率公式,解题的关键是掌握解分式方程的能力及随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.40.a <1且a ≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a 的不等式,求出a 的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a >-, 解得:a <1,当x−1=0时,x=1是增根,∴211a≠-,即a≠−1,∴a<1且a≠−1,故答案为:a<1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.。
解一元二次方程100题(提升练)--初中数学专项训练
解一元二次方程100题(提升练)1解方程:(1)3x-1.2=22-x 2=6(2)3x-22解下列一元二次方程:(1)x2-16=0(直接开平方法);(2)x2-4x+7=10(配方法).(3)2x2-3x-5=0(公式法);(4)3x2+5x-2=0(因式分解法).3解方程:(1)x2-2x-3=0.(2)x x-2=x-2.4解下列一元二次方程:(1)x2-3x=4;(2)2x-1.2=3x-15解方程:(1)x2-2x-1=0(2)x5x+2=65x+2(3)(2x-1)2-3=0(4)2x2+x-6=0.6解方程.(1)3x x+1;(2)2x2-3x-5=0. =2x+17解下列方程:(1)用配方法解方程:3x2-2x-1=0;(2)2y-1+4(因式分解法).2=31-2y8选择合适的方法解下列方程:(1)x2-4x-2=0;(2)2x x+3.=6x+39解下列方程:(1)x x+1(2)2x2-3x-1=0.=x+110解方程:(1)x x-2+x-2=0;(2)4x2-8x+1=0.11请选择适当的方法解下列一元二次方程:(1)(x-2)2-9=0(2)x2+2x=3(3)2x 2+4x -1=0(4)x -5 2=2x -1 5-x12解方程:(1)2x 2+4x -1=0;(2)2x x -1 =2x -1.13解方程:(1)x -2 2=1.(2)x x -3 +x =3.14用适当的方法解下列方程:(1)7x 2=21x ;(2)x 2-6x =-8:(3)2x 2-6x -1=0;(4)9x -2 2=4x +1 2.15解下列一元二次方程:(1)x 2-4x =1;(2)x -5 2-2x x -5 =0.16解方程:(1)(x -5)(3x -2)=10;(2)x 2+3x +1=0.17解方程:(1)3x2-2=4x(2)4x-32+x x-3=0 (3)x x-3=6-2x(4)2x2-7x+3=0 18解方程(1)x2-5x-1=0(2)xx-3-4x=119解下列方程:(1)3x-12=x+12(2)3x-52=10-2x (3)x-2x+5=18(4)-3x2-4x+4=020解下列方程:(1)3x2-7x=0(2)x2+3x-4=0(3)x-52=2x-5(4)(3-x)2+x2=521计算:(1)x2+2x+1=9;(2)2x2-x-6=0.22解分式方程:(1)2xx+3+1=72x+6(2)6x+1x-1-3x-1=123解方程(1)x2-2x-5=0(用配方法解)(2)2x x+1=x+124用适当的方法解下列一元二次方程(1)3x-12-27=0;(2)x2-8x-9=0(配方法).25解方程:(1)4x2=12x;(2)34x2-2x-12=026解方程:(1)3x2-5x-2=0;(2)x+42=5x+4.27用恰当的方法解方程.(1)-x2+3x+4=0;(2)3x2x-1=4x-2.28解下列方程:(1)(x+5)2=2x+34;(2)3t2-2t-1=0(用配方法).29用适当的方法解下列方程:(1)x x-1=x(2)x2+2x-2=030用适当的方法解下列方程:(1)x2+5x-1=0;(2)7x5x+2;=65x+2(3)3x2+2x=0;(4)x2-2x-8=0.31解方程:(1)x2-4x+3=0;(2)x-3+8=0.2-6x-332解方程:(1)x-52=16;(2)x2-4x+1=0.33解方程:(1)x2-2x-3=0.(2)(x+2)(3x-1)=10.34解方程(1)x(x-1)=2(x-1);(2)x2+4x+2=035用指定的方法解方程:(1)1x2-2x-5=0(用配方法)(2)x2=8x+20(用公式法)2(3)x-3=10(用适当的方法)3x-12+4x x-3=0(用因式分解法)(4)x+236用适当的方法解方程.(1)2x2+1=3x(2)x-322=3x-137解方程:(1)x x-2=x-2.(2)x2-2x-5=0;38解方程:(1)x2-8x=0.(2)2x-32+x2-9=0.(3)x+1=4x-10. 2=2x-1.(4)x2x-539用适当的方法解方程.(1)2x2+4x-3=0;(2)x x-2=4-x240用适当的方法解方程:(1)x2+x-6=0;(2)m2+5m+7=3m+11.41解方程:(1)x-3=x x-3(2)2x2-4x-5=042解方程:(1)x2+x-12=0;(2)x-1-6=0.2-5x-143用适当的方法解下列方程:(1)2x-2. 2-4=0.(2)x-32=2x3-x 44(1)解方程(用公式法):x+2=3x+2.2x-3(2)解方程(用因式分解法):2x-22=x-245解方程:(1)x2+3x-1=0;(2)3(x-1)2=x(x-1)46解方程(1)x2-2x-24=0(2)2x-3=3x x-3 47(1)x-3=0 (2)2x2+4x-6=0;(用配方法)2+4x x-348解下列一元二次方程:(1)x2+5x-24=0(2)3x2=22-x49解方程:(1)x2-4x=4;(2)x+2=12.x+150解方程:(1)x2+8x-1=0(2)x x-2+x-2=051用合适的方法解一元二次方程;(1)x2+8x=9(2)2x+6=(x+3)2=0(4)x2-22x+2=0(3)2x2-7x-1252解下列方程.(1)x(x+4)=-3(x+4)(2)2x2-5x+2=0(公式法)53解方程:(1)x2-4x-3=0;(2)3x x-2=0.-x-254用适当的方法解一元二次方程:(1)x2-2x-8=0;(2)3x x-2.=22-x 55(1)解方程:x2-6x+8=0.(2)解方程:3x2-5x+1=056(1)用配方法解方程:-x2+4x=3(2)解方程:4x2=9x57解方程:(1)2x2-3x+1=0;(2)2x-3+3x+3=6x2-9.58解下列方程:(1)(x-2)2=16;(2)y2-3y+2=0;(3)-2x2+4x+12=0;(4)3x2+6x+15=0.59按要求解下列方程:(1)x-62=16(直接开平方法);(2)x2-4x+2=0(配方法);(3)x2+3x-4=0(公式法);(4)2x+4=x+22(因式分解法).60解下列一元二次方程:(1)x2-2x-3=0;(2)x x+2=x+2.61用适当的方法解下列方程:(1)4x2x+3=82x+3(2)x2-2x-5=0(3)3x2+x-5=0(4)x2+6x+1-13=062解方程:(1)x²-2x-5=0;(2)x+4;2=2x+4 (3)x-1=6. 2-9=0;(4)x x+563计算(1)x-52=16(2)2x2-7x+6=064解方程:(1)x2-4x-4=0(2)x(x+4)=-3(x+4)65解下列方程:(1)x2-3x=0(2)x2+2x-1=066解方程:(1)x-12-25=0;(2)x2-4x-1=0.67解方程:(1)x2-2x+1=0;(2)x2-7x-8=0﹒68解方程(1)x2-1=0(2)2x2-5x+3=069用适当的方法解下列方程(1)x2-2x=2x+1;(2)x2x+3=2x+3.70(1)解方程2x x+1=0(2)解方程:3x2-2x-4=0+3x+171计算:(1)5x2-3x=0;(2)x2-4x+1=0.72解方程:(1)2x2-4x+1=0;(2)x2+2x-3=0.73用适当的方法解方程(1)72x-32=28(2)2x2-x-15=0(3)2x2+4x-5=0(4)2x+12+32x+1+2=074解方程(1)2x+12=121;(2)x2-12x+27=0;(3)2x+12=x2+2;(4)4x2-4=1x-2-1.75用适当的方法解下列方程.(1)x2-4x-1=0;(2)x-32=53-x.76解方程:(1)3x-52=x2-25;(2)x2-1=3x.77解方程:(1)y y-2=3y-2(2)x2+8x-9=078解方程:(1)x2-4x+1=0(用配方法)(2)3(x-2)2=x(x-2)(3)2x2-22x-5=0(4)(y+2)2=(3y-1)279解方程:(1)2x2-4x=1(配方法);(2)x x+4=3x+12.80解方程(1)x-2=82-5=0(2)x x+4(3)2x2-7x=4(4)2x-32=02-x+181解方程:(1)x+82-5x+8+6=0(2)3x(2x+1)=4x+2 82(1)x2-6x+5=0;(2)3x2-2x-1=0.83请选择适当的方法解下列一元二次方程:(1)2x2x+5;(2)x2+2x-5=0. 2x+5=x-1(1)2x+32-25=0.(2)2x2-7x-2=0.(3)x+2.(4)x2-2x-3=0. 2=3x+285解方程(1)x2-4x+1=0(2)5x-32+23-5x=086选择适当的方法解下列一元二次方程:(1)3x-4;(2)2x2+4x-3=0. 2=54-x87用配方法解下列方程(1)3x2-4x-2=0;(2)6x2-2x-1=0;(3)2x2+1=3x;(4)x-3=-5.2x+188解下列方程:(1)x2+25x+10=0(2)42y-522=93y-1(1)x2-4x=0;(2)x2+4x-4=0.90解下列分式方程.(1)x+14x2-4-xx-2=1-2xx+2.(2)13x-4-10x-3=4x-5-1x-1.91解方程:(1)x2-4x-7=0;(2)3x x-1=2x-2.92用适当的方法解下列方程:(1)x2-2x+1=0(2)x2-3x+2=093用适当的方法解下列方程:(1)3x2-2x=0;(2)x2-x-1=0.94解方程:(1)4x-32=x-3(2)2x2-4x-1=095解下列方程:(1)x2+2x-3=0(用配方法)(2)2x2+5x-1=0(用公式法)(3)2x-3=12 2=x2-9(4)x+1x-396用适当的方法解下列方程:(1)x x-2=2-x(2)2x2+3x-1=097解方程:(1)x2-5x-6=0;(2)3x x-1=4x-4.98解方程(1)x2-3x-9=0(2)x x+4=2x+899解方程:(1)x+22-4=0;(2)x2+5x+6=0.100解方程(1)x2-2x+2=0;(2)x2-3x-4=0.参考答案1(1)x 1=1+63,x 2=1-63;(2)x 1=43,x 2=2【分析】(1)利用直接开平方法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵3x -1 2=6,∴3x -1=±6,解得x 1=1+63,x 2=1-63;(2)解:∵3x -2 2=22-x ,∴3x -2 2+2x -2 =0,∴3x -2 +2 x -2 =0,即3x -4 x -2 =0,∴3x -4=0或x -2=0,解得x 1=43,x 2=2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.2(1)x 1=4,x 2=-4;(2)x 1=2+7,x 2=2-7;(3)x 1=52,x 2=-1;(4)x 1=13,x 2=-2【分析】按要求解一元二次方程即可.(1)解:x 2-16=0,x 2=16,解得x 1=4,x 2=-4;(2)解:x 2-4x +7=10,x 2-4x =3,x 2-4x +4=7,x -22=7,解得x 1=2+7,x 2=2-7;(3)解:2x 2-3x -5=0,a =2,b =-3,c =-5,∴x 1,2=--3 ±-32-4×2×-52×2,解得x 1=52,x 2=-1;(4)解:3x 2+5x -2=0,3x -1 x +2 =0,解得x 1=13,x 2=-2.【点拨】本题考查了解一元二次方程.解题的关键在于正确的运算.3(1)x 1=-1,x 2=3;(2)x 1=1,x 2=2【分析】(1)先把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可(1)解:x2-2x-3=0,x+1x-3=0,x+1=0,x-3=0,∴x1=-1,x2=3;(2)解:x x-2=x-2,x x-2-x-2=0,x-1x-2=0,x-1=0,x-2=0,x1=1,x2=2.【点拨】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.4(1)x1=4,x2=-1;(2)x1=1,x2=2+3 2【分析】(1)采用因式分解法解此方程,即可求解;(2)采用因式分解法解此方程,即可求解.(1)解:由原方程得:x2-3x-4=0,得x-4x+1=0,故x-4=0或x+1=0,解得x1=4,x2=-1,所以,原方程的解为x1=4,x2=-1;(2)解:由原方程得:2x-12-3x-1=0,得x-12x-1-3=0,故x-1=0或2x-2-3=0,解得x1=1,x2=2+3 2,所以,原方程的解为x1=1,x2=2+3 2.【点拨】本题考查了解一元二次方程,熟练掌握和运用解一元二次方程的方法是解决本题的关键.5(1)x1=1+2,x2=1-2;(2)x1=6,x2=-25;(3)x1=1+32,x2=1-32;(4)x1=32,x2=-2【分析】(1)方程运用配方法求解即可;(2)方程移项后运用因式分解法求解即可;(3)方程移项后运用直接开平方法求解即可;(4)方程运用因式分解法求解即可.解:(1)x2-2x-1=0x2-2x=1,x2-2x+1=2,x-12=2,x-1=±2,∴x1=1+2,x2=1-2;(2)x5x+2=65x+2x5x+2-65x+2=0,x-65x+2=0,x-6=0,5x+2=0,∴x1=6,x2=-25;(3)(2x-1)2-3=0 (2x-1)2=3,2x-1=±3,2x=1±3,∴x1=1+32,x2=1-32;(4)2x2+x-6=02x-3x+2=0,2x-3=0,x+2=0,x1=32,x2=-2.【点拨】本题主要考查了一元二次方程的解法,熟练掌握因式分解法,配方法和直接开平方法是解答本题的关键.6(1)x1=-1,x2=23;(2)x1=-1,x2=52【分析】(1)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(1)解:∵3x x+1=2x+1,∴3x x+1-2x+1=0,则x+13x-2=0,∴x+1=0或3x-2=0,解得x1=-1,x2=2 3;(2)解:∵2x2-3x-5=0,∴x+12x-5=0,∴x+1=0或2x-5=0,解得x1=-1,x2=5 2.【点拨】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.7(1)x1=1,x2=-13;(2)y1=-32,y2=1【分析】(1)直接利用配方法解方程得出答案;(2)直接利用十字相乘法解方程得出答案.(1)解:∵3x2-2x-1=0,∴x2-23x-13=0,∴x2-23x=13,∴x2-23x+19=49,∴x-132=49,∴x -13=±23,解得x 1=1,x 2=-13;(2)解:∵2y -1 2=31-2y +4,∴2y -1 2+32y -1 -4=0,∴2y -1 -1 2y -1 +4 =0,∴2y -1 -1=0或2y -1 +4=0,解得y 1=-32,y 2=1.【点拨】此题主要考查了一元二次方程的解法,正确掌握相关解一元二次方程的解法是解题关键.8(1)x 1=2+6,x 2=2-6;(2)x 1=-3,x 2=3【分析】(1)利用配方法得到(x -2)2=6,然后用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x +3=0或2x -6=0,然后解两个一次方程即可.解:(1)x 2-4x -2=0,x 2-4x =2,x 2-4x +4=6,(x -2)2=6,x -2=±6,所以x 1=2+6,x 2=2-6;(2)2x x +3 =6x +3 ,2x x +3 -6x +3 =0,x +3 2x -6 =0,x +3=0或2x -6=0,所以x 1=-3,x 2=3.【点拨】本题考查了配方法和因式分解法解一元二次方程,熟练掌握其方法步骤是解决此题的关键,因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9(1)x 1=-1,x 2=1;(2)x 1=3+174,x 2=3-174【分析】(1)移项后,利用因式分解法求解即可;(2)直接利用公式法求解即可.(1)解:x x +1 =x +1 ,x x +1 -x +1 =0,∴x +1 x -1 =0,∴x +1=0或x -1=0,解得:x 1=-1,x 2=1;(2)解:2x 2-3x -1=0,∴a =2,b =-3,c =-1,∴x =-b ±b 2-4ac 2a =--3 ±-3 2-4×2×-1 2×2=3±174,∴x 1=3+174,x 2=3-174.【点拨】本题考查了因式分解法和求根公式法解一元二次方程,熟练掌握因式分解的方法及求根公式是解题的关键.10(1)x 1=2,x 2=-1;(2)x 1=2+32,x 2=2-32【分析】(1)采用因式分解法解此方程,即可求解;(2)采用公式法解此方程,即可求解.(1)解:由原方程得:x -2 x +1 =0,∴x -2=0或x +1=0,解得x 1=2,x 2=-1,所以,原方程的解为x 1=2,x 2=-1;(2)解:∵a =4,b =-8,c =1,∴Δ=-8 2-4×4×1=64-16=48>0,∴x =8±432×4=2±32,解得x 1=2+32,x 2=2-32,所以,原方程的解为x 1=2+32,x 2=2-32.【点拨】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键.11(1)x 1=5,x 2=-1;(2)x 1=-3,x 2=1;(3)x 1=-2+62,x 2=-2-62;(4)x 1=5,x 2=2【分析】(1)利用直接开方法求解即可;(2)利用因式分解法求解即可;(3)利用公式法求解求解即可;(4)利用因式分解法求解即可.(1)解:(x -2)2-9=0∴(x -2)2=9直接开方得:x -2=3或x -2=-3,解得:x 1=5,x 2=-1;(2)x 2+2x =3x 2+2x -3=0,∴x +3 x -1 =0,解得:x 1=-3,x 2=1;(3)2x 2+4x -1=0,其中a =2,b =4,c =-1,∴Δ=b 2-4ac =24>0,∴x =-4±242×2=-2±62,,∴x 1=-2+62,x 2=-2-62;(4)x -5 2=2x -1 5-x移项得:x -5 2+2x -1 x -5 =0,∴x -5 (x -5+2x -1)=0,整理得:x -5 (3x -6)=0,解得:x 1=5,x 2=2.【点拨】题目主要考查解一元二次方程,熟练掌握解一元二次方程的方法步骤是解题关键.12(1)x1=-1+62,x2=-1-62;(2)x1=1+22,x2=1-22【分析】(1)利用配方法解一元二次方程即可得;(2)先去括号,再利用配方法解一元二次方程即可得.(1)解:2x2+4x-1=0,2x2+4x=1,x2+2x=12,x2+2x+1=12+1,即x+12=32,x+1=±62,x=-1±62,所以方程的解为x1=-1+62,x2=-1-62.(2)解:2x x-1=2x-1,2x2-2x=2x-1,2x2-4x=-1,x2-2x=-12,x2-2x+1=-12+1,即x-12=12,x-1=±22,x=1±22,所以方程的解为x1=1+22,x2=1-22.【点拨】本题考查了解一元二次方程,熟练掌握一元二次方程的常用方法(直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.13(1)x1=3,x2=1;(2)x1=3,x2=-1【分析】(1)利用直接开平方法解方程即可;(2)先移项,再利用因式分解法解方程即可.(1)解:x-22=1∴x-2=±1,当x-2=1时,x=3,当x-2=-1时,x=1,∴x1=3,x2=1;(2)解:x x-3+x=3移项得:x x-3+x-3=0,∴x-3x+1=0,∴x-3=0,x+1=0,∴x1=3,x2=-1.【点拨】本题考查解一元二次方程,熟练掌握直接开平方法和因式分解法是解题的关键.14(1)x1=0,x2=3;(2)x1=2,x2=4;(3)x1=3+112,x2=3-112;(4)x1=8,x2=45【分析】(1)将原方程转化为7x 2-21x =0,再利用因式分解法求解即可;(2)将原方程转化为x 2-6x +8=0,再利用因式分解法求解即可;(3)直接利用公式法求解即可;(4)两边开方,得到两个一元一次方程,再求出方程的解即可.(1)解:将原方程转化为7x 2-21x =0,∴7x x -3 =0,∴7x =0或x -3=0,解得:x 1=0,x 2=3;(2)解:将原方程转化为x 2-6x +8=0,∴x -2 x -4 =0,∴x -2=0或x -4=0,解得:x 1=2,x 2=4;(3)解:∵a =2,b =-6,c =-1,∴b 2-4ac =-6 2-4×2×-1 =36+8=44,∴x =-b ±b 2-4ac 2a =--6 ±442×2=6±2114,∴x 1=3+112,x 2=3-112;(4)解:将方程转化为3x -2 =±2x +1 ,∴3x -2 =2x +1 或3x -2 =-2x +1 ,解得:x 1=8,x 2=45.【点拨】本题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法,常用的方法有:直接开平方法、配方法、公式法、因式分解法.15(1)x 1=2+5,x 2=2-5;(2)x 1=5,x 2=-5【分析】(1)用配方法求解即可;(2)用因式分解法求解即可.(1)解:x 2-4x =1,x 2-4x +4=1+4,x -2 2=5,x -2=±5,∴x 1=2+5,x 2=2-5;(2)解:x -5 2-2x x -5 =0,x -5 x -5-2x =0,x -5=0或x -5-2x =0,x 1=5,x 2=-5.【点拨】本题考查解一元二次方程,熟练掌握一元二次方程的解法:直接开方法、配方法、公式法、因式分解法是解题的关键.16(1)x 1=0,x 2=173;(2)x 1=-3+52,x 2=-3-52【分析】(1)先化成一元二次方程的一般形式,再用因式分解法求解即可;(2)用公式法求解即可.(1)解:(x -5)(3x -2)=10,去括号得:3x2-2x-15x+10=10移项合并同类项得:3x2-17x=0,分解因式得:x(3x-17)=0,∴x=0或3x-17=0,解得:x1=0x2=17 3;(2)解:x2+3x+1=0,a=1,b=3,c=1,解得x=-3±32-42,∴x1=-3+52,x2=-3-52;【点拨】本题考查了因式分解法、公式法解一元二次方程.解题的关键在于对解一元二次方程方法的熟练掌握.17(1)x1=2+103,x2=2-103;(2)x1=125,x2=3;(3)x1=-2,x2=3;(4)x1=12,x2=3.【分析】(1)根据公式法求解即可;(2)根据因式分解法求解即可;(3)根据因式分解法求解即可;(4)根据因式分解法求解即可;(1)解:3x2-2=4x,3x2-4x-2=0,∴a=3,b=-4,c=-2,∴Δ=b2-4ac=-42-4×3×-2=40,∴x=-b±Δ2a =--4±402×3=2±103,∴x1=2+103,x2=2-103;(2)解:4x-32+x x-3=0,4x-3+xx-3=0,5x-12x-3=0,∴5x-12=0或x-3=0,∴x1=125,x2=3;(3)解:x x-3=6-2x,x x-3=-2x-3,x x-3+2x-3=0,x+2x-3=0,∴x+2=0或x-3=0,∴x1=-2,x2=3;(4)解:2x2-7x+3=0,2x-1x-3=0,∴2x-1=0或x-3=0,∴x1=12,x2=3.【点拨】本题考查解一元二次方程.根据方程的特点选择合适的方法解方程是解题关键.18(1)x 1=5+292,x 2=5-292;(2)x =12【分析】(1)公式法解一元二次方程;(2)将分式方程化为整式方程,再进行验根,即可得解.(1)解:∵x 2-5x -1=0,∴a =1,b =-5,c =-1,∴△=b 2-4ac =25+4=29>0,∴x =5±292,∴x 1=5+292,x 2=5-292;(2)解:去分母,得:x 2-4x -3 =x x -3 ,去括号,得:x 2-4x +12=x 2-3x ,移项,合并得:-x =-12,系数化1:x =12;检验:把x =12代入x x -3 ≠0,∴x =12是原方程的解.【点拨】本题考查解一元二次方程和分式方程.熟练掌握公式法解一元二次方程,以及解分式方程的步骤,是解题的关键.19(1)x 1=0,x 2=12;(2)x 1=5,x 2=133;(3)x 1=-7,x 2=4;(4)x 1=23,x 2=-2【分析】(1)利用直接开平方法求解即可;(2)移项后利用分解因式法求解即可;(3)原方程化为一般形式后再利用分解因式法求解;(4)原方程化为一般形式后再利用分解因式法求解.(1)解:∵3x -1 2=x +1 2,∴3x -1=±x -1 ,∴3x -1=x -1或3x -1=-x -1 ,解得x 1=0,x 2=12;(2)解:移项,得3x -5 2-10-2x =0,即3x -5 2+2x -5 =0,进一步可变形为x -5 3x -5 +2 =0,∴x -5=0或3x -5 +2=0,解得:x 1=5,x 2=133;(3)解:原方程可变形为x 2+3x -28=0,即为x +7 x -4 =0,∴x +7=0或x -4=0,解得:x 1=-7,x 2=4;(4)解:原方程即为3x 2+4x -4=0,∴3x -2 x +2 =0,∴3x -2=0或x +2=0,解得:x1=23,x2=-2.【点拨】本题考查了一元二次方程的求解,属于基本题目,熟练掌握一元二次方程的解法是解题的关键.20(1)x1=0,x2=73;(2)x1=1,x2=-4;(3)x1=5,x2=7;(4)x1=1,x2=2【分析】(1)提公因式因式分解,解方程即可;(2)因式分解法解方程即可;(3)先移项然后提公因式解方程即可;(4)先化成一元二次方程的一般式,然后进行因式分解,计算求解即可.(1)解:3x2-7x=0,x3x-7=0,解得,x1=0,x2=7 3;(2)解:x2+3x-4=0,x-1x+4=0,解得,x1=1,x2=-4;(3)解:x-52=2x-5,x-5x-5-2=0,解得,x1=5,x2=7;(4)解:(3-x)2+x2=5,9-6x+x2+x2=5,x2-3x+2=0,x-1x-2=0,解得,x1=1,x2=2;【点拨】本题考查了解一元二次方程.解题的关键在于选用合适的方法解方程.21(1)x1=2,x2=-4;(2)x1=2,x2=-3 2【分析】(1)用配方法解方程即可;(2)利用因式分解法解方程即可.(1)解:x2+2x+1=9x+12=9,x+1=±3∴x1=2,x2=-4;(2)解:2x2-x-6=0,2x+3x-2=0∴x1=2,x2=-32.【点拨】此题考查解一元二次方程,掌握解方程的步骤与方法,根据方程的特点,选择合适的方法解方程是解决问题的关键.22(1)x=16;(2)x=-4【分析】先把分式方程化为整式方程求解,然后检验即可.(1)解:2xx+3+1=72x+6去分母得:4x+2x+6=7,去括号得;4x+2x+6=7,移项得:4x+2x=7-6,合并同类项得:6x=1,系数化为1得:x=1 6,经检验,x=16是原方程的解,∴原方程的解为x=16;(2)解:6x+1x-1-3x-1=1去分母得:6-3x+1=x+1x-1,去括号得;6-3x-3=x2-1,移项,合并同类项得:x2+3x-4=0,解得x=1或x=-4,经检验,x=-4是原方程的解,x=1不是原方程的解,∴原方程的解为x=-4.【点拨】本题主要考查了解分式方程,解一元二次方程,熟知解分式方程的方法是解题的关键.23(1)x1=1+6,x2=1-6;(2)x1=-1,x2=1 2【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵x2-2x-5=0,∴x2-2x=5,∴x2-2x+1=6,即x-12=6,∴x-1=±6,解得x1=1+6,x2=1-6;(2)解:∵2x x+1=x+1,∴2x x+1-x+1=0,∴2x-1x+1=0,∴2x-1=0或x+1=0,解得x1=-1,x2=1 2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.24(1)x1=4,x2=-2;(2)x1=9,x2=-1【分析】(1)利用直接开平方的方法解方程即可;(2)利用配方法解方程即可.(1)解:∵3x-12-27=0,∴3x-12=27,∴x-12=9,∴x-1=±3,解得x1=4,x2=-2;(2)解:∵x2-8x-9=0,∴x2-8x=9,∴x2-8x+16=25,即x-42=25,∴x-4=±5,解得x1=9,x2=-1.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.25(1)x1=0,x2=3;(2)x1=4+223,x2=4-223【分析】(1)移项后提公因式求解即可;(2)去分母后用求根公式计算求解即可.(1)解:4x2=12x,4x x-3=0令x=0,x-3=0,解得x1=0,x2=3;(2)解:34x2-2x-12=0,3x2-8x-2=0,解得x=8±-82-4×3×-22×3=4±223,∴x1=4+223,x2=4-223【点拨】本题考查了因式分解法、公式法解一元二次方程.解题的关键在于掌握解一元二次方程的解法.26(1)x1=2,x2=-13;(2)x1=-4,x2=1【分析】(1)用公式法解一元二次方程即可;(2)先移项,然后再用因式分解法解一元二次方程即可.(1)解:由题意得,a=3,b=-5,c=-2,Δ=b2-4ac=-52-4×3×-2=49,∴x=5±72×3,∴x1=2,x2=-13;(2)解:移项得:x+42-5x+4=0,提公因式得:x+4x+4-5=0,∴x+4x-1=0,∴x+4=0或x-1=0,∴x1=-4,x2=1.【点拨】本题主要考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的一般方法,准确计算.27(1)x1=4,x2=-1;(2)x1=23,x2=12【分析】(1)利用因式分解法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.(1)解:-x2+3x+4=0,即x2-3x-4=0,x-4x+1=0,x-4=0或x+1=0,x=4或x=-1,故方程的解为x1=4,x2=-1.(2)解:3x2x-1=4x-2,3x2x-1-22x-1=0,3x-22x-1=0,3x-2=0或2x-1=0,x=23或x=1 2,故方程的解为x1=23,x2=12.【点拨】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(直接开平方法、配方法、因式分解法、公式法、换元法等)是解题关键.28(1)x1=-9,x2=1;(2)t1=1,t2=-1 3【分析】(1)整理后,利用因式分解法求解即可;(2)利用配方法求解即可.(1)解:(x+5)2=2x+34x2+8x-9=0,(x+9)(x-1)=0,∴x1=-9,x2=1;(2)3t2-2t-1=0,t2-23t=13,t2-23t+19=13+19,即t-132=49,∴t-13=±23,∴t1=1,t2=-13.【点拨】本题考查了解一元二次方程-因式分解法,配方法,熟练掌握解一元二次方程的方法是解题的关键.29(1)x1=0,x2=2;(2)x1=-1+3,x2=-1-3【分析】(1)方程移项后,利用因式分解法求出解即可;(2)方程运用配方支求解即可解:(1)x x-1=xx x-1-x=0x x-1-1=0x=0,x-1-1=0∴x1=0,x2=2(2)x2+2x-2=0x2+2x=2x2+2x+1=2+1x+12=3x+1=±3x1=-1+3,x2=-1-3【点拨】此题考查了解一元二次方程-因式分解法和配方法,熟练掌握运算法则是解本题的关键.30(1)x1=-5+292,x2=-5-292;(2)x1=-25,x2=67;(3)x1=-23,x2=0;(4)x1=-2,x2=4【分析】(1)利用公式法解方程即可;(2)先移项,然后利用因式分解法解方程即可;(3)利用因式分解法解方程即可;(4)利用因式分解法解方程即可.(1)解:∵x2+5x-1=0,∴a=1,b=5,c=-1,∴Δ=b2-4ac=52-4×1×-1=29>0,∴x=-b±b2-4ac2a =-5±292,解得x1=-5+292,x2=-5-292;(2)解:∵7x5x+2=65x+2,∴7x5x+2-65x+2=0,∴7x-65x+2=0,∴7x-6=0或5x+2=0,解得x1=-25,x2=67;(3)解:∵3x2+2x=0,∴x3x+2=0,∴x=0或3x+2=0,解得x1=-23,x2=0;(4)解:∵x2-2x-8=0,∴x-4x+2=0,∴x+2=0或x-4=0,解得x1=-2,x2=4.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.31(1)x1=1,x2=3;(2)x1=5,x2=7【分析】(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)将x-3看做整体,利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(1)解:∵x2-4x+3=0,∴x-1x-3=0,∴x-1=0或x-3=0,解得x1=1,x2=3;(2)解:∵x-32-6x-3+8=0,∴x-3-2x-3-4=0,即x-5x-7=0,∴x-5=0或x-7=0,解得x1=5,x2=7.【点拨】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.32(1)x1=9,x2=1;(2)x1=2+3,x2=2-3【分析】(1)利用一元二次方程直接开平方法即可求解.(2)利用一元二次方程公式法x=-b±b2-4ac2a即可求解.(1)解:x-52=16x-5=±4x=5±4∴x1=9,x2=1.(2)解:x2-4x+1=0x=--4±-42-4×1×12×1=2±3∴x1=2+3,x2=2-3.【点拨】此题考查了一元二次方程的解法,熟练掌握直接开平方法、公式法是解题的关键.33(1)x1=-1,x2=3;(2)x1=43,x2=-3【分析】(1)直接因式分解解方程即可;(2)先化成一般式的形式,然后因式分解解方程即可.(1)解:x2-2x-3=0,x+1x-3=0,x+1=0,x-3=0,解得,x1=-1,x2=3;(2)解:x+23x-1=10,3x2+5x-12=0,3x-4x+3=0,3x-4=0,x+3=0,解得,x1=43,x2=-3.【点拨】本题考查了因式分解法解一元二次方程.解题的关键在于正确的进行因式分解.34(1)x1=1,x2=2;(2)x1=-2+2,x2=-2-2【分析】(1)先移项得到x(x-1)-2(x-1)=0,利用因式分解法把方程转化为x-2=0或x-1=0,然后解两个一次方程即可.(2)原方程运用配方法求解即可.解:(1)x(x-1)=2(x-1),x(x-1)-2(x-1)=0,(x-1)(x-2)=0,x-2=0或x-1=0,∴x1=1,x2=2(2)x2+4x+2=0x2+4x+4=2x+22=2x +2=±2∴x 1=-2+2,x 2=-2-2【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了用配方法解一元二次方程.35(1)x 1=2+14,x 2=2-14;(2)x 1=10,x 2=-2;(3)x 1=3,x 2=0.6;(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.解:(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=-8 2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点拨】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.36(1)x 1=1,x 2=12;(2)x 1=-1,x 2=1【分析】(1)利用求根公式直接求解即可;(2)先移项,然后利用平方差公式分解因式求解即可;(1)解:原方程可化为:2x 2-3x +1=0∴a =2,b =-3,c =1∴△=b 2-4ac =-3 2-4×2×1=1>0方程有两个不相等的实数根x =-b ±b 2-4ac 2a =3±12×2=3±14 ∴x 1=1,x 2=12(2)解:原方程移项,得x-32-3x-12=0因式分解,得-2x-24x-4=0于是得-2x-2=0或4x-4=0∴x1=-1,x2=1【点拨】本题考查了解一元二次方程,熟练掌握公式法、因式分解法解一元二次方程是解题的关键.37(1)x1=1,x2=2;(2)x1=1+6,x2=1-6;【分析】(1)移项,因式分解即可得到答案;(2)移项,配方,直接开平方即可得到答案;(1)解:移项得,x(x-2)-(x-2)=0,因式分解得,(x-2)(x-1)=0,∴x-1=0或x-2=0,解得:x1=1,x2=2,∴原方程的解是:x1=1,x2=2;(2)解:移项得,x2-2x=5,配方得,x2-2x+1=5+1,即(x-1)2=6,x-1=±6,∴x1=1+6,x2=1-6;【点拨】本题考查因式分解法解一元二次方程及配方法解一元二次方程,解题的关键是熟练掌握各种解法,选择适当的方法求解.38(1)x1=0,x2=8;(2)x1=3,x2=1;(3)方程无实数根;(4)x1=52,x2=2.【分析】(1)利用因式分解法即可解方程;(2)利用因式分解法即可解方程;(3)依次去括号,移项,合并同类项,得到x2=-2,根据平方的非负性可知,方程无解;(4)利用因式分解法即可解方程.(1)解:x2-8x=0,x x-8=0,令x=0或x-8=0,解得:x1=0,x2=8;(2)解:2x-32+x2-9=0,2x-32+x+3x-3=0,x-32x-3+x+3=0,x-33x-3=0,令x-3=0或3x-3=0,解得:x1=3,x2=1;(3)解:x+12=2x-1,x2+2x+1=2x-1,x2+2x+1-2x+1=0,x2+2=0,x2=-2,∵x2≥0,故原方程无实数根;(4)解:x2x-5=4x-10,x2x-5=22x-5,x2x-5-22x-5=0,2x-5x-2=0,令2x-5=0或x-2=0,解得:x1=52,x2=2.【点拨】本题考查的是解一元二次方程,熟练掌握一元二次方程的解法和步骤是解题关键.39(1)x1=-2+102,x2=-2-102;(2)x1=-1,x2=2【分析】(1)利用公式法解方程即可;(2)先移项,然后利用因式分解法解方程即可.(1)解:∵2x2+4x-3=0,∴a=2,b=4,c=-3,∴Δ=b2-4ac=42-4×2×-3=40>0,∴x=-b±b2-4ac2a =-4±2104=-2±102,解得x1=-2+102,x2=-2-102;(2)解:∵x x-2=4-x2,∴x x-2=x+22-x,∴x x-2+x+2x-2=0∴x+x+2x-2=0,∴x+x+2=0或x-2=0,解得x1=-1,x2=2.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.40(1)x1=2,x2=-3;(2)m1=5-1,m2=-5-1【分析】(1)利用因式分解法解方程即可;(2)先把方程化为一般式,然后利用公式法解方程即可.(1)解:∵x2+x-6=0,∴x+3x-2=0,∴x+3=0或x-2=0,解得x1=2,x2=-3;(2)解:∵m2+5m+7=3m+11,∴m2+2m-4=0,∴a=1,b=2,c=-4,∴Δ=b2-4ac=22-4×1×-4=20>0,∴m=-b±b2-4ac2a =-2±252,解得m1=5-1,m2=-5-1.【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.41(1)x1=3,x2=1;(2)x1=2+142,x2=2-142【分析】(1)先移项,再把方程的左边提公因式分解因式,化为两个一次方程,解一次方程即可;(2)先求出根的判别式的值,再代入求根公式,用公式法解答.(1)解:∵x-3=x x-3,移项得:x-3-x x-3=0,∴x-31-x=0,∴x-3=0或1-x=0,解得:x1=3,x2=1;(2)解:∵2x2-4x-5=0,∴Δ=-42-4×2×-5=56,∴x=--4±562×2=2±142,x1=2+142,x2=2-142.【点拨】本题主要考查了解一元二次方程,熟练掌握利用因式分解法解一元二次方程和运用公式法解一元二次方程,是解本题的关键.42(1)x1=3,x2=-4;(2)x1=0,x2=7【分析】(1)利用十字相乘因式分解法直接求解即可得到答案;(2)先换元,令m=x-1,将x-12-5x-1-6=0转化为m2-5m-6=0,利用十字相乘因式分解法直接求解即可得到答案.(1)解:x2+x-12=0,∴x+4x-3=0,解得x1=3,x2=-4;(2)解:x-12-5x-1-6=0,令m=x-1,则m2-5m-6=0,∴m-6m+1=0,解得m=6或m=-1,∴x-1=-1或x-1=6,解得x1=0,x2=7.【点拨】本题考查解一元二次方程,根据具体的方程结构特征熟练运用一元二次方程的解法求解是解决问题的关键.43(1)x1=2+2,x2=-2+2;(2)x1=1,x2=3【分析】(1)利用直接开平方法求解即可.(2)利用因式分解法求解即可.(1)解:∵2x-22-4=0,∴x-22=2,即:x-2=±2解得:x1=2+2,x2=-2+2.(2)∵x-32=2x3-x,∴x-32+2x3-x=0,∴x-3+2xx-3=0,即3x-3x-3=0,【点拨】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.44(1)x1=1+172,x2=1-172;(2)x1=2,x2=52【分析】(1)先整理成一般式,再利用公式求解即可;(2)先整理成一般式,再利用因式分解求解即可.解:(1)整理,得:x2-x-4=0,∵a=1,b=-1,c=-4,∴Δ=-12-4×1×-4=17>0,则x=-b±b2-4ac2a=1±172,∴x1=1+172,x2=1-172.(2)方程化为:2x2-9x+10=0因式分解得,x-22x-5=0于是得2x-5=0或x-2=0即x1=2或x2=5 2.【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的方法,如公式法、因式分解法,是解题的关键.45(1)x1=-3+132,x2=-3-132;(2)x1=1或x2=32【分析】(1)原方程已经是一般形式,利用根的判别式判断根的情况,再利用求根公式求解即可;(2)找出公因式,利用提取公因式法分解因式,降次后再分别求解即可.解:(1)x2+3x-1=0解:由题意的:a=1,b=3,c=-1∵Δ=b2-4ac=32-4×1×-1=9+4=13∴x1=-b+b2-4ac2a =-3+132,x2=-b-b2-4ac2a=-3-132(2)3(x-1)2=x(x-1)解:移项因式分解得:x-13x-1-x=0化简得:x-12x-3=0∴x-1=0或2x-3=0∴x=1或x=32【点拨】本题主要考查一元二次方程的解法,熟练掌握求根公式和因式分解法解一元二次方程是解决本题的关键.46(1)x1=-4,x2=6;(2)x1=3,x2=2 3【分析】(1)利用十字相乘法将原方程化为两个一元一次方程求解即可解方程;(2)利用因式分解法求解即可解方程.(1)解:x2-2x-24=0,x+4x-6=0,x+4=0或x-6=0,(2)解:2x-3-3x x-3=0,x-32-3x=0,x-3=0或2-3x=0,解得:x1=3,x2=2 3.【点拨】本题考查了解一元二次方程,正确掌握一元二次方程的解法是解题关键.47(1)x1=3,x2=35;(2)x1=1,x2=-3.【分析】(1)利用提公因式法解方程;(2)利用配方法解方程.解:(1)(x-3)2+4x(x-3)=0,(x-3)(x-3+4x)=0,∴x-3=0或5x-3=0,∴x1=3,x2=35;(2)2x2+4x-6=0,x2+2x=3,x2+2x+1=3+1,即(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.【点拨】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.48(1)x1=-8,x2=3;(2)x1=-1+133,x2=-1-133.【分析】(1)利用因式分解法求解即可得到答案;(2)将原方程化为一般式根据求根公式求解即可得到答案;(1)解:因式分解可得,(x+8)(x-3)=0,即x-3=0或x+8=0,解得:x1=-8,x2=3;(2)解:原方程变形得,3x2+2x-4=0,即a=3,b=2,c=-4,∴Δ=b2-4ac=22-4×3×(-4)=52>0∴原方程有两个不相等的实数根,∴x=-b±Δ2a =-2±522×3=-2±2136,∴x1=-1+133,x2=-1-133.【点拨】本题考查解一元二次方程,解题的关键是熟练掌握各种解法及选择适当的方法.49(1)x1=2+22,x2=2-22;(2)x1=2,x2=-5【分析】(1)配方法解方程;(2)因式分解法解方程.∴x2-4x+4=4+4,∴x-22=8,∴x-2=±22,解得:x1=2+22,x2=2-22;(2)解:x+2x+1=12,整理的:x2+3x-10=0,∴x-2x+5=0,解得:x1=2,x2=-5.【点拨】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,是解题的关键.50(1)x1=-4+17,x2=-4-17;(2)x1=2,x2=-1【分析】(1)先利用配方法得到x+42=17,然后利用直接开平方法解方程.(2)利用因式分解法把原方程转化为x-2=0或x+1=0,然后解两个一次方程即可.(1)解:x2+8x-1=0,x2+8x=1,x2+8x+16=1+16,x+42=17,x+4=±17,x1=-4+17,x2=-4-17;(2)解:x x-2+x-2=0,x-2x+1=0,x-2=0或x+1=0,x1=2,x2=-1.【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.51(1)x1=-9或x2=1;(2)x1=-3或x2=-1;;(3)x1=7+534或x2=7-534;(4)x=2【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程一因式分解法,进行计算即可解答;(2)利用解一元二次方程一因式分解法,进行计算即可解答;(3)利用解一元二次方程一公式法,进行计算即可解答;(4)利用解一元二次方程一因式分解法,进行计算即可解答.(1)解:x2+8x=9x2+8x-9=0x+9x-1=0x+9=0或x-1=0x1=-9或x2=1;(2)解:2x+6=(x+3)22x+6-(x+3)2=02x+3-(x+3)2=0x+32-x-3=0x+3-1-x=0x+3=0或-x-1=0x 1=-3或x 2=-1;(3)解:2x 2-7x -12=0∵Δ=-7 2-4×2×-12 =49+4=53>0,∴x =7±534,∴x 1=7+534或x 2=7-534;(4)解:x 2-22x +2=0x -2 2=0x -2=0x =2.【点拨】本题考查了解一元二次方程一因式分解法,公式法,熟练掌握解一元二次方程一因式分解法是解题的关键.52(1)x 1=-3,x 2=-4;(2)x 1=12,x 2=2【分析】(1)原方程整理后,利用因式分解法解该一元二次方程即可;(2)直接用公式法解该一元二次方程即可.(1)解:x (x +4)=-3(x +4),x (x +4)+3(x +4)=0,(x +3)(x +4)=0,∴x 1=-3,x 2=-4;(2)解:2x 2-5x +2=0,∵a =2,b =-5,c =2,∴Δ=b 2-4ac =(-5)2-4×2×2=9>0,∴x =-b ±b 2-4ac 2a =-(-5)±92×2=5±34,∴x 1=12,x 2=2.【点拨】本题主要考查了因式分解法和公式法解一元二次方程,熟练掌握因式分解的方法及求根公式是解题的关键.53(1)x 1=2+7,x 1=2-7;(2)x 1=2,x 2=13【分析】(1)采用公式法解此方程,即可求解;(2)采用因式分解法解此方程,即可求解.(1)解:x 2-4x -3=0,∵a =1,b =-4,c =-3,∴Δ=b 2-4ac =16-4×1×-3 =16+12=28,∴x =-b ±b 2-4ac 2a =4±272=2±7,∴x 1=2+7,x 1=2-7,所以,原方程的解为x 1=2+7,x 1=2-7;(2)解:由原方程得:x -2 3x -1 =0,故x -2=0或3x -1=0,。
新最新初中数学—分式的知识点训练(2)
一、选择题1.使代数式726x x --有意义的x 的取值范围是( ) A .x≠3 B .x <7且x≠3 C .x≤7且x≠2 D .x≤7且x≠32.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( ) A .5个 B .2个 C .3个 D .4个3.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )A .B .C .D .4.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++5.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( )A .2B .﹣2C .﹣2或﹣2D .2或26.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 7.已知:分式的值为零,分式无意义,则的值是( ) A .-5或-2B .-1或-4C .1或4D .5或2 8.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 29.把分式22x yx y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变10.已知,则的值是( )A .B .﹣C .2D .﹣211.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .a b d c <<<12.计算1÷11m m+-(m 2-1)的结果是( ) A .-m 2-2m -1 B .-m 2+2m -1C .m 2-2m -1D .m 2-1 13.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 14.把分式2210x y xy+中的x y ,都扩大为原来的3倍,分式的值( ) A .不变 B .扩大3倍 C .缩小为原来的13D .扩大9倍 15.在式子31x - 、2xy π 、2334a b c 、2x x 中,分式的个数是( ) A .1个B .2个C .3个D .4个 16.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1 B .m>1 C .m≤1 D .m<117.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤ 18.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当于( ) A .一个篮球场的面积 B .一张乒乓球台台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积19.已知0≠-b a ,且032=-b a ,则ba b a -+2的值是( ) A .12- B . 0 C .8 D .128或20.若04(2)(3)x x ----有意义,那么x 的取值范围是( )A .x >2B .x >3C .x ≠2或x ≠3D .x ≠2且x ≠321.在代数式,,+,,中,分式有( ) A .1个 B .2个 C .3个 D .4个22.计算的结果是( )A .a+bB .2a+bC .1D .-123.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5C .2.1×10-6D .21×10-624.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-625.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a --=-- B .11x x x y x y +--=-- C .116321623a a a a --=++D .22b a a b a b -=-+【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】有意义, ∴7-x≥0,且2x-6≠0,解得:x≤7且x≠3,故选D .2.C解析:C【解析】试题分析:根据x 为整数,且分式23363(1)x x x -+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2;x-1=1,x=2;x-1=3,x=4,故选C .考点:分式的值.3.A解析:A【解析】 试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程. 4.D解析:D【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为a b 3。
人教版初中七年级数学上册第二章《整式的加减》提高卷(含答案解析)
1.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7 B .-1C .5D .11A解析:A先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 7.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+-D .2513x x -- C【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】∵一个多项式与x 2-2x+1的和是3x-2, ∴这个多项式=(3x-2)-(x 2-2x+1) =3x-2-x 2+2x-1 =253x x -+-. 故选:C . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 11.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法. 12.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 13.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.3.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.4.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】 试题1111++++133********⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101.5.===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】13n +,将210n +=代入即可得出答案.【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+= 故答案为:9. 【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25. 【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解. 【详解】解:∵当x =1时,ax +b +1的值为﹣3, ∴a +b +1=﹣3, ∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25. 【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.7.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据 解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查解析:31 2【分析】设出两个正方形边长分别为a,b(a>b),表示正方形面积之差,用a、b表示四边形CDGF的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a,b(a>b)由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312 【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在面积为24的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线
CD 于点F ,若AB =6,BC =8,则CE +CF 的值为( )
A .23+
B .1473+或23+
C .1473-
D .1473+或1473- 2.如图,在△ABC 中,∠C =90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P 、Q 两点同时出发,并同时到达终点.在整个运动过程中,△MNQ 的面积大小变化情况是( )
3.如图,在等腰直角△ABC 中,∠ACB =90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE =90°,DE 交OC 于点P .则下列结论:①图形中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE 面积的2倍;③2CD CE OA +=;④
222AD BE OP OC +=⋅.其中准确的结论有 个.
4.如图,∠BAC =∠DAF =90°,AB =AC ,AD =AF ,点D 、E 为BC 边上的两点,且∠DAE =45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE +DC >DE ;④BE 2+DC 2=DE 2,其中准确的有 个.
5.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③AO =OE ;④S △AOB =S 四边形DEOF ,准确的有 个. 6.如图,在Rt △ABC 中,AB =CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE =S △AOF ,上述结论中准确的有 个.
7.如图,在△ABC 与△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一条直线上,连接BD 、BE .以下四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④2222()BE AD AB =+,其中准确的结论有 个.
8.如图,有一正方形的纸片ABCD ,边长为3,点E 是DC 边上一点且DE =1
3
DC ,把△ADE
沿AE 折叠使△ADE 落在△AFE 的位置,延长EF 交BC 边于点G ,连接AG .有以下四个
结论:①∠GAE =45°;②BG +DE =GE ;③点G 是BC 的中点;④3
2
ECG S =△.其中准确的
结论序号是 .
9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC CD
BC =;②S △ABC+S △CDE ≥S △ACE ;③BM ⊥DM ;④
BM=DM .准确的结论有 个.
10.在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针旋转得△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;
第6题图
第8题图
第7题图
第9题图
F E
D C
B
A
第12题图P
E
O
B
C
A
D 第3题图
第4题图
第5题图
第2题图
M
C
B
A
(2)如图2,连接AA 1、CC 1,若△ABA 1的面积为4,求△CBC 1的面积;
(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针
方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.
11.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),
且BD =23.过点D 作DF ∥BC ,交AB 的延长线于点F . (1)求证:DF 为⊙O 的切线;
(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;
(3)若4
3
AB AC ,DF +BF =8,如图2,求BF 的长.
图1 图2
12.已知抛物线 y =-mx 2+4x +2m 与x 轴交于点A (α,0)、B(β,0),且112αβ
+=-.
(1)求抛物线的解析式;
(2)抛物线的对称轴为l ,与y 轴的交点为C ,顶点为D ,点C 关于l 对称点为E .是否
存有 x 轴上的点M 、y 轴上的点N ,使四边形DNME 的周长最小?若存有,请画出图形(保留作图痕迹),并求出周长的最小值;若不存有,请说明理由;
(3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、E 、P 、Q 为顶点的四边形为平行四
边形时,求点P 的坐标.
A B C C A 图2 B
A C A
C 1 图1 A
C A C E
P 图3 P E
x O A B C D l y E
D O B A
C
E
O
B
A。