《分数的简单应用》说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
破而后立:从“量”到“率”的有效转变
——“分数的简单应用”教学思考与设计一、追本溯源、把握起点
(一)经纬着眼析教材
为了更好地理解教材的编排特点,我研究了人教版、北师大版、苏教版等相关教材,分析发现:
1.经度:教材前后编排:
“分数的简单应用”是新增的学习内容,原人教版安排在五下,现人教版提前到三上,是在学生学习了分数的初步认识和分数的简单计算后进行学习。后续的例2是用分数来解决简单的生活问题,五六年级还将继续学习分数的意义和性质、以及用分数来解决实际问题。
2.纬度:不同版本教材横向比较
通过不同版本教材横向比较发现,人教版和北师大版均安排在三年级,苏教版没有安排类似的内容。
3.本课知识结构:
例1的第(1)小题,调用学生学习几分之一的经验,通过剪一剪的活动,打破一个物体看成单位1的原有看法,建立一个物体或多个物体都可作单位1的观念。
第(2)小题,过渡到把6个苹果平均分成3份,这样的一份或几份也可以用分数来表示,打破了一个为一份的原有看法,建立一个或几个都可作为一份的观念,来理解“部分”与“整体”的关系。
(二)前测着手析学生
对刚接触分数的三年级学生来说,在认知上是否存在着一定的困难?有怎样的困难?我觉得有必要对学生进行一次学前调查,以便找准教学的起点和认知的困惑,以达到事半功倍的教学效果。由于学生还没有进行分数初步认识的学习,无法通过前测来了解学生的起点,因此我参考《小学教学研究》2017年第9期中萧山区李国良老师的前测数据分析,发现学生难以把多个物体看成一个整体来
理解,部分占整体的几分之一(几)还是比较模糊的,但如果在图形外面加圈(框)对正确理解一个整体有一定的帮助。
基于对教材和学情的分析,我发现有本课知识对学生来说有三难:第一难:应用知识大幅前移
第二难:多个物体看成整体
第三难:数量到分率的转变
二、合理取舍、确立走向
根据以上分析,我确定了本节课的教学目标:
1、通过剪一剪、分一分、涂一涂、说一说等活动,让学生经历整体由“一个”到“多个”的过程,知道可以把多个物体看成一个整体。
2、借助多种直观模型,理解分数的含义,分数可以表示部分和整体的关系,发展学生的抽象概括和类比推理能力,发展数感。
3、在理解分数的意义上,能用分数描述一些生活现象,感受分数与生活的联系,体验数学学习的乐趣,积累数学活动经验。
重点:知道可以把多个物体看成一个整体;
难点:分数可以表示部分和整体的关系。
三、破而后立、达成转变
本节课的教学流程为三个环节:
(一)破整为零,立零为整
1.课件(板贴)出示图1提问:涂色部分可以用哪个分数来表示?为什么?这样不仅复习了把一个物体平均分成4份,1份是他的1/4。也让学生回忆了分数产生的缘由,由此引入新课。
2.随后课件(板贴)出示剪开的右图2,设疑:现在这幅图的涂色部分还能用分数来表示吗?你是怎么想的?通过讨论,发现可以把4个小正方形看成一个整体(板书上圈一圈),平均分成4份,涂色部分也是总数的1/4。
【设计意图】把一个大正方形剪成四个小正方形,具体数量从一到多,但是涂色部分仍然可以用1/4来表示,其原因就是把四个小正方形看成一个整体,打
破了学生把一个物体看成整体的原有看法,建立一个物体或多个物体都可作整体的观念。
(二)破一为多,立多为一
1.随后课件(板书)出示图3提问:涂色部分能用怎样的分数来表示?为什么?此时学生能比较快速、正确地说出涂色部分是整体的1/4。(板书:把8个正方形平均分成4份,1份是总数的1/4)
2.然后对二、三两幅图进行比较:同样是1/4,为什么第二幅的涂色部分是1个,而第三幅的涂色部分是2个,通过讨论明白了虽然整体的个数不同,但只要把一个整体平均分成4份,一份都是总数的1/4,让学生体会到可以一个为一份,也可以多个为一份。
3.提问:那么空白部分可以用几分之几表示呢?为什么?通过讨论得出空白部分有3份,就是总数的3/4。(板书:3份是总数的3/4)
【设计意图】原来的例题是6个苹果平均分成三份,个人觉得用图3这个学习材料,比例题图更直观,并且与第(1)小题联系更紧密,更加便于学生观察、比较和思考,同时又做到了一材多用,提高了材料的利用率和教学效果。此处打破了一个为一份的原有看法,建立一个或几个都可作为一份的观念。再从几分之一延伸到几分之几,更深入地理解了“部分”与“整体”的关系。
(三)从一到多,从多到一
1.填一填、说一说
2.分一分、涂一涂:在每幅图里分别表示出它的三分之二。
3.选一选、比一比
【设计意图】从第1题到第3题分别是基础练习、深化练习、扩展练习,形式多样,层次分明。第1题填一填、说一说,巩固了本节课的重点,把多个物体看成一个整体,可以一个为一份也可以多个为一份。第2题分一分、涂一涂,用不同的图来表示同一个分数,感知总个数和每份的个数都不同,但相同的都是把总数平均分成了3份,这样的2份就可以用三分之二表示,深化了部分与整体的关系。第3题选一选、比一比,从具体事物抽象到矩形图和线段图,扩展了分数的表征,为学生全面理解分数的含义提供多种直观支持,从而促进了学生抽象思
维的发展。
四、说课总结
通过一破一立,再破再立,练习深化,学生的表象从模糊变成清晰,表征从单一走向多元,概念从浅显变成深刻,思维从形象走向抽象,达到从“量”到“率”的有效转变。
附板书设计:这是我的板书设计。
以上是我的说课内容,感谢大家的聆听,期待您的指导!